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Abstract

Innermost context-sensitive rewriting (CSR) has been proved useful
for modeling the computational behavior of programs of algebraic lan-
guages like Maude, OBJ, etc, which incorporate an innermost strategy
which is used to break down the nondeterminism which is inherent to
reduction relations. Furthermore, innermost termination of rewriting is
often easier to prove than termination. Thus, under appropriate con-
ditions, a useful strategy for proving termination of rewriting is trying
to prove termination of innermost rewriting. This phenomenon has also
been investigated for context-sensitive rewriting. Up to now, only few
transformation-based methods have been proposed and used to (specifi-
cally) prove termination of innermost CSR. Powerful and efficient tech-
niques for proving (innermost) termination of (unrestricted) rewriting like
the dependency pair framework have not been considered yet. In this
work, we investigate the adaptation of the dependency pair framework
to innermost CSR. We provide a suitable notion of innermost context-
sensitive dependency pair and show how to extend and adapt the main
notions which conform the framework (chain, termination problem, pro-
cessor, etc.). Thanks to the innermost context-sensitive dependency pairs,
we can now use powerful techniques for proving termination of innermost
CSR. This is made clear by means of some benchmarks showing that
our techniques dramatically improve over previously existing transforma-
tional techniques, thus establishing the new state-of-the-art in the area.
We have implemented them as part of the termination tool MU-TERM.

1 Introduction

Termination is one of the most interesting practical problems in computation
and software engineering. A program or computational system is said to be ter-
minating if it does not lead to any infinite computation for any possible call or
input data. Ensuring termination is often a prerequisite for essential program
properties like correctness. In the last years, many studies have been devel-
oped to analyze termination of programming languages, mainly of functional



[Gie95, LIBO1, Xi02] and logic programming languages [CLS05, CT99, DD94,
DLO01, DS02, LMS03, Sma04]. In the case of imperative programming lan-
guages, it is becoming important in the last years [AAC+08, BMS05, CPROG,
CS02, Tiw04]. Since most computational systems whose operational princi-
ple is based on reducing expressions can be described and analyzed by using
notions and techniques coming from the abstract model of Term Rewriting
Systems (TRSs [BN98, TeR03]), in many programming languages, it is pos-
sible to reduce the question of termination of programs to analyze termination
of TRSs. For this reason, the development of techniques for proving termi-
nation of term rewrite systems becomes especially important since every im-
provement will have a positive impact on program verification of many pro-
gramming languages. Following this approach, many powerful studies have
been developed for both declarative and imperative programming languages.
Regarding with termination of logic programs several works can be found:
[AMO93, KKS98, Mar94, Mar96, SGN09, SGST06]. Termination of the functional
language Haskell [HPW92] has been developed quite recently [GSSTO06] and also
termination of Java Bytecode [OBEG10]. Moreover, such computational sys-
tems (e.g., functional, algebraic, and equational programming languages as well
as theorem provers based on rewriting techniques) often incorporate a prede-
fined reduction strategy which is used to break down the nondeterminism which
is inherent to reduction relations. Eventually, this can rise problems, as each
kind of strategy only behaves properly (i.e., it is normalizing, optimal, etc.)
for particular classes of programs. One of the most commonly used strategy is
the innermost one, in which only innermost redexes are reduced. Here, by an
innermost redex we mean a redex containing no other redex. The innermost
strategy corresponds to call by value or eager computation, that is, the compu-
tational mechanism of several programming languages where the arguments of
a function are always evaluated before the application of the function which use
them. It is well-known, however, that programs written in eager programming
languages frequently run into a nonterminating behavior if the programs have
not carefully been written to avoid such problems. For this reason, the design-
ers of such eager programming languages have also developed some features and
language constructs aimed at giving the user more flexible control of the pro-
gram execution. For instance, syntactic annotations (which are associated to
arguments of symbols) have been used in programming languages such as Clean
[NSEP92], Haskell [HPW92], Lisp [McC60], Maude [CDE*07], OBJ2 [FGJMS85],
OBJ3 [GWM+00], CafeOBJ [FN97], etc., to improve the termination and ef-
ficiency of computations. Lazy languages (e.g., Haskell, Clean) interpret them
as strictness annotations in order to become ‘more eager’ and efficient. Eager
languages (e.g., Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them as replacement
restrictions to become ‘more lazy’ thus (hopefully) avoiding nontermination.
Context-sensitive rewriting (CSR [Luc98, Luc02]) is a restriction of rewriting
that forbids reductions on some subexpressions and that has proved useful to
model and analyze such programming language features at different levels, see,
e.g., [BM06, DLM 104, DLM*08, GM04, Luc01b, LM09]. Such a restriction
of the rewriting computations is formalized at a very simple syntactic level:



that of the arguments of function symbols f in the signature F. As usual, by a
signature we mean a set of function symbols f1,..., fu,... together with an arity
function ar : F — N which establishes the number of ‘arguments’ associated
to each symbol. A replacement map is a mapping p : F — p(N) satisfying
w(f) € {1,...,k}, for each k-ary symbol f in the signature F [Luc98]. We use
them to discriminate the argument positions on which the rewriting steps are
allowed. In C'SR we only rewrite p-replacing subterms: every term ¢ (as a whole)
is p-replacing by definition; and ¢; (as well as all its p-replacing subterms) is a
p-replacing subterm of f(t1,...,tx) if i € p(f).

Example 1 Consider the following orthogonal TRS R which is a variant of an
example in [Bor03]:

from(z) — cons(x,from(s(x)))
sel(0,cons(z,zs)) — =
sel(s(y),cons(z,zs)) — sel(y,xs)
m1nus( ,00) — =z
minus(s(z),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z).s(y)) — s(quot(minus(z,y),s(y)))
zWquot(nil,nil) — nil
zWquot(cons(z,zs),nil) — nil
zWquot(nil, cons(z,xs)) — mnil
zWquot(cons(x,xs), cons(y,ys)) — cons(quot(z,y),zWquot(xs,ys))

together with p(cons) = {1} and u(f) = {1,...,ar(f)} for all other symbols f.
According to [GMO02a], innermost - termmatwn of’R implies its p-termination
as well. We will show how R can easily be proved innermost p-terminating (and
hence p-terminating) by using the results in this paper.

The replacement map in Example 1 exemplifies one of the most typical ap-
plications of context-sensitive rewriting as a computational mechanism. The
declaration p(cons) = {1} disallows reductions on the list part of the list con-
structor cons, thus making possible a kind of lazy evaluation of lists. We can
still use projection operators as sel to continue the evaluation when needed.
The other typical application is the declaration u(if) = {1} which allows us
to forbid reductions on the two alternatives s and t of if-then-else expressions
if(b, s,t) whereas it is still possible to perform reductions on the boolean part
b, as required to implement the usual semantics of the operator.

Termination is also one of the most interesting problems when dealing with
CSR. With CSR we can achieve a terminating behavior with nonterminating
TRSs by pruning (all) infinite rewrite sequences.

Our focus is on termination of innermost context-sensitive rewriting (i.e.,
the variant of CSR where only the deepest p-replacing redexes are contracted).
Termination of innermost context-sensitive rewriting has been proved useful
for proving termination of programs in programming languages like Maude and



OBJ* which permit to control the program execution by means of such context-
sensitive annotations [LucOla, LucOlb]. Techniques for proving termination
of innermost CSR were first investigated in [GMO02b, LucOla]. These papers,
though, only consider transformational techniques, where the original CS-TRS
(R,p) is transformed into a TRS Ry (where © represents the transformation
which has been used) whose innermost termination implies the innermost termi-
nation of CSR for (R, ). The dependency pairs method [AG00, GAO02, GTS04,
GTSF06, HM04, HMO05], one of the most powerful techniques for proving ter-
mination of rewriting, had not been investigated in connection with proofs of
termination of CSR until [AGL06]. As shown in [AGL07], proofs of termination
using context-sensitive dependency pairs (CSDPs) are much more powerful and
faster than any other technique for proving termination of CSR. As we show
here, dealing with innermost CSR, we have a similar situation.

Proving innermost termination of rewriting is often easier than proving ter-
mination of rewriting [AGO00] and, for some relevant classes of TRSs, inner-
most termination of rewriting is even equivalent to termination of rewriting
[Gra95, Gra96]. In [GMO02b, GLO02a] it is proved that the equivalence between
termination of innermost CSR and termination of C'SR holds in some interesting
cases (e.g., for orthogonal CS-TRSs).

During the last years, we have investigated in deep how to prove termina-
tion of context-sensitive rewriting by using dependency pairs, since they have
proven to be one of the most powerful techniques for proving termination of
unrestricted rewriting. In [AGL10], we define the notion of context-sensitive
dependency pairs following the approach of [HMO04] which consists of consider-
ing the structure of the infinite rewrite sequences starting from minimal non-
terminating terms. Therefore, all the advantages and improvements over this
research can also be taken into account in innermost context-sensitive rewriting,
improving our previous results on this field in [AL07].

1.1 Plan of the paper

After some preliminaries in Section 2, we develop the material in the paper in
three main parts:

1. We investigate the structure of infinite innermost context-sensitive rewrite
sequences. This analysis is essential to provide an appropriate definition
of innermost context-sensitive dependency pair, and the related notions
of innermost chains, graph, etc. Section 3 provides appropriate notions
of minimal innermost non-y-terminating terms and introduces the main
properties of such terms. It also recalls the notion of hidden term in a
CS-TRS. This notion turns to be essential for the appropriate treatment
of our dependency pairs. We investigate the structure of infinite inner-
most context-sensitive rewrite sequences starting from strongly minimal
innermost non-u-terminating terms.

2. We define the notions of innermost context-sensitive dependency pair and
innermost context-sensitive chain of pairs and show how to use them to



characterize innermost termination of CSR. Sections 4 introduces the
general framework to compute and use innermost context-sensitive de-
pendency pairs for proving innermost termination of CSR. The introduc-
tion of a new kind of dependency pairs (the collapsing dependency pairs)
leads to a notion of innermost context-sensitive dependency chain, which
is quite different from the standard one. We prove that our innermost
context-sensitive dependency pair approach fully characterizes termination
of innermost CSR.

3. We describe a suitable framework for dealing with proofs of termination
of innermost CSR by using the previous results. Section 5 provides an
adaptation of the dependency pair framework [GTS04, GTSF06] to inner-
most CSR by defining appropriate notions of CS problem and CS processor
which rely in the notions and results investigated in the second part of the
paper. Section 6 introduces several basic processors for proving innermost
termination of CSR. Section 7 introduces the notion of innermost context-
sensitive (dependency) graph and the associated CS processor which for-
malizes the usual practice of analyzing the absence of infinite (minimal)
innermost chains by considering the (maximal) cycles in the dependency
graph. As in the standard case, the ICS-dependency graph is not com-
putable, so we show how to obtain the estimated ICS-dependency graph
which is a computable overestimation of it. Section 8 adapts the notion of
usable rules to deal with proofs of innermost CSR by using term orderings.
We introduce the notion of p-reduction pair, which is the straightforward
adaptation of reduction pairs used for dealing with dependency pairs in
the standard case. Section 9 adapts to the context-sensitive setting, the
notion of usable argument introduced by Férnandez [Fer05] to prove in-
nermost termination of rewriting by proving termination of CSR. In this
way, we can prove innermost termination of CSR by proving innermost
termination of C'SR using a more restrictive replacement map. We also
include this criterion as a processor in the innermost context-sensitive de-
pendency pair framework. Section 10 adapts narrowing transformation of
pairs in [GTSF06] to innermost CSR and the new framework.

The paper ends with an experimental evaluation of our techniques in Section 11.
Section 12 concludes.

2 Preliminaries

This section collects a number of definitions and notations about term rewriting.
More details and missing notions can be found in [BN98, Ohl02, TeR03].

Let A be a set and R C A x A be a binary relation on A. We denote the
transitive closure of R by RT and its reflexive and transitive closure by R*. We
say that R is terminating (strongly normalizing) if there is no infinite sequence
a1 Ras Rag---. A reflexive and transitive relation R is a quasi-ordering.



2.1 Signatures, Terms, and Positions

Throughout the paper, X denotes a countable set of variables and F denotes
a signature, i.e., a set of function symbols {f,g, ...}, each having a fixed arity
given by a mapping ar : F — N. The set of terms built from F and X is
T(F,X). A term is ground if it contains no variable. A term is said to be linear
if it has no multiple occurrences of a single variable.

Terms are viewed as labelled trees in the usual way. Positions p,q, ... are
represented by chains of positive natural numbers used to address subterms
of t. We denote the empty chain by A. Given positions p, q, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering:
p < q if 3¢’ such that ¢ = p.¢’ If p is a position, and Q is a set of positions,
p.Q = {p.q | ¢ € Q}. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in ¢ are denoted as Posz(t), and Posx(t) are the positions
of variables. The subterm at position p of ¢ is denoted as t|, and ¢[s], is the
term ¢ with the subterm at position p replaced by s.

We write t > s, read s is a subterm of t, if s = t|, for some p € Pos(t) and
t>sift>sand t #s. We write t B s and ¢ ¢ s for the negation of the corre-
sponding properties. The symbol labeling the root of ¢ is denoted as root(t). A
conteztis a term C' € T (F U {0}, X) with a ‘hole’ O (a fresh constant symbol).
We write C] ], to denote that there is a (usually single) hole O at position p of
C. Generally, we write C[ | to denote an arbitrary context and make explicit
the position of the hole only if necessary. C[] = O is called the empty context.

2.2 Substitutions

A substitution is a mapping o : X — T(F,X). Denote as e the ‘identity’
substitution: e(x) = x for all z € X. The set Dom(c) = {x € X | o(x) # x} is
called the domain of o.

Remark 1 In this paper, we do not impose that the domain of the substitutions
1s finite. This is usual practice in the dependency pair approach, where a single
substitution is used to instantiate an infinite number of variables coming from
renamed versions of the dependency pairs (see below).

Whenever Dom(o)NDom(c’) = @, for substitutions o, o/, we denote by cUd’, a
substitution such that (cUo’)(z) = o(x) if x € Dom(c) and (cUd’)(x) = o'(x)
if x € Dom(o’).

2.3 Renamings and unifiers

A renaming is an injective substitution p such that p(z) € X for all x € X. For
renamings, we assume that Var(p) is finite (which is the usual practice) and
also idempotency, i.e., p(p(z)) = p(x) for all x € X.

The quasi-ordering of subsumption < over 7 (F,X) ist <t < Jo. t' = o(t).
We denote as 0 < ¢’ the fact that o(x) < o'(x) for all € X, thus extending
the quasi-ordering to substitutions.



A substitution o such that o(s) = o(t) for two terms s,t € 7 (F, X) is called
a unifier of s and ¢; we also say that s and ¢ unify (with substitution o). If two
terms s and ¢ unify, then there is a unique (up to renaming of variables) most
general unifier (mgu) 6 which is minimal (w.r.t. the subsumption quasi-ordering
<) among all other unifiers of s and ¢.

A relation R C 7(F,X) x T(F,X) on terms is stable if for all terms s,t €
T (F,X), and substitutions o, we have o(s) R o(t) whenever s Rt.

2.4 Rewrite Systems and Term Rewriting

A rewrite rule is an ordered pair (I,r), written | — r, with I,r € T(F,X),
I ¢ X and Var(r) C Var(l). The left-hand side (lhs) of the rule is I and r is
the right-hand side (rhs). A rewrite rule [ — 7 is said to be collapsing if r € X.
A Term Rewriting System (TRS) is a pair R = (F,R), where R is a set of
rewrite rules. Given TRSs R = (F, R) and R’ = (F', R), we let RUR' be the
TRS (FUF',RUR’). An instance o(l) of a lhs [ of a rule is called a redez.
Given R = (F, R), we consider F as the disjoint union F = C & D of symbols
c € C, called constructors and symbols f € D, called defined functions, where
D ={root(l) |l = r € R} and C =F — D.

Example 2 Consider again the TRS in Example 1. The symbols from, sel,
minus, quot and zWquot are defined, and s, 0, cons, and nil are constructors.

For simplicity, we often write [ — r € R instead of | — r € R to express that
the rule I — r is a rule of R. The pair (o(1)[o(r')]p, o(r)) is called a critical pair
and is also called an overlay if p = A. A critical pair (¢, s) is trivial if ¢ = s. The
critical pairs of a TRS R are the critical pairs between any two of its (renamed)
rules; this includes overlaps of a rule with a renamed variant of itself, except
at the root, i.e., if p = A. A TRS R is left-linear if for all I — r € R, [ is
a linear term. A left-linear TRS without critical pairs is called orthogonal. A
term ¢t € T(F, X) rewrites to s (at position p), written ¢t >z s (or just t — s,
ort —g s), if t|, = o(l) and s = t[o(r)],, for some rule | — r € R, p € Pos(t)

and substitution o. We write ¢ >—I>)R sift Lr s for some ¢ > p. A TRS R is
terminating if its one step rewrite relation —x is terminating.

2.5 Innermost rewriting

A term is a normal form if it contains no redex. A substitution ¢ is normalized
if o(x) is a normal form for all x € Dom(o). A term f(ty,...,t;) is argument
normalized if ¢; is a normal form for all 1 < 7 < n. An innermost redex is an
argument normalized redex. A term s rewrites innermost to ¢, written s —; t,
if s — t at position p and s|, is an innermost redex. Let R be a TRS. For any
symbol f let Rules(R, f) be the set of rules I — r defining f and such that the
left-hand sides [ are argument normalized. For any term ¢ the set of usable rules
U(R,t) is as follows:



(R, x) %)
(R, f(t1,...,tn)) = Rules(R,f)u U UR, t;)U U U(R/,r)
i€ar(f) i—reRules(r,f)

ca

where R'= R — Rules(R, f).

2.6 (Innermost) Context-Sensitive Rewriting

A mapping p : F — p(N) is a replacement map (or F-map) if Vf € F, u(f) C
{1,...;ar(f)} [Luc9g]. Let Mz be the set of all F-maps (or Mg for the F-
maps of a TRS (F,R)). Let ut be the replacement map given by pt(f) =
{1,...,ar(f)} for all f € F (i.e., no replacement restrictions are specified).

A binary relation R on terms is g-monotonic if whenever ¢ R s we have that
ft1,o o ticn, by te) R f(t1, ..o tim1, 8,y tg) for all f € F, i € u(f), and
t,s,t1,...,tx € T(F,X). If Ris ur-monotonic, we just say that R is monotonic.

The set of u-replacing positions Pos"(t) of t € T(F,X) is: Pos”(t) = {A},
if t € X and Pos"(t) = {A} UU,cpiroor(r)) t-Pos” (t]i), if t ¢ X. When no
replacement map is made explicit, the p-replacing positions are often called
active; and the non-pu-replacing ones are often called frozen. The following
result about CSR is often used without any explicit mention.

Proposition 1 [Luc98] Let t € T(F,X) and p = q.¢ € Pos(t). Then p €
Post(t) iff ¢ € Pos"(t) N q' € Pos"(t|y)

The p-replacing subterm relation &>, is given by ¢, s if there is p € Pos” (t)
such that s = t|,. We write t >, s if £, s and t # s. We write t >/ s to
denote that s is a non-u-replacing (hence strict) subterm of ¢: ¢ > s if there is
p € Pos(t)—"Pos"(t) such that s = t|,. The set of p-replacing variables of a term
t, i.e., variables occurring at some p-replacing position in ¢, is Var#(t) = {x €
Var(t) | t&,x}. The set of non-p-replacing variables of ¢, i.e., variables occurring
at some non-p-replacing position in ¢, is Varf(t) = {x € Var(t) | t >y x}. Note
that Var#(t) and Varf(t) do not need to be disjoint.

A pair (R, u) where R is a TRS and u € My is often called a CS-TRS. In
context-sensitive rewriting, we (only) contract u-replacing redexes: t p-rewrites
to s, written t <, s (or t <»g_, s and even t < s), if t B s and p € Pos(t).

Example 3 Consider R and p as in Example 1. Then, we have:
from(0) <, cons(0, from(s(0)) #, cons(0, cons(s(0), from(s(s(0)))

Since the second argument of cons is mot p-replacing, we have that
2 ¢ Pos"(cons(0, from(s(0))), and the redex from(s(0)) cannot be p-rewritten.

A term t is u-terminating (or (R, u)-terminating, if we want an explicit reference
to the involved TRS R) if there is no infinite p-rewrite sequence t = t; —,
to <, -+ =ty <, -+ starting from . A TRS R is py-terminating if —, is
terminating.



A p-normal form is a term which cannot be p-rewritten. Let NF,(R) (or
just NF, if no confusion arises) be the set of y-normal forms of a TRS R.

A substitution o is p-normalized if o(x) is a p-normal form for all = €
Dom(c). A term t = f(ty1,...,t) is argument p-normalized if ¢; is a p-normal
form for all i € pu(f). A p-innermost redex is an argument p-normalized redex,
ie., t = o(l) for some substitution ¢ and rule I — r € R and for all p €
Pos”(t — A), t|, € NF,. A term s innermost p-rewrites to ¢, written s —; ¢, if

s g t, p € Pos”(s), and s|, is a p-innermost redex. Let innermost p-rewriting

below the root be LAN = (LA> N ;). Termination of CSR is fully captured by

the so-called p-reduction orderings, i.e., well-founded, stable orderings 3 which
are y-monotonic. A TRS R is innermost p-terminating if <, ; is terminating.

!
We write s g it if s =% ,;tand t € NF,.
A term t p-narrows to a term s (written t ~»x , ¢ ), if there is a nonvariable
p-replacing position p € Pos'z(t) and a rule | — r in R (sharing no variable
with t) such that ¢|, and [ unify with most general unifier § and s = 0(¢[r],).

3 Minimal innermost non-u-terminating terms
and Infinite Innermost py-rewrite Sequences

In the following, we show how to adapt our results about the structure of in-
finite context-sensitive rewrite sequences [AGL10, Section 3] to the innermost
sequences. Most proofs are only slightly different from the original ones and
therefore we comment on the differences only (for full proofs see [Ala08]). Major
differences come from particularities of reductions under an innermost strategy.
In some cases, they bring us some advantages over the case of ‘free’ reductions in
CSR. In the following we discuss some of these peculiarities. In the innermost
(context-sentive) setting, matching substitutions are always (u-)normalized. Ac-
cording to the discussion in [AGL10], we introduce the following:

Definition 1 ((Strongly) minimal innermost non-y-terminating term)
Let Mo pui be the set of minimal innermost non-p-terminating terms in the fol-
lowing sense: t belongs to Mo ;i if t is not innermost p-terminating and every
strict p-replacing subterm s of t (i.e., t >, s) is innermost u-terminating. Let
Too i be a set of strongly minimal innermost non-p-terminating terms in the
following sense: t belongs to To ;i if t is innermost non-p-terminating and ev-
ery strict subterm u (i.e., t > u) is innermost p-terminating. It is obvious that
root(t) € D for allt € Too i o1t € Moo )i

Note that 7o ;i € Moo, u,i- Before starting our discussion about minimal in-
nermost non-y-terminating terms, we provide auxiliary results about innermost
p-terminating terms (see [AGL10, Lemmata 1,2,3,4]).

Proposition 2 Let R = (F,R) be a TRS, p € Mg, and s,t € T(F,X).

1. If s is innermost u-terminating and s>t or s SR b thent is innermost
p-terminating.



2. If s is not innermost p-terminating, then there is a subtermt of s (s>t)
such that t € Ty ;. Furthermore, there is a p-replacing subterm t of s
(s>, t) such that t € Moo pu.i.

>
3. Ift € Moopi, t —{ u and u is not innermost u-terminating, then u €

Moowi'

The following result is the innermost context-sensitive version of Lemma 1
in [HMO04] that uses previous results. This proposition establishes that, given a
minimal not innermost y-terminating term ¢t € M, ;. i, there are only two ways
for an infinite innermost u-rewrite sequence to proceed. The first one is by using
‘visible’ parts of the rules which correspond to p-replacing nonvariable subterms
in the right-hand sides which are rooted by a defined symbol. This would
corresponds with the straightforward extension of the original result but taking
into account the reemplacement restrictions. The second one is by showing up
‘hidden’ not innermost p-terminating subterms which are activated by migrating
variables in a rule I — r, i.e., variables x € Var*(r) \ Var#(l) which are not
p-replacing in the left-hand side [ but become p-replacing in the right-hand side
T

Proposition 3 Let R = (F,R) = (CWD,R) be a TRS and p € Mz. Then for
allt € Moo i, there existl — r € R, a substitution o such that o(l) is argument

>A A
p-normalized and a term w € My i such that t — o(l) =i o(r) >, u and
either

1. there is a nonvariable pi-replacing subterm s of v, r>,s, such that u = o(s)
and o(x) € NF,(R) for all x € Var(s) N Vart(l), or

2. there is x € Var*(r) \ Var*(l) such that o(x) >, u, that is, o(x) = Clul,
for some context C[|, with p € Pos*(C]],).

PROOF.

Consider an infinite innermost p-rewrite sequence starting from ¢. By defini-
tion of M ,,.i, all proper p-replacing subterms of ¢ are innermost y-terminating.
Therefore, ¢ has an inner reduction (of innermost p-rewriting steps) to an in-
stance o(l) of the left-hand side of a rule I — r of R, such that no strict
p-replacing subterm of o (1) is a redex, i.e. o(l) is argument p-normalized. Then

we have ¢ c:\f o(l) (ﬁn o(r) and o(r) is not innermost p-terminating. Note
that, o(l) must be argument p-normalized; otherwise, the last step would not
be an innermost p-rewriting step. Thus, we can write t = f(¢1,...,t) and
o(l) = f(l1,...,1) for some k-ary defined symbol f, and ¢; < o(l;) for all 1,

1 <4 < k. More precisely, t; c!—n o(l;) it ¢ € p(f) Since o(l) is argument -
normalized, o(z) € NF, for all y-replacing variables z in {: « € Var#(l). Since
o(r) is not innermost p-terminating, by Proposition 2-2 it contains a p-replacing
subterm u € My it o(r) >, u, ie., there is a position p € Pos"(o(r)) such
that o(r)|, = u. We consider two cases:

10



1. If p € Posx(r) is a nonvariable position of r, then there is a u-replacing
subterm s of r, such that u = o(s). Note that o(z) € NF, for all z €
Var(r) \ Vart(l).

2. If p & Posx(r), then there is a u-replacing variable position ¢ € Pos" (r)N
Posx(r) such that ¢ < p. Let & € Var#(r) be such that r|; = . Then,
o(z) >, u and o(x) is not innermost p-terminating (by assumption, u €
Mo i is not innermost p-terminating: by Proposition 2-1, o(z) cannot
be innermost p-terminating either). Since o(I;) is innermost p-terminating
for all i € u(f), and o(x) € NF, for all p-replacing variables in [ , we
conclude that x € Var#(r) \ Var*(l).

O

Proposition 3 entails the following result, which establishes some properties of
infinite sequences starting from minimal innermost non-u-terminating terms.

Corollary 1 Let R = (F,R) be a TRS and p € Mz. For allt € M ., there
s an infinite sequence

>A A >A A >A
t—i o1(l1) =jo1(r1) By t1 7 02(la) —ioa(re) B, tog— -

where, for alli > 1, 1; — r; € R are rewrite rules, o; are substitutions, o;(l;) is
argument p-normalized, and terms t; € Moo i are minimal innermost non-yi-
terminating terms such that either

1. t; = 0i(s;) for some nonvariable subterm s; such that r; >, s; and o(x) €
NF,(R) for all x € Var(s;) N Vart(l;), or

2. 0i(x;) >, t; which is equivalent to o(x) = Ct;]p, for some x; € Vart (r;) \
Vart(l;) and context C[),, with p; € Pos*(C[lp,).

Now we pay attention to Item 2 of Proposition 3. To analyze in deep infinite
sequences starting from minimal innermost non-u-terminating terms we need
to go inside the instantiation of the migrating variable, o(z). Since in (inner-
most) context-sensitive rewriting, function calls can be delayed, terms that are
(innermost) p-terminating can generate future (innermost) non-p-terminating
subterms. By Lemma 2 we know that innermost p-termination is preserved
under p-rewritings and extraction of u-replacing subterms, therefore, these in-
nermost non-u-terminating subterms introduced by innermost p-rewriting steps
can only occur at frozen positions in the reducts. This is captured by the notion
of hidden term.

Definition 2 (Hidden Term [AGL10]) Let R = (F,R) be a TRS and p €
Myg. We say thatt € T(F,X)— X is a hidden term if there is a rulel — r € R
such that ri>t. Let HT (R, ) (or just HT , if R and p are clear for the context)
be the set of all hidden terms in (R, u). We say that f € F is a hidden symbol
if it occurs in a hidden term. Let H(R,u) (or just H) be the set of all hidden
symbols in (R,u). We also use DHT (R, 1) = {t € HT | root(t) € D} for the
set of hidden terms which are rooted by a defined symbol.

11



Example 4 For R and u as in Ezample 1, the hidden terms are from(s(x)),
s(z), and zWquot(zs,ys). The hidden symbols are from, s and zWquot. Finally,
DHT (R, 1) = {from(s(z)), zWquot(zs,ys)}.

Innermost non-u-terminating terms at frozen positions can be activated by
some specific contexts. In Proposition 3 (2), the intended role of hidden terms
in the binding of the migrating variable o(z) = C[u], is that «’ is a hidden term
such that 6(u") = u for some substitution 6 and context C[],. This context can
only be composed by symbols f contained in hidden terms f(...,r;,...) such
that 7/ >y f(...,riy...) B for arule I’ — 1’ € R satisfying:

e 7; is a nonvariable term and o(r;) = u, or
e 71, is a variable at a frozen position in both, [ and r.

These symbols conforms what is called as hiding context.

First notion of hiding context was found in [AEF+08] but it has been recently
slightly redefined in [GL10]. We follow the last definition since it present some
advantages.

Definition 3 (Hiding Context [GL10]) Let R be a TRS and p € Mgr. A
function symbol f hides position i € u(f) in the rule I — r € R if r >
f(r1,...,rn) for some terms ri,...,ry,, and r; contains a p-replacing definéd
symbol (i.e., Posk(r;) # @) or a variable x € (Var/ (1) N Varf(r)) \ (Vart(l) U
Vart(r)) which is p-replacing in r; (i.e., x € Vart(r;)). We say that f hides
position © in R if there is a rule | — r such that f hides position i inl —r. A
context C[O] is hiding if

1. C[O)=0, or

2. CIO] = f(t1,...,ti—1,C'[0O), tix1, ..., tg), where [ hides position i and
C’'[0] is a hiding context.

These notions are used and combined to model infinite context-sensitive
rewrite sequences starting from strongly minimal innermost non-pu-terminating,
although, first, we need some previous results.

Definition 4 (Hiding Property [AEF+08]) A term u has the hiding prop-
erty iff

o u € My, and

o whenever u> s>, t' for some terms s and t" with t' € M ., then t' is
an instance of a hidden term and s = C[t'] for some hiding context C].

Lemma 1 ([AEF+-08]) Letu be a term with the hiding property and let u —g
v, w with w € Ma ui- Then w also has the hiding property.

12



The proof of the previous lemma differs from the one in [AEF+408] in the
refinement done in the notion of hiding context mentioned in [GL10] and it is
slightly different from the one in [GL10] since we are dealing with innermost
rewriting and all p-replacing variables of the instantiated left-hand sides of the
rules applied in a innermost p-rewrite sequence are in g-normal form: no matter
if they are in a nonactive position on the right-hand side, they cannot start any
reduction. In [GL10] it is not necessary either since in a p-rewrite sequence,
these variables could start a reduction but due to minimality, these reductions
would be finite.

In the following, we consider a function REN* [AGL06, AGL10] which in-
dependently renames all occurrences of p-replacing variables within a term t by
using new fresh variables which are not in Var(t). Note that REN*(¢) keeps
variables at non-u-replacing positions untouched.

Proposition 4 ([AGL10]) Let R = (F,R) = (CWD,R) be a TRS and p €
Myr. Lett € T(F,X)— X be a nonvariable term and o be a substitution. If

>A
o(t)—Fo(l) for some (probably renamed) rule | — r € R, then REN(t) is
w-narrowable.

Corollary 2 (JAGL10]) Let R = (F,R) be a TRS and p € Mr. Lett €
T(F,X) — X be a nonvariable term and o be a substitution such that o(t) €
Moo i Then, REN"(t) is p-narrowable.

In the following, we write NARR" (¢) [AGL10] to indicate that ¢ is p-narrowable
(w.r.t. the intended TRS R). We also let

NHT(R,p) = {t € DHT | NARR"(REN"(£))}

be the set of hidden terms which are rooted by a defined symbol, and that, after
applying REN*, become p-narrowable.
As a consequence of the previous results, we have the following main result.

Theorem 1 (Minimal Innermost Sequence) LetR be a TRS and u € My.
For all t € Ty i, there is an infinite sequence

>A A >A A >A
t=1ty— 01(lh) =io1(r1) By t1 =] 02(l) =i oa(re) B, to— -

where, for alli > 1, l; — r; € R, 0; is a substitution, o;(l;) is argument
p-normalized, and t; € Moo i 15 @ minimal innermost non-p-terminating term
such that either

1. t; = 04(s;) for some nonvariable term s; such that r; >, s;, or

2. Ui<xi)

= 6;(Ci[t]])) and t; = 0,(t)) for some variable x; € Vart(r;) \
Vart(l;), )

€ NHT (R, ), hiding context C;[0], and substitution 6;.

13



PRrROOF.
Since oo i © Moo, i, by Corollary 1, we have a sequence

>A* A >A* A s *
t=1ty— 01(lh) =io1(r1) By t1 =] 02(la) =i oa(re) B, to— -

where, for all i > 1, [; — r; € R, 0; is a substitution such that o(l;) is argument
p-normalized, t; € My i, and either (1) ¢t; = o4(s;) for some s; such that
ri>,8; or (2) o;(x;) >, t; for some x; € Var*(r;)\Vart(l;) (and hence o(l;) > /t;
and o(r;) >, t; as well). If o;(x;) >, t; for some x; € Vart(r;) \ Var*(l;), it
means that o(l;) >, C;[t;]. Since t € T 4, it has the hiding property and,
by Lemma 1, all O'&i) satisfies the hiding property. Hence, C;[t;] = 6;(Ci[tl])
where t; € DHT (R, ) and C![] is a hiding context. By Corollary 2 we have
t, e NHT. O

4 Innermost Context-Sensitive Dependency Pairs
and Chains

An essential property of the dependency pairs method is that it provides a
characterization of termination of TRSs R as the absence of infinite (minimal)
chains of dependency pairs [AG00, GTSF06]. As we prove here this is also true
for innermost CSR. First, we have to introduce a suitable notion of innermost
dependency pair and chain which can be used for this purpose.

In innermost CSR, we only perform reduction steps on innermost p-replacing
redexes. Therefore, we have to restrict the definition of chains in order to obtain
an appropriate notion corresponding to innermost CSR, which, obviously, is an
adaptation of the one for standard CSR(see [AGL10]). Regarding innermost
reductions, arguments of a redex should be in normal form before the redex
is contracted and, regarding CSR, the redex to be contracted has to be in a
w-replacing position.

Given a signature F and f € F, we let f* be a new fresh symbol (often called
tuple symbol or DP-symbol) associated to a symbol f [AG00]. Let F* be the set
of tuple symbols associated to symbols in F. As usual, for ¢t = f(t1,...,t;) €
T(F,X), we write t* to denote the marked term f*(t,,...,t;). Conversely, given
a marked term t = f¥(ty,...,t3), where t1,...,tp € T(F,X), we write t7 to
denote the term f(t1,...,tx) € T(F, X). Let TH(F, X) = {t* |t € T(F, X)-X}
be the set of marked terms.

Definition 5 (Innermost Context-Sensitive Dependency Pairs) LetR =
(F,R) = (CWD,R) be a TRS and p € Mxr. We define iDP(R, u) = iDP£(R, 1)U
iDPx (R, 1) to be the set of innermost context-sensitive dependency pairs (ICS-
DPs) where:
iDP = (R, )
iDPx (R, )
We extend 1 € Mg into u* € My ps by uf(f) = u(f) if f € F, and pf(f*) =
u(f) if f €D.

{I* = s* |1 —r¢€R,I* €NFL(R), 7>, s,Toot(s) € D,l P, s, NARR* (RENH (5))}
{I* -z |l—r¢€R,I* €NFL(R),z € Var(r)\ Var’ ()}
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Example 5 Consider Ezample 1. The set iDP(R, u) consists of the following
pairs:

MINUS(s(x),s(y)) — MINUS(z,y) (1)
QUOT(s(z),s(y)) — MINUS(z,y) (2)

QUOT(s(x),5(y)) — QUOT(mimus(z,),5(x))  (3)

SEL(s(y), cons(z,xs)) — SEL(y,xs) (4)

SEL(s(y), cons(z,zs)) — xs (5)
ZWQUOT(cons(z, xs), cons(y,ys)) — QUOT(z,y) (6)

The ICSDPs u — v € iDPx(R,u) in Definition 5, consisting of collapsing
rules only, are called the collapsing ICSDPs. A rule [l — r of a TRS R is p-
conservative if Var#(r) C Var#(l), i.e., it does not contain migrating variables;
R is p-conservative if all its rules are (see [Luc96, Luc06]).

Clearly, If R is p-conservative, then iDP(R, u) = iDPx(R, u).

Therefore, in order to deal with p-conservative TRSs R we only need to
consider the ‘classical’ dependency pairs in iDP£(R, u). If the TRS R contains
non-p-conservative rules, then we also need to consider dependency pairs with
variables in the right-hand side.

To deal with the information corresponding to hidden terms and hiding
contexts when trying to characterize innermost p-termination with ICSDPs, we
use an unhiding TRS unh(R,p). This unhiding TRS captures the situation
described in Theorem 1 when managing migrating variables. According to this,
we have to remove the (instance of the) hiding context C;[] to extract the delayed
call ¢; and then connect this delayed call, which is an instance 0(t}) of a hidden
term ¢, with the next pair in the innermost p-chain. We perform these two
actions by using two kind of rewrite rules:

o IfO(Cilth) = 0(f(t1,. .. tim1, CL[th], tit1, - - -, Tr)) then, since C;]] is a hid-
ing context, f hides position ¢ and C/[] is a hiding context as well. Then,
we can extract 0(C![ti]) from 0(C;[t}]) by using the following projection
rule: f(T1, ..., Ti1, T, Tit1, .-+, Th) — X5

e Once t; has been reached, we know that it is an instance t; = 6(t}) of a
nonvariable hidden term ¢, € N’HT (R, 1) and we have to connect ¢; with
the next innermost context-sensitive dependency pair. Since the root of
the innermost context-sensitive dependency pair is a marked symbol, we
can do it by using a rule that just changes the root symbol by its marked
version in the following way: ¢, — t;u

Definition 6 (Unhiding TRS [GL10]) Let R be a TRS and p € Mg. We
define unh(R, 1) as the TRS consisting of the following rules:

1. f(xy,.. . 24 ... x) — m; for all function symbols f of arity k, distinct
variables x1, . ..,x, and 1 < i < k such that f hides position i inl — r €
R, and
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2.t — t¥ for everyt € NHT (R, p).
Example 6 The unhiding TRS unh(R, ) for R and p in Ezample 1 is:

from(z) — FROM(z)
zWquot(x,y) — ZWQUOT(z,y)
zWquot(z,y) — «
zZWquot(z,y) —

Definitions 5 and 6 lead to a suitable notion of chain which captures minimal
infinite p-rewrite sequences according to the description in Theorem 1. In the
following, given a TRS S, we let S, be the rules from S of the foom s —t € S
and s>, t (Definition 6-1); and S; = S\ Sy, (Definition 6-2).

As in the DP-framework [GTS04, GTSF06], where the procedence of pairs
does not matter, we rather think of another TRS P which is used together with
R to build the chains. Once this more abstract notion of chain is introduced, it
can be particularized to be used with ICSDPs, by just taking P = iDP(R, u).

Definition 7 ((Minimal) Innermost p-Chain) Let R, P and S be TRSs
and p € Mgrupus. An innermost (P, R,S, p,1)-chain is a finite or infinite
sequence of pairs u; — v; € P, together with a substitution o satisfying that, for
alli>1, o(u;) € NF,(R) and :

1. if v; & Var(u;) \ Var*(u;), then o(v;) = t; ‘L’R,u,i o(uit1), and

. A A !
2. if v; € Var(u;)\Vart(u;), then o(v;) <—>i§>w“ 0 =5, ti =R i 0(Uit1).

An innermost (P, R, S, u,1)-chain is called minimal if for all i > 1, t; is inner-
most (R, j)-terminating.

Note that the condition v; € Var(u;) \ Var*(u;) in Definition 8 implies that
v; is a variable. Furthermore, since each u; — v; € P is a rewrite rule (i.e.,
Var(v;) C Var(u;)), v; is a migrating variable in the rule u; — v;.

In the following, the pairs in a CS-TRS (P, i), where P = (G, P), are parti-
tioned according to its role in Definition 8 as follows:

Py ={u—wveP|veVar(u)\Var*(u)} and Pg = P — Py

Despite this fact, we refer to Py as the set of collapsing pairs in P because
its intended role in Definition 8 is capturing the computational behavior of
collapsing ICSDPs in iDPx (R, u).

The following result establishes the soundness of the innermost context-
sensitive dependency pair approach. As usual, in order to fit the requirement of
variable-disjointness among two arbitrary pairs in a chain of pairs, we assume
that appropriately renamed ICSDPs are available when necessary.

Theorem 2 (Soundness) Let R be a TRS and p € My. If there is no infinite
minimal innermost (iDP(R, 1), R,unh(R, 1), u¥,1)-chain, then R is innermost
p-terminating.
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PROOF.

By contradiction. If R is not innermost p-terminating, then by Proposi-
tion 2 (2) there is t € T ;. By Theorem 1, there are rules [; — r; € R,
matching substitutions o;, such that o;(l;) is argument p-normalized and terms
t; € Moo i, for i > 1 such that

>A >A >A

t=to— 01(lh) =io1(r1) By t1 =] 02(la) =i oa(r2) B, to— -

where either (D1) ¢; = 04(s;) for some s; such that 7>, s; or (D2) o;(x;) = C;[t;]
for some z; € Var#(r;) \ Var*(¢;) and C;[t;] = 0;(CI[t}]) for some t, € NHT
A

and hiding context C/[0]. Furthermore, since ¢;_; ;i*ai(li) and t;_1 € Moo i
(in particular, tg =t € Too,ui © Moo, i), by Proposition 2 (3), 0;(li) € Moo i
for all # > 1. Note that, since t; € M i, we have that t? is innermost u-
terminating (with respect to R), because all p-replacing subterms of ¢; (hence
of t? as well) are innermost u-terminating and root(t*) is not a defined symbol
of R.

First, note that iDP(R, 11) is a TRS P over the signature G = FUD* and uf €
Mxzyg as required by Definition 8. Furthermore, Pg = iDP#(R, ) and Px =
iDPx (R, ). We can define an infinite minimal innermost
(iDP(R, 1), R,unh(R, ), if,i)-chain using ICSDPs u; — v; for i > 1, where
U = lg, and

1. v; = sg if (D1) holds. Since t; € Mq i, we have that root(s;) € D and,
because t; = 04(s;) and 0;(s;) = 0441(i41), by Corollary 2 REN"(s;) is
p-narrowable. Furthermore, if we assume that s; is a p-replacing subterm
of [; (i.e., l; B>y 51'), then O'z(ll) B>y 01(51) which (since Ui(si) =1; € Moo,/t,i)
contradicts that o;(l;) € Moo pui. Thus, I; f,s;. Moreover, since o;(l;)
is argument p-normalized, it implies that O’i(lg) also, which means that
Ui(lf) € NF,(R) (since mot(lg) is not a defined symbol of R) and trivially
also is lf. Hence, u; — v; € iDP£(R, ). Furthermore, by minimality, tf =

>A
0;(v;) is innermost p-terminating. Finally, since ¢; = 0;(s;)—7 0441 (lit1)
and p* extends p to F U D! by pf(f*) = u(f) for all f € D, we also have

that o;(vi) = 0i(s?) =g i oir1(uiga),

2. v; = x; if (D2) holds. Again, since o;(l;) is argument p-normalized, it
implies that o;(1%) also, which means that o; (%) € NF,(R) (since root(1%)
is not a defined symbol of R) and trivially also is lf. Clearly, u; —
v; € iDPx(R,u). As discussed above, tg is innermost p-terminating by
minimality. Since o;(z;) = C;[t;], we have that o;(v;) = C;[t;]. By the
hiding property, we know that C;[] is an instance of hiding context C![],

then we have that 6;(C!)[t;] <i>f9> ., ti- And we also know that #; is an
wo

instance 6;(t;) of a hidden term t; € NHT (R, u). Thus ¢, — t# € & and
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A >A
we have 0(t]) —s,,u Q(t;ﬁ). Finally, since ¢; =< 0,11 (li+1), again we have

!
that ¢! g i oig1(Uir1).

Regarding o, w.l.o.g. we can assume that Var(l;) N Var(l;) = @ for all i # j,
and therefore Var(u;) N Var(u;) = @ as well. Then, o is given by o(z) = o;(x)
whenever & € Var(u;) for i > 1. From the discussion in points (1) and (2) above,
we conclude that the ICSDPs u; — wv; for i > 1 together with o define an infinite
minimal innermost (iDP(R, 1), R,unh(R, 1), u¥,i)-chain which contradicts our
initial assumption. O

Now we prove that the use of ICSDPs is not only correct but also complete
for proving innermost termination of CSR.

Theorem 3 (Completeness) Let R be a TRS and p € M. If R is inner-
most  p-terminating, then there is no infinite minimal innermost

(iDP(R, 1), R,unh(R, ), i, i)-chain.

PROOF.

By contradiction. If there is an infinite minimal innermost
(iDP(R, 1), R,unh(R, 1), *,i)-chain, then there is a substitution ¢ and depen-
dency pairs u; — v; € iDP(R, p) such that o(u;) € NF,(R) and

1

L. o(vi) =g e 0(uitr), if uy — v; € iIDP£(R, p), and

. . A A
2. if u; — v; = u; — x; € IDPx(R,pn), then o(v;) f—>"§>w# 0 S8

!
ti SR 0(Uit1).
for 4 > 1. Now, consider the first dependency pair u; — wv; in the sequence:

1. If uy — vy € iDP£(R, i), then v? is a p-replacing subterm of the right-
hand-side r; of a rule l; — 7 in R. Therefore, ry = C} [v?]pl for some
p1 € Pos"(r1) and, since o(u;) € NF,(R), we can perform the innermost
p-rewriting step s; = a(ui) SR o0(r) = J(Cl)[a(vi)]pl = t1, where
U(vf)ﬁ = o(v1) ‘—!’R,m,i o(uz) and o(uz) also initiates an infinite minimal
innermost (iDP(R, 11), R, unh(R, 1), ¥, 1)-chain. Note that p; € Pos”(t1).

2. If uy —» 1 € iDPyx(R,u), then there is a rule iy — 71 in R such that
u; = lﬁ, and z1 € Vart(r) \ Var*(ly), ie., r1 = Ci[x1]q for some
q1 € Pos”(r1). Furthermore, if o(vi) = o(z1) = Ci[t1] ‘ng#‘ t1
this means that C1[0] is an instance of a hiding context C1[0], C1[0] =

A
01(C1)[O]. Furthermore, t; is p-replacing in C1[t1]. If t1 —s, 4 tﬁ means
that t; = 61 (¢}) for some | € DHT, then since o(u1) = o(l1)* € NF,(R),
we can perform the innermost p-rewriting step s1 = o(l1) —g 4 o(r) =

a(Cy)[Cy [tl]pll]QI = s1 where t'i ;!)R,u”,i o(uz) (hence t; L)i ug) and o (ug)
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initiates an infinite minimal innermost (iDP(R, 1), R, unh(R, ), u¥, i)-chain.
Note that p1 = ¢1.p] € Pos"(s1) where p] is the position of the hole in
CI[D]p’l'

!
Since pf(f*) = u(f), and p1 € Pos*(s1), we have that t; g i salo(u2)]p, = s2
and p; € Pos”(s2). Therefore, we can build in that way an infinite innermost
p-rewrite sequence

!
51 DR 1 2Rl S2 DR

which contradicts the innermost u-termination of R.

As a corollary of Theorems 2 and 3, we have.

Corollary 3 (Characterization of innermost p-termination) Let R be a
TRS and p € Mg. Then, R is innermost p-terminating if and only if there is no
infinite minimal innermost
(iDP(R, 1), R,unh(R, i), u*,1)-chain.

Example 7 Consider the following TRS R:

b

f(c(z),x)
together with p(f) = {1,2} and u(c) = @. There is only one ICSDP:

(b)

f(z, )

—
—

F(c(z),z) — F(x,x)

Since pi*(F) = {1,2}, if a substitution o satisfies o(F(c(z),x)) € NF,(R), then
o(x) = s is in p-normal form. Assume that the dependency pair is part of an
innermost p-chain. Since there is no way to p-rewrite F(s,s), there must be
F(s,s) = F(c(t),t) for some term t, which means that s =t and c(t) = s, i.e.,
t = c(t) which is not possible. Thus, there is no infinite innermost chain of
ICSDPs for R, which is proved innermost terminating by Theorem 2.

Of course, ad-hoc reasonings like in Example 7 do not lead to automation. In
following sections we discuss how to prove termination of innermost CSR by
giving constraints on terms that can be solved by using standard methods.

5 Mechanizing Proofs of Innermost y-termination

Regarding termination proofs, the central notion in the Dependency Pair Frame-
work [GTS04, GTSF06, Thi07] is that of DP-termination problem: given a TRS
R and a set of pairs P, the goal is checking the absence (or presence) of infinite
(minimal) chains. Termination of a TRS R is addressed as a DP-termination
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problem where P = DP(R). The most important notion regarding mechaniza-
tion of the proofs is that of processor. A (correct) processor basically transforms
DP-termination problems into (hopefully) simpler ones, in such a way that the
existence of an infinite chain in the original DP-termination problem implies
the existence of an infinite chain in the transformed one. Here ‘simpler’ usu-
ally means that fewer pairs are involved. Often, processors are not only correct
but also complete, i.e., there is an infinite minimal chain in the original DP-
termination problem if and only if there is an infinite minimal chain in the
transformed problem. This is essential if we are interested in disproving termi-
nation.

In [AEF+08, AGL10, GL10], we have developed a CSDP framework for
CSR. In this chapter, we extend the CSDP framework developed in [GL10] to
innermost CSR. First, we recall the definition of chain for standard CSR.

Definition 8 ((Minimal) p-Chain of Pairs [GL10]) LetR, P and S be TRSs
and i € Mrupus. A (P, R, S, u,t)-chain is a finite or infinite sequence of pairs
u; — v; € P, together with a substitution o satisfying that, for all v > 1,

1. if vi & Var(u;) \ Var*(u;), then o(v;) = t; =% , o(uiy1), and

A
2. if v; € Var(u;) \ Vart(u;), then o(v;) Agm,u 0 s, ti R 0(Uit1).
A (P,R,S, u,t)-chain is called minimal if for alli > 1, t; is (R, u)-terminating.

Definition 9 (CS Problem) A CS problem 7 is a tuple 7 = (P, R,S, pu,€),
where R, P and S are TRSs, and u € Mryupus and e € {t,i} is a flag that
stands for termination or innermost termination of CSR. The CS problem
(P,R,S, u,e) is finite if there is no infinite minimal (P, R, S, u,€)-chain. The
CS problem (P,R,S,pu,e) is infinite if R is non-u-terminating (for e = t)
or innermost non-u-terminating (for e = i) or there is an infinite minimal
(P,R,S, p,e)-chain.

Definition 10 (CS Processor) A CS processor Proc is a mapping from CS
problems into sets of CS problems. Alternatively, it can also return “no”. A CS
processor Proc is

e sound if for all CS problems 7, T is finite whenever Proc(t) # no and
V7' € Proc(r), 7' is finite.

e complete if for all CS problems T, 7 is infinite whenever Proc(t) = no or
37’ € Proc(T) such that 7' is infinite.

Now we have the following result which extends the framework in [GL10] to
innermost CSR.

Theorem 4 (CSDP Framework) Let R be a TRS and p € Mg. We con-
struct a tree whose nodes are labeled with CS problems or “yes” or “no”, and
whose root is labeled with (P, R,unh(R, 1), u,e), where P = DP(R, i) ife =t
and P = iDP(R,u) if e = i. For every inner node labeled with T, there is a
sound processor Proc satisfying one of the following conditions:
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1. Proc(7) = no and the node has just one child, labeled with “no”.
2. Proc(1) = & and the node has just one child, labeled with “yes”.

3. Proc(T) # no, Proc(7) # @, and the children of the node are labeled with
the CS problems in Proc(T).

If all leaves of the tree are labeled with “yes”, then R is innermost u-terminating.
Otherwise, if there is a leaf labeled with “no” and if all processors used on
the path from the root to this leaf are complete, then R is not innermost -
terminating.

In following sections we describe a number of sound and (most of them)
complete CS-processors for proving termination of innermost CSR. First, we
formalize some basic processors.

6 CS Basic Processors for Innermost Termina-

tion of CSR

In standard rewriting, Gramlich, showed that termination and innermost ter-
mination coincide for locally confluent overlay TRSs R[Gra95, Theorem 3.23].
Thus, his result allows us to prove termination of such TRSs Rby proving in-
nermost termination of R. Although local confluence is undecidable, every
nonoverlapping rewrite system is also a locally confluent overlay system, there-
fore, this approximation is commonly adopted. However, for context-sensitive
rewriting this is not enough. This fact was noticed by Lucas in a personal
communication showing the following example:

Example 8 Consider the following TRS R:

flx,z) — b
f(z,9(x)) — f(z,7)
— glo)

together with p(f) = {1,2} and u(g) = @. This system is nonoverlapping and
innermost p-terminating, but not p-terminating since £(c, c) —,, £(c,g(c)) —,
f(C, C) (_):U' e

Later, in [GL02b, GMO02b] it is proved that the equivalence between termination
of innermost CSR and termination of CSR holds in some interesting cases.
Thanks to this, the following result was formulated:

Theorem 5 [GM02b] Let R = (£, R) be an orthogonal TRS and pn € Mx. R
is p-terminating if and only if it is innermost p-terminating.

A similar result can be found in [GL02b]. First, we need the following definition:

21



Definition 11 [Luc98, Definition 5] Let R = (X, R) be a TRS and u € Mg.
R has left-homogeneous replacing variables (LHRV for short) if, for every p-
replacing variable x in the left-hand side | of a rule | — r € R, all occurrences
of x are replacing in both, I and r.

Theorem 6 [GL02b, Theorem 7] Let R = (X, R) be a TRS and yn € My be such
that R is a locally confluent overlay system satisfying LHRV. If R is innermost
p-terminating, then it is also p-terminating.

So, whenever it is possible, we switch to innermost u-termination since proofs
are often easier due to the fact that when considering an innermost rewriting
step, we know that every possible subterm of our redex is in normal form with
respect to our rewriting relation. For instance, this is shown when estimating
the graph.

On the other hand, we have developed a huge amount of processors for
proving termination of CSR [AGL10, GL10] and it is also interesting to use
them in proofs of innermost termination of CSR.

Theorem 7 (Commuting Processors) Let = (P,R,S, u,i) be a CS prob-
lem such that

1. (RUPUS) is nonoverlapping and satisfies LHRV , or
2. (RUPUS) is orthogonal

Then, the processors Procy_; and Proci_ given by

P,R,S, 1)} if (1) or (2)
,R,S,u,t)}  otherwise

RS, t)}if (1) or (2)
R i)}

Proct—i(P,R,S, u,t) = { {

otherwise

(
(
Proci_¢(P, R, S, u,1) = { {E
are sound and Procy_; also complete.

ProOOF. Regarding soundness of Procy_.;, we proceed by contradiction. As-
sume that there is an infinite minimal (P, R,S, i, t)-chain A, but there is no
infinite minimal (P, R, S, i, 1)-chain. Due to the finiteness of P and S, we can
assume that there are subsets @ C P and 7 C S such that A has a tail B

TQg.m TQg.u

o(uy) A« A t] =R, ou2)§ | A« A ty SR
{ QQX#‘ o ——»TDM)M o _‘Tﬁ’“ I3 —>QX=PL o _—>TDM»/" o _‘Tuyﬂ- 13

for some substitution o, where all pairs in @ and all rules in 7 are infinitely
often used (note that, if 7 # @, then 73 # @ and Qx # @), and for all 4 > 1,
(a) if u; — v; € Qg, then t; = o(v;) and (b) if u; — v; = u; — x; € Qx, then

A A . .
o(u;) —gy © (_’*TDH,M o <, u t;. Moreover, all t; are (R, u)-terminating.

W.lo.g. we can assume that o(uy) is (R, p)-terminating.
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Proof of item (1) follows [GL0O2b] result for CSR and the details can be found
in the original paper for equivalence between innermost termination and termi-
nation of TRSs [Gra95]. Proof of item (2) follows the results in [GM02b] and
more precisely, the ones in [EmmO08] that adapt them to the CSDP framework
of [AEF+08]. For details about some statements in the following, we recall the
reader to the corresponding lemmas in these papers to simplify the proof. Both
shares the main idea of [Gra95] about using a transformation ® which (uniquely
since in both cases the system is nonoverlaping) p-normalizes all maximal sub-
terms of a given term with respect to R (therefore, top parts of the pairs are
untouched). Formally,

®,(t) = Clt1'L(rop)s -+ tn' L(ro )]

where t = Clty,...,t,] and ¢1,...,t, are innermost p-terminating subterms
at active positions. Clearly t —Z%  ; ®,(t). The main difference dealing with
context-sensitive rewriting arises in the synchronization within variable parts
since e.g. one occurrence of a variable x can be active while another can be
inactive. This is solved requiring linearity of left-hand sides (en the case of
condition (2)) or LHRV (in the case of condition (1)).

Let u} = ®,(0(u1)), therefore, u} is an innermost (R, u)-terminating in-
stance of u; and there exists a substitution o’ s.t.

! Qg
o(u1) =R uy = o' (u1) { A A }U/(tl)

*
QO Ty 1t © T

and o'(t1) = ®,(o(t1)) is innermost (R, pt)-terminating. Paying attention in
the part ¢; <% , o(uz), since by minimality, ¢; are (R, u)-terminating, all
contracted redexes in the sequence also will be. Therefore, we can reach the
point where o’(t1) —% ,; uj such that uy = ®,(c(u2)) and uj is innermost
(R, p)-terminating.

Since for all pair u; — v; asume variable disjoint, the new substitution can
be extended to o’(uz) = u). Reasoning in this way, the original infinite minimal
(P,R,S, u,t)-chain can be seen as:

T Qg.u
’ o' (t1) =R i us R 0 (u2)

Ul =R, 0 (ur) { Q. © ‘Lﬁ'wm o =T u
where ¢'(t;) is innermost (R, u)-terminating and ¢’(u;) € NF,(R) for all ¢ > 1.
Therefore we get an infinite minimal (P, R, S, u, i)-chain, leading to a contra-
diction.

Regarding completeness of Proct_.;, since if (P, R,S, u,1) is infinite, that
means that R is not innermost u-terminating and therefore R is not p-terminating
or there is an infinite minimal (P, R, S, p, 1)-chain and, since condition (1) or (2)
hold then the equivalence between innermost u-termination and p-termination
comes from Theorems 5 and 6 respectively and t; is (R, u)-terminating and
therefore there is also an infinite minimal (P, R, S, u, t)-chain. Therefore (P, R, S, u, t)
is infinite.
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We prove soundness of Proc;_.¢ by contradiction. Assume that there is an in-
finite minimal (P, R, S, p, 1)-chain but there is no infinite minimal (P, R, S, p1, t).
Since condition (1) or (2) hold, reasoning as above every minimal (P, R, S, u, 1)-
chain is also a minimal (P, R, S, u, t)-chain, therefore there is an infinite minimal
(P,R,S, u,t)-chain, leading to a contradiction.

O

Soundness of Proc;_4 needs to impose the requirements about equivalence
between innermost p-termination and p-termination since we are dealing with
minimal chains. Obviously, it is always possible to prove innermost u-termination
of a TRS by proving p-termination without taking into account any additional
condition but this cannot be done when managing minimality.

The following proposition establishes some important ‘basic’ cases of (ab-
sence of) infinite context-sensitive chains of pairs which are used later and with
slight differences were presented in [AGL10]. Note that in the innermost case
they also hold.

Proposition 5 Let R = (F,R) and P = (G, P) and S = (H,S) be TRSs and
€ Mrupus-

1. If P = @, then there is no (P,R,S, u,1)-chain.
2. If R = o, then there is no infinite (Px,R,S, u,i)-chain.

3. Let u — v € Pg be such that v' = 0(u) for some substitution 6 such that
6(u) € NF,(R) and renamed version v’ of v. Then, there is an infinite
innermost (P,R,S, u,1)-chain.

PROOF.

1. Trivial.

2. By contradiction. If there is an infinite (Px,R,S, i, 1)-chain, then, since
there is no rule in R, there is a substitution ¢ such that

o(uy) — G’(I)‘A)* s AS t1 = o(uz) — a'(x)A»* s AS
1 Pou 1 Spopy o 51 pon b1 2 Pou 2 Spoyon 52 g

For ¢ > 1, since x; € Var(u;) and w; is not a variable, we have u; &> x;,
hence o(u;) > o(z;) (by stability of ), and also o(u;) > s;. Since s; and
o(u;41) only differ in the root symbol, we can actually say that s; > s;41
for all ¢ > 1. Thus, we obtain an infinite sequence s; > s3 [> - -- which
contradicts the well-foundedness of .

3. Since we always deal with renamed versions u; — v; of the pairu — v € P,
for each x € Var(u), we write x; to denote the ‘name’ of the variable x
in u; — v;. According to our hypothesis, we can assume the existence of
substitutions 6; 1 such that v; = ;41 (u;41). Note that, for all z € Var(u)
and ¢ > 1, Var(0;4+1(ui+1)) € Var(v;) C Var(u;) and 6(u) € NF,(R) is
needed to deal only with innermost u-chains.
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We can define an infinite innermost ({u — v}, @, &, i, i)-chain (hence an
innermost (P, R,S, i,1)-chain) by using the renamed versions u; — v; of
u — v for ¢ > 1 together with o given (inductively) as follows: for all
z € Var(u), o(z1) = z1 and o(z;) = o(0;(z;)) for all i > 1. Note that
O’(’Ui) = J(0i+1(ui+1)) = O'(Ui+1) for all ¢ Z 1.

O

According to Proposition 5, for some specific CS problems it is easy to say
whether they are finite or not.

Theorem 8 (Basic Innermost CS Processors) Let R = (F,R), P = (G, P)

and S = (H,S) be TRSs and p € Mrupus-
Then, the processors Procry, and Procr,s given by

o (%] ifP=@V(R=@ANP="Px);and
Procrin (P, R, S, p, 1) = { {(P,R,S,pu,i)} otherwise

no if v = 0(u) and 6(u) € NF,(R)
Procps (P, R, S, p, 1) = for some u — v € Pg and substitution 0; and
{(P,R,S,p, i)} otherwise

are sound and complete.

The CS problems in Theorem 8 provide the necessary base cases for our
proofs of innermost termination of CSR.
In the following sections we are going to show some powerful techniques

adapted from standard rewriting to deal with proofs of innermost termination
of CSR.

7 Innermost Context-Sensitive Dependency Graph

The analysis of infinite (minimal) chains of pairs is essential in the (CS)DP
framework [GTSF06, AGL10, GL10]. Following [GL10], for innermost CSR we
have the following.

Definition 12 (Innermost Context-Sensitive Graph of Pairs) Let R, P
and S be TRSs and u € Mryupus. The innermost context-sensitive (ICS) graph
IG(P,R,S, 1) has P as the set of nodes. Given u — v,u’ — v’ € P, there is an
arc fromu — v tou' — v if u — v,u — v is a minimal (P,R,S, p,1)-chain
for some substitution o.

In termination proofs, we are concerned with the analysis of strongly connected
components (SCCs). A strongly connected component in a graph is a mazi-
mal cycle, i.e., a cycle which is not contained in any other cycle. The follow-
ing result justifies the use of SCCs for proving the absence of infinite minimal
(P,R,S, p,1)-chains.
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Theorem 9 (SCC processor [GL10]) Let R, P and S be TRSs and u €
Mprupus- Then, the processor Procsco given by

Procscc (P, R, S, u,i) = {(Q,R,Sg, i1, 1) | Q contains the pairs of an SCC in IG(P,R,S,u)}

(where Sg are the rules from S involving a possible (Q,R,S, u,1)-chain) is
sound and complete.

As a consequence of this theorem, we can separately work with the strongly
connected components of IG(P, R, S, i), disregarding other parts of the graph.

Now we can use these notions to introduce the innermost context-sensitive
dependency graph, i.e., the graph whose nodes instead of being arbitrary pairs
are the ICSDPs (P = iDP(R, u)).

Definition 13 (Innermost Context-Sensitive Dependency Graph (ICS-DG))
Let R = (F,R) be a TRS and p € Mz. The Innermost Context-Sensitive De-
pendency Graph associated to R and i is IDG(R, jt) = IG(iDP(R, it), R, unh(R, ), ).

7.1 Estimating the ICS Graph

In general, the innermost context-sensitive graph of a CS problem is not com-
putable: it involves reachability of 6'(v') from 6(v) (for u — v € Pg) or 6(t)
(for t such that s — ¢ € Sy) using innermost CSR; as in the unrestricted case,
the reachability problem for innermost CSR is undecidable. So, we need to use
some approximation of it.

In [AGL10], we have adapted to the context-sensitive setting the more re-
cent approximation for standard rewriting [GTS05]. Given a TRS R and a
replacement map 11, we let TCAP% be as follows:

TCaPg(z) = y if x is a variable, and
F(t)], -ty if f(ta)], ... [tk]]) does not unify
TCAPR (f(t1, ..., tk)) = with [ for any [ — r in R
y otherwise

where y is intended to be a new, fresh variable that has not yet been used and
given a term s, [s]ic = TCaPL(s) if i € p(f) and [s)/ = sifi & p(f). We
assume that [ shares no variable with f([t1]7,..., [tk]i) when the unification is
attempted. Function TCAP), is intended to provide a suitable approximation

of the aforementioned (R, u)-reachability problems by means of unification.

Proposition 6 ([AGL10]) Let R = (F,R) be a TRS and p € Mr. Let t,u €
T(F,X) be such that Var(t)NVar(u) = &. If0(t) —* 0(u) for some substitution
0, then TCAPY (t) and u unify.

In contrast to standard (u-)rewriting, in the innermost setting it is not nec-
essary to rename multiple occurrences of variables since all variables are always
instantiated to (u-)normal forms and cannot be reduced. However, in innermost
CSR we have to replace by fresh variables those ones that are p-replacing in the
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right hand side of the pair, v, but not in the left-hand side, u, since they are not
p-normalized. Moreover we need to substitute every subterm with a defined
root symbol by fresh variables only if the term is not equal to a p-replacing
subterm of u or it unifies with the left-hand side of some rule in R.

We define a new version of the function, iTCAP%yu, which is able to approx-

imate the ICS graph by taking into account these particularities of innermost
CSR.

Definition 14 Given a TRS R, a replacement map p and a term u, we let
iTCAPY , be as follows:

. u _ y if x € X and z & Var* (u)
ITCAPRv“ (@) = T otherwise
) f([tl]{,,[tk]i) if f([tl]{,”.7[tk]£) does not unify with I for any
|TCAP“RYu(f(t1, oo te)) = I — r i R or it is equal to a p-replacing subterm of u
Yy otherwise

where y is intended to be a new, fresh variable that has not yet been used and
given a term s, [s]f = iTCAPYL ,(s) if i € p(f) and [s]f =sifi & p(f). We
assume that | shares no variable with f([t1)7,..., [tk]i) when the unification is

attempted.

Since when connecting in a chain collapsing pairs we deal with rules in
Sy instead of pairs in Pg, we cannot look at the left hand side of the pairs.
Therefore, for dealing with pairs in Py, we have to approximate their arcs in
the same way that for CSRsince we do not store information about left-hand
sides of the pairs from which the hidden terms are obtained. So, we have the
following:

Definition 15 (Estimated Innermost Context-Sensitive Graph of Pairs) Let
R=(F,R), S=(H,S) and P = (G, P) be TRSs and u € Mrygun. The esti-
mated ICS-graph associated to R, P and S (denoted EIG(P,R,S, 1)) has P as
the set of nodes and arcs which connect them as follows:

1. There is an arc fromu — v € Pg tou’ — v' € P if iTCAPYL ,(v) and v’
unify by some mgu o such that o(u),o(u’) € NF,(R).

2. There is an arc from u — v € Py tou' — v’ € P if there is s — t €
Sy such that TCAPK (t) and u' unify by some mgu o such that o(u') €
NF,.(R).

Definition 16 (Correctness of the Estimated ICS-Graph of Pairs) Let
R=(F,R), S=(H,S) and P = (G, P) be TRSs and p € Mrugun. The esti-
mated ICS-graph associated to R, P and S (denoted EIG(P,R,S, i) has P as
the set of nodes and arcs which connect them as follows:

1. If there is an arc from u — v € Pg to v’ — v’ € P and substitutions 6 and

0" such that 6(v) ‘L’R,u,i 0'(u'), 0(u),0'(u') € NF,(R) then iTCAPL ,(v)
and u' unify by some mgu o such that o(u),o(u') € NF,(R).
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2. If there is an arc from w — v € Py to v/ — v’ € P and there is s €

NHT (R, i) such that 0(s*) = 0(t) = t' and substitutions 0 and 0’ such
!

A A ! .
that 0(v) —%5_ 0 —=s,ut —rpui 0'(u') then there is s — t € Sy such
.

that TCAP% (t) and v’ unify by some mgu o such that o(u’) € NF,(R).

According to Definition 13, we would have the corresponding one for the
estimated 1CS-DG: EIDG(R, 1) = EIG(iDP(R, 1), R, unh(R, ), u¥).

Example 9 Consider the following TRS R [Zan97, Example 4]:

f(x) — cons(z,f(g(x)))
g(0) — s(0)
g(s(z)) — s(s(g)))
sel(0,cons(x,y)) — =z
sel(s(x),cons(y,z)) — sel(x,z)

with p(0) = &, u(f) = p(g) = p(s) = plcons) = {1}, and p(sel) = {1,2}.
Then, iDP(R, i) consists of the following pairs:
G(s(z)) — G(x) (
SEL(s(x), cons(y, z)) — SEL(z, 2)
SEL(s(z), cons(y, 2)) — 2

~—~
© 00
= Z =

and the unhiding rules are: unhy (R,u) = {f(x) — x} and unhy(R,pn) =
{£(g(x)) — F(g(x)), g(x) — G(x)}.

Regarding pairs (7) and (8) in iDP£(R, u), there is an arc from (7) to itself
and another one from (8) to itself. Regarding the only collapsing pair (9), we
have TCAP% (F(g(z))) = F(y) and TCAP%L(G(z)) = G(y). Since F(y) does not
unify with the left-hand side of any pair, and G(y) unifies with the left-hand side
G(s(z)) of (7) and G(s(x)) is in p-normal form, there is an arc from (9) to (7),
see Figure 1. Thus, there are two cycles: {(7)} and {(8)}.

& Gy

A
!
f

(9)

Figure 1: Innermost CS-Dependency graph for Example 9

The following example shows that using iTCAP%)u provides a better ap-
proximation of the ICS-DG than using TCAP/, for noncollapsing pairs.

Example 10 Consider the following TRS R:
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f(a,b,z) — f(z,z,x)
— a

c — b

together with u(f) = {1,2}. There are two ICS-dependency pairs:

F(z,z,x)

8

R s not innermost p-terminating:
F(c,c,c) =g i F(a,c,c) =g ui F(a, b, ¢) —ippr i) ut F(S,6,C) =g e

In order to build the ICS-DG, since there are not hidden terms and therefore Sy

is empty, we only have to check if iTCAPY ,(F(z,2,x)) = iTCAPY ¢, , o (F(z,2,2)) =
F(a" 2", x) unifies with F(a,b,y) so, we get a cycle and the same would be
obtained with TCAPY (F(x,z,x)). However, if we use u(f) = {1,3}, the sys-

tem now is innermost p-terminating (the collapsing pair now disappears) but

if we use the TCAP we get TCAPY (F(z,z,x)) = F(a, 2", x) again unifies

with F(a,b,z) and we obtain a spurious cycle. By using iTCAP%,u, we obtain
iTCAPY, (o b, (F(z,2,7)) = F(z,2,2) (since there are not migrating variables

now) which does not unify with F(a,b,y). Now, innermost u-termination can

be easily proved since there are no cycles in the ICS-DG.

After showing that iTCAPL ,, provides a better approximation of the ICS-
DG for noncollapsing pairs, we are going to show that for the collapsing pairs
this is not true since we can lead into and underestimation of the graph and
conclude a false result.

Example 11 Consider the following TRS R which is a variant of Example 10:

(f(z,z,x))

Ll

g
x
a
b
together with p(f) = {1,2} and u(g) = @. There are two ICS-dependency pairs:

F(a,b,2) — G(f(x,z,2)) (10)
Glz) — = (11)

R is not innermost p-terminating:

F(Sv <, C) (_>’R,,un,i F(a,g, C) ;)R,[Lﬁ,i F(avby C) HTDP(R,H),ltn,i G(f(aaba C)) ;)iDP(R,[L),Mn‘i F(Sa <, C) e

We have Sy = {f(z,x,x) — F(z,z,x)}. Regarding the pair (10) € iDP£(R, 1),
there is an obvious arc from (10) to (11). Regarding the only collapsing pair (11),
since we do not have any information in Sy about migrating variables, we have
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to use TCAPL. In this way, we have that TCAPYL (F(z,z,2)) = F(a', 2/, )
unifies with F(a,b,y) and we obtain an arc from (11) to (10), thus obtaining the
existing cycle {(11)-(10)}. Otherwise, we will not rename any variable and we
would not have obtained the arc.

Example 12 (Continuing Example 7) Since iTCAPL, F(o(),2) (F(z,z)) =F(x,x)
and F(c(y),y) do not unify we conclude (and this can easily be implemented) that
the ICS-dependency graph for the CS-TRS (R, 1) in Example 7 contains no cy-

cles.

Since for approximating the innermost context-sensitive graph of a set of
pairs, we use function TCAP%, for connecting pairs in Px as done in the context-
senstive case, we can also use the following processor instead, which allows a
better approximation of the SCCs. This is because if the SCC has no collapsing
pairs, the set S has no sense and if it has, some pairs from Sy can be removed:
those that are not involved in the unification process. Therefore, we will always
compute the SCCs by applying the following processor:

Theorem 10 (SCC Processor using TCapr% [GL10]) LetT = (P,R,S, i, 1)
be a CS problem. The CS processor Procsce given by

Procsce(T) = {(Q, R, Sq, 1) | Q contains the pairs of an SCC in EIG(P,R,S, n)}
where

¢ Sog =8, U{s = t|s —te S TCaPK(t) and v’ unify for some
u — v € Q by some mgu o such that o(u') € NF,(R)} if Qx # 2.

18 sound and complete.

Example 13 Consider again Example 1. The set iDP(R,u) is in Example 5
and the unhiding TRS unh(R, 1) consists of the rules in Example 6. We can
define the following CS problem:

70 = (iDP(R, p), R, unh(R, ), u*, i)

The EIDG(R,u) = EIG(iDP(R, ), R,unh(R, ), ut) of the CS problem Ty is
shown in Figure 2. If now we apply the improved SCC processor we get the
followings CS subproblems:

PrOCSCC(TO) - {({1}v R, 2, :uﬂ, i)a ({3}v R, 2, ‘uﬁ’ i)a ({4}a R, 2, .uﬁv 1)}

8 Usable Rules

An interesting feature in the treatment of innermost termination problems using
the dependency pair approach is that, since the variables in the right-hand side
of the dependency pairs are in normal form, the rules which can be used to
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Figure 2: Estimated Innermost CS-Dependency Graph for Example 1

connect contiguous dependency pairs are usually a proper subset of the rules in
the TRS. This leads to the notion of usable rules [AGO0, Definition 32] which
simplifies the proofs of innermost termination of rewriting. We adapt this notion
to the context-sensitive setting.

Definition 17 (Basic usable CS-rules) Let R be a TRS and u € Mr. For
any symbol [ let Rules(R, f) be the set of rules of R defining [ and such that
the left-hand side | has no proper p-replacing R-redex. For any term t, the set
of basic usable rules Ug(R, u,t) is as follows:

j%}
Rules(R, f)U U Uo(R/,u,ti) U U Uo(R/, u, )
iep(f) I—rc Rules(R, f)

Uo(R, p, x
UO (Rv 122 f

~—

tl»"'7tn))

where R'="R — Rules(R, f).
Consider now a TRSP. Then, Ug(R,u,P) = U Uo(R,p, 7). Obviously,

l—reP
Uo(R, i, P) CR for all TRSs P and R.

Interestingly, although our definition is a straightforward extension of the clas-
sical one (which just takes into account that p-rewritings are possible only
on p-replacing subterms), some subtleties arise due to the presence of non-
conservative rules.

Basic usable rules Ug(R, i, P) in Definition 17 can be used instead of R
when dealing with innermost (P, R, S, 1, i)-chains associated to p-conservative
TRSs P provided that Uy(R, 1, P) is also u-conservative. This is proved in
Theorem 11 below. First, we need some auxiliary results.

Proposition 7 Let R be a TRS and pn € Mr. Let t,s € T(F,X) and o be a
substitution such that s = o(t) and Yx € Var*(t), o(x) € NF,(R). If s —i s' by
applying a rule | — r € R, then there is a substitution o’ such that ' = o’ (t')
fort' =t[r], and p € Pos'z(t).

PRrROOF. Let p € Pos”(s) be the position of an innermost redex s|, = 0(1)
for some substitution 6. Since s = o(t) and for all replacing variables in t, we
have o(z) € NF,(R), it follows that p is a non-variable (replacing) position of .
Therefore, p € Pos'z(t). Since s = o(t), we have that s’ = o(t)[0(r)], and since

31



p € Pos'y(t), by defining o’(x) = o(z) for all z € Var(t) and o(z) = 6(z) for all
z € Var(r) (as usual, we assume Var(t) N Var(r) = &), we have s’ = o' (t[r],).
O

The following proposition states that an innermost u-rewrite step by apply-
ing a conservative rule makes the set of y-replacing variables of the contractum
will be instantiated to pg-normal forms.

Proposition 8 Let R be a TRS and yu € M. Lett,s € T(F,X) and o be a
substitution such that s = o(t) and Yo € Var*(t), o(x) € NF,(R). If s —; s
by applying a conservative rule | — r € R, then there is a substitution o’ such
that s' = o'(t') for t' = t[r]p, p € Posz(t) and Va € Var*(t'), o’ (x) € NF,(R).

PROOF. By Proposition 7, we know that ¢/, as in Proposition 7, satisfies
s' = o'(t') for 0 as in Proposition 7 and some p € Pos'z(t). Since s, is an
innermost p-replacing redex, we have that Yy € Var*(l), 8(y) € NF,(R). Since
the rule [ — r is conservative, Var#(r) C Var#(l), hence Vz € Vart(r), o'(z) €
NF,(R). Since Var#(t[r],) € Vart(t) U Var*(r), we have that Vo € Var*(t'),
o'(xz) € NFL(R). O

Now, we prove that in an innermost p-rewrite sequence starting from a term
instantiated with a p-normalized substitution, the only rules that can be applied
are the usable rules (if they are u-conservative).

Proposition 9 Let R be a TRS and yu € Mg. Lett,s € T(F,X) and o be a
substitution such that s = o(t) andVx € Var*(t), o(xz) € NF,(R). If Up(R, u, 1)
is conservative and § = 51 =R i S2 R T T R,ui Sn R, Sntl = U for
some n > 0 then s; —uy (R ut),ui Si+1 for all i, 1 <i<n.

PROOF. By induction on n. If n = 0, then s = o(t) = w, it is trivial.
Otherwise, if s1 =R ui S2 % ,; U, We first prove that the result also holds
in s1 =g i s2. By Proposition 7, s; = o(t), and s = o’(t') for t' = t[r], is
such that si|, = 6(l) and s3|, = 6(r) for some p € Pos'z(t). Thus, root(l) =
root(t|,) and by Definition 17, we can conclude that | — r € Ug(R, u,t). By
hypothesis, Ug(R, p,t) is conservative. Thus, I — r is conservative and by
Proposition 8, sy = o’(t') and Vx € Var*(t'), o'(z) € NF,(R). Since t' = t[r],
and root(t|,) = root(l), we have that Ug(R,u,t") C Uy(R,p,t) and (since
Uo(R, i, t) is conservative) Ug(R, i, ') is conservative as well. By the induction
hypothesis we know that s; —u, (R u,t),u,i Sit1 for all i, 2 < i < n. Thus we
have s; U, (R, u,t),u,i Sit+1 for all 4, 1 < i <n as desired.

O

The following theorem formalizes a processor to remove pairs from P by
using the previous result and p-reduction pairs.

Theorem 11 Let 7 = (P,R,S,u,i) be a CS problem. Let (Z,3) be a p-
reduction pair such that
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1. P and Uy(R, p, P) are conservative,
2. Ug(R,p,P) €2 and P C 2 U O,

Let Po={u— v €P|udv}. Then, the processor Procyr given by

Procyn(r) = 4 ((P\P2.Uo(Ro . P), 2, 0)} if (1) and (2) hold
vt {(P,R,S, u,i)} otherwise
is sound.
PROOF.

We proceed by contradiction. Assume that there is an infinite minimal
innermost (P, R, S, u, 1)-chain A, but that there is no infinite minimal innermost
(P\ P=,Uo(R,u,P), 2, p,i)-chain. Due to the finiteness of P, and since P is
conservative, we have Py = &. Thus, we can assume that there is @ C P such
that A has a tail B

! !
o(u1) =ogutt =R i 0(u2) =g ute =R i 0(uz) =g

for some substitution o, where all pairs in Q are infinitely often used, and, for
all ¢ > 1, since all u; — v; € P are conservative u; — v; € Qg (i.e. Py = Qy =
@), then t; = o(v;) and o(u;) € NF,(R), this implies that Vo € Vart(u;),
o(z) € NF,(R) and by Proposition 9 the sequence can be seen as:

! !
o(u1) =g u t1 = UG(R,uP) i T(U2) Qg .u t2 —Ug(R P i O(U3) Qg -

Furthermore, by minimality, ¢; = o(v;) is innermost (R, pu)-terminating for
all ¢ > 1. Since u; (2 U ) v; for all u; — v; € @ C P, by stability of
2 and 3, we have o(u;) (2 U 3) o(v;) for all ¢ > 1. No pair u — v € Q
satisfies that v J v. Otherwise, we get a contradiction by considering that
since all pairs in P are conservative, we have that u; — v; € Qg. Then,

t; = o(v;) ‘L’Uo(R,uﬂ’),u,i o(uir1) and t; 2 o(ujr1). Since we have o(u;) (2
U 1) o(v;), by using transitivity of = and compatibility between = and 3,
we conclude that o(u;) (2 U 3) o(uit1). Since u — v occurs infinitely of-
ten in B, there is an infinite set Z C N such that o(u;) 3 o(u;41) for all
i € Z. And we have o(u;) (2 U 1) o(uj41) for all other u; — v; € Q.
Thus, by using the compatibility conditions of the p-reduction pair, we ob-
tain an infinite decreasing J-sequence which contradicts well-foundedness of 1.
Therefore, @ C (P \ P5). Since NF,(Uy(R,u,P)) 2 NF,(R), we have that
o(u;) € NF,(Uo(R, i, P)). By Proposition 9, innermost (R, p)-termination
of o(v;) implies innermost (U (R, i, P), u)-termination of o(v;) for all i > 1.
Hence, B is an infinite minimal innermost (P \ P, Ug(R, , P), &, i, i)-chain,
thus leading to a contradiction. ]

Note that the processor is only sound because we refine the result to be
applied only to the set of usable rules instead of over the whole set of rules as
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in standard rewriting [GTSFO06] or even for context-sensitive in [AEF+08]. In
this way, (i.e. by taking all the rules in R), it would be also complete, that is:

_ [ {(P\Po,R,@,p,i)} if (1) and (2) hold
Procyr(r) = { {(P,R,S, 1)} otherwise

is sound and complete, but since complete processors are useful for disproving
termination, we pay more attention on be more precise with the soundness.
Note also, that in the case of usable rules for context-sensitive rewriting
(non innermost) [GLUOS], this improvement is not possible to be taken into
consideration, since it would be unsound.
Unfortunately, dealing with nonconservative pairs, considering the basic us-
able CS-rules does not ensure a correct approach.

Example 14 Consider again the TRS R:

b — c¢(b)
t(c(z),x) — f(z,x)

together with p(f) = {1} and u(c) = @. There are two non-conservative 1CS-
DPs (note that u*(F) = p(f) = {1}):
x

F(c(z),z) — F(z,x)
Flc(z),2) — =

and only one cycle in the ICS-DG:

{F(c(x),2) — F(z,2)}

Note that Ug(R, u,F(x,2z)) = &. Since this ICSDP is strictly compatible with,
e.g., an LPO, we would conclude the innermost p-termination of R. However,
this system is not innermost p-terminating:

£(b,b) < £(c(b),b) < £(b,b) i - -~

The problem is that we have to take into account the special status of variables
in the right-hand side of a nonconservative ICSDP. Instances of such variables
are not guaranteed to be p-normal forms. Furthermore, conservativeness of
Uy (R, i, P) cannot be dropped either since we could infer an incorrect result
as shown by the following example.

Example 15 Consider the TRS R:

together with u(f) = {1} and p(g) = u(c) = @. There is only one conservative

cycle:
{F(c(z),z) — F(g(z), )}
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having only one usable (but non-conservative!) rule g(x) — x This is compatible
with the p-reduction pair induced by the following polynomial interpretation:

[f(z,y) =0 [c]z)=z+1 [gllx)=z  [Fl(z,y) ==
However the system is not innermost pu-terminating:
f(c(b),b) —; £(g(b),b) —; £(b,b) —; £(c(b),b) —---

Nevertheless, Theorem 11 is useful to improve the proofs of termination of
innermost CSR as the following example shows.

Example 16 Consider again the TRS R in Fxample 1. As we have seen in
Ezxample 13 the initial CS problem can be decomposed in the following three:

= ({1}7R7®7Mﬁ7i) (12)
T2 = ({3},R,@,Mn,i) (13)
3 = ({4},R,@,ﬂﬁ,i) (14)

Problems 11 and T3 can be solved by using the subterm processor (see [GL10]).
However, without the notion of usable rules, o is difficult to solve. The pair
(8) is u-conservative and the obtained usable rules are also p-conservative:

minus(z,0) — x

and
minus(s(z), s(z)) — minus(z,y)

According to Theorem 11, we can apply the usable rules processor Procyg(m2)
and get the following problem:

74 = (@, {minus(x,0) — z,minus(s(z),s(z)) — minus(z,y)}, F, u?, 1)
by using a polynomial interpretation:

[minus|(z,y) = = O] = 0
[s](z) x+1 [QUOT|(z,y) = =

Then, by applying Proc, (74), since the set of pairs is empty, we can con-
clude the innermost p-termination of FExample 1. Furthermore, since Example
1 is orthogonal, we have also concluded its p-termination.

35



9 Usable Arguments for CSR

Since in innermost reductions, matching substitutions are always normalized, in
an innermost sequence t; ﬂi to HZ. Iﬁi t,+1 starting at root position (i.e.,
p1 = A), every redex ¢, for j > 1 comes from a defined symbol introduced
after applying a rule Iy — 7 in a previous step & < j. Hence the set of
arguments which are reduced can be handled by looking for defined symbols in
right-hand sides of the involved rules [ — r.

In [Fer05] Fernandez defines the notion of usable arguments for a function
symbol when proving innermost termination. The idea is that, in innermost
sequences, some arguments are not relevant for proving termination.

Example 17 Consider the following TRS R:

f(s(z),s(z)) — f(z,g())
gs(z)) — gl@)

No innermost sequence starting at oot position takes into account the first
argument of £ nor the argument of g. The reason is that since an innermost
redex is an argument normalized redex, that means that all variables (e.g. x) of
the applied rule are normalized and cannot be reduced. Only the second argument
g(x) of £ in the right-hand side of the first rule could be innermost reduced after
applying it.

Considering those usable arguments could be helpful in proofs of innermost
termination since they impose weaker monotonicity requirements. For instance,
when using polynomial orderings, we can use even negative or rational coeffi-
cients for interpreting the symbols that do not need to be monotonic.

As Fernandez noticed in [Fer05], the set of usable arguments can be seen as a
replacement map which specifies the arguments to be reduced. In her approach,
proving the p-termination of a TRS R implies the innermost termination of R
if u(f)=UA(f,R,R) for all f € F where R only contains rules such that all
left-hand sides are argument normalized.

Following Fernandez’s ideas, in the innermost context-sensitive setting (for a
given replacement map ) we could relax monotonicity requirements by taking
into account that reductions only take place on p-replacing positions of the
right-hand sides of the rules which are rooted by a defined symbol.

We have adapted Ferndndez’s ideas to CSR in [AL09]. In sharp contrast to
the unrestricted case, we need to take into account that in innermost CSR a
redex does not need to be argument normalized. Only argument p-normalization
can be assumed. Thus, non-u-replacing subterms may contain redexes that can
be reduced later on if they come to a replacing position.

Proposition 10 A CS-TRS (R, ) is innermost p-terminating iff R’ is inner-

most p-terminating, where R’ C R contains all rules | — r € R such that | is
argument p-normalized.
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ProoOF. Trivial since the only rules that can be applied in innermost u-
reductions are those whose the left-hand sides are argument u-normalized as we
have shown in the Definition 5 of ICSDPs. O

In the following, we assume that all CS-TRS (R, 1) are argument p-normalized,
i.e., for all rule I — 7 in R, [ is argument p-normalized. Proposition 10 ensures
that this entails no lack of generality regarding our research on innermost ter-
mination of CSR.

The straightforward adaptation of Fernandez’s criterion to CSR yields the
following definition: the usable CS-arguments for a function symbol f € F are
those arguments with a p-replacing subterm rooted by a defined symbol in some
right-hand side of a pair or usable rule.

Definition 18 (Basic usable CS-arguments) Let (R,un) = ((CW D, R), )
be a CS-TRS and P be a set of pairs of terms s.t. for allu — v € P, u is
argument p-normalized. The basic usable CS-arguments for a function symbol
[ € F are defined as UA,(f,R,P) = {i € p(f) | Ju - v e PUUNR,u,P),
dp,p’ € Pos*(v) s.t. root(v|y) = f, root(v|,) € D, p'i <p, utb,vlp}.

Note that the replacement map given by p/(f) = UA,(f,R,P) for all f € F
is more restrictive than p: p/(f) C p(f) for all f € F.

The following proposition is the context-sensitive version of [Fer05, Lemma
5].

Proposition 11 Let (R,u) be a CS-TRS and P be a set of pairs of terms s.t.
for all u — v € P, u is argument p-normalized and P U Uy(R, u, P) is u-

>A
conservative. Let I —r € PUU(R, u, P) be such that o(r) <y iz, py t for

some term t and substitution o s.t. o(l) is argument p-normalized . If t|, is an
innermost p-redex, then for all p’.k < p, we have that k € UA ,(root(t|y ), R, P).

Proor. By induction on the length n of the rewriting sequence. If n = 0,
then o(r) = ¢. Then, since o(l) is argument p-normalized, it follows that for
all z € Var*(l),o0(z) € NF,(R). Since the rule [ — r is conservative (that
is Var*(r) C Var#(l)), we have that for all € Var*(r),o(z) € NF,(R). It
follows that p is a nonvariable (p-replacing) position of r, i.e. p € Pos's(r).
Thus, root(r|,) € D and the result follows by Definition 18.

>A A
If n > 0, then there is a term s such that o(r) </ s and s <5t at
some p-replacing position g. By the induction hypothesis, every p-replacing
position of the term ¢ above, which equal or disjoint to ¢ satisfies the result

and we only have to prove it for innermost redexes t|, s.t. ¢ < p, it is say, we

have to prove that k € UA,(root(t|,/),R,P), for all ¢ < p'.k < p. If s LA»;

t, then s|g = o’(') and t|; = o'(r’), for some rule I’ — 1" € Up(R, i, P) and
substitution ¢’ s.t. o’(l') is argument p-normalized. This implies that every
innermost redex of t|, occurs at a position p” € Pos" (') s.t. root(r'|,») € D
(since the rule I’ — r’ is conservative we have that for all z € Var#(r'),o(x) €
NF,(R)) and I' ¢, 7’|, (otherwise, o’(l") would not be an innermost redex of
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s. By definition, when p” > A, p'.k < p", k € UA,(root(t|q, ), R,P) which
is equivalent to what we needed to prove ( k € UA,(root(t|,), R, P), for all
qg<p.k<p). |

Corollary 11 in [Fer05] suggests that innermost p-termination could be proved
by using a p/-reduction ordering for p’ given by p/(f) = UA,(f, R, P) for all
f € F. This is true for p'-conservative CS-TRSs, as the following theorem
shows.

Theorem 12 A p-conservative CS-TRS (R, ) is innermost u-terminating if
there is a p'-reduction ordering = s.t. R C =, where for all symbol f € F,
W (f) =UALf, R, R).

PROOF. By contradiction. Assume that R is not innermost y-terminating. By
the argument of size minimality, there is a infinite innermost p-rewrite sequence
with the first step at position A: s1 < sy <> s3 < --- (without loss of

generality). By Proposition 11 (where we let P = R), every step s; LA»; Sjt1
at position p satisfies that p’.k < p, k € UA,(root(s;|, ), R,P). Since R C >
and > is stable and p/-monotonic, s; > s;11 holds. Therefore, there is an infinite
>-decreasing sequence of terms s; > sg > -+ > S, > -+- which contradicts the
well-foundedness of .

O

Since p-reduction orderings characterize termination of CSR we have the
following corollary.

Corollary 4 Let R be a p-conservative TRS for p € Mg. Let i/ be given by
W (f) = UA,(f,R,R) for every f € F. If R is innermost p'-terminating, then
R is innermost p-terminating.

Example 18 Consider the TRS R :

f(a,b,z) — f(z,z,2)
c — a
c — b

together with pu(£) = {1,3}. By using p'(f) = UA,(f, R, P) for every f € F we
obtain p'(£f) = &. The pair £(a,b,x) — £(x,z,x) cannot form a cycle now, thus
easily concluding the p'-termination of R and, by Corollary 4, the innermost
u-termination of R.

—~~

This fact is important since now, all techniques for proving termination of CSR
can be used to prove termination of innermost CSR for p-conservative systems.
The following example shows that p-conservativeness cannot be dropped in
Theorem 12 and Corollary 4.

Example 19 Consider again the TRS R in Example 18 but now together with
w(f) = {1,2}. If we try to apply Corollary 4 to prove innermost u-termination
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of R, we obtain u'(£) = @ and (as discussed in Example 18) the CS-dependency
graph has no cycle thus concluding the innermost p-termination of R. However,R
18 not innermost p-terminating:

f(a,b,C) i f(E,C,C) i f(a:gyc) i f(a:byc) o

Note that the first rule of R is not u-conservative now.

9.1 Relaxing Monotonicity with CS-DPs

Ferndndez’s criterion was also adapted to deal with proofs of termination of
rewriting using dependency pairs, what allows us using reduction pairs instead
of reduction orderings in proofs of termination.

In previous sections, we have shown how to prove innermost termination of
CSR by using ICSDPs. Now, we can adapt the use of CS-usable arguments to
be applied in proofs of innermost p-termination with ICSDPs. We do that by
providing a new processor for dealing with innermost p-termination problems.

Theorem 13 LetT = (P,R,S, 11,1) be a CS problem. Let pa(f) =UAL(f,R,P)
forall f €e FUGUH and (Z,0) be a pa-reduction pair such that

1. P and Ug(R, u, P) are p-conservative,
2. Up(R,u,P) €2 and P C 2 U3,

Let Po={u— v €P|udv}. Then, the processor Procpe, given by

Proc (,7_) — {(P\Pj’UO(Rﬂuvp)?guuﬂA)i)} Zf (1) and (2) hOld
rer {(P,R.S. 11,1)} otherwise
is sound.
PROOF.

We have to prove that every infinite minimal innermost (P, R, S, u, i)-chain
introduces an infinite minimal innermost (P \ P, Uo(R, , P), S, 14, i)-chain.
We proceed by contradiction. Assume that there is an infinite minimal inner-
most (P, R,S, u,1)-chain A, but that there is no infinite minimal innermost
(P\P+,Uo(R, i1, P),S, pa,1i)-chain. Due to the finiteness of P, and since P is
conservative, we have Py = @. Thus, we can assume that there is @ C P such
that A has a tail B

! !
a(u1) —ou tt =R, 0(u2) —ou bt =R, 0(us) —opu -

for some substitution o, where all pairs in Q are infinitely often used, and,
for all ¢ > 1, since all u; — v; € P are conservative u; — v; € Qg (i.e.
Prx = Qx = ©), then t; = o(v;) such that for all i > 0, o(u;) is argument
p-normalized and o(v;) is innermost (R, p)-terminating. By Proposition 9 and
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!
11, every innermost step in the sequence ¢; g i 0(ui+1) is performed at a
wa-replacing position by means of a conservative rule in Ug(R, , P):

! |
o(u1) =0g.ua 11 —UGR P i O(U2) =g us 12 = Ug(Ru,PYuai O(U3) — -

Since u; (2 U 3) v; for all u; — v; € Q C P, by stability of 2 and 1, we
have o(u;) (2 U 0) o(v;) for all 4 > 1.

No pair u — v € Q satisfies that v 3 v. Otherwise, we get a contradic-
tion by considering that since all pairs € P are conservative u; — v; € Qg,

then t; = o(v;) 'L)Uo(R,u,P),uA,i o(ui+1) and t; 2 o(u;q1). Since we have
o(u;) (2 U3)o(v;) =o(v;) =t; , by using transitivity of 2 and compatibility
between 2 and 1, we conclude that o(u;) (2 U 3) o(u;y1). Since u — v occurs
infinitely often in B, there is an infinite set Z C N such that o(u;) 3 o(uit+1)
for all ¢ € Z. And we have o(u;) (2 U 0) o(u;41) for all other u; — v; € Q.
Thus, by using the compatibility conditions of the p-reduction pair, we ob-
tain an infinite decreasing J-sequence which contradicts well-foundedness of 1.
Therefore, @ C (P \ Po). Since pg C p and NF,, (Ug(R, 1, P)) 2 NF,(R),
we have that o(u;) € NF,, (Uo(R, i, P)). By Proposition 9, innermost (R, u)-
termination of o(v;) implies innermost (Ug(R, i, P), p)- termination of o(v;)
for all 4+ > 1 and by Proposition 11, innermost (Ug(R, , P), pt)-termination of
o (v;) implies innermost (Ug(R, p, P), p.4)-termination, so we get that innermost
(R, u)-termination of o(v;) implies innermost (Ug(R, i, P), 1.4)-termination.
Hence, B is an infinite minimal innermost (P \ P, Ug(R, i, P), p.a)-chain, thus
leading to a contradiction.

O

Corollary 4 can be generalized to (certain) non-u-conservative CS-TRSs
thanks to Theorem 13. Now, for a given CS-TRS (R,u) that satisfies the
conditions of Theorem 13, we can prove its innermost p-termination by relaxing
(-monotonicity requirements for each cycle.

10 Narrowing Transformation

Although, function TCAP provides a good approximation of the graph, it can
lead to overestimate the arcs that connect two dependency pairs. As already
observed by Arts and Giesl for the standard and innermost case [AGO0], in
our setting the overestimation comes when a (noncollapsing) pair u; — v; is
followed in a chain by a second one ;41 — v;41 and v; and u; 1 are not directly
unifiable, i.e., at least one innermost p-rewriting step is needed to innermost p-
reduce o(v;) to o(u;41). Then, the innermost p-reduction from o(v;) to o(uit1)
requires at least one step, i.e., we always have o(v;) —x 2 0(v]) Rt O(Uit1).
Furthermore, we could discover that v; has no p-narrowings. In this case, we
know that no innermost chain starts from o(v;). A restriction that have to be
taken into account when p-narrowing a noncollapsing pair v — v is that the
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p-replacing variables in v have to be p-replacing in u as well (this corresponds
with the notion of conservativeness), but furthermore, they cannot be both
p-replacing and non-p-replacing at the same time. This corresponds to the
following definition.

Definition 19 (Strongly Conservative [GLUO08]) Let R be a TRS and p €
Mpg. A rulel — r is strongly p-conservative if it is p-conservative and Vart(1)N
Varf(l) = Vart(r) N Vark(r) = @.

In [AGL10], we define the y-narrowing processor. Of course, u-narrowing can
also be used in proofs of innermost termination of CSR. In the standard setting,
when using narrowing for proving innermost termination we do not require that
the right-hand side of the dependency pair to be narrowed is linear since the
involved substitution ¢ is normalized. However, in the context-sensitive setting,
if the pair to be p-narrowed is not strongly p-conservative, we can not ensure
that the variables on the right-hand side are p-normalized so we also have to
demand linearity. When dealing with innermost narrowing in context-sensitive
rewriting we can drop the linearity condition if the pair to be p-narrowed is
strongly conservative since all p-replacing variables in the right-hand side of a
pair are instantiated to p-normal form and p-reductions can not take place on
them.

Theorem 14 (Innermost Narrowing processor) Let 7 = (P,R,S,p,1) be
a CS problem. Let u — v € P be such that

1. for all v/ — v € P (with possibly renamed variables), v and v’ do not
unify or they unify by some mgu 0 such that one of the terms 0(u) or
6(v') is not a p-normal form.

Let Q= (P—{u— v} )U{u' — o' | v — v is a p-narrowing of u — v}. Then,
the processor ProCrpam given by

) — {(Q7R7Sa,u7i)} Zf (1) holds
Procmar (P, R, S, u,1) { (P.R.S. 1 i)} otherwise

18
1. sound whenever u — v s strongly conservative, and
2. complete in all cases.

PROOF.

We have to prove that there is an infinite minimal innermost (P, R, S, u,1)-
chain iff there is an infinite minimal innermost (Q, R, S, u, 1)-chain. We prove
that for every minimal innermost (P, R, S, u,1)-chain “... u; — v1,u — v,us —
va,...”, there is an innermost p-narrowing v’ of v with the mgu 6 such that
“oup — g, 0(u) — v ug — vg,. .. is also a minimal innermost (Q, R, S, i, i)-
chain.

If “...,u1 — v1,u — v,ug — vg,...” is a minimal innermost (P, R,S, i, 1)-
chain, then there is an substitution ¢ such that for all pairs s — ¢ in the chain,

k2
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1. if s — t € Pg, then o(t) is p-terminating and it u-reduces innermost to
the instantiated left-hand side o(s’) of the next pair s — ¢’ in the chain

*

. A A .
2.if s =t =5 — x € Px, then o(x) —% o s, u t and t, which

RIS
is innermost p-terminating, p-reduces innermost to the instantiated left-

hand side o(s’) of the next pair s’ — ¢’ in the chain.
3. all instantiated left-hand sides are p-normal forms w.r.t. (R, p).

Assume that o is a substitution satisfying the above requirements and such that
the length of the sequence o(v) —% . 0 (u2) is minimal.

Note that o(v) # o(uz). Otherwise o would unify v and wugz, where both,
u and vy are p-normal forms, hence, there is a term ¢ such that o(v) —g .

*

q =R i 0(u2)-
The reduction o(v) <, ,,i ¢ cannot take place within a binding of o because
u — v is strongly conservative. Hence, o(u) would not be a p-normal form
which violates the last condition for ¢. In the innermost case, we do not have
to demand linearity since p-replacing variables in v come from being replacing
in u (strongly conservative) and they are instantiated to p-normal forms and no
one can be reduced in v. The remainder of the proof is completely analogous to
the noninnermost case.
O

Example 20 Consider the following example:

(s(x)) — £(p(s(x)))
p(s(z)) — «

together with u(f) = u(s) = {1} and p(p) = .

The only ICSDP that could generate a cycle is F(s(x)) — F(p(s(z))). How-
ever since the right-hand side F(p(s(x))) does not unify with any (renamed) the
left-hand side (including itself) and the pair is strongly conservative, we can
apply p-narrowing. Therefore, the pair can be p-narrowed at position 1 (notice
that u(f) = wu(F) = {1}) by using the rule p(s(z)) — =. Then, the pair is
transformed into the pair F(s(y)) — F(y) that can be easy disregarded by using

the subterm criterion'.

11 Experiments

We have implemented the techniques described in the previous sections as part
of the tool MU-TERM [AGL+10]. In order to evaluate the techniques which are
reported in this paper we have made some benchmarks. We have considered
the examples in the Termination Problem Data Base? (TPDB).

Hnstead of using in the proof a polynomial interpretation with rationals, like MU-TERM or
matrix interpretations like AProVE.
2http://www.termination-portal.org/wiki/TPDB
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ICSDPs | Transformations
YES score 95/109 60/109
YES average time | 0.7 sec. 1.5 sec.

Table 1: Comparative in proofs of termination of innermost CSR

C | GM | iGM
YES score | 33 | 57 42

Table 2: Comparing transformations for proving termination of innermost CSR

11.1 Proving Termination of Innermost CSR: Direct Tech-
niques vs. Transformations

Although there is no special TPDB category for innermost termination of CSR
(vet) we have used the examples used in the CSRcategory in order to test our
techniques for proving termination of innermost CSR. The TPDB v7.0.2 con-
tains 109 examples of CS-TRSs. In order to evaluate our direct techniques in
comparison with the transformational approach of [GMO02b, GM04, Luc0la],
where termination of innermost CSR for a CS-TRS (R, u) is proved by proving
innermost termination of a transformed TRS RY, where © specifies a particular
transformation (see [GM02a, GMO02b] for a survey on this topic), we have trans-
formed the set of examples by using the transformations that are correct for
proving innermost termination of CSR: Giesl and Middeldorp’s correct trans-
formations for proving termination of innermost CSR, see [GMO02b], although
we use the ‘authors-based’ notation introduced in [Luc06]: GM and C for trans-
formations 1 and 2 for proving termination of CSR introduced in [GMO04], and
iGM for the specific transformation for proving termination of innermost CSR
introduced in [GMO02b]. Then we have proved innermost termination of the set
of examples with AProVE [GST06], which is able to prove innermost termination
of standard rewriting. The results are summarized in Table 1 and 11.1. Further
details can be found here:

http://www.dsic.upv.es/~balarcon/iCSR/benchmarks.html

These are the first known benchmarks comparing not only transformational
techniques vs. direct (DP-based) techniques, but also the existing correct trans-
formations for proving innermost termination of CSR among them. They show
that, quite surprisingly, the iGM transformation (which is in principle the more
suitable one for proving innermost termination of CSR) obtains worse results
than GM (in the average).

In [ALOT7], we obtained 70 over 90 successful proofs against 44 for trans-
formations (it was used the TPDB v3.2). Obviously, the use of ICSDPs were
imposed without doubts for proving innermost termination of CSR. Moreover,
now, with the recent developments of MU-TERM embracing the DP-framework,
MU-TERM would solve 77 over those 90 of the previous version (and 18 over
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the new 19 included in the last one). Therefore, from the results in Table 1, it
is clear that using transformations for proving termination of innermost CSR
makes no sense after introducing the ICSDP framework.

11.2 Proving Innermost Termination of CSR: Relaxing
Monotonicity Requirements

For our experiments about proving termination of innermost CSR by means of
a new replacement map which imposes less monotonicity requirements we have
used the set of examples mentioned in Section 11.1.

We have implemented the use of Theorem 13 to deal with nonconservative
systems (but conservative cycles). MU-TERM tries to solve each p-conservative
cycle (with associated p-conservative usable rules) by using CS-usable argu-
ments as the new replacement map. This implementation of MU-TERM succeed
over the same 95 examples, the same number of examples that we had already
solved using ICSDPs. The time average rates has no exhibit substantial differ-
ences. Further details can be found here:

http://www.dsic.upv.es/~balarcon/iCSR_UA/benchmarks.html

Although no improvement over the practical use of ICSDPs explained in
previous subsection is shown, we expect that in the future, when we implement
nonmonotonic orderings in our termination tool MU-TERM we take advantage
of this technique.

Moreover, we have implemented the use of Corollary 11 in [Fer05] to prove
innermost termination of TRSs by proving u-termination of the CS-TRS ob-
tained after using the usable arguments as replacement map (this was one of
the main results in Ferndndez’s paper). The relevance of this result in prac-
tice had not been tested yet as no implementation of Ferndndez’s results was
available (to our knowledge). In order to evaluate it, we have considered the
examples used in the innermost category. There are 358 examples. Using usable
arguments (we call this tool MU-TERM UA), MU-TERM succeeds in 158 exam-
ples. However, we have also implemented the use of (standard) dependency
pairs for proving innermost termination (according to [AG00, Theorem 37]) to-
gether with the narrowing refinement (we call this tool MU-TERM iDPs) and we
are able to prove 199 examples, including all examples solved with Fernandez’s
criterion.

Therefore, it seems that using her result to prove innermost termination
of rewriting is not as good idea (at least with the considered set of examples)
since we loose some examples and the average time is worse. The results are
summarized in Table 3. Further details can be found in:

http://www.dsic.upv.es/~balarcon/UA/benchmarks.html

All this shows that we do not obtain any real improvement over the basic
technique of dependency pairs for proving innermost termination at least for
the set of considered examples.
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MU-TERM UA | MU-TERM iDPs
YES score 158 199
YES average time 4.87 sec. 3.31 sec.

Table 3: Benchmarks for innermost termination of rewriting

11.3 Transforming CS-dependency Pairs

We have also implemented innermost p-narrowing in MU-TERM. Due to the pos-
sibility of performing an unbounded number of narrowing steps, the y-narrowing
transformation could be infinite (this also happens in the standard approach).
In order to implement the transformation, we have chosen to use one-step -
narrowing only if the innermost context-sensitive dependency graph obtained
has less cycles and arcs than the original one. One of the best advantages of
using p-narrowing lies in the possibility of dismissing some CS-DPs if the right-
hand sides do not unify with any left-hand side of another (possible renamed)
CS-DP and they have no py-narrowings.

11.4 Termination Competition

Thanks to the new developments reported in this paper and in [AGL10, GL10],
MU-TERM 5.07 has proven to be the most powerful tool for proving termination
of CSR in the context-sensitive subcategory of the 2007, 2009 and 2010 editions
of the International Competition of Termination Tools®.As we have commented,
under some conditions, termination of CSR and termination of innermost CSR
coincide [GMO02b, GL0O2b]. For this reason, one of the most important aspect of
innermost CSR is its use for proving termination of C'SR as part of the CSDP
framework. We switch from termination of CSR to termination of innermost
CSRwhenever termination is equivalent, for which we can apply the existing
processors more successfully. Actually, we proceed like that in 30 — 50% of the
CSR termination problems which are proved by MU-TERM 5.0.

12 Conclusions

The results of this paper are revised and extended versions of the results pub-
lished in [ALO7, AL09], having into account all improvements made in the CSDP
framework in [AGL10, GL10].

3See http://www.lri.fr/~marche/termination-competition/2007/, where only AProVE
and MU-TERM participated, and http://termcomp.uibk.ac.at/termcomp/ where there were
three more tools in the competition: AProVE, Jambox [End], and VMTL [SG09]. AProVE
and MU-TERM solved the same number of examples but MU-TERM was much faster. The same
situation has happened in 2010 (but without Jambox’s participation).

45



12.1 Theoretical Contributions

We have investigated the structure of infinite innermost context-sensitive rewrite
sequences starting from (strongly) minimal innermost non-u-terminating terms
(Theorem 1). This knowledge has been used to provide an appropriate defi-
nition of innermost context-sensitive dependency pair (Definition 5), and the
related notion of innermost chain (Definition 8). We have proved that it can
be used to characterize innermost p-termination (Theorems 2 and 3). We have
provided a suitable adaptation of Giesl et al.’s dependency pair framework to
innermost CSR by defining appropriate notions of CS problem (Definition 9)
and CS processor (Definition 10). In this setting we have described a num-
ber of sound and (most of them) complete CS-processors which can be used in
any practical implementation of the ICSDP framework. In particular, we have
introduced the notion of (estimated) innermost context-sensitive (dependency)
graph (Definitions 12 and 15) by using functions to approximate it (Definition
14) and the associated CS processor showing how to automatically prove inner-
most p-termination by means of the ICS dependency graph (Theorem 10). We
have formulated the notion of basic usable rules showing how to use them in
proofs of innermost termination of CSR (Definition 17, Theorem 11). Narrow-
ing context-sensitive dependency pairs has also been investigated. It can also be
helpful to simplify or restructure the dependency graph and eventually simplify
the proof of (innermost) termination (Theorem 14). We have also shown how to
relax monotonicity requirements for proving innermost termination of context-
sensitive rewriting. We have adapted Ferndndez’s approach [Fer05] to be used
for proving innermost termination of context-sensitive rewriting (Theorems 12
and 13).

12.2 Applications and Practical Impact

We have implemented these ideas as part of the termination tool MU-TERM
[AGILO7, Luc04]. The implementation and practical use of the developed tech-
niques yield a novel and powerful framework which improves the current state-
of-the-art of methods for proving termination of CSR. Actually, ICSDPs were
an essential ingredient for MU-TERM in winning the context-sensitive subcate-
gory of the 2007, 2009 and 2010 competitions of termination tools.

Up to our contributions, no direct method has been proposed to prove ter-
mination of innermost CSR. So this is the first proposal of a direct method for
proving termination of innermost CSR. We have extended the DP framework
[GTS04, GTSF06] to prove innermost termination of TRSs to innermost CSR
(thus also extending [AGLO07]). Our benchmarks show that the use of ICSDPs
dramatically improves the performance of existing (transformational) methods
for proving termination of innermost CSR.

46



12.3 Future Work

As remarked in the introduction, we aim at applying all previous developments
to deal with termination of Maude programs. Since its computational mecha-
nism can be thought of as kind of “context-sensitive call by value”, we believe
that our research is a essential contribution to the development of tools for
proving termination of Maude programs.
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