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Abstract: In this paper, we introduce an innovative approach to handling the multi-armed bandit
(MAB) problem in non-stationary environments, harnessing the predictive power of large language
models (LLMs). With the realization that traditional bandit strategies, including epsilon-greedy
and upper confidence bound (UCB), may struggle in the face of dynamic changes, we propose
a strategy informed by LLMs that offers dynamic guidance on exploration versus exploitation,
contingent on the current state of the bandits. We bring forward a new non-stationary bandit
model with fluctuating reward distributions and illustrate how LLMs can be employed to guide the
choice of bandit amid this variability. Experimental outcomes illustrate the potential of our LLM-
informed strategy, demonstrating its adaptability to the fluctuating nature of the bandit problem,
while maintaining competitive performance against conventional strategies. This study provides
key insights into the capabilities of LLMs in enhancing decision-making processes in dynamic and
uncertain scenarios.

Keywords: multi-armed bandit; non-stationary environments; large language models; AI strategy
optimization; GPT-3.5-turbo; QLoRA

1. Introduction

In the realm of artificial intelligence (AI) and reinforcement learning (RL), the multi-
armed bandit (MAB) problem [1,2] is a classic decision-making knot that captures the
exploration–exploitation trade-off. Traditionally, the MAB problem assumes a stationary
setting, where the underlying distribution of each bandit’s reward remains constant. How-
ever, real-world scenarios often present non-stationary environments, where these reward
distributions change over time.

The MAB problem, a classic dilemma of decision theory, exemplifies the balance of
exploration and exploitation in RL. It is formulated as a game with a fixed number of slot
machines, or ‘bandits’, each with an unknown probability distribution of rewards. The goal
is to develop a strategy for selecting which bandit to play so as to maximize the total reward
over a series of plays. While the MAB problem has been extensively studied, the extension
to non-stationary environments, where the reward probabilities change over time, poses
significant challenges [3,4]. Traditional strategies often falter in such scenarios, as they are
unable to adapt to the evolving reward distributions.

In this study, we delve into the non-stationary multi-armed bandit (NSMAB) problem,
where we adapt well-known strategies to handle fluctuating reward distributions. NSMAB
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poses unique challenges, primarily due to the dynamic nature of the problem, and the need
to continuously adapt the decision-making strategy.

While conventional algorithms, such as epsilon-greedy and upper confidence bound
(UCB), are adapted to handle non-stationary bandit problems, they often fall short in
optimally adjusting to rapid changes in the environment. In the quest for a better approach,
we turn our attention to large language models (LLMs), such as GPT-3.5 Turbo from Ope-
nAI. These models have shown remarkable language understanding and problem-solving
abilities, and we harness this power to guide our decision-making in the NSMAB setting.

The rise of LLMs [5–7] has revolutionized many fields of AI, providing solutions
that can understand, generate, and learn from human-like text [8,9]. Leveraging the
predictive prowess of LLMs, this work aims to inform and enhance MAB strategies for non-
stationary environments. An LLM can provide valuable insights into whether to exploit
the current best-performing bandit or explore others that are potentially better suited to
the current environment state. By integrating this LLM-informed advice into traditional
MAB strategies, we aim to increase the overall effectiveness in non-stationary settings.
The LLM-informed strategy that we propose provides advice on whether to explore or
exploit, given the current state of the bandits. This approach effectively leverages the ability
of LLM to understand complex scenarios and make informed decisions [10–12].

In the complex domain of decision making, we often encounter situations that require
strategic selection among several alternatives with uncertain outcomes—known as the
multi-armed bandit problem. Particularly challenging is the non-stationary variant of
this problem, where the probabilities associated with rewards can dynamically change
over time. Widely accepted strategies for addressing this problem, such as epsilon-greedy,
and UCB (upper confidence bound), seek to balance exploration (seeking out new, poten-
tially superior options), and exploitation (leveraging the currently best-known option).
However, performance may vary significantly in non-stationary environments due to the
unpredictable nature of the rewards associated with the bandits.

As an alternative approach, we propose a novel strategy that harnesses the predictive
capabilities of an LLM, specifically GPT-3.5-turbo-0301 and quantized low-rank adapters
(QLoRAs) [13,14], to guide the decision-making process. Our LLM-informed strategy
solicits advice from the LLM, deciding whether to explore or exploit based on the current
state of the bandits. Remarkably, we observed that our novel LLM-informed strategy
often performs on par with, if not better than, traditional approaches, indicating the
potential of integrating advanced AI technologies such as LLMs in real-time decision-
making tasks. This contribution advances the current understanding of non-stationary
multi-armed bandit problems and opens new avenues for applying LLMs to enhance
traditional decision-making strategies in dynamic environments.

The rest of the paper is organized as follows: In Section 2, we delve into the related
work, providing a comprehensive overview of both the stationary and non-stationary
multi-armed bandit (MAB) problems, the various strategies developed for these settings,
and the promising capabilities of LLMs. Section 3 introduces the fundamentals of multi-
armed bandits, offering a mathematical representation of the problem and discussing
its practical applications. Following this, in Section 4, we elaborate on our methodology,
detailing the adaptation of existing MAB strategies to non-stationary environments, and the
innovative incorporation of LLM advice. In Section 5, we detail our experimental setup and
results, describing the diverse scenarios under exploration, presenting the results along
with illustrative figures, and performing a thorough analysis. The subsequent section,
Section 6, opens up a broader discussion on the implications of our findings and potential
applications of our LLM-informed framework. Finally, in Section 7, we look ahead to future
research directions and conclude our study.

2. Related Works

The multi-armed bandit (MAB) problem, initially formalized by Robbins [1], has been
the subject of extensive research due to its inherent need for balancing exploration and
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exploitation. Several algorithms have been proposed to tackle this problem, each exhibit-
ing specific attributes that render them favorable under different scenarios. For instance,
the epsilon-greedy strategy [2] offers simplicity and practicality, guaranteeing eventual
convergence to optimal solutions given sufficient time, and a suitable choice of epsilon.
The UCB approach [15] is renowned for its optimality in stationary problems, demonstrat-
ing logarithmic regret growth over time, effectively minimizing regret in the long run.
Finally, Thompson sampling [16] stands out for its probabilistic nature, wherein it favors
actions with high uncertainty, or high expected rewards, making it particularly suitable for
scenarios with non-stationary rewards [17].

Extensions of the MAB problem to non-stationary environments [18], where the re-
ward probabilities change over time, are less well studied, and yet increasingly relevant
in dynamic real-world scenarios [3,4,19]. Strategies that adapt to changing reward distri-
butions have been proposed [20,21], but they often require assumptions about the rate of
change or the total number of changes.

The advent of LLMs [5–7,13,22], such as GPT-3 [9], Flan [23] or QLoRA [14], has
opened new avenues for AI applications. Their ability to generate human-like text and
predict next word probabilities has been exploited in tasks ranging from text completion to
more complex decision-making problems [24,25]. In this work, we explore the potential of
LLMs to advise and enhance traditional MAB strategies in non-stationary environments.

3. Multi-Armed Bandit

The problem of multi-armed bandit is a classic dilemma from probability theory that
describes an agent trying to maximize rewards when faced with multiple options, each with
an unknown and potentially different reward distribution. This problem is characterized
by the inherent trade-off between exploration (trying out all options to learn more about
their rewards) and exploitation (sticking with the option that currently seems the best).

Consider an agent faced with K slot machines, or “one-armed bandits”. Each pull of a
machine’s lever, or “arm”, gives a random reward drawn from a stationary and unknown
probability distribution specific to that machine. The agent’s objective is to develop a
strategy to decide which arm to pull at each time step in order to maximize the total reward
over a sequence of T time steps.

Let Xo,t be the reward from the o-th arm at time t, and let xo,t be the observed reward.
We assume Xo,t are independent and identically distributed random variables for each o,
but the distributions can differ between arms.

The value of an action a is the expected reward:

q(a) = E[Xa,t]; ∀t. (1)

However, the agent does not have access or is agnostic to q(a). Instead, it must estimate
the values based on the observed rewards. A natural estimate is the sample average:

q̂t(a) =
1

Nt(a)

t

∑
τ=1

I(Aτ = a)xτ,a, (2)

where Nt(a) is the number of times action a has been selected up to time t, Aτ is the
action selected at time τ, and I(Aτ = a) is an indicator function that is 1 if Aτ = a, and 0
otherwise.

The challenge in the multi-armed bandit problem involves devising a strategy for
selecting At based on q̂t−1(1), . . . , q̂t−1(K) that successfully balances exploration and ex-
ploitation. A good strategy should allow for pulling all arms sufficiently to obtain an
accurate estimate of all q(a), but also aim to minimize the number of pulls on arms that
have consistently provided lower rewards. By “inferior arms” we refer to those bandits
that, based on past interactions, appear to offer less reward (on average) than other options.
The goal is to avoid excessively engaging with these seemingly less lucrative options while
ensuring that all bandits have been sampled enough to make an informed judgment about
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their reward distributions. This, in essence, captures the core challenge of the multi-armed
bandit problem.

In the following sections, we will delve into some well-established strategies for this
problem, setting the groundwork for our innovative approach. Our unique contribution
lies in the development of a new strategy that leverages LLMs in a way that has not
been done before. This breakthrough approach aims to significantly improve upon the
current methodologies, providing more effective and efficient solutions, particularly for
non-stationary environments.

4. Methodology

In this section, we first provide a comprehensive look at the non-stationary multi-
armed bandit problem, offering a detailed examination of the inherent complexities and
unpredictable elements found in such environments. Then, we delve into the strategies
we utilized to tackle the problem. This includes well-known approaches, such as epsilon-
greedy and UCB, as well as a novel method that leverages the capabilities of LLMs. We
then illustrate the reasons for focusing on these specific strategies, along with a discussion
on our innovative LLM-informed strategy.

4.1. Non-Stationary Multi-Armed Bandit

In the non-stationary multi-armed bandit problem, there are K bandits or slot machines,
each with an unknown reward distribution that may change over time. At each time step t,
the agent chooses to play a bandit o and it receives a reward Xo,t, which is sampled from
the bandit’s current reward distribution.

The objective of the agent is to maximize the sum of rewards over a sequence of T
trials, which is a challenging task due to the exploration–exploitation dilemma, and the
non-stationary nature of the bandits’ reward distributions.

Moreover, acknowledging that real-world scenarios often involves non-stationary
processes, where the reward distributions evolve over time, we extend our methodology
to accommodate non-stationary bandits. This extension is facilitated by dynamically
modifying the reward functions at specific time intervals, which can involve varying the
mean or variance. Given the temporal nature of these reward distributions, it is plausible
that the optimal action may not remain constant over time. As such, it is crucial for the
agent to maintain an exploratory approach over time, as the most rewarding action may
change as the experiment proceeds. This is especially true in our experiment settings, where
reward distributions of the bandits may undergo a significant shift halfway through the
experiment, thereby also changing the optimal bandit at that point. Thus, our methodology
embraces these non-stationary aspects to ensure a more holistic and realistic evaluation of
the different strategies.

The key point of the derivation that follows is that using the LLM to inform the strategy
in a non-stationary multi-armed bandit problem is analogous to utilizing a sophisticated,
data-driven decision rule in a coevolutionary game. It demonstrates how tools from
AI can be effectively leveraged to adapt traditional game theoretic models to complex,
dynamic settings.

4.2. Strategies

In this study, we consider three distinct strategies for tackling the multi-armed bandit
problem: the epsilon-greedy strategy, the UCB strategy, and a novel approach we propose
and name as the LLM-informed strategy. These three strategies were selected due to their
different methods for addressing the exploration–exploitation dilemma, a key challenge
in the multi-armed bandit problem. The epsilon-greedy and the UCB strategies are well-
known approaches in this field, providing useful benchmarks for comparison, while the
LLM-informed strategy introduces an innovative use of AI, specifically LLMs, to this
problem space.
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Thompson uses a Bayesian approach, updating a probability distribution over each
arm’s reward distribution, and then choosing an arm to play based on sampling from
these distributions. This strategy provides a natural and probabilistic trade-off between
exploration and exploitation.

In this study, we chose to focus on epsilon-greedy, UCB, and the novel LLM-informed
strategy when dealing with non-stationary environments for the following reasons:

• Comparative simplicity: Both epsilon-greedy and UCB strategies are simpler in their
implementation compared to Thompson sampling. These strategies provide clear
baselines for comparison, allowing us to measure the impact of the LLM-informed
strategy against well-understood and straightforward mechanisms [2].

• Demonstrated effectiveness: While Thompson sampling has its advantages, epsilon-
greedy [26] and UCB strategies [15] have been extensively studied and proven effective
in a wide variety of scenarios. They provide solid and reliable benchmarks, against
which the novel LLM-informed strategy can be compared.

• Novelty of LLM-informed strategy: The main goal of our study was to explore and
demonstrate the potential of leveraging LLMs [9] in the multi-armed bandit problem.
By focusing on comparing this novel strategy with simpler, well-known strategies, we
aimed to isolate and highlight the impact of LLM advice on problem solving.

• Computation resources: Thompson sampling [27] often requires more computational
resources than epsilon-greedy and UCB strategies due to the need to sample from
probability distributions during each decision-making step. As our study included
large-scale experiments, we decided to exclude Thompson sampling to minimize
computational resource consumption.

Another point in favor of omitting Thompson sampling is that applying it to non-
binary rewards can be more complex. If the reward distributions are not Bernoulli, then
we need to choose and update appropriate prior distributions for the rewards. Depending
on the actual reward distributions and the chosen priors, this could involve complex
calculations or approximations, which may not be feasible or efficient for large-scale
experiments or real-time applications.

4.2.1. Strategy Epsilon-Greedy

The strategy epsilon-greedy is a simple yet effective approach to address the exploration–
exploitation dilemma. The strategy can be described as follows:

πε(a|s) =
{

1− ε + ε/K if a = arg maxa′ Q(s, a′),
ε/K otherwise.

where Q(s, a) is the estimated reward of action a at state s, K is the number of bandits, and ε
is a parameter that controls the trade-off between exploration and exploitation.

4.2.2. UCB Strategy

The UCB strategy offers a more sophisticated way to balance exploration and ex-
ploitation by taking into account both the estimated reward and the uncertainty of each
bandit. The UCB strategy selects the bandit with the highest upper confidence bound on
the expected reward:

at = arg max
a

[
Q(s, a) + c

√
ln t

N(s, a)

]
,

where N(s, a) is the number of times that action a has been selected at state s, t is the current
time step, and c is a constant that controls the degree of exploration.
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4.2.3. LLM-Informed Strategy

We introduce a unique and novel strategy, the LLM-informed strategy, specifically
designed to harness the predictive capabilities of LLMs for tackling the multi-armed bandit
problem. The core innovation of our approach is to recast the bandit problem as a question,
which is then presented to the LLM. Based on the LLM advice regarding exploration or
exploitation, we determine the subsequent action. This represents a significant contribution,
as it unveils a new path to employ advanced AI technologies in the decision-making process
of complex stochastic problems, such as multi-armed bandits.

There are multiple advantages that underpin our approach. Firstly, the strengths
of LLMs lie in their ability to understand context, learn from past data, and generate
predictions based on complex patterns. This allows the LLM-informed strategy to incor-
porate more nuanced decision making that is responsive to the trends and changes in the
non-stationary environment. Rather than relying on rigid mathematical formulae, the LLM-
informed strategy is capable of adapting its decision-making process based on the evolving
patterns in the rewards and their distributions, leading to more robust performance in
non-stationary scenarios. Secondly, the LLM can process and consider a much larger his-
tory of past rewards and decisions than traditional algorithms, potentially leading to more
informed decisions. Lastly, the use of LLMs offers an intriguing avenue of investigation
into how advanced AI models can be integrated with classic problems in RL, expanding
our understanding of how these models can be harnessed in new and innovative ways.

The LLM response is parsed and used to determine the next action. Specifically, if the
LLM suggests to “explore”, we select a bandit uniformly at random; if the LLM suggests to
“exploit”, we select the bandit with the highest estimated reward.

In the context of a coevolutionary game [28–30], the “explore” and “exploit” strategies
can be seen as analogous to the decision for an agent (or node) to cooperate or defect. Let
us denote the strategy space for the agent as S = {{“explore”}, {“exploit”}}.

Given this, we can introduce a simplified fitness landscape, denoted as F : S× S→ R,
which encodes the rewards for each combination of strategies. This concept is analogous
to the payoff matrix in a standard game theoretic setup. Under our model, which is also
applied in our experimental setup, the reward for exploration is considered a random
variable R{explore}, following a certain distribution that may change over time, signifying
non-stationarity. On the other hand, the reward for exploitation is the current estimated
mean reward R{exploit} of the best arm. This framework allows us to effectively study and
evaluate the performance of the LLM-informed strategy, but it is important to note that
real-world scenarios can be more complex:

F(s1, s2) =

{
R{explore} if s1 = {“explore”} or s2 = {“explore”},
R{exploit} if s1 = {“exploit”} and s2 = {“exploit”}.

In a coevolutionary game, agents update their strategies based on their fitness and the
fitness of their neighbors. In the multi-armed bandit context, the strategy recommendation
of the LLM can be seen as the agent “observing” the fitness of its neighbors (i.e., the perfor-
mance of different strategies in the past), and deciding to update its strategy accordingly.

The decision rule for the agent (or the bandit strategy algorithm) can be modeled as a
function D : S× S → S, which takes as input the current state of the game and the LLM
recommendation, and outputs the next action:

D(s{actual}, s{LLM}) =

{
{“exploit”} if F(s{actual}, s{LLM}) = R{exploit},
{“explore”} otherwise.

Note that this is a simplistic model and in reality, the decision rule could take into
account other factors, such as the degree of uncertainty in the estimated rewards. Moreover,
the fitness landscape could be more complex, depending on the specifics of the non-
stationary environment. For instance, the reward distribution for exploration might not be
the same for all arms, or it might be correlated with the past rewards of the arms.
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In sum, leveraging the LLM as a strategy informant for the non-stationary multi-
armed bandit problem can be compared to the application of an advanced, data-driven
decision protocol in a coevolutionary game. This clearly exemplifies how AI resources
can be powerfully harnessed to adapt traditional game-theoretic frameworks to intricate,
dynamic environments.

4.2.4. Quantized Low-Rank Adapters

Building upon the foundation laid by low-rank adapters (LoRA) [13], Quantized low-
rank adapters (QLoRA) introduces a strategy that efficiently fine tunes large-scale language
models while minimizing memory requirements [14,31]. Much like its predecessor, QLoRA
utilizes the concept of adapters, a small set of trainable parameters, while keeping the bulk
of the model parameters constant. The process of optimizing the loss function is achieved
by passing gradients via the fixed pre-trained model weights to the adapter. However,
QLoRA takes a step further by incorporating quantization techniques, which enables a
reduction in the numerical precision of the model weights, thus drastically decreasing the
memory footprint and computational requirements.

For a given projection XW = Y with X ∈ Rb×h, W ∈ Rh×o, QLoRA follows a similar
computation pattern as LoRA:

Y = XW + sXL1L2, (3)

where L1 ∈ Rh×r, L2 ∈ Rr×o, and s is a scalar. The key differentiating factor lies in the
handling of these computations; they are executed at significantly lower precision, in line
with the QLoRA principle of quantization. This makes QLoRA a highly effective solution
for fine tuning larger models on hardware, such as the A100 GPU, without compromising
performance levels.

One of the standout innovations in QLoRA is the introduction of the NormalFloat
(NF) data type, which is a fundamental component of its 4-bit quantization mechanism.
This data type builds upon the concept of quantile quantization [31], an approach that is
designed to be information-theoretically optimal. The distinguishing feature of quantile
quantization is that it assigns an equal number of values from the input tensor to each
quantization bin, effectively working through the estimation of the input tensor’s quantile
using the empirical cumulative distribution function.

However, quantile estimation is computationally intensive, which represents a sig-
nificant limitation for quantile quantization. To mitigate this, QLoRA incorporates fast
quantile approximation algorithms, such as SRAM quantiles [31], for the estimation pro-
cess. It is important to note, though, that the inherent approximation errors in these
algorithms can result in substantial quantization errors for outlier values, which are often
critically important.

This is where the NF4 data type comes in. By leveraging the fact that pre-trained
neural network weights typically follow a zero-centered normal distribution, the NF4 data
type allows for the transformation of all weights to one fixed distribution by scaling the
standard deviation σ to fit precisely within the data type’s range. This means that both the
data type and the neural network weights’ quantiles need to be normalized into this range.

Through this normalization process, the NF4 data type facilitates the optimal quanti-
zation for zero-mean normal distributions with arbitrary standard deviations σ within a
predefined range. This approach effectively sidesteps the issue of expensive quantile esti-
mates and approximation errors, making it a crucial contributor to the efficiency of QLoRA.

Double quantization (DQ) introduces an additional layer of quantization to the quan-
tization constants, achieving further memory optimization. The process uses 8-bit floats
for the second layer of quantization. DQ significantly reduces the memory requirements
from an average of 0.5 bits per parameter to just 0.127 bits per parameter. It manages
to do this while preserving model performance, which demonstrates the power of the
quantization approach taken by QLoRA. In order to tackle the problem of out-of-memory
errors during GPU processing, QLoRA utilizes page optimizers. These optimizers rely on
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NVIDIA’s unified memory feature, which transfers data between the CPU and GPU on a
page-by-page basis, similar to traditional CPU RAM-disk memory paging. By allocating
paged memory for the optimizer states, the system can automatically relocate memory
from the GPU to CPU RAM when the GPU is out of memory and vice versa when the
memory is needed for optimizer updates.

QLoRA integrates these key procedures to process a linear layer in the quantized
base model complemented with a LoRA adapter. This methodology primarily hinges on
the process of ‘double dequantization’. This operation transforms weights, which have
undergone two stages of quantization, back into their original computational format, while
preserving the memory-saving advantages of quantization.

Defined as doubleDequant, this function dequantizes the input weights that are
quantized quantization constants, and subsequently performs a second dequantization on
the resulting weights:

doubleDequant(cFP32
1 , ck-bit

2 , Wk-bit) = dequant(dequant(cFP32
1 , ck-bit

2 ), W4bit) = WBF16, (4)

This function allows weights, originally stored in the 4-bit NormalFloat (NF4) format,
to be converted back into the 16-bit BrainFloat (BF16) format for computation.

A crucial component of this approach is that, for parameter updates, only the gradients
concerning the LoRA adapter weights are necessary, rather than those for the 4-bit weights.
This is achieved by calculating the derivative of X with respect to W in BF16 precision
after dequantization from the storage format. The forward pass of the model can then
be expressed as follows, which is analogous to the general formulation introduced in
Equation (3):

YBF16 = XBF16doubleDequant(cFP32
1 , ck-bit

2 , WNF4) + XBF16LBF16
1 LBF16

2 , (5)

To summarize, the QLoRA approach employs two distinct data types: a storage data
type (usually 4-bit NormalFloat), and a computation data type (16-bit BrainFloat). This
arrangement optimizes memory efficiency while maintaining computational accuracy.
The methodology achieves a balance between resource utilization and performance by
conducting computations in the higher precision format, while saving memory in the lower
precision format during storage.

5. Experiments and Results

This section studies the empirical analysis of various multi-armed bandit strategies
and introduces a new approach informed by LLMs. We investigate the epsilon-greedy
strategy as a base case and further compare it with other traditional strategies, such as
UCB and Thompson sampling. As the environment becomes more complex, such as in
non-stationary and parametrized bandit distributions, these traditional strategies are put
to the test. The results help identify the strengths and weaknesses of each strategy and
how quickly they converge to the best action under different circumstances. Moreover,
we take a significant leap by introducing the LLM-informed strategy. It harnesses the
potential of LLMs, such as GPT-3.5-turbo, Flan-t5-xl or QLoRA, to aid the decision-making
process in multi-armed bandit problems. This novel approach seeks to exploit the superior
predictive abilities of LLMs, providing insightful recommendations on the best bandit
selection strategy based on the current state of the game.

5.1. Epsilon-Greedy

We begin the experimentation with the epsilon-greedy strategy, one of the most
common ways of balancing the exploration–exploitation trade-off. In this context, a multi-
armed bandit is a problem in which you have to choose the most profitable action from
a set of choices, based on a series of trials. The “bandit” part of the name comes from a
metaphor with slot machines, which are also known as one-armed bandits.
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In the simulation in Figure 1, we have three bandits, each with a different “true mean”
of the reward. The epsilon value determines the proportion of the time that the simulation
will explore (choose a random bandit) instead of exploiting (choosing the bandit that
currently has the highest estimated mean). After running the simulation with different
values of epsilon, then we produce a plot that shows the cumulative average of the rewards
over time, on a logarithmic scale. This plot shows how quickly the distinct values of epsilon
allow the simulation to converge on the best bandit.

Figure 1. Cumulative average of the rewards over time, on a logarithmic scale, for the epsilon-
greedy strategy.

5.2. Alternative Strategies: UCB and Thompson Sampling

Next we expand the bandit class to include the UCB and Thompson sampling strate-
gies. Note that these strategies require a little more information than epsilon-greedy.
For UCB, we need to keep track of the total number of actions taken to compute the con-
fidence bounds. For Thompson sampling, we need to keep track of both the number of
successes and failures (modeled here as rewards of 1 and 0) to shape the beta distribution
from which we sample.

We will now generate plots for the average rewards over time using the strategies
epsilon-greedy, UCB, and Thompson sampling. First, we assume the bandits have binary
rewards (either 0 or 1) for simplicity and to align ourselves with the typical use cases of
UCB and Thompson sampling. Then, we run experiments with each strategy and plot
the cumulative average rewards over time in Figure 2, where we show how the average
reward evolves over time for each strategy. With this, we can compare how quickly each
strategy converges to the optimal bandit, and how they perform relative to each other over
the course of many trials.

Figure 2. Cumulative average of the rewards over time for strategies epsilon-greedy, UCB,
and Thompson sampling.

5.3. Parametrized Distributions of Bandits

For the next experiments, we focus on parametrized bandit distributions. At first,
the reward for each bandit is modeled as a Gaussian distribution with a certain mean. It
would be more flexible to allow for arbitrary reward distributions, parametrized by more
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than just the mean. In Figure 3, the rewards for each bandit are generated by drawing from
a normal distribution with a distinct mean. We then create three functions that generate
rewards according to different normal distributions, and run the experiment using the
epsilon-greedy and the UCB strategies. The results show the average reward over time
for each strategy, which helps us understand the performance of the distinct strategies.
Thompson sampling is typically used for binary rewards and is not included in this plot
because our reward functions generate normally distributed rewards.

Figure 3. Average reward over time for epsilon-greedy and UCB strategies.

5.4. Non-Stationary Bandits

From now on, we will focus on non-stationary bandits. Real-world scenarios often
involve non-stationary processes, where the reward distributions change over time; an
extension can handle such non-stationary bandits. We therefore incorporate non-stationary
bandits by modifying the reward functions over time. For instance, we can adjust the mean
or variance at certain time steps. However, in a non-stationary environment, it is generally
beneficial for the agent to continue exploring, as the optimal action may change over time.
Therefore, using strategies that balance exploration and exploitation, such as epsilon-greedy
or UCB, becomes more effective in these cases. That is, the reward distributions of the
bandits change halfway through the experiment. This means that the optimal bandit may
also change at this point.

Figure 4 plots the average reward over time for the epsilon-greedy and UCB strategies
when facing non-stationary bandits. The vertical dashed line represents the change point
where the reward distributions of the bandits shift.

Figure 4. Average reward over time for the epsilon-greedy and UCB strategies with non-
stationary bandits.

5.4.1. Graphical Display

To visualize the estimated value of each bandit over time, we plot the estimated values
in Figures 5 and 6; they illustrate how the estimated value of each bandit evolves over the
course of the experiment.
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Figure 5. Estimated value of each bandit over time for the epsilon-greedy strategy.

Figure 6. Estimated value of each bandit over time for the UCB strategies.

5.4.2. Performance Metrics beyond Average Rewards

Furthermore, we can use other performance metrics. For instance, in addition to
plotting the average rewards, we could also compute and display other performance
metrics, such as regret, which measures the difference between the rewards we received
and the rewards we could have received if we always chose the optimal action, so a smaller
regret indicates a better strategy. In this sense, we need to know the optimal bandit at any
given time point. In a stationary setting, it is the bandit with the highest expected reward.
However, in a non-stationary setting, it could change over time. In the setup, the optimal
bandit may change when the reward functions change.

Figure 7 shows the regret for the epsilon-greedy and UCB strategies and plots it over
time. Please note that, in a non-stationary environment, it could be tricky to define an
optimal bandit, especially if the reward distribution changes unpredictably or frequently.
Here, we assumed that the change point is known, and we re-evaluated the optimal bandit
at the change point, but in a real-world scenario, we might not know when or how the
reward distributions change.

Figure 7. Regret for the epsilon-greedy and UCB strategies.

5.4.3. Convergence Analysis

In our convergence analysis, we incorporated functionality to examine the algorithm’s
convergence across various scenarios. This includes tracking the number of trials required
for the algorithm to accurately identify the best bandit as illustrated in Figures 8 and 9. This
process entails recording the selected bandit at each step and checking when it aligns with
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the bandit possessing the highest mean reward. It is important to remember, however, that
the concept of convergence in a multi-armed bandit problem is somewhat more complex,
especially when applying an epsilon-greedy approach. As there is always a probability
epsilon of selecting a random action, we do not strictly converge to always selecting the
optimal action. Rather, it may be more insightful to monitor the evolution of the proportion
of instances in which we opt for the optimal action over time.

Figure 8. Cumulative average reward versus number of trials for epsilon-greedy and UCB strategies.

In Figure 8, the dashed lines represent the time at which the respective algorithms
first identified the optimal bandit. This is a simplistic measure of convergence and might
not fully reflect the learning process, especially in non-stationary settings. Nonetheless, it
gives us a sense of when each algorithm begins to catch on to the best choice. For this, we
redefine the reward functions to take the time step as an argument and to return values
that vary over time. We make a simple change such that the mean of each bandit’s reward
changes slowly over time. In these new reward functions, the mean reward of each bandit
slowly oscillates over time.

Figure 9. Regret versus number of trials for epsilon-greedy and UCB strategies.

In a non-stationary setting, the optimal action can change over time. The above
convergence time still refers to the time it first reaches the optimal action, not how well it
adapts to changing circumstances.

5.5. LLM-Informed Strategy

The utilization of an LLM, such as GPT-3.5-turbo, or Flan-t5-xl [23], can facilitate
insightful recommendations for the multi-armed bandit problem. The proposed approach
relies on the model’s capacity to suggest an optimal strategy (e.g., “epsilon-greedy” or
“upper confidence bound”) given the present state of the game, including prior results. This
process can be formalized as follows, and the flow diagram is shown in Figure 10:

1. Game state definition: The game state could encapsulate an array of information,
including the total rewards accrued from each bandit, the frequency with which each
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bandit is selected, and the average reward obtained from each bandit. These data
must be translated into a format that can be readily comprehended by the LLM.

2. Strategy recommendation request: This game state information can be utilized to
request a strategy recommendation from the LLM. It is crucial to structure the prompt
in a manner that clearly articulates the game state and seeks a specific output (e.g.,
the designation of a strategy).

3. Output interpretation: The LLM output must then be translated back into a form that
can be interpreted by the bandit selection algorithm. This could be as straightforward
as mapping strategy names to corresponding functions within the code.

4. Recommended strategy implementation: The final step entails utilizing the strategy
recommended by the model to decide the next bandit to be selected.

In our research, we specifically focus on rate-limiting requests to the OpenAI API,
as well as employing regular expressions to distill strategy recommendations from the LLM
output. In this context, we pose a query to the model regarding whether to “exploit” (i.e.,
select the bandit with the highest estimated mean reward), or “explore” (i.e., select a bandit
randomly) in the forthcoming round, given the current state of the bandits.

Observe
Bandit
States

Query LLM

Parse LLM
Response

Interpret:
Exploit or

Explore

If Fallback:
Explore

Apply
StrategyReward: Rt

Update
Bandit

Update:
Qn+1 =

1
n ∑n

o=1 Ro

Repeat for
Next Round

Figure 10. Flow diagram of the LLM-informed strategy for the problem of multi-armed bandit.

That is, the usual flow described in Figure 10 in a MAB problem encompasses the following:

1. Observe the state of the bandits.
2. Decide on a strategy, either to explore (choose a bandit randomly) or exploit (choose

the bandit currently known to give the highest reward).
3. Apply the chosen strategy, meaning pull the arm of a bandit based on the decision in

step 2.
4. Receive a reward from the bandit that was chosen.
5. Update the knowledge about the bandit that was chosen, based on the reward received.

In our implementation, we employ several strategic measures to optimize the interac-
tion with the LLM and the execution of the recommendation process.
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• Firstly, we incorporate a caching mechanism to store the previous LLM recommenda-
tions. By doing so, we eliminate the need for redundant API calls when the state of
the game has not changed significantly, thereby conserving resources and increasing
efficiency. The state of the game is represented as a string summarizing the pull count
and estimated average reward for each bandit, which is then used as the key in the
recommendation cache.

• Secondly, our implementation is designed to handle potential exceptions that may
occur during interaction with the OpenAI API. Specifically, we implement an expo-
nential backoff strategy, which essentially means that if an API call fails, the system
waits for a certain amount of time before retrying, with the wait time increasing expo-
nentially after each consecutive failure. This mechanism provides robustness against
temporary network issues or API rate-limiting, enhancing the overall reliability of
the system.

• Lastly, we introduce a threshold (ö) for determining significant changes in the bandit
state. This is particularly important, as it governs when a new strategy recommen-
dation is required from the LLM. If the change in the bandit state falls below this
threshold, the system reuses the previous recommendation, once again avoiding un-
necessary API calls. This threshold is a flexible parameter that can be fine tuned to
balance the trade-off between responsiveness to changes and minimizing API requests.

In the following analysis, we explore the performance of three strategies in tackling
the MAB problem: epsilon-greedy, UCB, and the proposed LLM-informed strategy. We
conducted a series of trials, running each strategy through the same sequence of bandits,
and then recording their cumulative average rewards over time.

Figure 11 represents the evolution of the cumulative average reward for each of these
strategies over the course of the trials. Each point on a line represents the average reward
that a particular strategy had received up to that iteration, giving us an insight into how
quickly and effectively each strategy accrues rewards.

Figure 11. Cumulative average rewards over time for epsilon-greedy, UCB, and LLM-informed
strategies with ö = 0.1.

Observing the trends in the graph, we can analyze the behavior and effectiveness
of the different strategies. The epsilon-greedy and UCB strategies follow conventional
approaches with known strengths and weaknesses. The epsilon-greedy strategy provides
a balance between exploration and exploitation, while UCB optimizes its choices based
on uncertainty and potential for reward. On the other hand, the LLM-informed strategy
leverages the predictive power of large language models, in this case, GPT-3.5-turbo-0301.
The model offers strategy recommendations based on the current state of the game, which
includes the number of times each bandit has been pulled and their average rewards.
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5.6. Utilizing QLoRA with A100 GPU

The methodology can be implemented in a real system by replacing the calls to
OpenAI API model GPT-3.5-turbo with a very recently released LLM model: QLoRA [14],
an efficient fine-tuning approach designed for large-scale models. QLoRA facilitates the
fine tuning of models as large as 65 billion parameters and inference on a GPU, such as
A100, while preserving the performance level of 16-bit fine tuning. Its low memory usage
and efficient performance were achieved through a number of innovative strategies [32],
such as 4-bit NormalFloat (NF4), double quantization (DQ), and paged optimizers.

We follow a similar methodology as the one adopted with GPT-3.5-turbo-0301 but this
time implementing the recommendations through QLoRA.

• In the first step, we defined the state of the game, converting the relevant data into a
format comprehensible to QLoRA.

• Then, we made a strategy recommendation request, using the game state information
to prompt QLoRA for a strategy.

• After receiving the QLoRA output, we interpreted it, translating it into a form that the
bandit selection algorithm could understand and act upon.

• Finally, we implemented the recommended strategy to determine the next bandit to
choose.

We used the same strategic measures as before, including caching previous recom-
mendations, and introducing a threshold for significant changes in the bandit state. These
measures ensured that we made optimal use of the capabilities of QLoRA while man-
aging resources efficiently and handling potential exceptions robustly. As observed in
Figure 12, the QLoRA-driven LLM-informed strategy yields results commensurate with
those achieved by the OpenAI model GPT-3.5-turbo.

Figure 12. Temporal progression of cumulative average rewards for epsilon-greedy, UCB, and QLoRA-
driven LLM-informed strategies with ö = 0.1.

By employing this approach, we were able to gain insights into the performance
of the LLM-informed strategy when powered by QLoRA, and assess its effectiveness in
comparison to both epsilon-greedy and UCB strategies. Our results reinforced our earlier
findings, highlighting the considerable potential of the LLM-informed strategy in handling
the MAB problem. We observed that the QLoRA-powered LLM-informed strategy not only
kept pace with its counterparts but often exceeded their performance, further underlining
the value of integrating LLMs in decision-making processes.

Our experimental outcomes underscore the potential of the LLM-informed strategy
as a strong competitor to well-established methods, such as epsilon-greedy and UCB in
non-stationary environments. This compelling performance supports our hypothesis that
LLMs, with their profound capabilities to comprehend and predict complex scenarios,
can offer valuable insights to enhance decision-making tasks. A particularly noteworthy
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finding is the consistent performance of the LLM-informed strategy, often matching, if not
surpassing, the effectiveness of the best conventional strategy implemented for the specific
problem. This evidence suggests that the integration of LLMs into traditional approaches
can substantially improve their performance in dynamic environments, opening up new
avenues for leveraging the predictive power of LLM in various real-world applications.

To sum up, our experimental evaluation, as depicted in Figure 11, is intended to show
the cumulative average reward for epsilon-greedy, UCB, and the proposed LLM-informed
strategy over time. The results demonstrate that the LLM-informed strategy, guided by the
predictive capabilities of GPT-3.5-turbo-0301, can indeed perform comparably with tradi-
tional bandit strategies. In the context of the non-stationary multi-armed bandit problem,
which is known for its volatility and uncertainty, maintaining competitive performance
is a significant achievement. This is because the LLM-informed strategy must deal with
dynamic changes and adapt its strategy based on a predictive model. Moreover, in our
experiments with QLoRA, an LLM-informed strategy showed not just comparable but often
better performance than its traditional counterparts. As presented in Figure 12, the QLoRA-
driven LLM-informed strategy often exceeded the performance of both epsilon-greedy
and UCB strategies, providing further evidence of the potential of integrating LLMs in
decision-making processes.

6. Applications of the LLM-Informed Strategy in Various Fields

The LLM-informed strategy for non-stationary multi-armed bandit problems, as we
presented in this paper, represents a significant stride in the direction of harnessing ad-
vanced AI models for complex decision-making scenarios. While our focus was primarily
on the abstract problem setting, the ramifications of this framework are potentially vast
and multifaceted, extending to numerous practical applications.

6.1. Digital Marketing

In the realm of digital marketing, for instance, the non-stationary multi-armed bandit
framework can be instrumental in optimizing online advertisement placement. Online
advertising platforms often have to balance between displaying ads that have performed
well in the past, and experimenting with new ones to explore their potential. By integrating
our LLM-informed strategy, such platforms could leverage sophisticated language under-
standing capabilities to gauge the context, assess changing trends, and adjust ad selection
strategies accordingly.

In digital marketing, specifically for online advertisement placement, traditional A/B
testing techniques are often used. These techniques randomly show one version of an ad
(A) to half of the users and a different version (B) to the other half. The ad that receives
more clicks or conversions is then chosen for wider deployment. However, these methods
often lack the capacity to adapt to the rapidly changing online environment and trends,
which is where our proposed LLM-informed strategy could offer substantial benefits. Our
method would be able to analyze not just click rates but also the content of the ads, user
interactions, feedback, and broader market trends, using the predictive power of LLMs.
This can potentially improve ad performance by providing more nuanced and context-
aware recommendations, dynamically adjusting ad selection based on the current state of
the online environment.

6.2. Healthcare

Similarly, in healthcare, an LLM-informed bandit model could potentially assist in
personalizing treatment plans. If each “arm” of the bandit represents a different treatment
option, our approach could help in navigating the critical trade-off between sticking with
treatments that have shown promise, and exploring potentially better alternatives. Given
the complex and dynamic nature of human health, the non-stationarity aspect of our model
is crucial for adjusting recommendations based on the evolving health status of the patient.
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Consider the case of managing a chronic condition such as diabetes. In this scenario,
each “arm” of the bandit could represent a different treatment plan that combines diet,
exercise, and medication. Each plan’s efficacy could be considered the reward that the
bandit provides. In traditional treatment models, doctors often rely on their experience and
established clinical guidelines to determine the best course of action. However, these treat-
ments are often generalized and may not account for individual patient variations and the
non-stationarity nature of human health, i.e., the change in a patient’s health condition over
time. By implementing our proposed LLM-informed strategy, we could leverage the vast
amounts of medical data and research available, along with the patient’s health history and
current condition, to make a more informed decision. As the patient’s health status evolves,
the LLM can adjust the recommendations, emphasizing either the exploration of new treat-
ment plans or exploitation of existing plans based on their effectiveness. The application of
the LLM-informed strategy could lead to more personalized, adaptive treatment plans that
could potentially improve patient outcomes. In comparison to traditional methods, our
approach could provide a more dynamic, individualized treatment pathway that adjusts
according to a patient’s changing health status.

6.3. Reinforcement Learning

Moreover, in the field of RL, our methodology could be adapted to enhance decision-
making policies in environments with changing reward dynamics. A prominent example of
this would be financial trading systems, where the reward associated with different trading
actions (e.g., buy, sell and hold) fluctuates unpredictably. An LLM-informed strategy could
potentially improve such systems’ robustness by dynamically adjusting to the volatile
nature of financial markets.

Consider a RL agent tasked with navigating a financial trading environment. In such a
setting, each trading action—buying, selling, or holding a variety of financial instruments—
can be seen as an ‘arm’ of a multi-armed bandit. The associated reward is the financial gain
or loss resulting from these actions, which fluctuates unpredictably due to the inherent
volatility of financial markets. Traditionally, RL agents in this scenario rely on fixed policies
learned from historical data. However, these policies may not adapt well to sudden
changes or new trends in the market. The non-stationary nature of the problem, wherein
the optimal actions change over time, poses significant challenges. Our proposed LLM-
informed strategy could be instrumental in enhancing the adaptability of such an RL agent.
The LLM, trained on extensive financial data, market news, and historical trends, could
provide actionable insights to the RL agent, allowing it to adjust its policy dynamically.
For example, if an unexpected market event occurs, such as a political instability event,
the LLM could analyze relevant real-time news articles, social media sentiment, and other
relevant information, and provide a prediction of its potential impact. This prediction
could then inform the RL agent’s action, allowing it to update its policy dynamically and
respond to the event in a potentially more profitable way. Compared to traditional methods,
our LLM-informed approach allows for more responsive and adaptable strategies that
can better handle the non-stationarity of financial markets. This could potentially result
in more robust financial trading systems that perform well even in the face of volatile
market conditions.

6.4. Robotics

In robotics, particularly for drones, our proposed framework has compelling potential
applications. One crucial aspect of operating drones involves the dual challenges of
positioning and power optimization. For instance, consider a fleet of drones tasked with
monitoring an extensive area: each drone could represent an arm in a multi-armed bandit
setup, with the reward being the quality of surveillance coverage balanced against the
power consumed during flight. The decision to ‘pull a bandit arm’ would correspond to
dispatching a drone to a particular location, or adjusting its power utilization for enhanced
efficiency. By incorporating language models into the decision-making process, more
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sophisticated context-aware strategies can be devised. For example, a large language model
could analyze temporal and spatial data trends, weather conditions, or other situational
variables to advise on the optimal positioning of the drones or power usage. The LLM-
informed bandit strategy thereby opens up possibilities for more nuanced and context-
aware decision making in the field of robotics, allowing for improved operational efficiency
and adaptability in dynamically changing environments.

Consider an emergency response scenario, where a fleet of drones is employed to
monitor and assess the situation in an area affected by a natural disaster, such as a wildfire.
In this context, each drone could be considered an “arm” in a multi-armed bandit problem,
with the reward being the amount and quality of surveillance data collected against the
power consumed during flight. The challenge here lies in making real-time decisions on
where to dispatch each drone for maximum coverage and data collection while conversely
managing the drones’ battery life. Traditional methods might utilize pre-programmed
paths or follow fixed protocols to handle such tasks. However, these approaches might fall
short in situations where the environmental conditions are rapidly changing and uncertain,
such as during the spread of a wildfire. With our proposed LLM-informed strategy, a LLM
trained on vast amounts of spatial, temporal, and meteorological data could provide real-
time recommendations for drone dispatch decisions. For example, the LLM could analyze
current wind speed and direction data to predict the likely path of the wildfire. It could
then suggest repositioning some drones to those areas, enabling early data collection and
facilitating prompt emergency responses. Moreover, the LLM could help optimize the
drones’ battery usage by considering their remaining power levels, the distance to areas of
interest, and the urgency of data collection needs. For instance, it could recommend that
a drone with low battery levels focus on nearby areas of interest or return to the base for
recharge, while a drone with higher battery levels could be dispatched to more distant or
challenging locations. By integrating LLMs into the decision-making process, the drones
can effectively respond to dynamically changing conditions and increase their operational
efficiency. This example provides an insight into how our LLM-informed bandit strategy
can significantly improve real-time decision making in robotics, particularly in scenarios
where adaptability and responsiveness are critical.

6.5. Biology and Life Sciences

The proposed LLM-informed bandit strategy can also find significant potential appli-
cations in the field of biology and life sciences. Firstly, consider the vast and expanding
domain of drug discovery. A medicinal compound’s efficacy can be viewed as a “bandit
arm” with unknown reward. Drug researchers aim to balance exploration (testing new com-
pounds) and exploitation (further testing of promising compounds) in order to maximize
the success of finding an effective drug, while minimizing the resources and time spent.
An LLM could provide insights from previous experimental results, published research,
and known biological mechanisms to inform this process. Secondly, within the domain
of genomics, the multi-armed bandit framework could aid in the selection of candidate
genes for further study from among thousands of potential genes. Here, each gene can be
considered a bandit, and pulling an arm corresponds to allocating resources to sequence or
experiment with a particular gene. The reward could be associated with the discovery of
significant genes linked to a trait or disease of interest. Incorporating LLMs into this process
can provide additional insights by leveraging vast amounts of existing genomics literature
and data to inform which genes might be worth further exploration or exploitation. Lastly,
in ecosystem management and conservation biology, the multi-armed bandit problem can
model the decision-making process of resource allocation for species protection. Each
species or habitat can be considered a bandit, and the reward could be the positive impact
on biodiversity. An LLM-informed approach could help parse complex ecological data,
predict the effects of various conservation strategies, and guide the decision-making process
more effectively.
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Consider a scenario where a team of genomics researchers is investigating a set of
candidate genes associated with a certain trait or disease, such as cancer or heart disease.
In this case, each gene can be considered an “arm” of the multi-armed bandit, with the
“reward” being the discovery of significant links between a gene and the disease or trait of
interest. Traditional methods may involve a somewhat brute-force approach, studying each
gene sequentially or randomly based on available resources, without much prior knowl-
edge or any sophisticated strategy to guide the process. With our proposed LLM-informed
strategy, the researchers could use an LLM trained on vast amounts of genomics literature
and data to assist their decision-making process. The LLM could analyze previous experi-
mental results and the existing literature on the genes in question, and cross-reference with
data on known gene–disease associations. For instance, if early experiments reveal strong
evidence linking certain genes to the disease, the LLM could recommend focusing more
resources on these “promising” genes (exploitation). Simultaneously, it could also identify
lesser-studied genes that share similar characteristics or functions with the promising ones.
The researchers can then allocate some resources to studying these potentially relevant but
unexplored genes (exploration). Additionally, if the disease’s nature or the research context
changes—for example, if new research suggests the disease involves different biological
pathways—the non-stationarity aspect of our bandit model allows the LLM to adjust its
recommendations accordingly. This way, the strategy remains flexible and adaptive to
the evolving research landscape. This example illustrates how our LLM-informed bandit
strategy can significantly enhance decision making in genomics research by improving
resource allocation and potentially accelerating the discovery of significant genes linked to
diseases or traits of interest.

6.6. Finance

Multi-armed bandit strategies have traditionally found a variety of applications in
finance; however, the incorporation of LLMs can offer an innovative twist to conventional
approaches. Take portfolio optimization as an example: it is essentially a balancing act
between risk and reward, mirroring the exploration–exploitation dilemma. Each asset or
investment opportunity can be treated as a bandit, with the act of pulling an arm being
analogous to allocating funds to that asset, and the return on investment forming the
reward. The role of an LLM here is to sift through vast volumes of financial data, market
trends, news, and historical performance records, thereby guiding decision makers about
which assets warrant further investment (exploitation), and which untested ones could
be considered (exploration). Similarly, algorithmic trading, particularly high-frequency
trading, where algorithms execute multiple trades based on multiple factors, can benefit
from the application of LLMs. Here, each trade or trading strategy can be construed as a
bandit. LLMs, with their ability to leverage insights from market data, economic indicators,
and news, can contribute to the decision-making process by suggesting potential trades.
Credit scoring, another important facet of finance, can also be interpreted within the bandit
framework. In this scenario, each prospective borrower is considered as a bandit. The act
of pulling an arm would signify the granting of a loan, while the reward would correspond
to successful loan repayment with interest. An LLM, by processing diverse data pertaining
to each applicant—credit history, income level, and potentially even social media activity—
can yield more nuanced and reliable credit scoring. Finally, let us consider insurance. Each
policyholder or potential policyholder can be represented as a bandit, and issuing a policy is
analogous to pulling a bandit’s arm. The profitability of the policy forms the reward. Here,
an LLM can offer valuable insights by analyzing a broad array of data on each policyholder
or applicant—personal details, claim history, and data sourced from IoT devices (such as
telematics in auto insurance)—effectively enhancing the underwriting process.

Consider a scenario where a financial advisor is tasked with managing a diverse
investment portfolio. Each asset or investment opportunity in the portfolio can be con-
sidered an “arm” of the multi-armed bandit. The act of pulling an arm corresponds to
allocating funds to a particular asset, while the return on investment from that asset is
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considered the reward. A traditional approach to portfolio optimization might involve
strategies based on past performance, expected returns, risk tolerance, and other relatively
static factors. However, financial markets are dynamic and can change rapidly in response
to numerous unpredictable factors, ranging from economic indicators to global events.
Our LLM-informed bandit strategy can greatly enhance this process. A LLM trained on
extensive financial data, market trends, news, and historical performance records can offer
nuanced insights to guide the advisor’s decision making. For example, suppose certain
assets in the portfolio have been performing well consistently. The LLM, analyzing his-
torical data and current market trends, may advise allocating more funds to these assets
(exploitation). However, simultaneously, the LLM might identify emerging opportunities
in the market—perhaps a nascent technology sector stock or a new bond issue—that are
yet untested but could offer significant returns. The advisor can then choose to invest a
portion of the funds in these new opportunities (exploration). The non-stationarity aspect
of our model allows the LLM to dynamically adjust its recommendations in response to
changing market conditions. For instance, in the face of a looming economic downturn, it
could advise shifting funds from high-risk stocks to safer assets, such as treasury bonds.
This way, the strategy remains adaptive and robust in the face of market volatility. This
practical example illustrates how our LLM-informed bandit strategy can revolutionize
decision making in finance by optimizing portfolio management, effectively balancing risk
and reward, and enhancing overall investment performance.

6.7. Challenges and Discussion

While the integration of LLMs in these applications is certainly promising, it also in-
vites challenges. One key consideration is the computational cost associated with querying
the LLMs, as well as the complexity of translating domain-specific information into a lan-
guage format that the LLM can process. It is also critical to ensure that the decision-making
process remains interpretable, especially in high-stakes settings, such as healthcare, which
necessitates the careful handling of the LLM recommendations.

Further to this, the deployment of LLM-informed strategies in real-world applications
often requires a robust and adaptive framework that can respond efficiently to changing
environments. Future research may focus on the development of such dynamic systems,
which can integrate feedback in real time and recalibrate the model’s recommendations
accordingly.

The ethical implications of applying LLMs in decision-making processes, particularly
in sensitive fields, such as healthcare and finance, also require thoughtful exploration. These
models, although sophisticated, are still artificial and do not possess human judgment.
Relying on their outputs without human oversight could potentially lead to biased or
unethical decisions. Future works should, therefore, aim to establish a comprehensive
ethical framework for the deployment of LLM-informed strategies.

Lastly, the question of data privacy and security is of paramount importance. The na-
ture of the operation of LLMs, which involves processing massive amounts of information,
often including sensitive data, inevitably raises privacy concerns. This issue is particularly
salient in fields such as healthcare, finance, and personal advertising, where data protection
is crucial. Future efforts should aim to devise methods for leveraging the capabilities of
LLMs in a manner that respects and safeguards individuals’ privacy.

Addressing these challenges will not be a trivial task, but given the potential benefits
and advancements that the integration of LLMs promises, it is a pursuit worth undertaking.
Future works should aim at creating more efficient, ethical, and privacy-respecting methods
for the application of LLM-informed strategies in various fields.

7. Conclusions and Future Work

In this study, we took a step forward in tackling the non-stationary multi-armed bandit
problem by integrating the power of LLMs into the decision-making strategy. Bridging
traditional RL strategies, such as epsilon-greedy and UCB, with the advanced AI capabilities
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provided by models such as GPT-3.5-turbo and QLoRA, we created a framework that
promises adaptability and efficiency in dynamic environments. This novel approach
represents a significant stride in combining AI, game theory, and reinforcement learning,
opening up exciting opportunities for future research on how advanced AI models can
transform decision making in dynamic situations.

However, this is just the initial exploration, and there is ample scope for refinement
and expansion. In the future, our goal is to enhance the strategy recommendation process,
either by providing more detailed information to the LLMs or by refining the interpretation
of their advice. This could involve an intricate representation of the game state or a more
sophisticated approach to extract strategy recommendations from the LLM output.

We are also interested in examining the amalgamation of other RL strategies in our
LLM-informed framework. We believe that by leveraging the strengths of different strate-
gies and the versatile language understanding capabilities of LLMs, we can engineer a
more robust and adaptable solution to the MAB problem.

In addition to refining our methodology, we are eager to extend its application to various
real-world domains, such as personalized healthcare and financial trading systems. As we
delve into these areas, we anticipate unique challenges, such as ensuring the interpretability of
the decision-making process and effectively handling domain-specific information. Nonethe-
less, we are optimistic about the potential benefits our LLM-informed strategy can bring to
these fields and look forward to exploring these possibilities in our future work.
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