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Abstract

La dindmica de sistemas continuos que muestran simetria circular o esférica como gotas, burbujas, o algunas macromoléculas,
bajo la influencia de una excitacion externa desarrollan patrones de superficie que en muchas situaciones prdcticas son dificiles
de predecir. En el caso particular de una microburbuja bajo la accién de un campo acistico (agente de contraste ultrasénico),
el estudio de la dindmica de la burbuja requiere un complejo modelado incluso para describir los modos de oscilacion mds
simples. Ademds, debido a la pequena escala espacio-temporal del problema, el estudio experimental requiere un hardware
extremadamente sofisticado y costoso. Por otro lado, la dindmica de muchos sistemas complejos continuos puede ser modelada
por medio de agrupaciones de osciladores acoplados. Asi, en este trabajo se considera una analogia entre la microburbuja
cavitando bajo la accion del campo aciustico y un sistema de discreto de osciladores mecdnicos excitados paramétricamente.
De esta manera, se presenta un estudio tedrico y experimental de las inestabilidades de un anillo de péndulos acoplados
paramétricamente excitados por una fuerza armdnica vertical. Ast, el sistema presenta propagacién de ondas, exhibiendo no
linealidad y dispersidon, por lo que una rica dindmica se observa: modos propios, como el modo radial o “breathing mode”,
dipolar, cuadripolar, etc. vy estructuras localizadas como breathers o modos intrinsecos localizados, kinks, etc. Todos ellos
han sido observados experimentalmente y numéricamente obtenidos mediante diferencias finitas. A la vista de los resultados,
el presente experimento es un excelente banco de pruebas para el estudio de sistemas mo lineales en un curso de grado o
mdster. La presencia de forzamiento paramétrico y pérdidas, asi como la interaccion entre linealidad y dispersién provoca que
el sistema presente la rica dindmica el amplio abanico de fendmenos estudiados de una manera muy visual e intuitiva para el
estudiante.

The dynamics of continuous systems that exhibit circular or spherical symmetry like drops, bubbles or some macromolecules,
under the influence of some external excitation, develop surface patters that are hard to predict in most practical situations.
In the particular case of acoustically driven microbubbles (ultrasound contrast agent), the study of the behavior of the
bubble shell requires complex modeling even for describe the most simple oscillation patterns. Furthermore, due to the
smallness of the spatio-temporal scale of the problem, an experimental approach requires expensive hardware setup. Despite
the complexity of the particular physical problem, the basic dynamical features of some continuous physical systems can
be captured by simple models of coupled oscillators. In this work we consider an analogy between a shelled-gas bubble
cavitating under the action of an acoustic field and a discrete mechanical system. Thus, we present a theoretical and
experimental study of the spatial instabilities of a circular ring of coupled pendulums parametrically driven by a vertical
harmonic force. The system is capable of wave propagation and exhibit nonlinearities and dispersion, so manifest rich
dynamics: normal oscillation modes (breathing, dipole, quadrupole...) and localized patterns of different types (breathers and
kinks) witch are predicted by finite-differences numerical solutions and observed experimentally. On the basis of this analogy,
the oscillation patterns and localized modes observed experimentally in acoustically driven bubbles are interpreted and discussed.

Keywords: Dinamica de microburbujas, modos localizados intrinsecos, medios de superficie.
Microbubble dynamics, Intrinsic Localized Modes, surface modes
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1 Introduction

Ultrasound contrast agents (UCA) are made of small gas bubbles approximately equal to the
size of a red blood cell (radius Ry < 10pm) used in many common clinical ultrasound systems
(enhanced reflectivity imaging, harmonic imaging) as well as new arising medical ultrasound
applications (targeted drug and gene delivery, brain-barrier opening) [1][2]. In order to enlarge
the life of the free bubbles and stabilize the gas-liquid interface, the gas inside the microbubble
is commonly coated into a shell composed by an elastic material (lipids, polymers, albumin,
protein)|[3] as shown in Figure 1.

Drug in oil layer
(optional for drug-delivery)

Acoustic wave —

Protein ligaind
<« (optional for target-delivery)

Figure 1: Scheme of a gas-filled microsphere. The gas inside of bubble is coated by a a lipid shell for stabilizing
the gas-fluid interface. Optionally, for drug delivery a chemical agent is loaded inside the bubble for transporta-
tion. Furthermore, protein ligands can be incorporated on the microbubble surface for targeting the drug to a
specific tissue.

Commonly, these microbubbles are injected in the tissue and insonified with an external ul-
trasound beam. Due to the high difference in the impedance between the bubble and the
surrounding fluid, the bubbles act as Rayleigh scatters, increasing the backscattering of the
ultrasound beam. Furthermore, due to their high compressibility, the bubbles start to expand
and contract during the rarefaction and compression cycles of the pressure wave applied. Be-
cause of the nonlinear behavior of these oscillations, the bubble starts to develop non spherical
oscillations leading to emission of the fundamental ultrasound frequency but also its harmonics
and subharmonics [4].

On this way, the behavior of the microbubbles exhibit rich dynamics that are cumbersome to
model and predict. The most simple oscillation is shown in Figure 2, where experimental ob-
servations have reported radial mode oscillations. Thus, the initial bubble radius (Ry) exhibits
a time variation, the so called ”breathing mode”, where R(t) = Ry + f(t).

Furthermore, the bubble present a variety of symmetrical surface patterns (Figure 3), non-
spherical (Figure 4) and localized (Figure 5) oscillations, where the radius R(t) — R(t,0, )
becomes a space dependent function. Finally, at higher external acoustic pressure amplitudes,
the bubble start to develop inertial cavitation and collapse, leading to bubble buckling due to
high compression pressure and finally shell rupture due to high rarefaction pressures.
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a b c d e f g h i j
Figure 2: Radial mode oscillation (the so called ”breathing mode”) as function of time. Volumetric radial mode

m = 0 for a bubble with a radius of 36um driven by a 130 kHz ultrasound beam and captured with a Brandaris
high-speed camera. Adapted from [4]

a b c d e f g h i j
23pum  23um  30pum  33pum  33pum  36pum  36pum  36pum 44pum  45um

Figure 3: Selection of microbubble oscillation patterns for different radius bubbles recorded by a ultra high
frame rate camera, adapted from [4]

a b c d
Figure 4: Spherical (a and b) and non-spherical (¢ and d) coated microbubble oscillation patterns recorded by

a ultra high frame rate camera. The forcing frequency was 1.7 MHz for bubbles between 1.5 and 5 pum, adapted
from [5]

Figure 5: Localized oscillation mode for a microbubble recorded by a ultra high frame rate camera [4]
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The radius of the microbubble can be expanded on the basis of spherical harmonics describing
the spatial vibrational modes of the bubble as [0]:

R(t.0,0) =R(t)+e> > at)y;"(0,¢) (1)

1=0 m=—1

In order to study these surface modes a high speed camera of 25 M fps is used in ref [7]. They
found that all the modes are axisymmetrical along ¢ axis, so most of the surface modes of the
microbubble can be described by a 2D model by setting m = 0.

In this work, an analogy between the shelled microbubble acoustically driven and a circular
chain of coupled oscillators parametrically driven by a vertical harmonic force is established
and used to study the dynamics of these systems. The analysis and the experiments reveals
the existence of Intrinsic Localized Modes (ILM’s), similar to those found in other more generic
systems of non-linearly vibratory lattices. The observation of ILM in 1D chain of coupled
oscillators[8], presenting many similarities with the discrete bubble model, showed to play a
role in creating spatio-temporal localized excitations and leading to the breaking of the bubble.

The work is organized as follows: in section 2 the mathematical modeling of the system is
described, establishing the analogy between the microbubble and the coupled-pendulum chain
(2.1), exposing the governing equations (2.2) and describing a time-domain computational
method to obtain numerical solutions (2.3). In section 3 an experimental setup is described
and finally in section 4 numerical and experimental results for the coupled pendulum chain are
exposed and discussed in section 5.

2 Mathematical Modeling

2.1 The analogy

The radial motion of a bubble under the action of an external pressure field, is well described
by the Rayleigh-Plesset equation for the time dependent radius R(t):

R 3[0R\’ 20 4 0R
f’(RWW(E)>—pg—p0—pa<“—§—fa @)

where p the density of the surrounding fluid, p, = (po + 20/Rg)(Ro/R)* the gas pressure
inside the bubble, py is the hydrostatic pressure, Ry is the equilibrium radius of the bubble, p,
the acoustic pressure, o the surface tension of the bubble, i the dynamic viscosity and ~ the
polytropic exponent. Since acoustic vibrations are typically small in amplitude, one can often
linearize the equations to get a simplified description. Linearization consists in assuming

R(t) = Ry + er(t) (3)

and to describe the coated bubble, the surface tension is modeled by the function:

o(R) = o(Ry) + 2¢v (Rﬁ - 1) (4)

0
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In this case, it can be shown that the radial variations r(¢) can be expressed by a simple
driven-damped oscillator as:

() . or() )

2 2r(t) = =22 5
g T gy e == (5)
where wy is given by
3 23k — 1)o
2 — P+ ==/ 6
wp le(Q) (Ii 0+ R ) ( )

Thus, the radial vibration of a gas bubble in a fluid is well modeled by a simple harmonic
oscillator whose stiffness and mass parameters relate to the properties of the gas and fluid. It is
well known that the resonant frequency of the radial mode, known as the Minnaert frequency,

is given by
1 37Po
= 7
Jo onks \ Py (7)

For a microscopic bubble in water at commonly pressure, this equation reduces to foRy = 3.26
m/s. Note that a similar scaling relation roughly holds for the proposed macroscopic bubble
model.

2.2 Model for the coupled oscillators

A driven-damped chain of coupled pendulums, despite its simplicity, presents a very rich dynam-
ics, and has been used as a toy model for many other physical problems, as a ladder networks
of discrete Josephson junctions, charge-density wave-conductors, crystal dislocation in metals,
DNA dynamics, and proton conductivity in hydrogen-bonded chains. All these systems are well
described by a linear chain. When configured in the form of a circular ring, connecting first
and last masses, the chain forms a periodic boundary condition lattice as shown in Figure 6.
The coupling of the pendulums is implemented by a nodal junction, which height d governs the
coupling factor of the chain. For more details of the construction and modeling of pendulums
lattices see ref. [3].

Figure 6: Scheme of the coupled pendulum chain

Thus, considering a pendulum lattice formed by equal masses linearly coupled to their near-
est neighbors, and neglecting curvature effects, the motion on the n-th pendulum obeys the
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parametrically-driven damped Frenkel-Kontorova equation:

020, 00,
orr — o
where 6, is the angle of the n-th pendulum with the normal, v is the damping coefficient,
wo = /g/L is the natural frequency of the uncoupled pendulum, g is the acceleration due to

Earth’s gravity, L is the pendulum length, x is the coupling constant related on the height d of
the junction, and A and w are the amplitude and the frequency of the parametric excitation.

— (w§ + Acos (2wt)) sinby, + & (0,—1 — 20, + O,41) (8)

After linearization, the dispersion relation of the parametrically-excited pendulum chain can

be expressed as
2
w 1 ™m
2 = — (1 - 2 <__>> 9
<w0> 1—77( o \o N ©)

where n = d/L € |0, 1] measures the strength of the coupling and m is the mode index number
and N the number of pendulums. Thus, dispersion relation is bounded by the lower cutoff
frequency w; = +/g/L and upper cutoff frequency w, = +/¢/(L — d) which corresponds to
the natural frequency of pendulum oscillating either from the rigid support or from the knot,
respectively (Figure 7).

J(Hz)

0 10 20 30 40 50
mode number (7)

Figure 7: Dispersion relation for the coupled pendulum chain, showing the good agreement between the theo-
retical (solid line), numerical (black dots) and experimental (white dots) results.

2.3 Numerical solution of coupled oscillators

In order to obtain a solution of the coupled pendulum motion equation, finite differences are

applied to partial differential operators of eq. 8. Thus, time is uniform discretized as t = i - At,

where At is the temporal step and i is the discrete time index. On this way, centered finite

differences are applied to second order partial differential operators and forward finite differences

are applied to first order partial differential operators. Then, the discrete equation can be
written as:

0, —200 + 0.7 i — -1 10

At - T A (10)

—(w§ + n cos (2wt)) sin 6

+r (9271 —20;, + QZH)
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The past values (6:71) and the actual state of the chain (?) are defined by the initial conditions
of the pendulum ring, so only the future values (6:™!) are unknown in eq. 10. Thus, in order
to solve the discrete equation, a ”leap-frog” time steeping is applied, so the solution for 67!
can be expressed as:

ot = gt 20" (11)
Aty (8- 0571
—At? (wf + n cos (2wt)) sin 0},
This equation is solved for the N pendulum and for ¢ = 0,1,2,-- ,7/At where T is the total
time of the prediction. In this way, after solving this equation once for ¢ = 0 a time step is
advanced 7' = 1, so the new past value becomes the actual value (§2~! = ¢! ), and the new actual

value is assigned with the recently calculated future value (2 = §t'). The periodic boundary
conditions for the ring of pendulums implies that for solving the first pendulum (n = 1):

o7 = 07" + 20, (12)
—Aty (6] — 617
—At* (wf + ncos (2wt)) sin 6]
+APk (0 — 260} + 05)

And for solving the last pendulum (n = N):

ot = oy (13)

3 Experimental Setup

The coupled pendulum chain is built by a set of N = 50 pendulums of L = 103 mm length, and
a mass of 5 g disposed around a ring of R = 330 mm radius. The distance between pendulums
is @ = 50 mm and the junction according the Figure 6 is done by a knot at d = 30 mm.

Thus, the natural frequency of pendulum oscillating from the rigid support is f; = 3.1 Hz (lower
cutoff mode), and the natural frequency of pendulum oscillating from the knot is f,, = 3.69 Hz
(upper cutoff mode).

The parametric excitation is exerted by a vertical displacement by means of a 18” audio sub-
woofer (Fostex L363, Foster Electric Co. Rochester, MN, USA) driven by a harmonic low
frequency signal. The low frequency signal is generated by a arbitrary function generator (Ag-
ilent 33220A, Agilent Technologies Inc. Loveland, CO, USA), amplified by an audio amplifier
(Beringer EP2500, Behringer International GmbH, Germany) and then connected to the 8
ohms input of the loudspeaker. The subwoofer is facing up on a rigid table and the pendulum
ring lies directly on the active diaphragm cone of the loudspeaker as shown in Figure 8.

The duration of the tests was 100 s, and the frequency of the excitation was in the range
(3.00,4.10) Hz. The oscillation patterns of the ring were recorded by means of web-cam recorder
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Figure 8: Experimental set-up of the parametrically excited coupled pendulum chain. The excitation of the
chain is exerted by a vertical displacement by means of 18” audio subwoofer driven by a harmonic low frequency
signal.

placed on the top of the system. Thus, images of 720/480 pixels were acquired at 30 frames
per second, leading to a minimum of 7.5 images per cycle of oscillation.

The initial excitation of the chain was exerted manually by moving one of the pendulum.
Therefore, this implies a high bandwidth as initial condition of the chain.

4 Results

Both simulation and experimental results shows a variety of patterns in the ring of pendulum:
oscillation modes, non-propagating solitons, kinks and other structures like asymmetric modes.

4.1 Breathing mode (m = 0)

A singular vibration mode of the system is the mode m = 0, the so called ”breathing mode”
(don’t mistake with a breather or a non-propagating soliton). The breathing mode is predicted
by the most simple bubble modes, and in most applications the bubble is assumed to oscillate
in this pattern. For the numerical simulations the breathing mode appears at f = 3.35 Hz, and
for the experiment at f = 3.32 Hz.

.
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g i o g i .

(a) (b) (c) (d)

Figure 9: Experimental (a), (b), and numerical (c), (d),results for the breating mode m = 0 of the ring of
coupled pendulums

4.2 Eigenmodes

The parametrically excited chain shows a selection of modes from m = 1,2,3, --- , N/2. Fig. 10
shows the numerical solution and the experimental result for m = 2, 3,4, 7, where the excitation
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frequencies were 3.10, 3.13, 3.18 and 3.23 Hz respectively. This modes are also plotted in the
dispersion relation of Figure 7, where the numerical, theoretical and experimental results agrees.

o
. . . o .
tepe® Y YY X Ceees?

(a) (b) (©) (d)

 ——— —

F( D, ( é

T

=~ A i d - \.»'—«* !

() (2) (h)

Figure 10: Numerical (a), (b), (c), (d) and experimental results (e), (f), (g), (h) for the modes m = (2,3,4,7)
respectively

4.3 Lower cutoff modes

In addition to the vibration modes of the ring other exotic patterns are found in the system.
Localized modes are found as a stable solutions of the chain at excitation frequencies slightly
below 2w;. Thus, Figure 11 shows experimental results for a excitation of f = 3.03 Hz where a
non-propagating soliton is observed. Numerical results for an excitation of f = 3.04 are shown
in 12. Figure 13 shows a scheme of the unwarped ring where the phase of the localized mode
is represented.

(a) (b) (c)

Figure 11: Experimental results of a localized mode (breather) for f = 3.03 Hz. Image (c) is the difference of
the phases (a), (b)

Another type of soliton is formed in the chain at f = 3.05 Hz. In this case, two stable localized
structures are formed as Figure 14 shows. A bound state of two breathers oscillating with
opposite phases is observed, the fig 15 shows a scheme of the unwarped ring where the phases
of the localized modes are represented.
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(a) (b)

Figure 12: Numerical results of a localized mode (breather) for a excitation of f = 3.04 Hz

o++++++11ffTTTTT]‘ ‘]Itttttttf+++++~

Figure 13: Scheme of the localized mode of the unwarped ring. Here, arrows represent the phase off the
pendulum oscillations and dots the nodes.

(c)

Figure 14: Experimental results of a double localized mode. Image (c) is the difference of the phases (a), (b)

cosesost ] [ [0

Figure 15: Scheme of the double localized structure of the unwarped ring. Here, arrows represent the phase off
the pendulum oscillations and dots the nodes.
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4.4 Upper cutoff modes

In the upper cutoff region, kink modes are found as a stable solutions of the chain at excitation
frequencies above 2w,. Thus, an upper cutoff kink is observed both numerically (Figure 17)
and experimentally (Figure 16) for f = 3.99 Hz. Figure 18 is useful to observe the the kink
phase distribution.

oy of

e |

(a) (b) (c)

Figure 16: Experimental results showing a kink in the ring for an excitation frequency of f = 3.99 Hz. Image
(¢) is the difference of the phases (a), (b)

.

I

Figure 18: Scheme of the kink pattern of the unwarped ring. Here, arrows represent the phase off the pendulum
oscillations and dots the nodes.

In addition, another type of breather is observed for f = 4.09 Hz, where a localized structure
is formed with the pendulums oscillating in opposite phases as Figure 19 and Figure 20.

However, solutions do not find an equivalent in real bubbles (neighbor particles oscillate in
anti-phase).

5 Conclusions

In this paper a ring of coupled oscillators is proposed as a discrete-mechanical analogue of
acoustically driven shelled microbubbles. However, despite the relevance of the results for
the field of ultrasound contrast agents, the proposed model is a good candidate for be an
illustrative example of how the combined effects of nonlinearity and dispersion leads to the
exposed rich dynamics of the system. Thus, the simple construction of the pendulums ring
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(a) (b) (c)

Figure 19: Experimental results of a anti-phase breather-type mode for f = 4.09 Hz. Image (c) is the difference
of the phases (a), (b)

o++++++++++i+++l11‘ ‘l{l+++++++++++++
Figure 20: Scheme of the anti-phase breather structure of the unwarped ring. Here, arrows represent the phase

off the pendulum oscillations and dots the nodes.

and the cheap electronics makes this experimental setup suitable for a lecture. Furthermore,
the numerical solution of the model is also straightforward to programming and the results
effortless to interpret.
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