
Robustness, Stability, Recoverability and Reliability in
Dynamic Constraint Satisfaction Problems

Federico Barber and Miguel A. Salido

Instituto de Automática e Informática Industrial
Universidad Politecnica de Valencia

email {fbarber,msalido}@dsic.upv.es

Abstract. 1 Many real-world problems in Artificial Intelligence (AI) as well as
in other areas of computer science and engineering can be efficiently modeled
and solved using constraint programming techniques. In many real-world scenar-
ios the problem is partially known, imprecise and dynamic, so that some effects
of actions are undesired and/or several un-foreseen incidences or changes can oc-
cur. Whereas expressivity, efficiency, and optimality have been the typical goals
in the area, several is-sues regarding robustness appear with a clear relevance in
dynamic constraint satisfaction problems (DCSPs). However, there is still no a
clear and common definition of robustness-related concepts in CSPs. In this pa-
per, we propose two clearly differentiated definitions for robustness and stability
in CSP solutions. We also introduce the concepts of recoverability and reliability
which arise in temporal CSPs. All these definitions are based on related well-
known concepts addressed in engineering and other related areas.

1 Introduction

Nowadays many real problems can be modeled as constraint satisfaction problems
(CSP) and are solved using constraint programming techniques. Much effort has been
spent to increase the efficiency of the constraint satisfaction algorithms: filtering, learn-
ing and distributed techniques, improved backtracking, use of efficient representations
and heuristics, etc. This effort resulted in the design of constraint reasoning tools which
were used to solve numerous real problems. However, all these techniques assume that
the set of variables and constraints, which compose the CSP, is completely known and
fixed. This is a strong limitation when dealing with real situations where the CSP under
consideration may evolve because of (i) changes in the environment or in their execu-
tion conditions, (ii) evolution of user requirements in the framework of an interactive
design, and (iii) changes in other agents in the framework of a distributed system [13].

Real world is dynamic in its nature, so techniques attempting to model it should take
this dynamicity in consideration. A Dynamic Constraint Satisfaction Problem (DCSP)
[2] is an extension to a static CSP that models addition and retraction of constraints and
hence it is more appropriate for handling dynamic real-world problems. It is indeed easy
to see that all possible changes to a CSP (constraint or domain modifications, variable
additions or removals) can be expressed in terms of constraint additions or removals
[13].

1 Riunet digital repository: http://riunet.upv.es/handle/10251/10705

Several proactive or reactive techniques have been developed to manage incidences
in dynamic problems. In this context, computing a new solution from scratch after each
problem change is possible (reactive technique), but it has two important drawbacks:
inefficiency and instability of the successive solutions [13].

In [14], a proactive approach is presented to explore methods for finding solutions
that are more likely to remain valid after changes that temporarily alter the set of valid
assignments. Other works are focused on searching for a new solution that minimizes
the number of changes from the original solution. For instance, in [5] the concept of
super-solution is introduced for constraint programming: ’A solution is a super solution
if it is possible to repair the solution with only a few changes’. This is a generalization
of both fault tolerance solutions in constraint programming [16] and supermodels in
propositional satisfiability [9]. In [12], a method is proposed for reusing the previous
solution to produce a new solution, by means of local changes on the previous one.

By reading the research carried out in dynamic constraint satisfaction, we found a
clear misunderstanding regarding the concepts of robustness and stability. Some authors
refer to robust solutions in the same meaning than others refer to stable solutions. For
instance, one of the most recent papers regarding dynamic constraint satisfaction [15]
states that the strategies that have been devised to handle DCSPs are: ”methods for
finding ”robust” solutions that are either more likely to remain solutions after change or
are guaranteed to produce a valid solution to the altered problem with a fixed number
of assignment changes.”

In engineering, there is an agreement to distinguish between stable and robust con-
cepts. Thus, what’s the difference between stable and robust CSP solutions? Answering
this question is not always easy by the fact that robustness has multiple, sometimes con-
flicting, interpretations [6]. Only some works make a tiny distinction between robust-
ness and stability in constraint satisfaction [4]. Under our consideration, both robustness
and stability terms are being mixed. Robust solutions refer to solutions that are either
more likely to remain valid after change meanwhile stable solutions are solutions that
are guaranteed to produce a new valid solution with only few assignment changes.

In this paper we focus our attention on the ’robustness’ and ’stability’ concepts in
CSPs. We propose general engineering-based and clearly different definitions for ro-
bust and stable CSP solutions. Moreover, we also introduce the concepts of ’recover-
ability’ and ’reliability’ which are relevant in real-world temporal-CSP domains. Clear
and common definitions is needed for evaluating different alternatives. Afterwards, new
questions will appear: How many definitions related to robustness and stability can be
identified? How can we assess robustness or stability of a solution? What does it guar-
anties? How can we get a more robust solution? What is the relationship between robust-
ness and other problem parameters, like optimality and constrainedness? Is it possible
to obtain a model of robustness?

1.1 Definitions

Following some standard notations and definitions in the literature, we have summa-
rized the basic definitions that will be used along the paper.

Definition 1. A Constraint Satisfaction Problem (CSP) is a triple P =< X,D,C >
where, X is a finite set of variables {x1, x2, ..., xn}, D is a set of domains D =

{d1, d2, ..., dn} such that each variable xi ∈ X has a finite set of possible values di.
C is a finite set of constraints C = {C1, C2, ..., Cm} which restrict the values that
the variables can simultaneously take. C can be extensionally represented by a set of
feasible tuples or intensionally represented by a set of logical-mathematical functions.

Definition 2. A dynamic constraint satisfaction problem (DCSP) is a a sequence of
static CSPs, where each successive CSP is the result of changes in the preceding one
[2]. In the original definition, changes could be due either to addition or removal of
constraints.

Definition 3. The Solution Space is the portion of search space (
∏

i=1,n di) that
satisfies all constraints. A solution S is an instantiation of all variables that satisfy all
constraints.

2 Changes/Incidences in DCSPs

Many real problems are dynamic so unexpected changes/incidences in the environment
or problem scenario occur due to its dynamism, spurious actions, lack of complete
knowledge, etc. In its dynamic evolution, a DCSP should face to a set of incidents Z.
Each change or incidence zi ∈ Z can be modeled as a set of changes in variable domains
or constraints. Since changes in domains can be represented as new unary constraints,
it can be assumed that each incidence zi can be represented by (actually, it leads to) a
new set of constraints Czi.

zi → Czi (1)

Once the occurrence of each incidence zi, the new set of constraints Czi must be
added to the previous set of constrains (C) making the problem more restricted, or even
inconsistent. Thus, the new problem after an incidence zi becomes:

CSPzi =< X,D,C ⊕ Czi > (2)

We only consider incidences that add new constraints (which includes modification
of the existing ones). Only the removal of constraints is not considered since it does not
restrict the solution space, so that each solution remain feasible when some constraints
are removed. Moreover, we assume the incidences only restrict (but do not make empty)
the initial solution space; otherwise the problem would become inconsistent. Therefore,
some of the feasible solutions of the initial CSP are also solutions of CSPzi . Let’s also
assume that a finite set of incidences (Z) is expected, each one zi ∈ Z with a probability
p(zi) and an affectation degree d(zi).

– The function p(zi) introduces a probability distribution over Z, so that p(zi) de-
scribes the relative likelihood for zi to occur. A function for each zi can be possible
in some problem domains, by using statistical or historical analysis, typology of
expected incidences, etc. In other domains it could not be possible (uninformed
DCSP) so we could assume a uniform probability of incidences.

– The function d(zi) is related to the restriction imposed by zi on the initial solu-
tion space. Therefore, d(zi) can be evaluated as the proportion of tuples in C that

become unfeasible after zi. The function d(zi) can be related to the concept of sen-
sitiveness of the problem (the CSP) regarding the incidence zi, that is, how much
the problem is affected due to zi

Obviously, it is not possible to concrete robustness-related features of a system if no
information about the incidences is given. In this case, we can obtain a rough estimation
by means of the inclusion of random incidences (i.e.: random values for p(zi), d(zi)).

For simplicity reasons, we will generalize our notation and denote zi as z and Czi
as Cz.

3 Robustness

Robustness is a common feature in our environment. Biological life, functional systems,
physical objects, etc [11], persists, remain running and maintain their main features
despite continuous perturbations, changes, incidences or aggressions. Thus, robustness
is a concept related to the persistence of the system, of its structure, of its functionality,
etc., against external interference: A system is robust, if it persists.

Thus, in a general way, ”robustness” can be defined as the ability of a system
to withstand stresses, pressures, perturbations, unpredictable changes or variations in
its operating environment without loss of functionality. A system designed to perform
functionality in an expected environment is ”robust” if it is able to maintain its func-
tionality under a set of incidences. As a closer example, an algorithm is robust if it
continues to operate despite unexpected inputs or erroneous calculations.

Intuitively, the notion of robustness is easy to define, but its formalization depends
on the system, on its expected functionality and on the particular set of incidences to
face up [10]. No general formal definition of robustness has been proposed, except
few exceptions or particular cases. Particularly, Kitano [7] mathematically defines the
robustness (R) of a system (SY S) with regard to function (F) against a set of perturba-
tions (Z), as (in a simplified way):

RSY S
F,Z =

∫
Z

p(z) ∗ F (z)dz (3)

Where, p(z) is the probability for incidence z ∈ Z, and F (z) is an evaluation func-
tion that returns zero when the system fails under z or it returns a relative viability]0, 1]
in other case. For instance, if production drops 20% under a certain perturbation (z),
compared with standard production, then 0.8 is returned. The expression (1) formalizes
how a system (SY S) is able to maintain a certain level of its expected functionality (F)
against a given set of perturbations (Z). According to (1), a system SY S1 is more robust
than SY S2 with regard to an expected functionality F against a set of perturbations Z,
when:

RSY S1

F,Z > RSY S2

F,Z (4)

The application of definitions of robustness is highly problem-dependent. Let’s ap-
ply (1) to DCSPs:

– S is a solution of the DCSP, which we want to assess its robustness. Thus, S is the
system (SY S). Robustness is a concept related to DCSP solutions, not to DCSP
itself.

– Z is the discrete set of unexpected incidences (i.e.: changes in constraints).
– F is the expected functionality of the system. In DCSP, the expected functionality

of a solution is its feasibility.

Therefore, the expression (3) becomes:

RS
F,Z =

∑
Z

p(z) ∗ F (z) (5)

Where function F is defined, in the case of a DCSP as:

– F (z) = 1 iff S also holds C ⊕ Cz. Taking into account that S holds C (since S is
a solution of the CSP), F (z) = 1, iff S also holds Cz.

– F (z) = 0, iff S does not hold C ⊕ Cz. More concretely, iff S does not hold Cz.

A 1-robust solution is a solution that maintains its feasibility over the whole set of
expected incidences.

Note that robustness does not require insensitiveness of the CSP. For instance, the
constraints of the problem could dramatically vary due to z, so that Cz could greatly
reduce the solution space. However, a robust solution S with respect z would remain
feasible after the incidence.

Also note that robustness of a solution S does not depends on the behavior of S
against an incidence z, but on how feasibility of S is maintained over a set of unexpected
incidences Z. Thus, robustness of S depends on the probability p(z) of each possible
incidence z ∈ Z and on how z affects to feasibility of the solution F (z).

We remark that we do not take into account other aspects, which have been usually
taken into account when robustness of a DCSP solution is assessed by other authors.
For instance, the number of variables that must change their values to make the initial
solution feasible after the incidence, the number of unsatisfied constraints by the initial
solution, etc. In our approach, a solution is not more/less robust under a given incidence
if the solution need be more/less repaired to deal with the incidence. We claim that
robustness cannot be assessed on the basis that only small changes are necessary to
obtain a new feasible solution. In problems related with satisfiability, robustness should
be related to feasibility maintenance.

3.1 Example

Let’s apply the above definition (5) on the following example. P be a CSP with two vari-
ables x1 and x2 with domains D1 : {3..7} and D2 : {2..6} respectively. The dynamic
constraints are:

– C1 : x1 + x2 ≤ 12
– C2 : x2 + x1 ≥ 6
– C3 : x2 − x1 ≤ 2
– C4 : x1 − x2 ≤ 4

1 2 3 4 5 6 7 8 9

1

2

3

 4

5

6

7

C3: -X1 + X2 <= 2

C4: -X2 + X1 <= 4

C1: X1 + X2 <= 12

C2: X2 + X1 >= 6

X1

X2

Fig. 1. Example of CSP P .

The Figure 1 represents the solution’s space of the CSP, which is composed of 21
solutions.

Let’s suppose the following set Z of expected incidences:

Incidence zi Likelihood p(zi) zi → Czi d(zi)
z1 0.15 {x1 + x2 <= 9, x2 <= 5} 9/21
z2 0.1 {x1 + x2 >= 10, x1 >= 4} 12/21
z3 0.25 {−x1 + x2 <= 0} 9/21
z4 0.3 {x1 − x2 <= 2} 5/21
z5 0.2 {x1 > 4} 8/21

The column related to d(zi) is included only for reasons of information, since the
new constraints Czi corresponding to each zi are known. Note that

∑
Z p(zi) = 1.

The robustness of each solution can be assessed according 5. For instance, the solu-
tion S = {x1 = 3, x2 = 4} is no longer valid when z2, z3 or z5 occurs. Its robustness
can be assessed as RS

Z = p(z1) + p(z4) = 0.15 + 0.3 = 0.45.
From Table 1, we can deduce that {x1 = 5, x2 = 3} and {x1 = 5, x2 = 4} are

the more robust solutions, according the above set of expected incidences. Likewise
{x1 = 4, x2 = 6} is the less robust solution.

Although the solution space of the above example is convex, note that it is not
required for assessment robustness of CSP solutions, nor it is necessary an implicit
representation of the CSP. Moreover, robustness of each solution can be assessed inde-
pendently of assessment for other solutions

4 Stability

Stability is an old concept that derives from astronomy and physics [17]. Loosely speak-
ing, a solution (meaning an equilibrium state) of a dynamical system is said to be stable

Table 1. Robustness of each solution

Solution (x1 x2) holds z1? holds z2? holds z3? holds z4? holds z5? Robustness
4,2 y n y y n 0,7
5,2 y n y n y 0,6
6,2 y n y n y 0,6
3,3 y n y y n 0,7
4,3 y n y y n 0,7
5,3 y n y y y 0,9
6,3 y n y n y 0,6
7,3 n y y n y 0,55
3,4 y n n y n 0,45
4,4 y n y y n 0,7
5,4 y n y y y 0,9
6,4 n y y y y 0,85
7,4 n y y n y 0,55
3,5 y n n y n 0,45
4,5 y n n y n 0,45
5,5 n y y y y 0,85
6,5 n y y y y 0,85
7,5 n y y y y 0,85
4,6 n y n y n 0,4
5,6 n y n y y 0,6
6,6 n y y y y 0,85

if small perturbations to the solution result in a new solution that stays ”close” to the
original solution for all time. Perturbations can be viewed as small differences effected
in the actual state of the system [6]. Therefore, by applying this informal definition to
DCSPs, a solution is stable if small modifications of the constraint set require a new so-
lution (new consistent variable assignment) that remains close to the original solution:

Sol(X,D,C) is stable (with respect z, C ⊕ z ∼= C) iff
∃Sol(X,D,C ⊕ z) : Sol(X,D,C) ∼= Sol(X,D,C ⊕ z)

Definition 4. A solution S of a DCSP is r-stable, with respect to to an incidence z,
if a new feasible solution S exists in the r-neighborhood of S.

The neighborhood of solutions can be formally defined in terms of norms on n-
dimensional spaces [3].

Definition 5. A solution S = (x1 = v1, x2 = v2, , xn = vn) is r-stable if, given
an incidence z, there is a solution S′ = (x1 = v′1, x2 = v′2, , xn = v′n), such that:
∥S′ − S∥ < r, where ∥.∥ is any n-dimensional norm on the difference of S and S′. In
relation to the implementation of n-dimensional norms:

– On metric domains, we can apply the Euclidean distance between S and S′, with a
optional weighted factor ρ : i for each xi:

∥S′ − S∥z =

√√√√ n∑
i=1

ρi(x′
i − xi)2 (6)

Note that the similarity given by (6) between S and S′ may be very low if the
two solutions S and S′ are very close in the n-dimensional space although all the
variables of S change their values. This n-dimensional norm measures the amount
of change of values in the variables that change.

– On non metric domains (like non-ordered sets of values) the Hamming distance
(H) can be applied. This n-dimensional norm measures the number of variables
that have different values in S and S′.

∥S′ − S∥z =

n∑
i=1

ρiH(x′
i, xi) (7)

where H(x′
i, xi) is equal 0 iff x′

i = xi, and 1 otherwise. This criteria evaluates
the number of variables that change their values (which is related with the super-
solutions concept).

These measures evaluate the closeness of solutions in the state space. Therefore,
given an incidence z, the r-stability for a solution S quantify the r-proximity to S of the
closest feasible solution S′ in the n-dimensional space of the DCSP. That is, how much
the new solution S′ differs from the initial one S in order to address the incidence. A
robust solution is a 0-stable solution.

The proposed measures of r-stability require finding a solution in the closest neigh-
borhood of S, among the complete set of new feasible solutions, so that deviation with
respect to the previous solutions S is minimized. Let’s denote N(S, z) as the value of
∥S′ − S∥ for the closest solution S′ to S, after the occurrence of z:

N(S, z) = minS′∥S′ − S∥ (8)

To obtain N(S, z), it is needed to generate a Constraint Satisfaction and Optimiza-
tion Problem (CSOP) which constrains are C ⊕ z and the optimality criteria is to min-
imize ∥S′ − S∥. The search space of the obtained CSOP can be reduced to the closest
neighborhood of S so that the required computational effort becomes considerably re-
duced.

According the definition 5, we can define the stability (STA) of a solution (S)
against a given set of perturbations (Z), as:

STAS
Z =

∑
Z

p(z) ·N(S, z) · d(z) (9)

In equation 9, N(S, z) is ponderated by d(z) in order to normalize N(S,z) with
respect to d(z).

4.1 Example

Let’s apply the above definition of stability (9) on the previous example (Figure 1) for
the most and less robust solutions given by Table 1.

Table 2. Stability of some robust solutions (5,3) and (5,4) and non-robust solution (4,6).

Solution Closest sol. Closest sol. Closest sol. Closest sol. Closest sol. Robustness Stability
(x1, x2) with z1 with z2 with z3 with z4 with z5

(5,3) holds (6,4) holds holds holds 0,9 0.08-stable
(5,4) holds (6,4) holds holds holds 0,9 0.06-stable
(4,6) (4,5) holds (5,5) holds (5,6) 0,4 0.29-stable

For instance, the stability of solution (4, 6) is according to expression (9):

STA
(4,6)
Z = 0.15 ∗ 1 ∗ 9/21 + 0.25 ∗

√
2 ∗ 9/21 + 0.2 ∗ 1 ∗ 8/21 = 0.29 (10)

Thus, following Table 2, {x1 = 5, x2 = 4} is the most robust (0.9) and the most
stable solution (0.06) according the given set of expected incidences.

5 Temporal Constraint Satisfaction

In dynamic environments, variables of a DCSP usually have a temporal dimension in
such a way the solution is projected over time. In this case, the problem is called Dy-
namic Temporal Constraint Satisfaction Problem (DTCSP). This is the typical case of
scheduling problems, where variables can be associated to starting or ending times of
tasks (see Figure 2). In these problems, not only is important to know how different
is the new feasible solution S′ from the original solution S, given an incidence z, but
how long S′ differs from S (recoverability) or how long S can be maintained (reliabil-
ity) from the incidence. Thus, two new properties related to temporal stability appear:
recoverability and reliability.

5.1 Recoverability

Recoverability refers to the ability to restore a system to the point at which a fail-
ure occurred. Despite of proactive approaches, it is clear that robustness is not always
completely guarantied. Therefore, recovery strategies should be used when disturbing
events occur, in order to keep the feasibility of the pre-computed solution. Robustness
and recoverability are closely related and, in some optimization frameworks, they have
been unified into an integrated notion of recoverable robustness [8]. Regarding DTCSP,
where solutions project over time, the recoverability of a solution can be measured by
the amount of time (∆t) required, after incidence occurs, to restore part of the initial so-
lution. The temporal variables in a solution of a DTCSP are distributed over time. Thus,
a ∆t-recovered solution maintains the same initial values to variables related from ∆t
after incidence:

Sol∆t(X,D,C ⊕ z) ≡ Sol∆t(X,D,C)

Where Sol∆t covers the set of DCSP variables from ∆t after incidence. The objec-
tive of a recovery process is to minimize ∆t. Moreover, since the variables of DTCSP
are temporally ordered (i.e.: they are projected over time), the objective of a recovery
process becomes minimize the set of variables (from the time t when incidence oc-
curs until t+∆t) that require change their value in a new feasible solution. The initial
solution S is recovered after the temporal interval [t, t+∆t].

Definition 6. A solution S is q-recoverable iff, at most, q variable’s assignments
(consecutive variables after the incidence occurs) require change its value in the new
feasible solution S′.

Thus, a solution S = (x1 = v1, x2 = v2, , xn = vn) is q-recoverable iff given
an incidence z that affects from xt, S′ = (x1 = v1, x2 = v2, , xt = v′t, xt+1 =
v′t+1, , xt+q = v′t+q, xt+q+1 = vt+q+1, , xn = vn), 1 ≤ t ≤ n, 1 ≤ t + q ≤ n, is a
solution of DTCSPCH . The initial solution is recovered after xt + q.

Note that the definition of q-recoverability is similar to the definition of (q, 0)−super
solutions where if q variables lose their values, we can find another solution by reassign-
ing these variables with a new value. The only difference is that in q−recoverability,
the variables to be repaired are consecutive in time meanwhile in (q,0)-super solutions
the variables to be repaired are not consecutive.

5.2 Reliability

In engineering, reliability is associated to the confidence that a system will perform its
intended function during a specified period of time under stated conditions, as well as
under unexpected circumstances. Mathematically it can be expressed as:

R(t) =

∫ ∞

t

f(x)dx (11)

where f(x) is the failure probability density function and t is the length of the
period of time (which is assumed to start from time zero). There is always some chance
for failure, but R(t) means that the system has a specified chance that it will operate
without failure before time t.

In DTCSP, variables of solution are distributed on time. Thus, a solution found
initially may be invalid for variables which are related to a time greater than ∆t after
incidence. Thus, by applying the above concepts, we can assess that a DTCSP solution
is ∆t-reliable, if given an incidence at time t, the solution remains valid until t +∆t.
Thus, the set of variables that represents the solution of the problem from time t until
t+∆t are not required to change their value:

Solt→∆t(X,D,C ⊕ z) ≡ Solt→∆t(X,D,C)

Where Sol∆t covers the set of DCSP variables from time t until t+∆t.The objective
for obtaining a reliable solution is maximizing t, or alternatively, maximizing the set of
variables (from time t, when incidence occurs, until t+∆t) that can maintain their value.
Thus, in a similar way that recoverability, reliability of a solution S can be defined in

terms of the number of assignments in S that remains valid, i.e: they can take part of a
solution of DTCSPCH .

Definition 7. A solution S is u-reliable if, at least, u variable’s assignments in S
(consecutive variables after the incidence occurs) can take part of a solution of the
DTCSPCH . Thus, a solution S = (x1 = v1, x2 = v2, , xn = vn) is u-reliable, iff
given an incidence z that affects from xt, S′ = (x1 = v1, x2 = v2, , xt = v′t, xt+1 =
vt+1, , xt+u = vt+u, xt+u+1 = v′t+u+1, , xn = v′n), 1 ≤ t ≤ n, 1 ≤ t + u ≤ n, is a
solution of DTCSPCH . The initial solution is maintained until xt+u.

6 Example: A Scheduling Problem

Figure 2 shows an example with different solutions to a scheduling problem with two
jobs, each one with three activities, and one resource. Each row corresponds to a job,
and an activity (xij) is represented as a rectangle whose length corresponds to its du-
ration. This problem can be modeled as a TCSP, where variables represent time points
(starting or ending times) of different activities (xij.on, xij.off). There exist constraints
referring to non-overlap and precedence constrains among activities. Moreover, x23

should be performed unless k-units after x22 (Constraint C23−22). The first solution
(Figure 2a) minimizes the makespan and it is considered to be the optimal solution.
Figure 2b shows a robust solution. To this end, some buffer times have been included be-
tween some activities in order to absorb incidences. For instance, if a resource is broken
for a short time, (Incidence in Figure 2b), the solution is not affected by the incidence.
Thus, all assignments to variables remain valid. Furthermore this solution is also stable.
If variables x21.off , x22.off , x12.off or x13.off are tiny delayed, the rest of variables
maintain the same values. It can be observed the typical trade-off between robustness
and optimality in Figure 2a/b. Figure 2c shows a 3-recoverable solution for an incidence
z: x21.off is delayed to x′

21.off in time t. In this case, only 3 variables must change
their values (x21.off , x22.on, x22.off) meanwhile assigned variables with assigned val-
ues greater than t+∆t: (x12.on, x12.off , x13.on, x13.off , x23.on, x23.off) do not change
their values. Figure 2d shows a 4-reliability solution for an incidence z: x22.off is de-
layed to x′

22.off in time t. In this case, the next 4 variables (x12.on, x12.off , x13.on, x13.off)
do not change their values. The solution is maintained until t +∆t. However, activity
x23 must satisfy C23−22, so that x23.on and further variables must change their values.

7 Generalizing the concepts

In the previous sections, the concepts of robustness, stability, recoverability and relia-
bility have been defined by analyzing how a solution S absorbs or can be adapted to
cope up an incidence z. These concepts can be generalized, such that we can assess the
achievable levels of robustness, stability, recoverability and reliability of solutions of a
DCSOP for a given typology of incidences (Z, p(z), d(z)), optimality levels, and the
given constrainedness of the DCSOP which is inherent to the problem:

– Robustness guaranties that perturbations can be absorbed by the solution. Thus,
robustness decreases as the degree of incidences increases.

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X22.off

X23.on

X23.off

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X22.off

X23.on

X23.off

a

b Incidence

X11.on

X11.on

X22.on

X22.on

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X’21.off

c

X11.on

Incidence: X21.off delayed

X’22.off

X’22.on

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X’22.off

X’23.on

X’23.off

d

X11.on

X22.on

Incidence: X22.off delayed

t t+ t

t+ tt

C22-23

C22-23

C22-23

C22-23

X23.on

X23.off

Fig. 2. A scheduling problem: four solutions.

– Stability guaranties that perturbations can be minimized by the solution. Thus, sta-
bility decreases as degree of the incidences increases.

– A low restricted DCSP, with large solution space, will usually allow more robust
and stable solutions.

– A more optimized solution will usually be more sensible to changes in the environ-
ment. There exists a clear trade-off between robustness and optimality [1].

These ideas introduce the main concepts to which robustness, stability, recoverabil-
ity and reliability of solutions in DCSOP can be related. These mutual relations are
represented in Figure 3, which mutually relate robustness, stability, recoverability and
reliability of solutions of DCSPs with: (i) the constrainedness of DCSPs (which is a
problem-dependent feature), (ii) incidence’s degree (which is a feature of the problem

and/or application scenario), and (iii) optimality of S (which is a feature of each solu-
tion).

Constraintess

robustness, stability,

recoverability, reliability

Incidence Degree

Optimality

Fig. 3. A scheduling problem: four solutions.

From Figure 3, the goal would be to model and parameterize the above relations.
This requires a clear definition of related concepts and methods for analytical or em-
pirical assessment. The evaluation of robustness, stability, recoverability and reliability
of a solution in a DCSP can be view as a guaranty of the behavior of S with respect
to Z. Thus, some questions are straightforward: How can it be evaluated? What does
it guarantee? Afterwards, methods for obtaining more robust, stable, recoverable and
reliable solutions should be reached.

8 Conclusions

Whereas expressivity, efficiency, and optimality have been the typical goals in the de-
velopment of CSP techniques; robustness-related issues appear with a clear relevance
in dynamic environments, usually with incomplete or imprecise knowledge.

The general notion of robustness includes several and different concepts. How-
ever, despite several works on DCSP, there is still no a clear and common definition
of robustness-related concepts. We have identified the concepts of robustness, stability,
recoverability and reliability of DCSP solutions, on the basis on their related concepts in
engineering and other areas. These definitions can be used to assess robustness-related
features of solutions in DCSPs.

However, other relevant open issues remain open: How robustness can be efficiently
measured and what does it guarantee? What factors does it depend on? How can it be
obtained?

Typology of expected incidences, optimality of a solution, and constrainedness of a
problem appear as the main factors that bound the desired level of robustness, stability,
recoverability and reliability of solutions in DCSPs. Here, a clear further goal appears

addressed to define and parameterize a general model of robustness of DCSOPs in the
broadest sense.

Acknowledgments

This work has been partially supported by the research projects TIN2010-20976-C02-
01 (MICINN, Spain) and P19/08 (Min. de Fomento, Spain-FEDER).

References

1. D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
2. R. Dechter and A. Dechter. Dynamic constraint networks. In Proceedings of the 7th National

Conference on Artificial Intelligence (AAAI-88), pages 37–42, 1988.
3. M. Hazewinkel. Encyclopaedia of mathematics. Springer, 2002.
4. E. Hebrard. Robust solutions for constraint satisfaction and optimisation under uncertainty.

phd thesis. University of New South Wales, 2007.
5. E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. In Integra-

tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR-04), pages 157–172, 2004.

6. E. Jen. Stable or robust? whats the difference? Complexity, 8(3):12–18, 2003.
7. H. Kitano. Towards a theory of biological robustness. Molecular Systems Biology, 3(137),

2007.
8. C. Liebchen, M. Lbbecke, R. Mhring, and S. Stiller. The concept of recoverable robustness,

linear programming recovery, and railway applications. LNCS 5868, 2009.
9. A. Parkes, M. Ginsberg, and A. Roy. Supermodels and robustness. Proceedings The Fifteenth

National Conference on Artificial Intelligence (AAAI-98), (334-339), 1998.
10. A. Rizk, G. Batt, F. Fages, and S. Solima. A general computational method for robustness

analysis withapplications to synthetic gene networks. Bioinformatics, 25(12):168–179, 2009.
11. E. Szathmary. A robust approach. Nature, 439:19–20, 2006.
12. G. Verfaillie and N. Jussien. Constraint solving in uncertain and dynamic environments a

survey. volume 10, pages 253–281, 2005.
13. G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction problems. In

Proc. of the 12th National Conference on Artificial Intelligence (AAAI-94), page 307 312,
1994.

14. R. Wallace and E. Freuder. Stable solutions for dynamic constraint satisfaction problems. In
Proc. 4th Int. Conf. on Principles and Practice of Constraint Programming (CP-98), page
447461, 1998.

15. R. Wallace, D. Grimes, and E. Freuder. Solving dynamic constraint satisfaction problems by
identifying stable features. In Proceedings of International Joint Conferences on Artificial
Intelligence (IJCAI-09), pages 621–627, 2009.

16. R. Weigel and C. Bliek. On reformulation of constraint satisfaction problems. In Proceedings
European Conference on Artificial Intelligence (ECAI-98), pages 254–258, 1998.

17. S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Springer, 1990.

