
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y

COMPUTACIÓN

UNIVERSIDAD POLITÉCNICA DE VALENCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Informe Técnico / Technical Report

 Pages: 65

 Title: Review of Requirement Engineering Approaches for

Software Product Lines

 Author (s): David Blanes Domínguez , Emilio Insfrán

 Date: Feb 22, 2011

 Key Words: Requirements Engineering, Software Product

Lines, Requirements Domain Engineering, Requirements

Application Engineering, Scoping

 VºBº Author (s):

 Leader of the Research Group

José Hilario Canós Cerdá David Blanes, Emilio Insfrán

Abstract

The Software Product Lines (SPL) paradigm is one of the most recent topics of interest for the

software engineering community. On the one hand, the Software Product Lines is based on a

reuse strategy with the aim to reduce the global time-to-market of the software product, to

improve the software product quality, and to reduce the cost. On the other hand, traditional

Requirement Engineering approaches could not be appropriated to deal with the new

challenges that arises the SPL adoption. In the last years, several approaches have been

proposed to cover this limitation. This technical report presents an analysis of specific

approaches used in the development of SPL to provide solutions to model variability and to

deal with the requirements engineering activities. The obtained results show that most of the

research in this context is focused on the Domain Engineering, covering mainly the Feature

Modeling and the Scenario Modeling. Among the studied approaches, only one of them

supported the delta identification; this fact implies that new mechanisms to incorporate new

deltas in the Domain specification are needed. Regarding the SPL adoption strategy, most of

the approaches support a proactive strategy. However, this strategy is the most expensive and

risk-prone. Finally, most of the approaches were based on modeling requirements with feature

models giving less support to other important activities in the requirements engineering

process such as elicitation, validation, or verification of requirements. The results of this study

provide a wide view of the current state of research in requirements engineering for SPL and

also highlight possible research gaps that may be of interest for researchers and practitioners.

Keywords

Requirements Engineering, Software Product Lines, Requirements Domain Engineering,

Requirements Application Engineering, Scoping.

Table of Contents

1 Introduction .. 7

2 Preliminary concepts ... 8

2.1 Requirements Engineering .. 8

2.2 Software Product Lines ... 9

2.3 Model-Driven Development.. 11

3 Evaluation criteria ... 13

3.1 Software Product Lines ... 13

3.1.1 SPL activities .. 13

3.1.2 Adoption strategy .. 14

3.1.3 Domain Engineering tasks ... 14

3.1.4 Application Engineering tasks ... 14

3.1.5 Scoping tasks ... 15

3.2 Requirement Engineering ... 15

3.2.1 Requirement engineering tasks .. 15

3.2.2 Requirement artifacts used ... 15

3.2.3 Traceability .. 15

3.3 Model-driven Development .. 15

3.3.1 Model representation ... 16

3.3.2 Transformation language .. 16

3.3.3 Transformation type.. 16

3.3.4 Degree of automation ... 16

3.4 Tool support .. 16

3.5 Validation .. 16

4 RE approaches for SPL ... 18

4.1 FeatRSEB .. 18

4.2 VODRD ... 22

4.3 John and Muthing ... 24

4.4 DREAM .. 27

4.5 PLUS ... 33

4.6 PLUSS ... 37

4.7 Orthogonal Variability Model .. 42

4.8 NAPLES .. 44

4.9 Mauricio Alférez .. 47

4.10 Bragança & Machado .. 50

5 Comparison ... 54

6 Related Work ... 59

7 Conclusions ... 61

List of Figures

Figure 1 The Software Product Line Engineering process ... 10

Figure 2 MOF architecture .. 11

Figure 3 MDA Transformation schema ... 12

Figure 4 FeatRSEB - The two main models of ... 19

Figure 5 FeatRSEB - Feature Model ... 20

Figure 6 FeatRSEB - Expanded view of the Feature Model ... 21

Figure 7 VODRD - The VODRD method process .. 23

Figure 8 John and Muthing - Use Case Diagram ... 25

Figure 9 DREAM - Domain Use Case Model initial .. 30

Figure 10 DREAM - Domain Use Case Model refined ... 31

Figure 11 DREAM - Meta-model for domain requirement ... 32

Figure 12 PLUS - Evolutionary Process Model for SPL .. 34

Figure 13 PLUS - Example of Use Case in PLUS ... 34

Figure 14 PLUSS - A Feature model example in the PLUSS notation .. 38

Figure 15 PLUSS - An example of the Relationship between Features, 39

Figure 16 PLUSS - Example of Use Case Realization .. 39

Figure 17 PLUSS - An example of the Relationship between Features 40

Figure 18 PLUSS - The PLUSS Meta-model .. 41

Figure 19 OVM - The Orthogonal variability model .. 42

Figure 20 OVM - Orthogonal Variability Metamodel .. 43

Figure 21 NAPLES approach .. 45

Figure 22 NAPLES - EA-Miner tool ... 46

Figure 23 Mauricio Alférez - Traceability support strategy ... 49

Figure 24 Bragança and Machado - Example of a Use Case diagram for a Library product line 51

Figure 25 Bragança and Machado - Process for obtaining a product Use Case model 52

Figure 26 Bragança and Machado - Feature Metamodel ... 52

1 Introduction
Software development companies continuously look for alternative methods and techniques

to improve the process of building software products. The main purpose of these efforts is to

reduce costs and to improve the quality of the software product properties such as security,

reliability, etc. In this scenario, in the last years, the Software Product Lines (SPL) approach has

emerged as a new paradigm to build software based on an intensive reuse strategy. Software

Product Line Engineering has proven to be a methodology for developing a diversity of

software products and software-intensive systems at lower costs, in shorter time, and with

higher quality [39].

 Traditional software development methods are inadequate to address challenges of

rapid change and growth of requirements. In addition, in the context of SPL, requirements

must also capture specific properties such as variability, commonality or evolution. Moreover,

the requirements engineering (RE) activity is applied to the different phases of the SPL

development: Scoping, Domain Engineering, and Application Engineering. In the last years,

several approaches were proposed to deal with these new activities and this new specific

needs [28] [31] [17] [34]. For the purpose of our study, we are especially interested in the

works that give a total or partial coverage to the Model-Driven Development approach.

 Model-Driven Development (MDD) is an approach to software development that

proposes the use of models at various levels of abstraction and model transformations as it

mains artifacts. These transformations allow converting one source model into another target

model. This use of model transformations allows an improvement of the reuse in the process

of software development. For this reason, we consider that the SPL process can be significantly

improved adopting a MDD strategy.

 In this study, we give an overview of the current RE approaches for SPL. The aim of the

work is to provide to developers a comparison framework to choose among different

approaches that better suit to a particular goal. In addition, we also analyze how these RE

approaches give support to the MDD approach. This analysis can help to SPL developers to

identify strengths and weaknesses of the approaches regarding the MDD characteristics.

 This document is organized as follows. Section 2 introduces the main concepts of RE,

SPL and MDD. Section 3 introduces the evaluation criteria used for comparing the different

approaches included in this study. Section 4 evaluates the selected RE approaches for SPL

against the defined evaluation criteria. Section 5 shows the comparison among the RE

approaches and a discussion derived from this comparison. Section 6 presents the related

work, and finally, section 7 presents the conclusions and further work.

2 Preliminary concepts
In this section, we introduce the fundamentals of requirements engineering, software product

lines, and model-driven development which are the main areas of this study.

2.1 Requirements Engineering
The success of a software system depends on the achievement degree on the understanding of

the user and environment needs. In order to understand these needs, the Requirements

Engineering plays a central role in the software development. This success relies directly on

the quality of the software product developed. According with Zave [47], the RE is “the branch

of software engineering concerned with the real-world goals for functions of and constraints

on software systems. It is also concerned with the relationship of these factors to precise

specifications of software behavior, and to their evolution over time and across software

families”.

 In order to understand what is the RE is necessary to define the requirement concept.

There are multiple definitions regarding what a software requirement is. According to the IEEE

Std. [14], a requirement is:

(1) A condition or capability needed by a user to solve a problem or achieve an objective.

(2) A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

documents.

(3) A documented representation of a condition or capability as in (1) or (2).

The classic way to categorize requirements is according to whether they are functional or

non-functional. A functional requirement is a requirement that specifies a function that a

system or system component must be able to perform. A non-functional requirement is a

requirement that defines restrictions on a system or system component that it must satisfy,

such as reliability, security, usability, etc.

These requirements are documented in the Requirements Specification (RS). The RS is a

document that contains a complete description of the behavior and constraints of the system

to be developed.

The RE includes several activities. There is no consensus about which activities involve the

RE. However a well-know classification is provided by Betty Cheng and Joanne Atlee [9], where

the RE can be divided into five main activities: requirements elicitation, requirements

modeling, requirement analysis, validation, and verification. Following, we introduce these

main activities.

Elicitation

The requirement elicitation is usually the first activity in the RE process. It comprises activities

that enable the understanding of the goals, objectives, and motives for building a proposed

software system. Elicitation also involves identifying the requirements that the resulting

system must satisfy in order to achieve these goals.

Modeling

In requirements modeling, a software requirements specification is expressed in terms of one

or more models. These models should be more precise, complete and clearly than the models

created during the elicitation activity. The process of creating precise models helps to identify

details that were not identified in the elicitation activity.

Analysis

The requirements analysis includes activities to evaluate the quality of the requirement

specification. Many of them analyze errors of well-formedness errors in requirements. The

errors can be ambiguity, inconsistency or incompleteness. Other analyses look for anomalies,

such as unknown interactions among requirements, possible obstacles to requirements

satisfaction, or missing assumptions.

Validation and verification

The requirements validation ensures that models and documentation accurately express the

stakeholder’s needs.

Requirement management

The requirements management is an activity that comprises a number of tasks related to the

management of requirements, including the evolution over time and across product families.

2.2 Software Product Lines
There are many reasons to adopt a Product Line Engineering approach. Many of them are

related with the economic success. The large-scale reuse allows reducing costs, reducing time

to market and improving the quality of resulting products.

 The improvement of costs and time to market are strongly correlated in SPLS: the

approach supports large-scale reuse during software development. This reuse is based on the

principle of having a set of software-intensive systems sharing a common, manages set of

features satisfying the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way [10]. A core asset is an

artifact used in the production of more than one product in SPL [10].

 The SPL development consists of two main processes [39]: Domain Engineering and

Application Engineering.

 The Domain Engineering aims the development of software assets for reuse and effectively

establishes the product line infrastructure. This process includes the commonality and

variability definition of the Software Product Line. The Domain Engineering process is

composed of five key sub-processes: product management, domain requirements

engineering, domain design, domain realization, and domain testing [39]. For our point of

view, we are interested in two sub-process of the Domain Engineering: Product

Management, and Domain Requirements Engineering.

Product management deals with the economic aspects of the Software Product Line in

particular with the market strategy. The goal product management includes activities like:

to decide a market strategy, to define which products will be part of the product line, or

activities related with the economic product management. However, the product

management is a process too general, which involves multiple areas like economics. Inside

the product management, we can find an activity called: Scoping. Scoping can be defined

as the process of deciding in which parts of an organization’s products, features and

domains systematic reuse is economically useful [17]. The main goal in the scoping is to

define the products that will be developed in the SPL and the main features of them. Three

levels of Scoping can be identified [43]: Product Portfolio, which determines which

products should be included in the SPL; Domain Scoping, that aims to identify and

bounding the domain; and the Asset Scoping, which determines specific assets to be

developed for reuse. These levels are dependent with each other. The main artifact

produced is the Product Portfolio. The Product Portfolio contains the product types offered

by a company in a product line. This artifact serves as input for the Domain Requirements

Engineering sub-process.

In the Domain Requirements Engineering, a requirements specification is produced,

including the high-level commonality and variability modeling. In this sub-process, the

requirements are analyzed to identify those that are common to all application and those

that can only be in specific applications.

 The Application Engineering includes the development all the activities to develop a single

product. This sub-process includes the identification of new requirements for the

application (called deltas). In this case, a decision must be taken whether include the

requirements in the SPL family or just consider the requirement for one product. This

decision is based on the effort estimation (cost, time, reuse strategy).

Figure 1 The Software Product Line Engineering process
1

1
 Figure taken from [39]

2.3 Model-Driven Development
Model-Driven Development (MDD) is an approach for developing software systems that has

gained wide acceptance in the last few years. It promotes a new form of building software

systems based on the construction and maintenance of models at different levels of

abstraction to drive the development process.

Model-Driven Architecture (MDA) [33] is a specific MDD deployment effort, proposed by

the Object Management Group (OMG) [36], around industrial standards including MOF, UML,

QVT, etc.

One of the bases in the MDA architecture is the Meta-Object Facility standard [38]. This

standard proposes a meta-model architecture based on four layers. Considering a model as

one abstraction of a real world phenomenon, the meta-model is the abstraction where the

model properties are reflected. The MOF architecture includes four layers:

 Level M3: Meta-metamodeling. In this layer, the meta-metamodel is used to define other

languages.

 Level M2: Meta-models. The meta-models are used to describe the models used in the M1

level.

 Level M1: Model. The models are defined at this level. For example we could define the

UML Class Diagram.

 Level M0: Instances. At this level, the real world objects are described.

Meta-metamodel
Level M3

Universal language to model other languages

Meta-modelLevel M2

Model definition

Models
Level M1

Models

Data
Level M0

Instances

E.g. MOF

E.g. UML metamodel

E.g. UML Class Diagram

E.g. A class

Instance-of

Instance-of

Instance-of

Figure 2 MOF architecture

In a MDD approach, a software system is developed by refining models. A model allows

defining the functionality, structure and behavior of a system. The models allow to work in an

abstraction level closer to the domain concepts, instead of be centered in platform-oriented

concepts as the traditional software development. This refinement is implemented as

transformations over models. A model transformation is defined by Kleppe et al. [22] as “the

automatic generation of a target model from a source model, according to a transformation

definition. A transformation definition is a set of transformation rules that together describe

how a model in the source language can be transformed into a model in the target language. A

transformation rule is a description of how one or more constructs in the source language can

be transformed into one or more constructs in the target language.” The transformations are

based on rules. This rules links constructions in the source model to constructions in the target

model and they are defined at meta-model level (Figure 3).

Source Meta-model Target Meta-model
Transformation rule

mapping

Source model Target model

Transformation

<<instanceof>> <<instanceof>>

Figure 3 MDA Transformation schema

Several languages are proposed to define model transformations. The OMG proposes the

Query/View/Transformation language, called QVT. Several implementation of this standard

are proposed: QVT-Operational, QVT-Relations, or QVT-like languages as the ATLAS

Transformation Language (ATL) [19].

One related approach is the use of Domain Specific Language (DSL). A DSL is a language

proposed to solve a particular problem domain. These kinds of languages are more useful than

the generic purpose languages due the fact that they are more closely aligned with the target

domain.

3 Evaluation criteria
In this section, we present the evaluation criteria, used in the next chapter, to compare the

approaches. The criteria are divided into five main criterions: Software Product Line support,

Requirements Engineering treatment, Model-driven coverage, Tool support, and Validation of

the proposal. These criteria are refined to consider the specific characteristics of the SPL, RE,

MDD areas. The Table 1 shows the criteria refinement. These criteria refinements are

discussed in subsections 1 to 5.

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering, Application
Engineering

1.2. Which adoption strategy
is followed?

Proactive, Reactive, Extractive

1.3. Which tasks of the
Domain Engineering are
supported?

Conceptual modeling, Commonality and
variability modeling, Feature modeling,
Scenario modeling

1.4. Which tasks of the
Application Engineering
are supported?

Derivation, Delta identification

1.5. Which tasks of the
Scoping are supported?

Product portfolio scoping, Domain
Scoping, Asset scoping

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation, Modeling, Analysis,
Management, Verification and Validation

2.2. What artifacts are used?

Feature Model, Goals, Use Cases or
Scenarios, NFR, Object Models, ER
models, Behavioral models, Formal
methods, Other.

2.3. Traceability Vertical, Horizontal, Both, None

3. Model-driven

3.1. Model representation
Standard model, Non-standard model
Template, Structured Natural Language,
Natural language, Other

3.2. Transformation language ATL, M2M, MOF, QVT, VIATRA…

3.3. Transformation type
Refactoring, formal refinement, language
migration, code generation

3.4. Degree of automation Manual, semi-automatic, automatic

4. Tool support Prototype, tool, industrial tool

5. Validation
Example, Case Study, Academic Study,
Industrial Study, None.

Table 1 Evaluation criteria discomposed

3.1 Software Product Lines
The aim of this criterion is to examine the support to the Software Product Line development

strategy by the approaches.

3.1.1 SPL activities

In the previous section, we present the two main activities in the SPL development: Domain

Engineering, and Application Engineering. For our point of view, we are interesting in two sub-

processes from the Domain Engineering activity: Product management, and Domain

Requirements Engineering. However, the Product Management sub-process includes aspects

from other areas like economics. For this reason, we consider only the part of this sub-process

most closer to the RE activity: the Scoping activity. In consequence, we consider three

activities of the SPL process for this study: Scoping, Domain Engineering and Application

Engineering. The Scoping is the activity concerned with the establishment of the SPL

boundaries and the reusability strategy. The Domain Engineering aims the development of a

requirements specification for the common PL. The Application Engineering aims the

development of a requirement specification for a single product.

3.1.2 Adoption strategy

This criterion analyses how each technique supports the proactive, extractive, and reactive

approaches [21]. In the Proactive approach, the organization analyses, designs, and

implements a fresh SPL to support the full scope of products needed on the predictable

horizon. In the Reactive approach, the organization incrementally grows an existing SPL when

the demand arises for new products or new requirements on existing products. In the

Extractive approach, the organization extracts existing products into a single SPL.

3.1.3 Domain Engineering tasks

Conceptual modeling

Activities to identify, define, and organize the concepts that are relevant to the domain and

their mutual relationships, in order to facilitate a precise and concise description of the

domain.

Commonality and variability modeling

We consider within Commonality and variability modeling the activities to identify similarities

and differences between the requirements. This includes the separation of requirements that

are valid for the whole domain from those that are only valid in special cases, e.g., for a

specific product variant. This activity is strongly related to domain and feature modeling.

Feature modeling

Activities to identify, study, and describe features relevant in a given domain. The aim of

feature modeling is to express relations between features, properties of features, and/or

superstructures of features. One such essential view is commonality and variability. Others

could be feature configuration and interaction. A purpose of feature modeling is to help

structure the requirements and define the allowable variants in a product line.

Scenario modeling

This task includes activities to describe and model run-time behavior of members of the

system family. This not only includes the functionality of the systems and their interactions

with users, but also aspects such as security, safety, reliability, and performance.

3.1.4 Application Engineering tasks

Derivation

The goal of this task is to derive the Application Requirements Model from the Domain

Requirements Model. Therefore, we can consider that one approach supports the

requirements derivation, if it provides a mechanism to obtain a requirement specification for a

single product from the Domain requirements specification.

Delta identification

This task involves the identification of new requirements for one single product. In this case

the PL expert can decide to include the new requirement in the PL family or just define it to

one single product.

3.1.5 Scoping tasks

According with Schmid [43] there are three levels of scoping: portfolio scoping, domain

scoping, and asset scoping. The Product Portfolio Scoping aims at identifying the particular

products that ought to be developed as well as the features they should provide. The Domain

Scoping is the task of bounding the domains that are supposed to be relevant to the product

line. The Asset Scoping aims at identifying the particular (implementation) components that

should be developed in a reusable manner.

3.2 Requirement Engineering
The goal of this criterion is to analyze the coverage of the Requirement Engineering activities.

3.2.1 Requirement engineering tasks

We use the classification proposed by Cheng & Atlee [9] categorizing the requirements tasks

in: elicitation, modeling, analysis, and management. Elicitation refers to the activities

performed to be able to understand the goals, objectives, and high-level functions necessary

for the proposed software system. The Analysis consists of evaluating the quality of

requirements. Modeling allows requirements to be expressed in terms of one or more models

that document the user needs and constraints clearly and precisely. Requirements verification

is the process of ensuring that the system requirements are complete, correct, consistent, and

clear. Requirements management is the process of scheduling, coordinating, and documenting

the requirements engineering.

3.2.2 Requirement artifacts used

This criterion analyzes the concepts and notations used to identify and model the

requirements of the software system to be built. Some works employ goals, scenarios, or Non-

Functional Requirements (NFR) as a conceptual framework to identify user requirements. The

use of object models, entity-relationship models, or behavioral models are also alternatives.

Formal methods are strongly related to models with mathematical foundations.

3.2.3 Traceability

Traceability refers to the ability to follow the life of a requirement either back to its origin or

forward to its transformation into a design artifact. We use the classification proposed in

Kovačevid & Alférez [23] understanding two types of traceability: vertical and horizontal. We

consider the vertical traceability as the ability to relate requirements from domain specific

requirements to product specific requirements. The horizontal traceability is the ability to

relate domain requirements to the domain architecture. It includes the mapping between

variation points of these artifacts.

3.3 Model-driven Development
The goal of this criterion is present and compares existing RE approaches that rely on MDD

techniques.

3.3.1 Model representation

A requirement can be structured as: model (standard model expressed in a language

considered standard or non-standard). Requirements can also be expressed into natural

language or other type of textual or graphical representation.)

3.3.2 Transformation language

The transformations among models are the core of the Model Driven Development. In the last

year several specialized languages has been proposed in order to specify model-driven

transformations. E.g. The OMG [36] has adopted the QVT specification language, used in the

MDA [33] proposal. Other alternative is ATL [19] is a QVT-like model transformation language

with an execution environment based on the Eclipse framework.

3.3.3 Transformation type

We use the classification of model transformations provided by Mens et al. [32]. We

distinguish two types according the source and target language, endogenous, when the source

and target model are expressed in the same language and in the same abstraction level;

exogenous, when different modeling languages and abstractions levels are used to express

source and target models. Moreover, we can distinguish depending of the abstraction level

between: horizontal, where the source and target model reside at the same abstraction level;

and vertical transformations, where the source and target model reside at different levels.

Table 2 illustrates that the dimensions horizontal versus vertical and endogenous

versus exogenous are orthogonal.

Table 2 Orthogonal dimensions of model transformations

 Horizontal Vertical

Endogenous Refactoring Formal refinement

Exogenous Language migrations Code generation

3.3.4 Degree of automation

A transformation can be automatic if the entire process of obtaining the target model is

carried out without the transformation user’s participation. The interactive needs partial user

participation. The manual approaches are entirely user dependent.

3.4 Tool support
This criterion analyzes if the approach gives tool support. In many cases, there is an academic

prototype. Others proposals can give a mature tool. Finally, there are many tools validated in

an industrial environment.

3.5 Validation
We consider five levels of validation for the analyzed studies. From lower to higher: the study

is shown through a simple example; the study is shown through and academic case study; the

study is shown with an industrial case study; through an empirical controlled experiment with a

control group; the study has been put into practice in an industrial case study.

The case study is a study to examine a phenomenon or unit, collect data, and analyze the

results of a single case. An empirical controlled experiment or study is a process testing

hypotheses against an experiment without the influence of the observer.

4 RE approaches for SPL
In this chapter, we present an analysis of the most important Requirements Engineering

approaches that have been proposed to support the development of Software Product Line

applications. For each of these methods we present the following information:

 A general description of the method.

 A study of the activities of the SPL proposed by the method. We analyze in which

degree are covered Scoping, Domain Engineering or Application Engineering activities.

 A study of the RE techniques and artifacts that are proposed by the method.

 Tool support. We focus on analyze if the approach provides a tool for support the RE

specification.

 Evaluation of the approach. We analyze if the approach is validated with case study of

controlled experiment. If proceed, we analyze parameters as control group, context

(academic, industrial, etc.).

We have not included in this selection studies that does not cover the RE activity explicitly.

4.1 FeatRSEB
Griss et al. ’98 [28] propose FeatRSEB. This approach integrates the feature modeling of

Feature-Oriented Domain Analysis (FODA) [20] into the process and workproducts of the

Reuse-Driven Software Business (RSEB) [15]. The RSEB is a use-case driven systematic reuse

process where architecture and reusable subsystems are first described by Use Cases and the

transformed into object models that are traceable to these Use Cases. The variability in RSEB is

captured by structuring Use Case and Object Models using explicit Variation Point and

Variants. The goal of this extension is provide an effective reuse-oriented model as a “catalog”

capability to link Uses Cases, Variation Points, reusable components and configured

applications.

The process starts building the Use Case for the product family. When this construction

starts, then the Feature Model is construed in a concurrent way. The next step is to do a

commonality and variability analysis, first in the Use Cases and secondly into the Feature

Model. The Feature Model construction is outlined as follows:

The individual exemplar Use Case models are merged into a Domain Use Case model,

using Variation Points capture and expressing the differences. A “trace” relation is used to

keep trace with the originating exemplars. An initial Feature Model is created with functional

features derived from de domain Use Case model. Then a RSEB analysis object model is

created to augment the Feature Model with architectural features. These features relate to

the system structure and configuration rather than a specific function. Finally the RSEB design

model is created to augment the Feature Model with implementation features.

Software Product Line support. FeatRSEB is focused on cover the domain. Two main artifacts

are used to describe the requirements for a product line: a Use Case model and a Feature

Model. In one hand the Use Case is user oriented (System Engineering). In another hand, the

Feature Model is reuser oriented (Domain Engineering). The Use Case model provides the

“what” of the domain (a description of what systems in the domain do); and the Feature

Model provides the “which” of the domain (which functionality can be selected when

engineering new systems).

Figure 4 FeatRSEB - The two main models
2

FeatRSEB supports all develop strategies (proactive, reactive, and extractive). It can be

applied to existing SPL or new ones.

The commonality and variability model is supported with the Feature Model. This model

contains three types of features:

 Mandatory. These features correspond to core capabilities.

 Optional. Correspond to capabilities which can be unnecessary in some systems of the

domain.

 Variant. Correspond to alternative ways to configure a mandatory or an optional

feature.

The Scenario Modeling of the SPL is supported with the Domain Use Cases. The model

starts with the individual case models. A Domain Actor model is constructed. The exemplar

Use Case models are merged, replacing the original actors.

Regarding the scoping, only the Asset Scoping is supported with the domain Use Case

construction and the extraction of functional features from the domain Use Case model.

Requirements engineering support. FeatRSEB covers the requirement modeling with the Use

Cases. The requirement variability is modeled through the Requirement Modeling.

The feature model is represented in UML (see Figure 5). It represents a linked set of

feature elements containing data describing attributes of the features. These features are

2
 Image taken from [28]

linked together by a set or relations (UML dependencies or refinements). Some of the feature

elements may also have relations (trace) to elements in other models.

Figure 5 FeatRSEB - Feature Model
3

The set of features can be specified and structured using the following notation:

 Conmposed_of relationship. A feature can be modeled as a composed set of several sub-

features.

 Existence attribute. A feature can be mandatory or optional.

 Alternative relationship. A feature can act as variation point, where other features are

variants (vp-feature).

 Biding time attribute of vp-features. At reuse time the vp-featues are a XORed disjunction

of their variants. Instead, at use time the vp-feature acts as ORed disjunction of its

variants.

 Requires and Mutual_exclusion constraints. These rules define semantic constraints on

optional and variable features.

Each feature node of the Feature Model is an iconic view of a more complete feature

element. FeatRSEB suggest the implementation of a class with a UML stereotype called

“feature”·. The Figure 6 shows and expanded view of the Feature Model using a Class Diagram

with stereotypes.

3
 Figure taken from [28]

Figure 6 FeatRSEB - Expanded view of the Feature Model
4

The traceability in FeatRSEB is both horizontal and vertical. The elements from the

Domain Use Case have related with the exemplar Domain Use Cases. Moreover the features

from the Feature Model has traced to other elements like Use Cases, Variation Points and

Objects.

Model-driven coverage. The approach is model-oriented in the sense of that many models are

created during the process, however no transformations between models are provided. The

Domain Use Case and the Feature Model are based into UML extensions. E.g. a feature is

represented in a class diagram with the stereotype “feature”.

Tool support. A tool support is not provided. The paper mentions two ways two find and

appropriate tool: start from a standard UML tool (e.g. Rational Rose) and add RSEB and FODA

extensions using the UML extension mechanism. Another way would be creating or

modification existing reuse tool-sets (e.g. ReuseNICE or UML-NICE).

Validation of the approach. The paper uses an example of how was applied the approach into

the FODAcom project [21]. However there is any experiment used to validate the approach.

For this reason, we consider just a validation by example.

4
 Image taken from [28]

Table 3 Criteria comparison – FeatRSEB

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering

1.2. Which adoption strategy
is followed?

All strategies

1.3. Which tasks of the
Domain Engineering are
supported?

Commonality and Variability modeling
(Feature Model), Feature Modeling,
Scenario Modeling (Domain Use Cases).

1.4. Which tasks of the
Application Engineering
are supported?

Not supported.

1.5. Which tasks of the
Scoping are supported?

Asset (Use Case and Feature Model).

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation (partially with Use Cases),
Modeling, Analysis, Management

2.2. What artifacts are used?
Use Case, Feature Model (UML
stereotyping), Object Models

2.3. Traceability Both.

3. Model-driven

3.1. Model representation
UML Standard (Use Cases), UML extended
with stereotypes (Feature Model)

3.2. Transformation language Not Supported

3.3. Transformation type Not Supported

3.4. Degree of automation Not Supported

4. Tool support Not provided

5. Validation Example.

4.2 VODRD
Mannion et al. [31] prose VODRD, a method that relies on stakeholder viewpoints to organize

user requirements. The VODRD’s goal is to improve the requirements reusing. This aim is done

with a domain analysis that finds where requirements overlap. This requirements analysis is

made through a viewpoint-oriented domain.

VODRD is an iterative method consisting of four steps: scope the domain, characterize

the domain, document the viewpoints, and analyze the viewpoints. The outputs from this

method are a Domain Dictionary, Domain Viewpoints, and a Catalog of reusable requirements

collected within viewpoints. The Figure 7 shows a general overview of the VODRD method with

its four steps.

Firstly, the existing user-requirement specification is analyzed to identify the domain

stakeholders and establish a Domain Dictionary. The requirements of each domain system are

assigned to the appropriate Viewpoint. Next, the requirements are compared to identify which

are reusable.

Software Product Line support. VODRD gives support to the Domain Scoping and the Domain

Engineering. The Domain Scoping support is given by identifying the stakeholders in the

domain. VODRD suggest interviewing staff, and analyzing documents to scope the domain. The

output of the process is a set of viewpoints and the reusable requirements. These reusable

requirements can be used as input to another SPL process.

Scope domain

Characterize

domain

Document

viewpoints

Domain

sources

Viewpoints

Domain

dictionary

Analyze document

viewpoints

Viewpoints

with

requirements

Viewpoints with

reusable

requirements

Figure 7 VODRD - The VODRD method process

Requirements engineering support. VODRD supports domain modeling through the analysis of

requirements to extract the viewpoints and the reusable requirements. VORD covers

conceptual modeling through the domain dictionary and the viewpoint documentation. The

work assumes that a textual requirements specification is given, so it based into a reactive or

extractive strategy. The Application Engineering is not supported, since it just covers the

Domain Engineering. VORD covers partially the Domain scoping, through the identification of

the main domain stakeholders and its domain viewpoints. Regarding the RE tasks, the

elicitation is supported through staff interviews and previous documentation analysis. The RE

modeling is supported by building the textual templates for each requirement. The RE

management is covered by defining the associations between requirements. The notations

proposed are: domain dictionary, and textual requirement templates. The MDD infrastructure

is not supported. The horizontal traceability is supported with the definition of relations

between single requirements.

Table 4 VODRD - The Viewpoint template

Viewpoint Name

Rationale
Associations

Justification for inclusion
Viewpoint name or set of requirements

Requirement
Definition
Rationale
Associations

Number in document
Statement of requirement
Justification for inclusion
<requirement link>

Model-driven coverage. The approach proposes several models: the Domain Dictionary has

textual form, and the Viewpoints are documented with templates (see Table 4). Each

viewpoint has its own template.

Regarding the model transformations, there are not mechanisms provided to deal with

transformations between the models.

Tool support. The paper claims for a practical tool support to link in an effective way

requirements. However, any tool is proposed.

Validation of the approach. The VODRD approach is illustrated through a case study. It models

a spacecraft mission control system. The VODRD method was used as part of the European

Space Operations Centre’s new generation of spacecraft control systems. This case study was a

part of the European Space Operations Centre program.

Table 5: Criteria a comparison - VODRD approach

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering

1.2. Which adoption strategy
is followed?

Extractive

1.3. Which tasks of the
Domain Engineering are
supported?

Conceptual modeling (Domain Dictionary),
C&V modeling (Viewpoints analysis)

1.4. Which tasks of the
Application Engineering
are supported?

Not supported

1.5. Which tasks of the
Scoping are supported?

Domain scoping (Viewpoints)

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Modeling (viewpoints)

2.2. What artifacts are used?
Domain Dictionary, Viewpoint, Textual
Requirements

2.3. Traceability Vertical

3. Model-driven

3.1. Model representation
Textual (Domain Dictionary), Template
(Viewpoints)

3.2. Transformation language Not supported

3.3. Transformation type Not supported

3.4. Degree of automation Not supported

4. Tool support Prototype

5. Validation Case study

4.3 John and Muthing
John and Muthing [17] describe a method to extend Use Case diagrams and textual Use Cases

with explicit commonality and variability. This approach is part of PulSE CDA [6], the domain

analysis approach of the PuLSE product line framework.

Software Product Line support. The approach gives support to the Domain Engineering and

Application Engineering. The support at the Domain Engineering is given by the Use Case

diagrams that model the scenario and the commonality and variability.

In the Use Case diagram, any model element may potentially be a variant in a product

line context. An actor is a variant, for example, if a certain user class is not supported by a

product. A Use Case is a variant if it is not supported by some products in the family. However,

alternative Use Cases are captured outside of the Use Case diagram in a decision model. This is

done because such information would overload the use-case diagram, making it less readable,

and thus less useful.

Figure 8 John and Muthing - Use Case Diagram
5

In the textual case description any text fragment may be variant. A variable text

fragment is market with the parts <variant> and </variant>. The Table 6 show and example for

the Use Case “keep velocity”. The example shows two possible variants: with no regulator –

variant ALT1-, and the second with regulator –ALT2-.

The Application engineering is supported with an instantiation process guided by a

Decision Model. The Decision Model captures the motivation and interdependencies of

variation points. Table 7 shows an excerpt for the case study “cruise control system” [17]).

Requirements engineering support. The requirement modeling is support by the use of the

Use Cases technique. The process assumes the Use Cases for the single products and a Use

Case for the family is produced. The artifacts used for the modeling are Use Case Diagrams and

Textual Use Cases extended to deal with variability, and Decision Models.

The approach gives only vertical traceability. The Decision Model is used to trace

Domain Uses Cases to Product Uses Cases. The horizontal traceability is not discussed.

5
 Image taken from [17]

Model-driven coverage. The models build in this approach uses a template-form. There are

not automatic transformations provided.

Table 6 John and Muthing - Generic Use Case Description

Use Case Name: keep velocity
Short Description: keep the actual velocity value over gas regulator
<variant> by controlling the distance to the cars in front </variant>
Actor: driver, gas regulator
Trigger: actor, driver, <variant> actor distance regulator </variant>
Precondition: --
Input: starting signal, velocity value vtarget
Output: infinit
Postcondition: vactual = vtarget
Success guarantee: vactual = vtarget
Minimal guarantee: The car keeps driving
Main success Scenario:

1. <keep velocity> is selected by actor driver
2. Does a distance regulator exist?

<variant ALT1: no; only cruise control>
-compare vactual and vtarget

If vactual < vtarget: gas regulator increase velocity
-restart <keep velocity>

If vactual < vtarget: gas regulator decrease velocity
-restart <keep velocity>

else restart <keep velocity>

</variant>

3. Does a distance regulator exits?
<variant ALT2: yes; cruise control + distance regulator>
-- compare vactual and vtarget

If vactual < vtarget: gas regulator increase velocity
-restart <keep velocity>

If vactual < vtarget and atarget & aactual: gas regulator decrease
velocity

-restart <keep velocity>
If vactual < vtarget and atarget > aactual: gas regulator inrease velocity

-restart <keep velocity>
else restart <keep velocity>

</variant>

Tool support. The paper does not mention tool support.

Validation of the approach. The approach is illustrated with an example called “cruise control

system”. The example belongs to the automotive domain. A cruise control system supports the

driver in keeping a constant velocity and does real time monitoring and control of the cars

speed.

Table 7 John and Muthing - Partial Decision Model

Variation
Point

Decision Actions

1

The car has no distance
regular

Remove Use Case “set distance” from Use Case diagram

Remove Actor “radar sensor” from Use Case diagram…

Remove Variant <variant Opt> from Use Case “keep velocity”
point 2

Remove Variant <Alt 2> from Use Case “keep velocity” point 3

The car has a distance
regulator

Remove the variant tag from all uses cases in the Use Case
diagram

Remove the <variant Opt> tag and the </variant> tag from Use
Case “keep velocity” point 2…

Table 8 Criteria comparison – John and Muthing

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering, Application
Engineering

1.2. Which adoption strategy
is followed?

Proactive

1.3. Which tasks of the
Domain Engineering are
supported?

C&V modeling (Use Cases with variation
points), Scenario Modeling (Use Cases)

1.4. Which tasks of the
Application Engineering
are supported?

Derivation

1.5. Which tasks of the
Scoping are supported?

Asset (Identification of core Uses Cases)

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Modeling

2.2. What artifacts are used? Textual Use Cases, Decision Model

2.3. Traceability Vertical

3. Model-driven

3.1. Model representation
Template (Use Case Diagram, Textual Use
Cases, Decision Model)

3.2. Transformation language Not supported

3.3. Transformation type Not supported

3.4. Degree of automation Not supported

4. Tool support Not supported

5. Validation Example

4.4 DREAM
Moon ’05 [34] proposes defines a process for developing domain requirements where

commonality and variability are explicitly considered. This process is included into a CASE

environment called DREAM, which manages the commonality and variability analysis of

domain requirements.

DREAM uses a new term called “Primitive Requirement (PR)”. A PR is a transaction that

has an effect on an external actor. Its granularity is in between that of a Use Case and an

atomic operation of a Use Case; the purpose of a PR is to make the domain requirements more

concrete and to discover the variability and rationale of the domain requirements.

The commonality and variability is defined at the PR level, and that the notion of variation

point is explicitly represented in PR-Elements.

The process consists of four major steps:

1. Scoping domain requirements. For developers to identify and specify domain

requirements in a consistent and precise fashion, the scope of a domain requirement

should be first defined. The basic concepts and terms used in the domain are defined in

the Domain Terminology. Table 9 shows domain terminology for the news information

repository domain.

Table 9 DREAM - Domain Terminology

Term Description Related terms

News
 New information about specific and timely events

 Text, image, audio, video data service

News information
News things

Scrapbook
 A blank book in which miscellaneous items are collected

and preserved

News service
 An organization that gathers news stories and the

distributes them to the media or subscribers

 Related to NOD system (News On Demand)

New agency

… … …

2. Identifying domain requirements using PR. After making an agreement on the scope of the

domain requirements, legacy systems are analyzed to extract domain requirements

common to them. By considering the common requirements of the legacy systems, a set of

similar requirements with variations can be identified. The concept of PR is used as a unit

of the identified requirements in this step. A matrix relating PRs and legacy systems is used

to identify such similar requirements, by means of context-generalization (grouping legacy

systems having the same PRs) and PR- generalization (grouping similar PRs).

A PR-Context Matrix is introduced to identify all PRs in a domain and to obtain the CV

properties for each PR. The PRs are listed in rows and systems build from the domain are

arranged in columns. An “O” at the intersection indicates that the PR is found in the

System. An “X” indicates that the system does not have the PR.

The initially constructed PR-Context Matrix can be defined by conducting two kinds of

generalizations:

 PR Generalization. Two or more PRs with similar functionalities can be generalized into

one PR.

 Context Generalization. Two or more legacy systems composed of the same PRs can be

generalized into a single named “context”.

The next step is to identify the Common Variability (CV) property for each Pr in the table.

Table 10 DREAM - A PR-Context Matrix for News Information Repository Domain

PR

CV

Property

/ Ratio

MBC KBS YTN ET Times Chosun Daily

PR1 Login O O O O O

PR2 Logout O O O O O

PR3 Register O O O O O

PR4 Modify

member

information

 O O O O O

PR5 Add an

article to a

scrapbook

 X X X O O

PR6 Search a

scrapbook
 X X X O X

PR71 Forward an

article by e-mail
 O X X O O

PR72 Forward an

article by mobile

phone

 X O O X X

PR8 Write an

opinion
 O O X X O

Refining domain requirements using PRs. Each identified PR is given a detailed description as

a form of PR specification. A PR specification is written for each PR with respect to structural

and behavioral aspects where variabilities are explicitly specified. In addition, this step

identifies and specifies constraints between domain requirements such as: dependency,

generalization, and alternative.

Table 11 DREAM - A PR-Context Matrix for News Information Repository Domain – Context Generalization

PR

CV

Property

/ Ratio

BS1(2) YTN ET Times Chosun Daily

PR1 Login C / 100% O O O O

PR2 Logout C / 100% O O O O

PR3 Register C / 100% O O O O

PR4 Modify

member

information

C / 100% O O O O

PR5 Add an

article to a

scrapbook

P / 40% X X O O

PR6 Search a

scrapbook
P / 20% X X O X

PR71 Forward an

article
C / 100% O O O O

PR71 via e-

mail
 X X O X

PR72 via

mobile

phone

 X O X X

PR8 Write an

opinion
C / 60% O X X O

3. Developing a domain Use Case model. The domain Use Case model is constructed to

represent a higher level of abstraction for domain requirements. That is, the domain Use

Cases serve as a unit of domain requirements from the viewpoint of application

development. Based on the relationship with PRs, expressed in terms of a matrix, the

initially identified Use Cases are refactored and categorized.

Table12 DREAM - Excerpt of PR Specification for PR1 Register

PR PR1. Register

Description
Variability

Type Cardinality Variants

Behavior

PRelement

PR1a. System verifies customer’s real name
External

computation
[0..1]

Real name checking

service

PR1b. Customer enters Member Basic Data

PR1c. System checks for availability of entered

customer’s ID and passwords

... … … …

Static

PRelement
Member Supplementary Data Data [1..n]

Occupation

Income

Education

Interest

A Domain Use Case Model is constructed by applying Use Case modeling techniques.

Figure 9 DREAM - Domain Use Case Model initial
6

Each domain Use Case consists of a smaller unit of functionalities, the PR. The

relationship between PRs and domain Use Cases are identified and captured in a PR-Use Case

matrix.

6
 Figure taken from [34]

Table 13 DREAM - PR-Usecase matrix

PR

CV

Property /

Ratio

User

Authentification
Registration Search News

PR1 Login C / 100% O

PR2 Logout C / 100% O

PR3 Register C / 100% O

PR4 Modify member

information
C / 100% O

PR5 Add an article to a

scrapbook
P / 40% O

PR6 Search a scrapbook P / 20% O

PR7 Forward an article C / 100% O

PR8 Search a news C / 100% O

PR9 Show a news C/ 100% O

PR10 Modify an opinion P/ 42.8% O

PR12 Delete an opinion P / 42.8% O

PR13 Manage payment C/ 100% O O

The PR-Use Case Matrix is used to refactor and categorize the Use Case model. The

refinement of the initial Domain Use Case diagram aims to produce more reusable domain

requirement by identifying common and variable parts.

Figure 10 DREAM - Domain Use Case Model refined
7

Software Product Line support. DREAM is centered in the Domain Engineering. After the

application of the process, a Use Case model for the family is produced. The Domain Modeling

is included by the production of the Domain Terminology. The commonality and variability is

modeled by the PR-context and the PR-Use Case matrixes. The scenario modeling is included

with the Domain Use Case diagrams.

7
 Figure taken from [34]

A partial support to the Application Engineering is given by the selection of the

application-specific requirements from the domain requirements.

Regarding the scoping, asset scoping is supported by producing core assets for product

lines. The domain scoping is supported with the Domain Terminology.

There is not explicit mention to the adoption strategy. We consider that supports

partially proactive and extractive support.

Requirements engineering support. The approach covers partially the elicitation with the

elaboration of the Domain Terminology and the PR matrix and the modeling of requirements

with the Domain Use Case Diagram.

The process uses four different artifacts: Domain Terminology, PR-Context matrix, PR-

Use Case matrix, Domain Use Cases. The tree first models are template-based. Only the Use

Case diagram uses a standard notation with stereotyping with deal with commonality and

variability.

There is not mention to the traceability support.

Model-driven coverage. The approach provides a meta-model for representing domain

requirements. Domain requirements are divided into functional and nonfunctional

requirements. However, there a no transformations provided for the proposed models.

Figure 11 DREAM - Meta-model for domain requirement
8

Tool support. The paper presents a tool named DREAM (Domain Requirements Asset

Manager). DREAM support the management of the commonalities and variability of domain

requirements and customizes the requirements of individual systems from these domain

requirements. The Domain Use Case modeling relies on external third-party modeling tools,

such as such as Rose XDE by IBM [13] or Together Control Center by Borland [7]. DREAM

supports the export and import of domain Use Case models to/from XMI files. The use of this

format allows the importation of entities from repositories and providing connectivity to other

tools.

8
 Figure taken from [34]

Validation of the approach. The process is illustrated with a case study for an e-Travel System

domain. The case study was done with the collaboration of the Korean national government

and the Daewoo Information Systems Corporation (an IT company in Korea). An e-Travel

System is a family of B2B2C travel business applications that provide facilities such e-travel

catalogs, online reservations, secure e-payment systems, etc.

Table 14 Criteria comparison – DREAM

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering, partially
Application Engineering

1.2. Which adoption strategy
is followed?

Proactive and extractive

1.3. Which tasks of the
Domain Engineering are
supported?

Domain Modeling (Domain Terminology),
C&V (PR-Context and PR-Use Case
matrices), Scenario Modeling (PRs and Use
Cases)

1.4. Which tasks of the
Application Engineering
are supported?

Derivation (selection of Use Cases from
Domain Use Case Model)

1.5. Which tasks of the
Scoping are supported?

Domain Scoping (Domain terminology)
and Asset Scoping (Identification core Use
Cases)

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation, Modeling

2.2. What artifacts are used?
Domain Terminology, PR-Context matrix,
PR-Use Case matrix, Domain Use Cases.

2.3. Traceability Not supported

3. Model-driven

3.1. Model representation
Template (Domain Terminology, PR-
Context matrix, PR-Use Case matrix), UML
Standard (Use Case Diagram)

3.2. Transformation language Not supported

3.3. Transformation type Not supported

3.4. Degree of automation Not supported

4. Tool support Tool (DREAM)

5. Validation Case Study

4.5 PLUS
In Gooma et al. ’04 [26] is proposed PLUS. PLUS is a model-driven evolutionary development

approach for Software Product Lines based in the Unified Modeling Language (UML) 2.0

notation. The Evolutionary Software Product Line Engineering Process is a highly iterative

software process, which consists of two main phases (Figure 12). During Software Product Line

Engineering, a product line multiple-view model, product line architecture, and reusable

components are developed. During Software Application Engineering, given the features for

the individual product line member, the application multiple-view model and architecture are

derived.

Figure 12 PLUS - Evolutionary Process Model for SPL
9

This work is focused on the Requirements Engineering activity. It consists of three main

activities: Product Line Scoping, Use Case Modeling, Feature Modeling.

The process starts with the development of Use Cases during requirements modeling.

The traditional Use Cases are extended with “kernel”, “optional” and “alternative” relationship

to model commonality and variability. When the Use Cases are written, then the Feature

Model is developed to capture the commonality and variability in product line requirements.

Software Product Line support.

There is not support to the scoping activity. The Domain Engineering is supported with the use

of Uses Cases and Feature Models. These Use Cases are extended with UML stereotypes to

model the commonality and variability. Figure 13 shows an Use Case to model a microwave

Software Product Line.

Figure 13 PLUS - Example of Use Case in PLUS
10

9
 Figure taken from [26]

10
 Figure taken from [26]

The product line commonality is given by the Cook Food kernel Use Case. The Use Case

variability is handled with the notion of Variation Point. A Variation Point is a location in a Use

Case where a change can take place [15]. The term variation in this context means a situation

that is handled differently by different members of the product line. In the example, the Cook

Food kernel Use Case models de variability, as well as by the optional Use Cases and the

variation points in these optional Use Cases. Thus, part of the Cook Food Use Case description

captures product line commonality (the Use Case main sequence and alternatives), and part of

it captures product line variability (the description of the variation points). This is different

from the optional Use Cases, where the description is entirely of product line variability.

When a Use Case becomes too complex because modeling the alternatives or variation

points within the Use Case is very intricate, dependencies between Use Cases can be defined

by include and extend relationships. The objective is to maximize the extensibility and reuse of

Use Cases. Abstract Use Cases are determined to identify common patterns in several Use

Cases, which can then be extracted and reused.

The next step is to capture the common functionality, in this case with the Cook Food

kernel Use Case. It is captured through the description of the main sequence and alternatives.

The user is the primary actor, and the timer is the secondary actor. The Table 15 shows a

textual Use Case for the Use Case Cook Food.

Table 15 PLUS - Use Case Textual Template from PLUS

Use Case name: Cook Food.
Reuse category: Kernel.
Summary: User puts food in oven, and microwave oven cooks food.
Actors: User (primary), Timer (secondary).
Precondition: Microwave oven is idle.
Description:

1. User opens the door, puts food in the oven, and closes the door.
2. User presses the Cooking Time button.
3. System prompts for cooking time.
4. User enters cooking time on the numeric keypad and presses Start.
5. System starts cooking the food.
6. System continually displays the cooking time remaining.
7. Timer elapses and notifies the system.
8. System stops cooking the food and displays the end message.
9. User opens the door, removes the food from the oven, and closes the door.
10. System clears the display.

Alternatives:
Line 1: User presses Start when the door is open. System does not start cooking.
Line 4: User presses Start when the door is closed and the oven is empty. System does not
start cooking.
 Line 4: User presses Start when the door is closed and the cooking time is equal to zero.
System does not start cooking.
 Line 6: User opens door during cooking. System stops cooking. User removes food and
presses Cancel, or user closes door and presses Start to resume cooking.
Line 6: User presses Cancel. System stops cooking. User may press Start to resume cooking.
Alternatively, user may press Cancel again; system then cancels timer and clears display.

Postcondition: Microwave oven has cooked the food.

After the Use Case model, the next step is to address is the feature model and to

determine how the Use Cases and Use Case variation points correspond to features. The

feature model is developed as a result of a commonality/variability analysis in which the

common, optional, and alternative features are determined. The common features identify the

common functionality in the product line, as specified by the kernel Use Case; the optional and

alternative features represent the variability in the product line as specified by the optional

Use Cases and the variation points.

Table 16 shows the relationships between the features and the Use Cases. For

example, Microwave Oven Kernel is a common feature determined from the kernel Use Case,

Light is an optional feature determined from the Cook Food Use Case; however, it represents a

Use Case variation point also called Light.

Table 16 Excerpt of the feature/Use Case dependencies in the microwave oven Software Product Line

Feature Feature Category Use Case Name
Name Use Case

Category/Variation
Point (vp)

Variation Point
Name

Microwave Oven
Kernel

common Cook Food kernel

Light optional Cook Food vp Light

Turntable optional Cook Food vp Turntable

Boolean Weight default Cook Food vp Weight Sensor

Analog Weight alternative Cook Food vp Weight Sensor

Power Level optional Cook Food vp Power Level

12/24 Hour Clock parameterized Set Time of Day vp 12/24 Hour Clock

The Feature Model is used to model variability. However, the Use Cases are used to

determine the functionality of the system and the Feature Model is oriented to the reuse. A

functional feature can be modeled as a group of Use Cases that are reused together. When a

group of Use Cases is always reused together, they can be mapped to a feature and depicted

as a Use Case package. These features can be functional features or parameterized features. A

feature can correspond to a single Use Case, a group of Use Cases, or a variation point within a

Use Case.

The application engineering is supported partially. Firstly, given the product line

Feature Model, the features for selected for the application are selected. Based on this

selection, the Use Cases related with the features are selected from the Domain Use Case

Model. However, identification for Deltas is not considered in this approach.

This works does not consider the scoping activity.

Requirements engineering support. The approach gives a partial support to the requirement

elicitation with the Use Case technique. The Use Cases captures the functional requirements of

the software product family, including commonality and variability. Moreover this technique is

used to model the functional requirements.

The approach proposed build three artifacts: Use Case Diagram, Textual Use Cases and

Feature Model. The variability is represented in all of them.

The traceability supported is just vertical. The set of select features for a product are

related with the Domain Feature Model. However this model is not related towards the SPL

architecture.

Table 17 Criteria comparison – PLUS

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Doman Engineering

1.2. Which adoption strategy
is followed?

All strategies

1.3. Which tasks of the
Domain Engineering are
supported?

C&V modeling (Use Cases, Feature
Modeling), Feature Modeling, Scenario
modeling (Use Cases)

1.4. Which tasks of the
Application Engineering
are supported?

Derivation

1.5. Which tasks of the
Scoping are supported?

Not supported

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation (Use Cases), Modeling (Use
Cases, Feature Model)

2.2. What artifacts are used?
Use Case Diagrams, Textual Use Case
Templates, Feature Model

2.3. Traceability Vertical

3. Model-driven

3.1. Model representation
UML extended (Use Cases, Textual Use
Case Templates) Tabular (Feature Model)

3.2. Transformation language Not supported

3.3. Transformation type Not supported

3.4. Degree of automation Not supported

4. Tool support Not supported

5. Validation Case Study

Model-driven coverage. This approaches proposed to build some models, however there is

not support to model transformations. Regarding the proposed models, PLUS uses the UML

stereotypes to extend the Use Case Model with variability. For Domain Use Cases, the

stereotypes «kernel», «optional», and «alternative» are used, respectively, to distinguish

among Use Cases that are always required, Use Cases that are sometimes required, and Use

Cases in which a choice must be made. The Feature Model is represented

Tool support. The approach does not mention any specific tool.

Validation of the approach. The approach is validated with several academic case studies. The

book [26] shows three cases studies: a Microwave Oven SPL, an Electronic Commerce SPL, and

a Factory Automation SPL.

4.6 PLUSS
Eriksson et al. ’05 propose PLUSS [11], an approach to manage natural-language requirements

specifications in a Software Product Line. PLUSS is based on the work by Griss et al. on

FeatuRSEB [28]. PLUSS utilizes a Feature Model to manage variability among the textual

requirements at the Domain Engineering level. However, instead of used the Feature Model as

4+1 view, the FM as a tool for structuring Use Cases into reusable packages for a system

family. This vision allows use the product instantiation, defining views/filters showing only

those requirements that are relevant for a specific product.

Software Product Line support. PLUSS enforces a common and complete requirements

specification for an entire product line. The scoping activity is not mentioned in this approach.

However the Domain Engineering and the Application Engineering activities are covered.

Regarding the adoption strategy, PLUSS supports the pro-active and extractive strategies.

In the Domain Engineering activity, PLUSS proposes model the variability and

commonality with a Feature Model. This model moreover implies to cover the Feature

Modeling. Finality the Scenario Modeling is supported performing the Use Case technique.

Regarding the variability and commonality, a FODA [20] feature model extension is

proposed PLUSS feature models provide an “at-least-one-must-be-selected” relation called

‘‘multiple adaptor features”. Furthermore, the FODA’s alternative features to are renamed to

“single adaptor features”. Single and multiple adaptor features are represented by the letters

‘S’ and ‘M’, respectively, surrounded by a circle as shown in Figure 14 .

Figure 14 PLUSS - A Feature model example in the PLUSS notation
11

A set of features in the FM can compose a Use Case package. This fact allows

visualizing variants within Use Case specifications using the FM. The Figure 15 shows how uses

cases can be mapped to features of any type to capture required variants among the members

of a system family.

The Use Cases are written in a RUP-SE “flow of events notation” [40] . This notation is

used for tabular descriptions of Use Case scenarios in natural language. Table 18 shows the use

of this notation to describe a Use Case Scenario.

Table 18 PLUSS - Example of Use Case Scenario

Step Actor Action Blackbox System
Response

Blackbox Budgeted
Req.

1 The Actor… The System… It shall…

2 … … …

3 The Use Case end
when…

… …

11

 Figure taken from [11]

Figure 15 PLUSS - An example of the Relationship between Features,

A Use Case realization describes how a particular Use Case is realized within the

system design in terms of collaborating design elements. PLUSS choses describe Use Case

realizations in natural language description based on the RUP-SE “White Box Flow of Events”

[40].

Figure 16 PLUSS - Example of Use Case Realization

PLUSS use the concept of Use Case Parameter, introduced in Jacobson et al. [15].

Moreover, Mannion et al. [31] distinguished between local parameters and global parameters

in their work on reusable natural language requirements. In PLUSS the scope of a local

parameter (denoted by “$”) is the Use Case which contains it; and the scope of a global

parameter (denoted by “@”) is the whole domain model. Figure 17 shows an example of the

use of parameters in variation points.

PLUSS already support the Application Engineering. When a new product is going to be

added to a product family, initial requirements analysis is performed. The result of this analysis

is a set of Change Requests to be added to the Domain Model and regarding new features.

Then the Domain Engineering Team is responsible to perform a change impact analysis to

decide if the requested set of requirements will be allowed in the product. Since a common

Use Case model is maintaining for a whole product family in PLUSS, product instantiation is

then basically done by adding any new requirements to the model and then using the feature

model to choose among its variants.

Figure 17 PLUSS - An example of the Relationship between Features

Requirements engineering support. PLUSS support the partially elicitation and modeling of

functional requirements with the Use Case technique. According with the authors, non-

functional requirements can be related to Use Cases using the “Blackbox Budgeted

Requirements” column in the Use Case Scenario description.

PLUSS supports vertical traceability. The general principle for traceability in PLUSS is

that traceability links are only maintained for the common model, and never between

generated product instances of the model and other specifications. Traceability information

for product instances of the product line model is delivered as separate reports together with

the requirements documents.

Model-driven coverage. PLUSS proposed to build many models. The Feature Model is an

extension of the de facto standard FODA notation [20]. The Use Case Scenario and Use Case

Realization are written in natural language using a template based in the RUP-SE “flow of

events notation” [40] .

There are not provided transformations between models. However, a meta-model for

integration of features, Use Cases and Use Case realizations is proposed (Figure 18). It

describes how Use Cases, scenarios and scenario steps are included by feature selections.

Tool support. PLUSS proposed an extension of two commercial tools: the requirements

management tool Teleogic DOORS and the UML modeling tool IBM-Rational Rose. The

Telelogic DOORS is used to manage the system family Use Case models, and the IBM-Rational

Rose is used for drawing feature graphs and UML diagrams. Both tools are widely used and

accepted in industry.

Figure 18 PLUSS - The PLUSS Meta-model
12

Validation of the approach. According with the authors, PLUSS was applied and evaluated in

an industrial case study based on two product lines in the defense system domain. The study

states that PLUSS performs better than clone-and-own reuse of requirement specifications in

the considered industrial contexts.

Table 19 Criteria comparison – PLUSS

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Doman Engineering, Application
Engineering

1.2. Which adoption strategy
is followed?

Proactive and Reactive

1.3. Which tasks of the
Domain Engineering are
supported?

C & V modeling (Feature Model), Feature
Modeling (Feature Model), Scenario
Modeling (Use Cases)

1.4. Which tasks of the
Application Engineering
are supported?

Delta analysis (Change Case Impact
Analysis)

1.5. Which tasks of the
Scoping are supported?

Not supported

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation (Use Cases), Modeling (Use
Cases)

2.2. What artifacts are used?
Feature Model, Textual Use Cases, Textual
Use Case Realizations

2.3. Traceability Vertical

3. Model-driven

3.1. Model representation
Extension De facto Standard (Feature
Model), Template (Use Case Scenario, Use
Case Realization)

3.2. Transformation language Not provided

3.3. Transformation type Not provided

3.4. Degree of automation Not provided

4. Tool support Industrial supported

5. Validation Industrial Case Study

12

 Figure taken from [11]

4.7 Orthogonal Variability Model
Klaus Phol et al. ’05 [39] propose a method for domain requirement engineering and

application engineering. Both processes rely on the Orthogonal Variability Model (OVM),

which represents variability apart from requirement artifacts, differentiates between variation

points, variants, and constraints among these entities, and explicitly define the variability of

the product line.

Figure 19 OVM - The Orthogonal variability model
13

Software Product Line support. The OVM approach covers the Scoping, Domain Engineering

an Application Engineering activities. Moreover all adoption strategies are supported.

OVM supports Product Portfolio, Domain Scoping and Asset Scoping. Portfolio Analysis

allows a systematic evaluation of the Product Portfolio. During the analysis, each product (or

product type) is rated according to two variables and thereby its location in a two-dimensional

matrix is determined. On example of the Product Portfolio matrix is the Boston Consulting

Group [46]. The asset scoping and domain scoping are accomplished with the commonality

and variability analysis.

The method for domain requirement engineering starts by first identifying common

requirements. These requirements are identified using an Application-Requirements matrix

(see Table 20 for an example). This matrix relates the requirements with the application in

which they occur. A requirement in row x of the matrix is common if, and only if, it appears in

all columns of the matrix, that is, is present in all applications. In the example, the requirement

R1 is mandatory for all applications and is thus a candidate to be defined as a common product

line requirement.

Table 20 OVM - Example of the structure of an Application–Requirements Matrix

Application
Requirements

App. 1 App. 2 App. 3 App. 4

R1 Mandatory Mandatory Mandatory Mandatory

R2 - - Mandatory Mandatory

R3 - Mandatory - -

… … … … …

13

 Image taken from [39]

The next step is to perform the Variability Analysis. The variability analysis has the goal

to identify requirements variability and to define the variation points and their variants related

to these requirements. In a similar way to identify the common requirements, the Application-

Requirements matrix is used to identify requirements shared among a subset of applications

(examining different columns of the same row) or requirements differing among themselves

(examining different rows of the first column of such matrix). This leads to identification of

variants and variation points and to relating requirement artifacts to variants. Constraints

among these are also defined.

In Requirement Application Engineering, stakeholder requirements are elicited and

mapped to common and variable artifacts. If the stakeholder requirements for the application

cannot be satisfied by reusing common or binding variable domain requirement artifacts,

application-specific requirement artifacts may be introduced. The difference between

application-specific and domain requirements, the so-called deltas, are then taken into

account to decide whether realization in the application is to be performed or not.

Requirements engineering support. OVM covers the elicitation, modeling and management of

requirements. The approach does not provide a particular way to perform requirements

modeling due to the orthogonal nature of OVM.

OVM inherently supports both horizontal and vertical traceability.

Model-driven coverage. OVM proposes to build the Application-requirements matrix and the

OVM.

There is not support to automatic transformations. However, the approach is inspired

in the metamodel proposed by Bachman et al. [5]. The metamodel is represented using UML

2.0.

Figure 20 OVM - Orthogonal Variability Metamodel

Tool support. In terms of tool support, prototype support is available as extension to DOORS,

providing features such as determining overlaps and differences of the variability of two

product lines, retrieve all product lines offering a certain variant, retrieve all variants common

for all product lines, retrieve all variants defined for a given variation point.

Validation of the approach. The paper doesn’t mention any validation of the approach.

However the OVM was applied to several industrial examples. Consequently, we consider that

the approach is validated with an example.

Table 21 Criteria comparison – OVM

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering, Application
Engineering

1.2. Which adoption strategy
is followed?

All strategies

1.3. Which tasks of the
Domain Engineering are
supported?

C & V (Application-requirements matrix),
Feature Model (OVM), Scenario Modeling
(specified by rel.)

1.4. Which tasks of the
Application Engineering
are supported?

Delta analysis

1.5. Which tasks of the
Scoping are supported?

Domain Scoping (C&V analysis), Product
Portfolio (Portfolio analysis), Asset
Scoping (C&V analysis)

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation, Modeling, Management

2.2. What artifacts are used? Application-requirements matrix, OVM

2.3. Traceability Both

3. Model-driven

3.1. Model representation
Template (Application-requirements
matrix), Non-standard (OVM)

3.2. Transformation language Not supported

3.3. Transformation type Not supported

3.4. Degree of automation Not supported

4. Tool support Prototype

5. Validation Example

4.8 NAPLES
NAPLES (Natural language Aspect-based Product Line Engineering of Systems) is proposed by

Loughran et al. [30]. NAPLES is a product line engineering approach that uses natural language

processing and aspect-oriented techniques to facilitate requirements analysis, commonality

and variability analysis, concern identification to derive suitable feature oriented models for

implementation. The NAPLES approach addresses product line (PL) engineering throughout the

lifecycle by using different techniques, e.g., natural language processing (NLP) and aspect-

oriented software development (AOSD), to provide automated support and separation of

concerns during the PL lifecycle.

The approach starts with the Mining Elements activity which identifies important

concepts (e.g., early aspects, viewpoints, commonalities and variabilities) from the

requirements documents used as input, and presents them to the user in a format that can be

used to produce a structured model (AORE model and feature model). The EA-Miner [41] tool

uses the WMATRIX [42] natural language processor to pre-process the input documents and

get relevant information. WMATRIX provides part-of-speech and semantic tagging, frequency

analysis and concordances to identify concepts of potential significance in the domain. Part-of-

speech analysis automates the extraction of syntactic categories from the text (e.g., nouns and

verbs).

Figure 21 NAPLES approach
14

The information produced by the NLP processor is then used by EA-Miner to help list

possible key domain concept candidates. For example, for the identification of viewpoints, the

tool lists the most frequently occurring nouns in the text, and for Early Aspects it lists words

whose meaning resembles a broadly scoped concern (e.g., security, performance, parallel,

logon, authorize, and so forth). Commonalities and variabilities are also identified in a similar

fashion.

 After the software developer has identified and selected the concepts of interest in

the previous activity, EA-Miner helps to build structured models during the Structuring into

Models activity. The tool enables the application of screen out functionalities (e.g., add,

remove, check synonyms) to discard irrelevant concepts, add new ones and check if the same

concepts are identified as different ones. The output is an AORE model showing the

viewpoints, early aspects and composition rules as well as a feature model showing features

alongside their commonalities and variabilities.

The Deriving Framed Aspects activity uses the previous models (AORE and feature

model) and provides guidance on how to delineate an aspect-oriented model based on framed

aspects. The framed classes and aspects are then used by the frame processor in the

Generating code activity to create the code in a specific language.

Software Product Line support. This approach covers the Scoping and the Domain Engineering

SPL activities. Regarding the adoption strategy, the proactive is supported. However, the

authors discuss that maybe the approach could be effective with other strategies.

14

 Image taken from [30]

The asset scoping is supported with the Mining Element Activity. The original

requirement documents, user manuals, and legacy documentation are processed with the EA-

Miner tool in order to identify commonalities and variabilities.

The Requirement Domain Engineering is supported. The commonality and variability

modeling is supported and is based on a lexicon of relevant domain concepts. The Feature

Modeling is supported with the Structuring into models activity.

The application engineering is not supported in this approach.

Requirements engineering support. The requirement modeling is supported with the use of

Viewpoints.

The approach support horizontal traceability from the requirements to their

implementation.

Model-driven coverage. During the Structuring into Models activity two models are used:

AORE model that contains the viewpoints, early aspects and composition rules, and the

Feature Model, which shows the features alongside their commonalities and variabilities.

Tool support. Tool support is provided with the EA-miner tool. The EA-Miner tool helps the

user to identify variabilities by providing the surrounding text in which the word occurs. In

Figure 22, after the user selects the “contacts” commonality, the right-hand side shows in

which sentences (sentences 7 and 8) of the document the word appears. The rules of thumb

for identifying commonalities and variabilities are [34]:

 The tool lists the commonalities on the left-hand side and the user searches for possible

variabilities by looking at the surrounding context of a specific commonality (e.g.,

contacts);

 The user looks at the details on the right-hand side and identifies concepts that modify the

commonality in some way (e.g., the size of the list of contacts is variable depending on the

model).

Figure 22 NAPLES - EA-Miner tool

The authors consider that the tool support would be very helpful in order to mine key

concepts that will aid the construction of assets for the merged product line.

Validation of the approach. The approach feasibility is show through an example for a product

line of mobile phone.

Table 22 Criteria comparison – NAPLES

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Scoping, Domain Engineering

1.2. Which adoption strategy
is followed?

Proactive

1.3. Which tasks of the
Domain Engineering are
supported?

C & V (comparison), Feature
Modeling(Structuring into models)

1.4. Which tasks of the
Application Engineering
are supported?

Not supported

1.5. Which tasks of the
Scoping are supported?

Asset Scoping (Mining Element)

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Modeling (Viewpoints)

2.2. What artifacts are used? AOR model, Feature Model

2.3. Traceability Horizontal

3. Model-driven

3.1. Model representation
Non-standard (AOR model), Extension of
the facto standard (Feature Model)

3.2. Transformation language Not supported

3.3. Transformation type Not supported

3.4. Degree of automation Not supported

4. Tool support Tool provided

5. Validation Example

4.9 Mauricio Alférez
Mauricio Alférez et al. ’08 [1] proposes a model-driven approach to model, specify and trace

SPL features and requirements. The approach includes domain and application engineering

activities.

The approach proposes, at the domain analysis level, a set of activities executed iteratively and

incrementally. The actives are:

1. Identify requirements. Traditional techniques can be used as inspection of existing

documents, interviews or mining techniques.

2. Group requirements into features. The SPL requirements are organized into clusters

according to the specific SPL features they are related to.

3. Refactor requirements and features. The requirements are refactored in order that one

requirement points to only one feature.

4. Model SPL features and Use Cases. The requirements are structured and represented using

Use Case and feature models.

5. Relate features to uses cases. The relationships between features and Use Cases are

specified visually in a table of trace links.

6. Generate SPL Use Cases annotated with features. A model-driven tool [4] uses the

relationships between uses cases and features to generate specific Use Case models

annotated with features.

7. Model uses cases as activity diagrams. A set of Activity Diagrams is built to represent the

detailed behavior of each Use Case.

8. Specify composition rules between uses cases. Each composition rule defines how a

variable Use Case can interfere or modify the normal execution of a mandatory Use Case.

The models produced in the Domain Engineering are used in the Application Engineering

to generate Use Case and Activity Models for specific products. Three activities are defined:

1. Define a SPL configuration. A SPL configuration is specified based on the optional and

alternative feature selection.

2. Generate a Use Case model from a SPL configuration. The tool generates the Use Case

model related to the SPL configuration.

3. Generate activity diagrams from a SPL configuration. The activity diagrams are

generated with the tool assistance. The original activity diagrams can be composed

using the composition rules defined in the Domain Engineering stage.

Software Product Line support. This approach supports the Domain and Application

Engineering activities. It can be used with a proactive strategy with a fresh SPL or; alternatively

with an extractive strategy with existing products.

The Domain Engineering covers the commonality and variability modeling with a

Feature Model. This model is used to do a feature modeling. Finally, a Scenario modeling is

covered with the creation of Use Cases and activity diagrams.

The Application Engineering is supported in this approach. The first activity is to specify

a SPL configuration to decide which features will be part of the final application. Based on this

configuration, a Use Case model is automatically derived. Finally, the activity diagrams are

customized with the composition rules.

Finally, the approach does not mention the scoping activity.

Requirement engineering support. This approach covers the elicitation, modeling and

management of requirements. This works suggest the use of traditional technique to elicit

requirements. The modeling is covered with Use Cases and Activity Diagrams for the functional

requirements and the Feature Model to the commonality and variability. The management is

covered by the explicit traceability management.

The approach proposed to build the following artifacts: Feature Model, Use Cases,

Activity Diagrams, and a table of Trace links.

The approach gives an explicit support to the requirements traceability. The strategy is

based in trace relationships between features and UML elements. The vertical traceability is

covered with the derivation of one Domain Specification for a given configuration. This

traceability is supported by a metamodeling strategy. The Figure 23 shows the relations

between the metaclasses used to support this strategy.

Figure 23 Mauricio Alférez - Traceability support strategy
15

Model-driven coverage. The approach proposes the elaboration of several models: Feature

Model, Use Case Model, Activity Diagram, and one textual model: the Composition Rules. The

approach adopts the feature diagram based on [8] as variability model. UML Use Case and

activity models specify the SPL requirements. Activity diagrams model the behavior of Use

Cases.

 The transformations are endogenous and vertical. These transformations are used to

obtain the requirements specification for a single product.

Tool support. The paper does not mention a specific tool. However, in the AMPLE website [4],

we can find the VML4RE tool [1]. VML4RE is a Domain-Specific Language (DSL) that allows to

express the relationships between variability elements and requirements model elements,

such as Use Case and activity models. VML4RE runs in the Eclipse Environment and was

implemented using technologies provided by open Architecture Ware (oAW) [12], more

specifically to implement the different operations or actions to be performed in requirements

models, using the XTend transformation language [12]. The goal of VML4RE is to support

product derivation of requirements models in SPL by using a domain-specific language. It also

supports trace link generation from features to requirements model elements, for further

analysis.

Validation of the approach. The approach is illustrated with a Smart Home SPL case study. This

system is one of the SPL case studies proposed by the industrial partners of the European

project AMPLE [4].

15

 Figure taken from [1]

Table 23 Comparison criteria - Mauricio Alférez et al.

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Domain Engineering, Application
Engineering

1.2. Which adoption strategy
is followed?

Proactive, Extractive

1.3. Which tasks of the
Domain Engineering are
supported?

Commonality and variability modeling
(Feature Model), Feature modeling,
Scenario modeling (Use Cases)

1.4. Which tasks of the
Application Engineering
are supported?

Derivation

1.5. Which tasks of the
Scoping are supported?

None

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation, modeling, management

2.2. What artifacts are used?
Feature Model, Use Cases, Activity
Diagrams, table of Trace links

2.3. Traceability Both

3. Model-driven

3.1. Model representation
Model (Feature Model, Use Case Model,
Activity Diagram), textual(Composition
rule)

3.2. Transformation language Xtend transformation language

3.3. Transformation type Endogenous and vertical

3.4. Degree of automation Interactive

4. Tool support Academic prototype

5. Validation Case study

4.10 Bragança & Machado
Bragança and Machado ‘09 [8] propose an evolution of the 4SRS method aimed at Software

Product Lines. The four-step rule set (4SRS) is a unified modeling language (UML)-based

model-driven method for single system development which provides support to the software

architect in this task. The paper describes how to address the transformation of functional

requirements (Use Cases) into component-based requirements for the product line

architecture. The result is a UML-based model-driven method that can be applied in

combination with metamodeling tools such as the eclipse modeling framework (EMF) to derive

the architecture of Software Product Lines.

Software Product Line support. This approach covers the Domain Engineering activity. The

supported strategy is proactive.

This approach is inspired by the original work of Griss et al.[28], in the sense that

variability is modeled in Use Cases. In detail, the variability annotations are based in extends

and include relationships. Figure 24 shows an example of a Use Case Diagram to a Library

product line example. It contains visual annotations to model the variability.

Figure 24 Bragança and Machado - Example of a Use Case diagram for a Library product line
16

When Use Cases of the domain are identified, their behavior is modeled by activity

diagrams. This is not so different from the traditional way of describing Use Case behavior by

natural language. Basically, each step in a text description of a Use Case is modeled as an

Action node in the activity diagram.

The Application Engineering behavior is show in Figure 25: the main goal of the process

is to obtain a Use Case model for a specific application of a domain based on a feature

configuration model. For that, the approach maps Use Cases to features. Basically, it consists

of three transformations: transform a family Use Case model into a feature model (T1);

transform a feature model into a configuration metamodel (Ecore model) (T2); and finally,

transform a configuration model and a family Use Case model into an application Use Case

model (T3).

Requirements engineering support. The approach supports the Requirements Engineering

elicitation and modeling activities with the Use Case technique.

This work proposed three RE artifacts: the Use Case Diagram, Feature Model, and

Activity Diagram.

The traceability is both vertical and horizontal. The requirement artifacts are mapped

to the Use Case realization at design level. Moreover the derivation process with automatic

transformations involves implicitly horizontal traceability.

16

 Figure taken from [8]

Model-driven coverage. The approach uses a UML extended notation. In concrete, it uses an

extension of the UML-F profile to deal with new stereotypes to include support for

requirements and analysis models.

Figure 25 Bragança and Machado - Process for obtaining a product Use Case model
17

Figure 26 Bragança and Machado - Feature Metamodel

Tool support. The paper presents a prototype based in the Eclipse Modeling Framework (EMF)

version 2.2.0 and SmartQVT version 0.1.3. The EMF provides a modeling and code generation

framework for Eclipse applications based on Ecore models. These Ecore models support

Essential MOF (EMOF) as part of the OMG MOF 2.0 specification [38].

17

17

 Figure taken from [8]

Validation of the approach. The feasibility of the approach is shown with an example.

Table 24 Comparison criteria - Bragança & Machado

Criterion Sub-criterion Option

1. Software
Product Line
Support

1.1. Which activities of the SPL
are covered?

Domain Engineering, Application
Engineering

1.2. Which adoption strategy
is followed?

Proactive

1.3. Which tasks of the
Domain Engineering are
supported?

C & V modeling (Feature Model), Feature
Modeling (Feature Model), Scenario
Modeling (Use Case Diagrams, Activity
Diagram)

1.4. Which tasks of the
Application Engineering
are supported?

Automatic derivation

1.5. Which tasks of the
Scoping are supported?

Not supported

2. Requirements
Engineering

2.1. Which tasks of the
requirements engineering
are used?

Elicitation (Use Case), Modeling (Use Case,
Feature Model, Activity Diagram)

2.2. What artifacts are used?
Use Case Diagram, Feature Model, Activity
Diagram

2.3. Traceability Both

3. Model-driven

3.1. Model representation
UML extension (Use Case Diagram,
Feature Model, Activity Diagram)

3.2. Transformation language QVT operational

3.3. Transformation type Endogenous and vertical

3.4. Degree of automation Interactive

4. Tool support Prototype

5. Validation Example

5 Comparison
In the previous section, we analyzed each selected approach against the comparison criteria.

In this section, we use this information to compare the approaches, altogether, with the

criteria and we perform an analysis of the approaches in order to determine the coverage

degree of the initial criteria. Table 25 shows the results for each approach against the

evaluation criteria. Moreover, in this section, we analyze separately the results obtained for

each evaluation criteria.

Software Product Line support.

Regarding the Scoping activity, seven of ten works support it. Between these works, only OVM

[34] supports the Domain (with Commonality and Variability analysis), Portfolio (Portfolio

analysis) and Asset Scoping (Commonality and Variability analysis). DREAM [34] supports

Domain (Domain terminology) and Asset Scoping (Identification core Use Cases). Other works

supports just the Asset Scoping (FeatRSEB [28] with Use Cases in addition to Feature Model,

and John & Muthing [17] and DREAM [34] with the identification core Use Cases). Finally,

VODRD only supports the Domain Scoping [31] with the use of Viewpoints. We consider that

the Asset scoping was based on artifacts like Use Cases. However, consider the models as

assets for an organization could be an interesting research trend. The use Models as reusable

assets could provide a unique opportunity to mitigate complexity, improve consumability, and

reduce time to market [29].

The Domain Engineering activity was supported in all of them approaches. The Domain

Engineering covered tasks were: Commonality and Variability modeling (10 of 10 works),

Scenario Modeling (6 of 10 [1], [28], [17], [34], [26], [9])) , Feature Modeling (6 of 10 [1], [28],

[26], [11],[39], [30]), and Conceptual Modeling ([31],[34]). The Commonality and Variability is

provided by Feature Models, Viewpoint Analysis, Use Cases with variations, PR-Context and

PR-Use Cases matrixes or Application-Requirement matrix. The Feature Modeling was usually

done with Feature Models: adopting the FODA notation (e.g. [28], [11]), or UML-based

representations (e.g. [1]). The OVM [39] approach proposed an interesting notation to do the

Feature Modeling using the Orthogonal Variability Model, which allows expressing variability

independently of the requirement notation. Finally, the Conceptual Modeling was expressed

with a dictionary in [31], and with the Domain Terminology in [34]. The approaches give more

attention to functional requirement and its variability; however, the inclusion of non-

functional requirements in the specifications could improve the system understandability,

allowing reflecting new system qualities and restrictions.

The Application Engineering was the less supported with 5 of 10 works [17], [34], [11],

[34], [8]. About the Application Engineering, three works give a partial support ([17], [34],

[26]). John & Muthing [17] propose a Decision Model. In DREAM [34] the application-specific

requirements are selected from domain requirements. In PLUS [26] the applications Use Cases

are selected from the Domain Use Cases, depending on the Feature selection. Mauricio Alférez

et al. [1] supports the derivation of Domain Requirements based on the SPL configuration.

Only PLUSS [11] gives a complete support, including the Delta Identification. In general, the

approaches were focused on customizations over the Domain Requirements Specification;

however, it should be interesting giving more flexibility to the developers with the supporting

to the identification of new requirements (Deltas).

Regarding the Adoption Strategy, only three approaches support the three strategies:

Proactive, Extractive and Reactive ([28], [26], [34]). The Proactive strategy was used in most of

the approaches [17], [34], [26], [11], [39], [30], [1], [8]. However, according with Krueger [24]

this strategy is the most expensive and risk-prone. One alternative to the Proactive strategy is

an Extractive adoption, which was used in six approaches ([28], [26], [34], [31], [34], and [1]).

Finally, the Reactive was used only in on approach [11].

Requirements engineering support.

The Modeling activity was supported in all of the approaches. Many approaches cover the

Elicitation activity ([28], [34], [26], [11], [34], [8], [1]). The Analysis activity was covered only in

[28]. The modeling was covered in [28], [31], [17], [26], [11], [39], [30], [1], [8]. The

Management was supported in [28], [34], [1]. It is significant that we do not found any

approach that mentions the requirement verification.

The approaches suggest many different artifacts to model requirements: Uses Cases

([28], [17], [34], [26], [11], [8]), Feature Model ([28],[26],[11],[30],[8]), Object Model ([28]),

Domain Dictionary ([31]), Viewpoints ([31]), Decision Model ([17]), and Activity Diagram ([8]).

Other artifacts are approach depending like PR-Context matrix, PR-Use Case matrix in [34], the

Object Variability Model in OVM [39] or the AOR model in NAPALS [30]. In general, the

approaches were focused on the modeling of functional requirements and its variability, giving

less attention to the non-functional requirements.

Regarding the traceability support, the DREAM [34] approach does not mention a

traceability support. Other approaches provide a vertical support [17], [31], [26], [11]. One

approach provides just horizontal support [30]. Finally, other approaches provide both vertical

and horizontal support [28], [34], [8].

Model-driven coverage.

There model representation was heterogeneous. Many approaches use standard UML [28],

[34], or variants [26], [8], [1]. VODRD [31] was the unique that propose a textual model: the

Domain Dictionary [31]. In PLUS [26] a tabular model is proposed: the Feature Model. Other

use template-based models [17], [31], [34]. Other approaches use non-standard models [30].

Finally, other approaches extend the facto standards [11], [30].

Regarding the transformation language, Bragança & Machado propose the use of QVT

operational. This approach proposes a formal refinement. The degree of the automation is a

formal refinement. Mauricio Alférez et al. propose the use of the Xtend language. This

language is used to do transformations endogenous and vertical in an interactive way with the

user.

Tool support.

Many approaches do not mention automatic support [28], [17], [26]. Other approaches

provide a prototype [31], [1], [8]. A tool is mentioned in [34], [30]. In this category, DREAM

[34] presents a tool with the same name to support the management of the commonalities

and variability of domain requirements, and to customize the application requirements.

However, the domain Use Case modeling is depending on third party tools. In NAPLES [30], the

tool helps to identify the relevant key domain concept candidates. Finally, only one work

proposed an industrial tool [11]. The tool proposed by PLUSS is an extension to the commercial

requirements management tool Teleogic DOORS [44] using its integrated scripting language

DXL. This use takes advantage of the industrial acceptance of DOORS; however, the main

disadvantage is that is based on a third party tool. We can conclude that the approaches need

mature tools in order to gain acceptance. The lack of (commercial) tools for many activities is a

major risk for achieving the intended benefits and final acceptance within the organization

[45].

Validation of the approach.

Most of the approaches provide an example to illustrate the proposal feasibility ([28], [17],

[30], [8]). Other approaches use the Case Study to give a prove of concept of its approaches

([28], [17], [39], [30], and [8]). VODRD solves a problem that gives support to a spacecraft

mission. This case study contains 539 requirements. DREAM describes a case study to the

development of e-Travel Systems in collaboration with the Electronics and

Telecommunications Research Institute. PLUS applies in [26] three case studies: a Microwave

Oven SPL, an Electronic Commerce SPL, and a Factory Automation SPL. Mauricio et al. illustrate

the proposed approach with a Smart Home SPL case study, which is documented in [4]. Only

PLUSS [11] give an industrial validation with a Case Study. This case study based on two

product lines in the Swedish defense contractor Land Systems Hägglunds. This company is a

leading manufacturer of combat vehicles, all-terrain vehicles and a supplier of various turret

systems. Land Systems Hägglunds process baseline for software development, against which

PLUSS was compared, is development according to the IBM-Rational Unified Process (RUP)

[25]. In conclusion, most of the approaches use the Case Study as “proof of concept” instead of

use it as evaluation method. Furthermore, the approaches should improve its validations with

quantities or qualitative evaluations and rigorous design experimentations (e.g. randomization,

replication of the studies).

Table 25 Overview of the approaches against the evaluation criteria

Approach
/ Criteria

SPL support RE MDD

Tool
support

Validati
on Activiti

es
Adoption
strategy

DE tasks
AE

tasks
Scoping

tasks
RE tasks Artifacts

Traceabil
ity

Model
representation

Transfor
mation

Language

Transforma
tion Type

Degree
of

Autom
ation

FeatRSEB
‘98[28]

Scopin
g,

Domai
n

Engine
ering

All
C&V (FM), FM,
SM (Use Cases)

None
Asset (Use
Cases and

FM)

Elicitation,
Modeling,
Analysis,

Management

Use Cases,
Feature
Model,
Object
Models

Both

UML Standard (Use
Cases), UML

extended with
stereotypes

(Feature Model)

None None None None Example

VODRD ‘98
[31]

Scopin
g, DE

Extractive

CM
(Dictionary),

C&V (Viewpoint
Analysis)

None
Domain

(Viewpoints) Modeling

Domain
Dictionary,
Viewpoint,

Textual
Req.

Vertical

Textual (domain
dictionary),
Template

(Viewpoints)

None None None Prototype
Case
Study

John and
Muthing
‘02 [17]

Scopin
g, DE,

AE
Proactive

C&V (Use Cases
with VP), SM
(Use Cases)

Deriv.
Asset (core
Use Cases)

Modeling

Textual Use
Cases,

Decision
Model

Vertical

Template (Use Case
Diagram, Textual

Use Cases, Decision
Model)

None None None None Example

DREAM ‘05
[34]

Scopin
g, DE,

AE

Proactive,
Extractive

CM(Domain
Termin.), C&V
(PR-Context &
PR-Use Case),
SM (PRs & UC)

Deriv.

Domain (core
Uses Cases),

Asset
(Domain

terminology)

Elicitation,
Modeling

Domain
Terminolog

y, PR-
Context

matrix, PR-
Use Case

matrix, Use
Cases

None
Template, UML

standard
None None None

Tool
(DREAM)

Case
Study

PLUS ‘04
[26]

DE All

C&V (UC, FM),
Feature

Modeling, SM
(UC)

Deriv. None
Elicitation,
Modeling

Use Case
Diagrams,

Textual Use
Cases, FM

Vertical
Extended UML,

Tabular
None None None None

Case
Study

PLUSS ‘05
[11]

DE, AE
Proactive,
Reactive

C&V (FM), FM,
SM (UC)

DA None
Elicitation,
Modeling

Feature
Model,

Textual Use
Cases

Textual Use
Case

Realization
s

Vertical
Extension De Facto
Standard, Template

None None None Industrial
Industri
al Case
Study

OVM ‘05
[39]

Scopin
g, DE,

AE
All

C&V
(Application-RE
matrix), FM, SM

(specified by
rel.)

DA

Domain
(C&V),

Portfolio,
Asset (C&V)

Elicitation,
Modeling,

Management

Aplication-
RE matrix,

OVM
Both

Template
(Application-

Requirements
Matrix), Non-

standard

None None None Prototype Example

NAPLES ‘05
[30]

Scopin
g, DE

Proactive

C & V
(comparison),

Feature
Modeling(Struct

uring into
models)

None
Asset

(Mining
Element)

Modeling
AOR model,

Feature
Model

Horizontal
Non-standard,

Extension the facto
Standard

None None None
Tool (EA-
minder

tool)
Example

Mauricio
Alférez et
al. ’08 [1]

DE, AE
Proactive,
Extractive

C&v (Feature
Model), FM, SM

(Use Cases)
Deriv. None

Elicitation,
modeling,

management

Feature
Model, Use

Cases,
Activity

Diagrams,
table of

Trace links

Both

Model (Feature
Model, Use Case
Model, Activity

Diagram), template
(Composition rule)

Xtend
Endogenou
s & vertical

Interac
tive

Academic
prototype

Case
study

Bragança
&

Machado
’09 [8]

DE, AE Proactive

C & V (Feature
Model), FM

(Feature
Model), SM
(Use Case
Diagrams,

Activity
Diagram)

None None
Elicitation,
Modeling

Use Case,
Feature
Model,
Activity
Diagram

Both UML extension
QVT

operatio
nal

Formal
refinement

Interac
tive

Academic
prototype Example

6 Related Work
In this section, we discuss other works that perform evaluations of RE approaches in the area

of SPL.

Kovačevid et al. 07 [23] makes a survey about the state of art in Requirements Engineering

for Software Product Lines and Model-Driven Requirements Engineering. Two separately

comparisons were performed. First, the MDD approaches are analyzed, making difference

between non-aspect and aspect-oriented approaches. Second, many SPL approaches in SPL are

analyzed. The authors define a common criterion for both comparisons, and another specific

one for each separate comparison. This works points out facts like: most of the SPL approaches

do not define a coherent and clear set of requirements and variation models with the

respective relationships between them. The study points that a traceability strategy well

defined is necessary. The authors suggest the combined use of the MDD technology and the

aspect-oriented development to solve these issues.

Nicolas and Toval ‘09 [35] iperform a Systematic Literature Review (SLR) to study the

generation of textual requirements specifications starting from models. The SLR was

conducted with three research questions and assessed 30 papers in the last five years. This

review reveals that a lot of work exists on generating requirements specifications from models

of different kinds but that there is a lack of support for modeling and generating documents of

different types in SPL. The work is focused on the use of textual requirements; however, it

should be interesting include in the revision other types of requirements representations.

Vander Alver et al. ’10 [3] perform a Systematic Literature Review (SLR) about

Requirements Engineering for Software Product Lines. The paper is focused on assess research

quality, synthesize evidence to suggest important implications for practice, and identify

research trends, open problems, and areas for improvement. This SLR was conducted with

three research questions and assessed 49 studies dates from 1990 to 2009. This review reveals

that most of the approaches have limitations in terms of validity and credibility of their

findings. Moreover, the study reveals a lack of tool support and guidance to adopt the

proposed methods. For our point of view, this work does not analyze with enough level of

details the use of requirements. It should be interesting analyze factors as which techniques

were used, or which kind of models were employed.

In this survey, we analyzed a selection of the most relevant RE approaches in the SPL area

based on citation impact. Oppositely as Kovačevid et al. 07 [23], in our work we include as

criterion an analysis of MDD. In the last year several MDD approaches has been proposed.

Capture information about the model representations, the transformation language used, the

transformation type and the degree of automation could help the developers to decide the

most suitable approach to their needs. About the conclusions from Kovačevid et al. 07 [23], we

are according that the adoption of a MDD strategy could help to follow the relationships

between the different requirement models, and with the variation models. Other factor is the

requirement representation. In contrast of Nicolas and Toval ‘09 [35] that are focused on

textual requirements, in this survey we consider any type of requirements representation:

text, models, standards, etc. Finally, in contrast with Vander Alver et al. ’10 [3], our survey

includes in the criterion which RE engineering tasks were covered and which requirements

artifacts were used. We consider necessary include this factors in a compassion criteria about

SPL.

7 Conclusions
In this work, we analyzed several RE approaches for SPL. We give special emphasis to the

approaches that supports the MDD. This comparison provides information about the

advantages and disadvantages of the approaches included in the study. The results obtained

from this comparison have allowed us to identify several research gaps. Most of the research is

focused on the Scoping and Domain Engineering activities, but the Application Engineering is

the less supported. Inside the Domain Engineering, the Commonalty and Variability modeling

was fully supported. Most of the approaches provide support to the Feature Modeling and

Scenario Modeling Domain activities.

The Application Engineering has less support: only PLUSS [11] includes the Delta

Identification. The approaches should provide mechanism to incorporate new Deltas to the SPL

instead of just produce derivations based on the Domain Requirements specifications.

The Scoping activity has a similar lack: only the OVM [34] approach supported the three

scoping activities. Due the fact that the scoping precedes the Domain Requirements activity,

more integration with these two activities should be proposed. There is heterogeneity about

the analyzed assets: core Uses Cases, Features or Primitive Requirements. One interesting

trend of research is to use a MDD approach to deal with this heterogeneity and complexity.

One remarkable result is that the Proactive strategy adoption was the most common

suggested by the approaches. However, according with Krueger [24] this strategy is the most

expensive and risk-prone. It could be interesting to combine this strategy with the reactive or

the extractive strategies to avoid these disadvantages.

With respect with the Requirement Engineering, the approaches were focused on cover

the elicitation and modeling activities. The modeling of requirements was focused on

functional requirements and its variability, giving less attention to the non-functional

requirements. Nevertheless, the inclusion for the treatment of non-functional requirements in

the approaches could help improve the quality of the software applications in the product

family. Only one approach gives support to the analysis and management. Furthermore, we

could not found any approach that supports explicitly the validation and verification of

requirements. Including these activities in the SPL development could allow us to check

whether or not the used artifacts satisfy the stakeholder needs. Similarly, we found only three

approaches giving vertical and horizontal traceability support. A well-defined traceability

strategy could improve the quality of the software applications.

Regarding the MDD coverage, most of the approaches used models. There is a wide

heterogeneity in the use of these models. We found in the proposals from UML-based models

to variants, tabular, or template models. Only VODRD [31] uses a textual model for its Domain

Dictionary. With reference to the model transformations, only two approaches define

transformations among the models. However, the adoption of a MDD approach could help to

solve problems in the current RE proposal for SPL like the model heterogeneity, the lack of

well-defined traceability strategies or the automation of the derivation process to obtain one

specification for a single product in the SPL.

Regarding the tool support, only PLUSS [11] provides an industrial tool with the extension

of Telelogic DOORS (currently IBM DOORS®). Tool support could help in SPL requirement

activities like derivation of Domain Requirements specifications or to set traceability

relationships among these artifacts. Moreover, providing tool support could to increase the

opportunities of an approach to be adopted in practice.

With respect to the validation of the published approaches, only PLUSS [11] gives an

industrial validation of its proposal. Furthermore, most of the approaches provide just an

example to illustrate the proposal ([28], [17], [30], [8]). There is common use of the Case Study

as “proof of concept” instead of use it as a well-defined validation method. The use of

experiments to validate the proposals suitability could increase the acceptance of the

proposed requirements approaches. Moreover, a validation using industrial data could

encourage other companies to adopt these requirements SPL approaches.

All these issues provide a clear motivation for further research on RE for SPL

development. Our future work includes the analysis of this current knowledge on applying RE

techniques to tailor a specific RE approach for the elicitation, modeling, analysis, verification

and management of requirements and its variability. This work is part of the MULTIPLE project

(with reference TIN2009-13838), which has the goal to define and implement a technological

framework for developing high-quality software product lines.

References

[1] Alférez M., Kulesza U., Weston N., Araujo J., Amaral V., Moreira A., Rashid A., Jaeger M. C.,
A Metamodel for Aspectual Requirements Modelling and Composition. Technical report.
Universidade Nova de Lisboa, Portugal, 2008.

[2] Alférez M., Kulesza U., Sousa A., Santos J., Moreira A., Araújo J., Amaral V., A Model-Driven
Approach for Software Product Lines Requirements Engineering. SEKE, pp. 779 -- 784,
2008.

[3] Alves V., Niu N., Alves C., Valença G., Requirements Engineering for Software Product

Lines: A Systematic Literature Review. Information and Software Technology Volume 52

(8), pp. 806 -- 820, Elsevier, 2010.

[4] AMPLE Project Research Group. Retrieved on February 2011 at http://ample.di.fct.unl.pt/.

[5] Bachmann F., Goedicke M., Leite J., Nord R., Pohl K., Ramesh B., Vilbig A., A Meta-Model

for Representing Variability in Product Family Development. Proceedings of the 5th

International Workshop on Product Family Engineering, Siena, Italy, pp. 66-80, 2003.

[6] Bayer J., Muthig D., Widen T., Customizable Domain Analysis. Proceedings of the First

International Symposium on Generative and Component-Based Software Engineering,

Portland, Oregon, USA, Springer, pp. 178 -- 194, 2000.

[7] Borland Together Control Center. Available from

http://www.borland.com/us/products/together/, 2001.

[8] Bragança A., Machado R. J., Automating Mappings between Use Case Diagrams and

Feature Models for Software Product Lines. 11th International Software Product Line

Conference, pp. 3 -- 12, 2007.

[9] Cheng Betty H. C., Atle J. M.: Research Directions in Requirements Engineering. FOSE 2007,

pp. 285-303, 2007.

[10] Clements P., Northrop L., Software Product Lines: Practices and Patterns. Addison Wesley,

2002.

[11] Eriksson M., Börstler J., Borg K., The PLUSS Approach - Domain Modeling With Features,

Use Cases and Use Case Realizations. Proceedings of the 9th international conference,

SPLC 2005, Rennes, France, 2005.

[12] Efftinge S., Friese P., Haase A., Hübner D., Kadura C., Kolb B., Köhnlein J., Moroff D., Thoms

K., Völter M., Schönbach P., Eysholdt M., Hübner D., Reinisch S, openArchitectureWare

User Guide. Available from

http://www.openarchitectureware.org/pub/documentation/4.3.1/openArchitectureWare-

4.3.1-Reference.pdf, 2008.

[13] IBM Requisite pro. Available from http://www-01.ibm.com/software/awdtools/reqpro/,

2011.

[14] IEEE Std. 610.12-1990. IEEE Standard Glossary of Software Engineering Terminology. IEEE

Computer Society Press, 1990.

[15] Jacobson I., Griss M., Jonsson P., Software Reuse-Architecture. Process and Organization

for Business Success. Addison-Wesley, 1997.

[16] Jacobson I., Object-Oriented Software Engineering - A Use Case Driven Approach. ACM

Press, Addison-Wesley, 1992.

[17] John I., Eisenbarth, M., A Decade of Scoping – A Survey. 13th International Software

Product Line Conference, USA, 2009.

http://www-01.ibm.com/software/awdtools/reqpro/

[18] John I., Muthig D., Modeling Variability with Use Cases. Fraunhofer IESE, Technical Report

IESE Report No. 063.02/E, 2002.

[19] Jouault F., Kurtev I., Transforming Models with ATL. Proceedings of the Model

Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica, Springer,

pp. 128-138, 2005.

[20] Kang K., Cohen S., Hess J., Novak W., Peterson S., Feature-oriented domain analysis (FODA)

feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,

Carnegie Mellon University, 1990.

[21] Krueger C. W., Easing the Transition to Software Mass Customization. Proceedings of the

4th International Workshop on Software Product-Family Engineering (PFE 2001), Bilbao,

Spain, October 3-5, pp. 282 -- 293, 2001.

[22] Kleppe A., Warmer J., Bast. W., MDA Explained, The Model-Driven Architecture: Practice

and Promise. Addison Wesley, 2003.

[23] Kovačevid, J., M. Aférez, Kulesza U., Moreira A., Araújo J., Amaral V., Survey of the state-of-

the-art in Requirements Engineering for Software Product Line and Model-Driven

Requirements Engineering. AMPLE Deliverable D1.1, 2007.

[24] Krueger C. W., Easing the Transition to Software Mass Customization. Proceedings of the

4th International Workshop on Software Product-Family Engineering (PFE 2001), Bilbao,

Spain, October 3-5, pp. 282 -- 293, 2001.

[25] Kruchten P., The Rational Unified Process - An Introduction, Second Edition, Addison-

Wesley, 2000.

[26] Gomaa H., Designing Software Product Lines with UML: From Use Cases to Pattern-Based

Software Architectures: Addison-Wesley, 2004.

[27] Gotel, O., Finkelstein, A., An Analysis of the Requirements Traceability Problem. IEEE Int.

Conference on Requirements Engineering (ICRE '94), 1994.

[28] Griss M. L., Favaro J., d' Alessandro M., Integrating Feature Modeling with the RSEB.

Proceedings of the 5th International Conference on Software Reuse, IEEE Computer

Society, pp. 76-85, 1998.

[29] Larsen G., Model-driven development: Assets and reuse. IBM Systems Journal, 45(3): pp.

541 -- 553, 2006.

[30] Loughran N., Sampaio A., Rashid A., From Requirements Documents to Feature Models for

Aspect Oriented Product Line Implementation. Workshop on MDD in Product Lines held in

conjunction with MODELS' 05, Montego Bay, Jamaica, 2005.

[31] Mannion M., Keepence B., Harper D., Using Viewpoints to Define Domain Requirements.

IEEE Software 15(1), pp. 95 -- 102, 1998.

[32] Mens T., Van Gorp P., A Taxonomy of Model Transformation. Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 125 -- 142, 2006.

[33] MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

[34] Moon M., Yeom K., Chae H. S., An Approach to Developing Domain Requirements as a Core

Asset Based on Commonality and Variability Analysis in a Product Line. IEEE Transactions

on Software Engineering, vol. 31, pp. 551 -- 569, 2005.

[35] Nicolás J., Toval A., On the generation of requirements specifications from software

engineering models: A systematic literature review. Information and Software Technology

51, pp. 1291 -- 1307, 2009.

[36] OMG, http://www.omg.org/

http://www.omg.org/

[37] OMG, MDA Guide Version 1.0.1. http://www.omg.org/

[38] OMG, Meta Object Facility (MOF) 2.0 Core Specification (formal/06-01-01), OMG, 2006,

Available at http://www.omg.org, 2006.

[39] Pohl, K., Böckle, G., Van Der Linden, F., Software Product Line Engineering: Foundations,

Principles, and Techniques. Springer, 2005.

[40] Rational Software: The Rational Unified Process for Systems Engineering Whitepaper, Ver.

1.1, Available at: http://www.rational.com/media/whitepapers/TP165.pdf, 2003.

[41] Sampaio A., Chitchyan R., Rashid A., Rayson P., EA-Miner: A tool for automating aspect-

oriented requirements identification. In 20th IEEE/ACM International Conference on

Automated Software Engineering (ASE) 2005. Long Beach, California, USA, 2005.

[42] Sawyer, P., P. Rayson, Garside R., REVERE: Support for Requirements Synthesis from

Documents. Information Systems Frontiers 4(3), pp. 343 -- 353, 2002.

[43] Schmid K., A comprehensive product line scoping approach and its validation. ICSE 2002:

593-603, 2002.

[44] Telelogic, A.B. DXL Reference Manual, DOORS 7.1, 2004.

[45] Van der Linden F., Schmid K., Rommes E., Software Product Lines in Action - The Best

Industrial Practice in Product Line Engineering. Springer, Berlin, Heidelberg, Paris, 2007.

[46] Welge M., Al-Laham A., Strategisches Management (in German). 2nd edition, Gabler,

Wiesbaden, 1999.

[47] Zave P., Classification of Research Efforts in Requirements Engineering. ACM Computing

Surveys 29 (4), pp. 315 -- 321, 1997.

http://www.omg.org/
http://www.omg.org/

