
Universitat Politècnica de València

Departamento de Comunicaciones

Ph.D. Thesis
«On reliable and energy efficient massive wireless

communications: the road to 5G»

Author: Israel Leyva-Mayorga

Advisors: Dr. Vicent Pla
Dr. Jorge Martinez-Bauset

Valencia
December 2018





To my wife, Mónica,
and to my parents,
because they have
given me the most

precious gifts I can
think of: their love,

confidence, and
support.





Acknowledgment

First of all I would like to thank my wife, Mónica, for all her support and confidence
throughout this journey. I am extremely grateful she is part of my life as I could not
ask for a better companion during my adventures. A great deal of the success I have
been able to achieve is due to her.

I would also like to thank my parents, who have given me their support and
confidence since my early stages. I am completely sure this is the reason I am who I
am right now. My success is just a reflection of yours as parents.

Naturally, I am greatly thankful to my supervisors, Vicent and Jorge, for everything
they have taught me, directly and indirectly, during these years. My adventure in the
Ph.D. started with a visit to this same lab four years ago and my admiration and respect
for them has been increasing ever since. For instance, I am still impressed on the time
and dedication they devote to us when writing papers and obtaining results, but also
with administrative musts. I will be eternally thankful.

Likewise, I also thank the support and hospitality provided by Prof. Dr.-Ing. Dr.
h. c. Frank H. P. Fitzek and Dr. Rico Radeke before, during, and after my research stay
at the Technische Universität Dresden (TUDresden). In this regard, I would also like to
thank all the people involved in making this stay possible. These include people from
the Deutscher Akademischer Austauschdienst (DAAD) and the ERASMUS+ offices
at the UPV and TU Dresden, whose monetary support was essential.

I would also like to express my gratitude to my main collaborators, Luis Tello
Oquendo at the UPV and Roberto Torre at the TU Dresden. Hopefully we will soon
meet again.

v



Lastly, I would like to thank the support provided by the Consejo Nacional de
Ciencia yTecnología,México (CONACYT) and by theConsejoMexiquense deCiencia
y Tecnología (COMECYT) through grant CONACYT-GEM 383936 for postgraduate
studies in a foreign country. This includes the support for my short stays at the
Universidad Autónoma del Estado deMéxico (UAEM). These stays were only possible
due to the support provided by Prof. Otniel Portillo Rodríguez. Thanks for the
invitation.

vi



Abstract

The 5th generation (5G) of mobile networks is just around the corner. It is expected to
bring extraordinary benefits to the population and to solve the majority of the problems
of current 4th generation (4G) systems. The success of 5G, whose first phase of
standardization has concluded, relies in three pillars that correspond to its main use
cases: massive machine-type communication (mMTC), enhanced mobile broadband
(eMBB), and ultra-reliable low latency communication (URLLC). This thesis mainly
focuses on the first pillar of 5G: mMTC, but also provides a solution for the eMBB in
massive content delivery scenarios. Specifically, its main contributions are in the areas
of: 1) efficient support of mMTC in cellular networks; 2) random access (RA) event-
reporting in wireless sensor networks (WSNs); and 3) cooperative massive content
delivery in cellular networks.

RegardingmMTC in cellular networks, this thesis provides a thorough performance
analysis of the RA procedure (RAP), used by the mobile devices to switch from idle
to connected mode. These analyses were first conducted by simulation and then by an
analytical model; both of these were developed with this specific purpose and include
one of the most promising access control schemes: the access class barring (ACB). To
the best of our knowledge, this is one of the most accurate analytical models reported
in the literature and the only one that incorporates the ACB scheme. Our results
clearly show that the highly-synchronized accesses that occur in mMTC applications
can lead to severe congestion. On the other hand, it is also clear that congestion
can be prevented with an adequate configuration of the ACB scheme. However, the
configuration parameters of the ACB scheme must be continuously adapted to the
intensity of access attempts if an optimal performance is to be obtained. We developed
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a practical solution to this problem in the form of a scheme to automatically configure
the ACB; we call it access class barring configuration (ACBC) scheme. The results
show that our ACBC scheme leads to a near-optimal performance regardless of the
intensity of access attempts. Furthermore, it can be directly implemented in 3rd
Generation Partnership Project (3GPP) cellular systems to efficiently handle mMTC
because it has been designed to comply with the 3GPP standards. This combination
of characteristics is rarely present in other access control schemes reported in the
literature.

In addition to the analyses and the solution described above for cellular networks,
a general analysis for smart metering applications is performed. That is, we study
an mMTC scenario from the perspective of event detection and reporting WSNs.
Specifically, we provide a hybrid model for the performance analysis and optimization
of cluster-based RA WSN protocols. Results obtained with this model showcase the
utility of overhearing to minimize the number of packet transmissions, but also of the
adaptation of transmission parameters after a collision occurs. Building on this, we
are able to provide some guidelines that can drastically increase the performance of a
wide range of RA protocols and systems in event reporting applications.

Regarding eMBB, we focus on a massive content delivery scenario in which the
exact same content is transmitted to a large number of mobile users simultaneously.
Such a scenario may arise, for example, with video streaming services that offer a par-
ticularly popular content. This is a problematic scenario because cellular base stations
have no efficient multicast or broadcast mechanisms. Hence, the traditional solution is
to replicate the content for each requesting user, which is highly inefficient. To solve
this problem, we propose the use of network coding (NC) schemes in combination
with cooperative architectures named mobile clouds (MCs). Specifically, we develop
a protocol for efficient massive content delivery, along with the analytical model for
its optimization. Results show the proposed model is simple and accurate, and the
protocol can lead to energy savings of up to 37 percent when compared to the tradi-
tional approach. In addition, the proposed solution sharply reduces the cellular data
consumed by the mobile devices.
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Resumen

La quinta generación de redes móviles (5G) se encuentra a la vuelta de la esquina. Se
espera que esta nueva generación provea de beneficios extraordinarios a la población
y, también, que resuelva la mayoría de los problemas de las redes de cuarta generación
(4G) actuales. El éxito de 5G, cuya primera fase de estandarización ha sido completada,
depende de tres pilares; cada uno de ellos corresponde a uno de sus casos de uso:
comunicaciones tipo-máquinamasivas, banda anchamóvilmejorada y comunicaciones
ultra fiables y de baja latencia (mMTC, eMBB y URLLC, respectivamente, por sus
siglas en inglés). En esta tesis nos enfocamos en el primer pilar de 5G, mMTC,
pero también proveemos una solución para lograr eMBB en escenarios de distribución
masiva de contenidos. Específicamente, las principales contribuciones son en las
áreas de: 1) soporte eficiente de mMTC en redes celulares; 2) acceso aleatorio para el
reporte de eventos en redes inalámbricas de sensores (WSNs); y 3) cooperación para
la distribución masiva de contenidos en redes celulares.

En el apartado de mMTC en redes celulares, esta tesis provee un análisis profundo
del desempeño del procedimiento de acceso aleatorio, que es la forma mediante la cual
los dispositivos móviles acceden a la red. Estos análisis fueron inicialmente llevados a
cabo por medio de simulaciones y, posteriormente, por medio de un modelo analítico.
En ambos tipos de análisis los modelos fueron desarrollados específicamente para este
propósito e incluyen uno de los esquemas de control de acceso más prometedores:
access class barring (ACB). Nuestro modelo es uno de los más precisos que se pueden
encontrar en la literatura y el único que incorpora el esquema de ACB. Los resultados
obtenidos por medio de este modelo y por simulación son claros: los accesos altamente
sincronizados que ocurren en aplicaciones de mMTC pueden causar congestión severa
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en el canal de acceso. Por otro lado, también son claros en que esta congestión se
puede prevenir con una adecuada configuración del ACB. Sin embargo, los parámetros
de configuración del ACB deben ser continuamente adaptados a la intensidad de
accesos para poder obtener un desempeño óptimo. En la tesis se propone una solución
práctica a este problema en la forma de un esquema de configuración automática
para el ACB; lo llamamos ACBC. Los resultados muestran que nuestro esquema
puede lograr un desempeño muy cercano al óptimo sin importar la intensidad de los
accesos. Asimismo, puede ser directamente implementado en redes celulares para
soportar el tráfico mMTC, ya que ha sido diseñado teniendo en cuenta los estándares
del 3rd Generation Partnership Project (3GPP). Esta combinación de características
difícilmente se encuentra en otros esquemas de control de acceso reportados en la
literatura.

Además de los análisis descritos anteriormente para redes celulares, se realiza un
análisis general para aplicaciones de contadores inteligentes. Es decir, estudiamos
un escenario de mMTC desde la perspectiva de las WSNs con tareas de detección y
reporte de eventos. Específicamente, desarrollamos un modelo híbrido para el análisis
de desempeño y la optimización de protocolos de WSNs de acceso aleatorio y basados
en cluster. Los resultados obtenidos por medio de este modelo muestran la utilidad de
escuchar elmedio inalámbrico paraminimizar el número de transmisiones y también de
modificar las probabilidades de transmisión después de una colisión. Con base en los
resultados, somos capaces de proponer directrices que pueden mejorar drásticamente
el desempeño de una amplia gama de protocolos y sistemas de acceso aleatorio para
aplicaciones de reporte de eventos.

En lo que respecta a eMBB, nos enfocamos en un escenario de distribución masiva
de contenidos, en el que un mismo contenido es enviado de forma simultánea a un gran
número de usuarios móviles. Un escenario de este tipo puede ocurrir, por ejemplo,
con servicios de streaming de vídeo que ofrecen un contenido particularmente popular.
Este escenario es problemático, ya que las estaciones base de la red celular no cuentan
con mecanismos eficientes de multicast o broadcast. Por lo tanto, la solución que se
adopta comúnmente es la de replicar e contenido para cada uno de los usuarios que
lo soliciten; está claro que esto es altamente ineficiente. Para resolver este problema,
proponemos el uso de esquemas de network coding y de arquitecturas cooperativas
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llamadas nubes móviles. En concreto, desarrollamos un protocolo para realizar la
distribución masiva de contenidos de forma eficiente, junto con un modelo analítico
para su optimización. Los resultados demuestran que el modelo propuesto es simple y
preciso, y que el protocolo puede reducir el consumo energético hasta en un 37% con
respecto al enfoque tradicional. Además, la solución propuesta reduce drásticamente
los datos móviles consumidos por los dispositivos.
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Resum

La cinquena generació de xarxes mòbils (5G) es troba molt a la vora. S’espera que
aquesta nova generació proveïsca de beneficis extraordinaris a la població i, també, que
resolga la majoria dels problemes de les xarxes de quarta generació (4G) actuals. L’èxit
de 5G, per a la qual ja ha sigut completada la primera fase del qual d’estandardització,
depén de tres pilars; cadascun d’ells correspon a un dels seus casos d’ús: comunica-
cions tipus-màquina massives, banda ampla mòbil millorada, i comunicacions ultra
fiables i de baixa latència (mMTC, eMBB i URLLC, respectivament, per les seues
sigles en anglés). En aquesta tesi ens enfoquem en el primer pilar de 5G, mMTC,
però també proveïm una solució per a aconseguir eMBB en escenaris de distribució
massiva de continguts. Específicament, les principals contribucions són en les àrees
de: 1) suport eficient de mMTC en xarxes cel·lulars; 2) accés aleatori per al report
d’esdeveniments en xarxes sense fils de sensors (WSNs); i 3) cooperació per a la
distribució massiva de continguts en xarxes cel·lulars.

En l’apartat demMTCen xarxes cel·lulars, aquesta tesi realitza una anàlisi profunda
de l’acompliment del procediment d’accés aleatori, que és la forma mitjançant la qual
els dispositius mòbils accedeixen a la xarxa. Aquestes anàlisis van ser inicialment
dutes a terme per mitjà de simulacions i, posteriorment, per mitjà d’un model analític.
En tots dos tipus d’anàlisi els models van ser desenvolupats específicament per a aquest
propòsit i inclouen un dels esquemes de control d’accés més prometedors: el access
class barring (ACB). El nostre model és un dels més precisos que es poden trobar
en la literatura i l’únic que incorpora l’esquema d’ACB. Els resultats obtinguts per
mitjà d’aquest model i per simulació són clars: els accessos altament sincronitzats que
ocorren en aplicacions de mMTC poden causar congestió severa en el canal d’accés.
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D’altra banda, també són clars en què aquesta congestió es pot previndre amb una
adequada configuració de l’ACB. No obstant això, els paràmetres de configuració de
l’ACB han de ser contínuament adaptats a la intensitat d’accessos per a poder obtindre
unes prestacions òptimes. En la tesi es proposa una solució pràctica a aquest problema
en la forma d’un esquema de configuració automàtica per a l’ACB; l’anomenemACBC.
Els resultats mostren que el nostre esquema pot aconseguir un acompliment molt
proper a l’òptim sense importar la intensitat dels accessos. Així mateix, pot ser
directament implementat en xarxes cel·lulars per a suportar el trànsit mMTC, ja que
ha sigut dissenyat tenint en compte els estàndards del 3rd Generation Partnership
Project (3GPP). Aquesta combinació de característiques difícilment es troba en altres
esquemes de control d’accés reportats en la literatura.

A més de les anàlisis descrites anteriorment per a xarxes cel·lulars, es realitza
una anàlisi general per a aplicacions de comptadors intel·ligents. És a dir, estudiem
un escenari de mMTC des de la perspectiva de les WSNs amb tasques de detecció i
report d’esdeveniments. Específicament, desenvolupem unmodel híbrid per a l’anàlisi
de prestacions i l’optimització de protocols de WSNs d’accés aleatori i basats en
clúster. Els resultats obtinguts per mitjà d’aquest model mostren la utilitat d’escoltar
el mitjà sense fil per a minimitzar el nombre de transmissions i també de modificar les
probabilitats de transmissió després d’una col·lisió. Amb base en els resultats, som
capaços de proposar directrius que poden millorar dràsticament l’acompliment d’una
àmplia gamma de protocols i sistemes d’accés aleatori per a aplicacions de report
d’esdeveniments.

Pel que fa a eMBB, ens enfoquem en un escenari de distribució massiva de con-
tinguts, en el qual un mateix contingut és enviat de forma simultània a un gran nombre
d’usuaris mòbils. Un escenari d’aquest tipus pot ocórrer, per exemple, amb serveis de
streaming de vídeo que ofereixen un contingut particularment popular. Aquest escenari
és problemàtic, ja que les estacions base de la xarxa cel·lular no compten amb mecan-
ismes eficients demulticast o broadcast. Per tant, la solució que s’adopta comunament
és la de replicar el contingut per a cadascun dels usuaris que ho sol·liciten; és clar que
això és altament ineficient. Per a resoldre aquest problema, proposem l’ús d’esquemes
de network coding i d’arquitectures cooperatives anomenades núvols mòbils. En con-
cret, desenvolupem un protocol per a realitzar la distribució massiva de continguts
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de forma eficient, juntament amb un model analític per a la seua optimització. Els
resultats demostren que el model proposat és simple i precís, i el protocol pot reduir el
consum energètic fins a un 37% respecte a l’enfocament tradicional. A més, la solució
proposada redueix dràsticament les dades mòbils consumides pels dispositius.
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Chapter 1

Introduction

Society is on the edge of a technological revolution in which every daily-life object
will soon be provisionedwith processing and communication capabilities; the so-called
Internet of Things (IoT). As such, novel applications are pushing the boundaries on
the capacity of the current 4th generation (4G) of mobile networks. As a consequence,
there has been an amazingly rapid increase in the number of wireless devices in recent
years and it has been accompanied with a similarly rapid increase in wireless data
traffic [32]. For instance, the projected number of wireless devices by 2020 is around
11.6 billion and the expected data traffic by 2021 is around 49 exabytes per month.
Current cellular networks cannot handle such a large number of connections nor such
a high amount of data traffic.

The 3rd Generation Partnership Project (3GPP) has recently concluded the first
phase of standardization for the 5th generation (5G) of mobile networks. 5G promises
improved data rates (in the order of a few Gbps), a greater capacity, lower latency,
and, in general, a much better quality of service (QoS) when compared to 4G [14].
Therefore, 5G is expected to solve most, if not all, of the problems of 4G. In addition,
5G will provide a high level of integration by combining the new interface with 4G
and with short-range technologies such as WiFi [19]. The combination of all the
previously described characteristics envisions to provide users with ubiquitous and
real-time access to information and services.
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Since the introduction of digital wireless communications to the phone industry in
1991 with the 2nd generation (2G), subsequent generations have merely represented
an incremental advance in technology [84]. That is, the 3rd generation (3G) and 4G
simply increased the achievable data rate of the users, but neglected manymore aspects
of wireless communications. Instead, 5G is focused towards three main use cases, as
defined by the International Telecommunication Union (ITU) and the 3GPP. These are
the pillars of 5G: massive machine-type communication (mMTC), enhanced mobile
broadband (eMBB), and ultra-reliable low latency communication (URLLC) [7, 49].
In this thesis, we focus on providing efficient solutions for the former use case: mMTC,
but also investigate a technique to enhance performance in a specific eMBB scenario
in Chapter 6.

The term mMTC stands for the autonomous exchange of data between a massive
number of wireless devices. This novel paradigm enables amyriad of applications such
as smart metering, fleet management, traffic optimization, e-health care, and vehicle
control [6, 103]. As such, achieving efficient mMTC is essential to attain a resilient
IoT. Needless to say, 4G technology was developed to handle human-to-human (H2H)
traffic, the same as previous mobile generations, and has several limitations that make
it inefficient to handle mMTC [58, 90].

One of the first studies that revealed some of the problems that may arise under
mMTCapplications in the current 4GLTEAdvanced (LTE-A) networkswas conducted
by the 3GPP itself [1]. Specifically, the 3GPP considered an urban scenario in central
London. In this urban scenario, each household within the coverage area of a macro-
base station is equipped with one smart metering device, which is set to transmit its
information directly to the cellular base station. Interestingly, the total number of
households served by the cellular base station was found to be greater than 30 000.
Therefore, it is no surprise that the study revealed severe congestion can occur if
such a high number of devices attempt to access the cellular base station in a highly
synchronized manner. This is a typical behavior in mMTC applications [1, 76, 103].
Hence, from that point on, exhaustive efforts have been made to support mMTC in
LTE-A [37].

Despite its limitations, the current 4G LTE-A system will serve as a base to 5G.

2



Chapter 1. Introduction

For instance, the RA procedure (RAP) that is used by the mobile users to switch
from idle to connected mode in LTE-A has been incorporated to the narrowband
Internet of Things (NB-IoT) standard with only minor modifications. This standard
was published by the 3GPP in release 13 and is a low-power wide-area implementation
at the 4G cellular base stations that is considered a 5G technology [106]. The main
purpose of NB-IoT is to support mMTC by providing a higher power efficiency than
in typical LTE-A. Specifically, NB-IoT nodes are expected to be battery powered for
as long as 10 years, to be connected to cellular base stations as far as 10 km, and to
drastically reduce manufacturing costs [7]. Furthermore, the 5G Infrastructure Public
Private Partnership (5GPPP) METIS-II project was in charge of designing a new radio
access network (RAN) for 5G. In this new RAN, the exact same RAP is considered
with one minor difference that allows high-priority devices to have a higher access
probability [11]. On the other hand, the proposed solution to handle mMTC is to
incorporate short-range technologies to create groups of mobile devices that contain
a leader. Then, the leader performs the RAP in representation of the whole group.
This fulfills the promise of the integration of the 5G interface with 4G and short-range
technologies, but also confirms the prevalence of the RAP defined for LTE-A, at least
for the coming years.

One of the main problems of the RAP is that its first step, preamble transmis-
sion, resembles a simple multichannel slotted ALOHA access protocol. For instance,
orthogonal sequences are used in traditional LTE-A whereas orthogonal frequency
patterns are used in NB-IoT. Then, a collision occurs if multiple devices transmit the
same preamble simultaneously. The literature on slotted ALOHA protocols is vast
and there is a clear consensus that this type of protocols are prone to congestion when
the system capacity is exceeded. Cellular networks under mMTC applications, where
highly synchronized accesses occur frequently, are no exception to this rule. Besides,
the first step of the RAP is not its only limitation. Cellular base stations also present
limitations on the downlink control channel, used for the second step of the RAP.
This second message signals the success of an access attempt at the first step. As a
consequence, an access attempt may fail due to: 1) a preamble collision; 2) insufficient
downlink control resources; or 3) wireless channel errors.

Access control mechanisms are the most promising approach to efficiently support
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mMTC in 4G and beyond. Among these mechanisms, the access class barring (ACB)
is especially interesting as has already been included in the LTE-A standards [10] and
provides a probabilistic mechanism to delay the access requests of mobile devices to
reduce the signaling traffic intensity. Themain focus of this thesis is on the performance
analysis of the RAP, the evaluation of the potential benefits of the ACB scheme, and
on the development of an adaptive scheme to correctly configure the ACB parameters.

The main contributions and scientific publications derived from this thesis with
respect to mMTC in 3GPP cellular networks are described in the following. It presents
one of the most thorough performance analyses of the RAP and of the ACB scheme
that can be found in the literature. This analysis is first performed by simulation, where
the problems of the RAP and benefits of the ACB scheme are exhibited [68, 95]. Next,
it presents an analytical model of the RAP that includes the ACB scheme. To the best
of our knowledge, this is one of the most thorough and accurate analytical models of
the RAP that can be found in the literature and is the only one that incorporates the
ACB scheme [60, 69]. Furthermore, this analytical model can be used to accurately
assess the performance of the RAP under a wide range of network configurations and
can be modified to incorporate different assumptions commonly made in the literature.
Finally, this thesis presents an adaptive solution to congestion in the form of an access
class barring configuration (ACBC) scheme. That is, it presents a mechanism to
automatically configure the parameters of the ACB scheme according to the signaling
traffic intensity. This mechanism is particularly valuable as it strictly adheres to the
3GPP standards and can yield a near-optimal performance regardless of the signaling
traffic intensity [66, 67].

Besides the work oriented to support mMTC in cellular networks under the 3GPP
standard, this thesis presents an analysis of mMTC from a more general perspective:
wireless sensor networks (WSNs). A WSN is an auto-organized collection of nodes
with wireless communication and environmental sensing capabilities. These nodes are
in charge of collecting and transmitting information regarding the state of a particular
physical parameter of interest [16]. Therefore, WSNs are cost-efficient solutions to
massive monitoring and that are not, in general, subject to the 3GPP or to any particular
standard. Specifically, we focus on random access (RA) event reporting in time-critical
applications. These applications usually involve the detection of hazardous conditions,
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so they have stringent time and reliability requirements [85].

Our work on WSNs focuses on the performance analysis and optimization of a
RA protocol that incorporates two novel approaches. The first one is to set a the
number of data packets required to characterize the occurring phenomena. Then,
nodes overhear the wireless medium to identify the exact point in time when these
packets are transmitted. At this point in time, nodes can drop packets that are still
pending for transmission, which eliminates the transmission of redundant packets. The
second approach is to modify transmission probabilities after a collision occurs (i.e.,
during backoff). While this approach is not entirely new, its combination with the first
approach offers great benefits to the network. For instance, one of the main benefits
of the combination of these two approaches is a dramatic increase in the robustness of
the performance of the network to the inaccurate selection of parameters. That is, the
network is capable of providing a near-optimal performance even when the selection
of parameters is far from optimal. As a summary, the main contributions and scientific
publications derived from this thesis with respect to WSNs include the formulation of
the hybrid model, the proposal of a RA protocol for event reporting in critical-time
applications that incorporates the approaches described above, and the performance
evaluation and parameter optimization of this protocol [62, 63].

As described above, a specific scenario for the second of the three main use cases
for 5G: eMBB, is also studied in this thesis. The term eMBB stands for the demand
of high data rates across a wide coverage area, and is clearly associated to multimedia
consumption in mobile devices. Some of the deployment scenarios for eMBB are
indoor hot spots, high speed vehicles, virtual and augmented reality, and gaming. A
scenario that is specially problematic is that of massive content delivery, in which the
exact same content is transmitted to a large number of mobile users simultaneously. A
clear example of such scenario arises with streaming services that offer a particularly
popular content. In such case, the cellular base stations must either replicate the
content for each mobile user or utilize inefficient broadcast implementations such as
the evolved multimedia broadcast multicast service (eMBMS) [104]. Needless to
say, content replication leads to an irrational waste of wireless resources whereas the
eMBMS usually suffers from unexpected disconnections and lacks support to ensure
an adequate QoS to individual mobile devices [26]. An especially promising solution
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to this problem is to offload the cellular link by shifting the traffic to short-range links.
The strength of such an approach greatly increases with the coming of 5G, where short
and long-range technologies will complement each other.

The novel paradigm of network-coded cooperation (NCC) refers to the combination
of network coding (NC) schemes with cooperative architectures known as mobile
clouds (MCs). The benefits of NCC in the scenario described above were investigated
during a research stay at the Deutsche Telekom Chair of Communication Networks
of the Technische Universität Dresden, in Dresden, Germany. The research on NCC
during this period comprised the formulation of a protocol for massive content delivery
and the analytical model to optimize this protocol. Results show that this NCC protocol
can provide significant energy and cellular data savings to the mobile devices, but also
can lead to considerable throughput gains when compared to the traditional approach
of replicating the content for each requesting user. As such, the main contributions of
this thesis on eMBB are the formulation of the NCC protocol and of the model for its
optimization [61].

The rest of this thesis is organized in six chapters. Chapters 2, 3, and 4 are
dedicated to the support mMTC in cellular networks. Specifically, Chapters 2 and
3 present a thorough performance analysis of the RAP, including the ACB scheme
as defined in the 3GPP technical specifications [5, 8, 10]. Chapter 2 presents results
obtained by simulation. On the other hand, Chapter 3 presents an analytical model
for the RAP that includes the ACB scheme; results obtained by this model are also
presented in this chapter. Chapter 4 presents the ACBC scheme, which is the proposed
solution to efficiently support mMTC in cellular networks. Next, Chapter 5 presents
a hybrid method for the performance analysis of RA protocols in WSNs for event-
reporting applications. Hence, it provides an approach to support mMTC that is
independent from the 3GPP standards. Chapter 6 presents a novel NCC protocol
for eMBB applications in cellular networks under a massive content delivery scenario.
The analytical model that describes the operation of the NCC protocol is also presented
and used to optimize its performance. Finally, Chapter 7 presents the main conclusions
and promising lines of research.
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Chapter 2

Performance analysis of RA in cellular
networks under mMTC scenarios

2.1 Introduction

The novel communication paradigm of massive machine-type communication
(mMTC) is one of the use major use cases for the 5th generation (5G) of mobile
networks and stands for the autonomous exchange of data between an exceedingly
large number of wireless devices; these mobile devices are known as machine-to-
machine (M2M) user equipments (UEs). MMTC enables a wide range of applications
that are appealing to both the academy and industry such as smart metering, fleet man-
agement, e-health, and many more. Due to the proliferation of mMTC applications,
the number of deployed M2M UEs is growing at an incredibly rapid pace [32].

The current 4th generation (4G) LTE Advanced (LTE-A) system has a widely
deployed infrastructure, which provides with ubiquitous coverage and global connec-
tivity [2, 72]. As such, LTE-A networks present nowadays one of the best solutions
for the interconnection of mobile devices and will serve as a foundation for the deve-
lopment of the 5G system [24, 29, 76]. In fact, 5G networks are expected to provide
efficient support for mMTC.
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Nevertheless, cellular technology up to 4G was developed to handle human-to-
human (H2H) traffic, where few UEs (compared to the billions of M2M devices
expected by 2020 [32]) communicate simultaneously and transmit relatively large
amounts of data. Conversely, in mMTC, a bulk of M2M UEs communicate spar-
ingly with cellular base stations, known as evolved NodeBs (eNBs) in 4G, in a highly
synchronized manner [76, 103]. While the data packets sent in machine-type com-
munications (MTC) are small in size when compared to the size of data packets in
H2H communications, the large number of access requests may exceed the signaling
capacity of the eNBs. This phenomenon leads to severe network congestion and to the
loss of potentially critical information [37, 58].

The UEs access the eNB by means of the RA procedure (RAP); it is performed
through the random access channel (RACH) and comprises a four-message handshake:
preamble transmission (only allowed in predefined time/frequency resources called
random access opportunities (RAOs), RA response (RAR), connection request, and
contention resolution messages. The RAP defined by the 3rd Generation Partnership
Project (3GPP) for both, 4G and 5G, is described in detail in Section 2.3. Still
it is important to point out that the main bottlenecks of the RAP are in the first two
messages: preamble transmission and RAR. The reason for this is that uplink resources
for preamble transmission and downlink resources for the RAR are limited and shared
by every UE within the cell. On the other hand, connection request and contention
resolution messages are sent through dedicated resources.

Specifically, the number of preambles are selected randomly by the accessing UEs.
Hence, collisions occur when multiple UEs select and transmit the same preamble at
the same RAO. On the other hand, RAR messages are transmitted by the eNB and
contain a limited number of uplink grants, each of which is sent in response to the
successful reception of a specific preamble. Only the UEs that receive an uplink grant
can continue with the RAP.

As a result, the signaling capacity of an eNB is limited by the number of available
preambles and by the number of uplink grants that can be sent per RARmessage. This
capacity, can be easily exceeded when a bulk of M2M UEs transmit their preambles
in a highly synchronized manner, which is a typical behavior in mMTC applications
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that leads to severe congestion. Congestion caused by mMTC applications is a serious
problem, as the rapid increase in the number of deployed M2M UEs will undoubtedly
increase the frequency and severity of congestion in the near future.

Recent efforts to support mMTC in LTE-A have led to the development of the
narrowband Internet of Things (NB-IoT) standard, presented in release 13 of the
3GPP specifications [7]. NB-IoT is a low-power wide-area (LPWA) implementation
at the eNBs that aims to support mMTC by providing great power efficiency, low
bandwidth utilization, and enhanced coverage at a reduced hardware cost. As such,
NB-IoT devices are expected to remain active for up to ten years without the need of
battery replacements and to communicate at a distance of up to ten kilometers from the
eNBs [7]. Nevertheless, the RAP in traditional LTE-A, in NB-IoT, and in 5G is mostly
similar, with only a few minor exceptions that have a minor impact on performance.
Therefore, it is only natural that the development of efficient access control schemes is
a hot research topic [12, 35, 37, 58, 90, 106, 109].

Among the numerous access control schemes that have been proposed in the
literature, the access class barring access class barring (ACB) scheme is one of the
most promising; hence it has been included in the 3GPP Radio Resource Control
(RRC) specification [10]. The ACB scheme redistributes the UE access attempts
through time. For this, the eNB may force the UEs to randomly delay the beginning
of RAP according to the barring parameters: barring rate and mean barring time. By
doing this, it may be effective to relieve sporadic and short (in the order of a few
seconds) periods of congestion. This behavior goes in line with the bursty traffic
behavior of mMTC applications [1, 109]. The ACB scheme is explained in detail in
Section 2.3.

Throughout these studies, it was identified that the behavior of ACB is oftentimes
misinterpreted in the literature. That is, we have observed that some studies that
evaluate the efficiency of the ACB scheme, such as Lin et al. [71] assume that the time
the UE accesses are delayed is fixed, whereas the 3GPP technical specifications state
that this parameter is selected randomly at each barring check. A barring check is the
process by which the UE determines its barring status, please refer to Section 2.3 for
specific details on the ACB scheme [5, 10]. Our studies are one of the few that evaluate
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the ACB performance with a randomly selected barring time.

This chapter presents a thorough performance analysis of the RA in cellular net-
works, which includes both, the RAP and the ACB scheme, in mMTC scenarios. For
this, typical configurations and the timing of the LTE-A RAP are assumed, but our
results can be easily extended to NB-IoT and 5G just by including minor modifications
on some configuration parameters. Throughout this chapter, we focus on the perfor-
mance analysis of the ACB scheme with a static configuration. That is, the barring
parameters remain constant throughout the whole period in which UE accesses occur.
That is, throughout the whole distribution period. On the other hand, possible meth-
ods to adapt the barring parameters to the signaling traffic intensity in real time are
discussed in Chapter 4. Building on this, the main contributions of this chapter are as
follows.

1. The analysis of the steady-state capacity of the RAP.

2. The identification of the combinations of configuration parameters that enhance
the success probability in mMTC scenarios.

3. The comparison of the key performance indicators (KPIs) obtained for two
different backoff (i.e., time elapsed between a failed preamble transmission and
the next preamble transmission) implementations at the UE side:

(a) a uniform backoff (as stated in the medium access control (MAC) specifi-
cation [9]).

(b) an exponential backoff, where the backoff time of each UE depends on the
number of transmissions attempted previously.

4. A thorough analysis of the ACB scheme that allows to identify the optimal
parameter configuration under the most congested scenario suggested by the
3GPP [1].

The rest of the chapter is organized as follows. Section 2.2 presents a review of the
literature on mMTC in cellular networks. Next, Section 2.3 describes the ACB scheme
and the RAP in detail; including the analysis of the capacity of the RAP. Section 2.4
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presents the methodology and the results derived from the performance analysis of
the RAP by simulation. The potential benefits of the ACB scheme and its optimal
configuration are also included in this section. Finally, conclusions are presented in
Section 2.5.

2.2 Related work

The RAP of 3GPP cellular networks is complex as it comprises a four-message hand-
shake and involves twomain physical channels; each of these channels presents different
limitations. It is this same complexity that makes the RAP inefficient under mMTC
scenarios, but also difficult to evaluate properly. For instance, it involves numerous
configuration parameters and each of these can take several values that have a deep
impact on performance.

The 3GPP has provided a list of typical configuration parameters and the resulting
KPI, along with some recommendations which serve as initial guidelines for perfor-
mance analysis of the RAP [1]. Several studies have concluded that the RAP cannot
handle a large number of UE accesses efficiently, especially when the UE accesses are
highly synchronized [24, 37, 58, 79, 109]. Nevertheless, some studies simply adopt the
default configuration provided by the 3GPP and overlook other possible combinations
of parameters. For example, Wei et al. [109] present a thorough mathematical analysis
of the RAP that, due to its high accuracy, will be used as a benchmark to our analytical
model in Chapter 3. However, their work focuses on the analytical modeling rather
than on the performance evaluation of the RAP under mMTC scenarios. Consequently,
only the typical configuration is evaluated.

Lin et al. defined the physical RACH (PRACH) capacity and were one of the firsts
to investigate the benefits of the ACB scheme with static parameters [71]. They also
proposed one of the first dynamic schemes to configure the ACB scheme. However,
the capacity of the physical downlink control channel (PDCCH), where the second
message of the RAP is transmitted, was not considered and only a few combinations
of barring parameters were tested. Furthermore, the time the UE accesses are delayed
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due to ACB was considered to be fixed 1, whereas this time is calculated randomly
at each barring check [5, 10]. In addition, performance was only evaluated under the
most typical configuration.

De Andrade et al. evaluated the performance of the RAP bymeans of a commercial
simulator and compared the benefits of several schemes to relieve congestion [34]. They
found that: 1) the ACB scheme is one of the most effective solutions to congestion,
even when barring parameters are fixed; 2) it is difficult to correctly adapt the barring
parameters to the traffic intensity in real time; and 3) an exponential backoff may be
helpful to decrease congestion. However, two main drawbacks were observed in this
study. The first one is that the authors assumed that preambles transmitted by multiple
UEs are decoded by the eNB, whereas the 3GPP states that these are opposite outcome
occurs. Possible scenarios for these two possible outcomes, their implications, and
their impact on performance are discussed in detail in Chapter 3. As it will be seen, this
assumption greatly affects the performance of the RAP. The second drawback is that
numerous schemes were investigated, but none of these was thoroughly described or
evaluated. For example, only one combination of parameters was selected for each of
them. Building on this, a thorough performance analysis of the RAP and that includes
the ACB scheme as defined in the technical specifications is needed.

2.3 Random access in LTE-A

This section provides a detailed description of the contention-based RA in cellular
networks, which includes the ACB scheme and the RAP itself. The capacity of the
channels involved in the RAP (i.e., the capacity of the RAP) is also derived.

Through Chapters 2 to 4, we assume the ACB scheme is exclusively implemented
as described in the technical specifications [5, 10]. That is, no other access control
scheme is considered. On the other hand, we consider the complete four-message
handshake performed in the contention-based RAP. These are now described in detail.

In order to switch from idle to connected mode, the UEs must first acquire the
network configuration parameters; these are broadcast by the eNB through System

1This was confirmed by simulation and by our analytical model.
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Figure 2.1: Contention-based RA in cellular networks. UEs are first subject to the
ACB scheme; they perform the RAP afterwards.

Information Blocks (SIBs). Concretely, the basic network configuration is included in
the Master Information Block (MIB), PRACH-ConfigSIB and in SIB 1 and SIB 2 [10].

The network operates in a time-slotted channel in which the minimum unit for
scheduling is the subframe, with duration of ts = 1 ms. The MIB includes the
available carrier bandwidth, whereas the PRACH-ConfigSIB includes the parameter
prachConfigIndex, which defines the period of RAOs. That is, the number of subframes
elapsed between two consecutive RAOs. The SIB 1 carries the scheduling information
for the remaining SIBs such as the period of SIB transmissions. Finally, SIB 2 includes,
among others, the barring parameters [10]. Once the UEs have acquired the necessary
information, they continue to the ACB scheme and, finally, the RAP. Fig. 2.1 briefly
describes the contention-based RA.

Upon arrival, UEs are subject to the ACB scheme and are divided into access

13



Chapter 2. Performance analysis of RA in cellular networks under mMTC scenarios

classes (ACs) 0 to 15 according to their traffic characteristics. Each UE belongs to one
out of the ten normal ACs (from ACs 0 to 9), and can also belong to one or more out
of the high-priority classes. For instance, AC 10 is for emergency calls and ACs 11 to
15 are special ACs.

Please recall that RAOs are time-frequency resources in which preamble transmis-
sions (i.e., first step of the RAP) are allowed. Next, let i be the time index that defines
the number of RAOs elapsed since the beginning of an observation of the system and
up to a given point in time. Also let j be the time index that defines the number of
SIB 2 transmissions performed up to the ith RAO. Building on this, the jth SIB 2
transmission includes the barring rate pacb( j) and the mean barring time tacb( j) that
are applied to all ACs 0 to 9, and to one or more of the ACs 10 to 15 until the ( j + 1)th
SIB 2 transmission. The list of the high-priority categories that are subject to the ACB
scheme is also included in the SIB 2 [10].

The UEs subject to the ACB scheme must perform a barring check before initiating
the RAP (i.e., before the transmission of their first preamble) as described in Algo-
rithm 1 [5, 10, 53]. On the other hand, the UEs that succeed in a barring check are no
longer subject to the ACB scheme and proceed to perform the RAP as follows.

Preamble (Msg1): Let r be the number of available preambles for the contention-
based RAP. Each UE randomly selects one out of the r available preambles and
sends it toward the eNB in the next RAO through the PRACH. Preambles in LTE-A
are orthogonal (i.e., Zadoff-Chu) sequences, whereas in NB-IoT these are orthogonal
single-tone frequency-hopping patterns. Therefore, the number of available preambles
in traditional LTE-A is limited by the characteristics of Zadoff-Chu sequences to a
maximum of r = 64. On the other hand, the number of available preambles in NB-IoT
is limited by the preamble and system bandwidth to a maximum of r = 48 [10].

Due to the orthogonality of preambles, multiple UEs can access the eNB in the
same RAO if they select different preambles. That is, the eNB decodes the preambles
transmitted with sufficient power by exactly one UE in each RAO. On the other hand,
a collision occurs when multiple UEs transmit the same preamble simultaneously.

RAR (Msg2): The eNB computes an identifier for each successfully decoded
preamble and sends the RAR message through the PDCCH. It includes, among other

14



Chapter 2. Performance analysis of RA in cellular networks under mMTC scenarios

Algorithm 1 ACB scheme.
1: repeat
2: Select the mean barring time tacb( j) and barring rate pacb( j) broadcast by the

eNB in the jth SIB 2.
3: Generate U [0, 1) ≡ a random number with uniform distribution between 0 and

1.
4: if U [0, 1) ≤ pacb( j) then
5: Initiate the RAP.
6: else
7: Generate a new U [0, 1).
8: Select the barring time as

tw =
(
0.7 + 0.6 U [0, 1)

)
tacb( j). (2.1)

9: Wait for tw .
10: end if
11: until the RAP is initiated.

data, uplink grants for the transmission of Msg3 in predefined time-frequency re-
sources. There can be up to one RAR message in each subframe, but it may contain
several uplink grants; each of which is associated to a successfully decoded preamble.

The PDCCH resources are limited, so a maximum number of uplink grants can be
sent per RAR message and only one RAR message can be sent per subframe. After
preamble transmission, UEs wait for a predefined number of subframes to receive
the uplink grant. This period is known as the RAR window. Hence, the number of
available uplink grants per RAR window depends on the length of the RAR window
and on the number of uplink grants that can be sent per subframe.

Connection request (Msg3): After receiving the corresponding uplink grant, the
UEs adjust their uplink transmission time according to the received time alignment and
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schedule the transmission of the connection request message toward the eNB through
dedicated resources.

Contention resolution (Msg4): The eNB transmits a contention resolution mes-
sage in response to each received Msg3. If a Msg3 transmission fails, the eNB will
not send theMsg4 and the UE schedules aMsg3 retransmission a few subframes later.
However, if a UE does not receiveMsg4within a predefined time window known as the
contention resolution timer or within the maximum number of transmission attempts,
then it declares a failure in the contention resolution and schedules a new preamble
transmission. These parameters are provided by the eNB. It is important to emphasize
that a failure at the contention resolution is extremely rare if common values for the
two parameters are selected, and may only occur under poor wireless conditions.

There exists a maximum number of allowed preamble transmissions for each UE.
This number is broadcast by the eNB through the SIB 2 [10] and, as it will be seen in
Section 2.4, it plays an important roll in the performance of the network. Whenever
an access attempt fails, and if the maximum number of preamble transmissions has
not been reached, the UE waits for a random backoff time (determined by the backoff
indicator); then randomly selects and transmits a new preamble at the next RAO. UEs
perform a power ramping process to reduce the probability of subsequent preamble
transmission failures due to wireless channel errors. In this process, UEs transmit the
first preamble with low power; then, transmission power increases at each failed access
attempt.

As described above, preambles transmitted by exactly one UEwith sufficient power
are decoded at the eNB. On the other hand, two possible outcomes exist when the same
preamble is transmitted by multiple UEs simultaneously. In the first one, the eNB
does not decode the transmitted preamble. Hence, the implicated UEs will not receive
an uplink grant within the RAR window; this is the indication that a collision has
occurred. In the second one, the eNB correctly decodes the transmitted preamble and
may send an uplink grant in response; this uplink grant will be received by multiple
UEs. Each uplink grant assigns time-frequency resources for the transmission ofMsg3.
Hence, the implicated UEs will transmit theirMsg3s in the same dedicated resources.
Therefore, the preamble collision will be detected at this point.
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In this chapter we assume that the first outcome takes place whenever a preamble
collision occurs. This goes in linewith the 3GPP recommendations for the performance
analysis of the RACH [1] and with most of the literature [20, 30, 71, 94, 109, 116].
Chapter 3 delves deep into themultiple causes for the two different outcomesmentioned
above, along with the two main assumptions related to the RAP and their impact on
performance.

It is important to mention that we assume the available resources and the timing
of the RAP are the ones defined for traditional LTE-A. These are shown in Table 2.2
on page 25 and in Table 2.3 on page 26, respectively. But is also worth emphasizing
that the RAP in NB-IoT and 5G are greatly similar to that in LTE-A with a few minor
exceptions [4]. Concretely, the single difference between NB-IoT and LTE-A that may
have an impact on performance is that up to three coverage enhancement (CE) levels
can be defined in NB-IoT (CE levels zero, one, and two). The CE level of a given UE
defines the number of preamble repetitions to be performed one after another per each
access attempt. That is, only one repetition performed at CE level zero and the number
of preamble repetitions increases with the CE level. Preamble repetitions are meant to
reduce the probability of an access failure due to wireless channel errors [44, 50].

Specifically, every UE in NB-IoT belongs to CE level zero unless the quality
of the measured reference signals sent by the eNB is poor due to an unfavorable
wireless environment, or the UE has reached the maximum number of access attempts
successfully. In the latter case the UE increases the CE level. Building on this, the ratio
of UEs in CE level zero to UEs in CE levels one and two is expected to be considerably
large when no congestion has occurred. Furthermore, the preambles assigned to each
CE may be different. Building on this, the contributions presented in chapters 2, 3,
and 4 can be easily and successfully applied to the access control of the UEs in CE
level zero as these contribute the most to congestion in the RACH given that different
preambles have been assigned to each CE level.

2.3.1 Capacity of the RAP

As it will be showcased throughout this section, the capacity of the channels involved
in the RAP is determined by two main parameters. The first one is the number of
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available preambles for contention-based RA, denoted by r . The second one is the
number of available uplink grants per RAR window, denoted by g. In this section
we first evaluate the PRACH capacity per RAO, which then is immediately extended
to the capacity of the RAP, including both the PRACH and the PDCCH. With this
information, the capacity of the RAP given in successful accesses per second can be
easily calculated.

As mentioned above, preambles are constructed using Zadoff-Chu sequences [8].
These are orthogonal sequences possess great periodic correlation, which allows for
an extremely fast calculation of their correlation [31]. Nevertheless, Zadoff-Chu
sequences are difficult to generate in real time and require large amounts of memory for
their storage [74]. On the other hand, preambles in NB-IoT are single-tone frequency
hopping patterns, where frequency hopping is pseudo aleatory. Therefore, a preamble
in NB-IoT is defined by the initial tone selected by the UEs. Building on this, the
RACH of both LTE-A and NB-IoT resembles a multichannel slotted ALOHA network
access protocol in which r corresponds to the number of available channels. Time slots
correspond to the minimum time unit for scheduling, which in LTE-A is the subframe,
with a fixed duration of ts = 1 ms.

Let S be the random variable (RV) that defines the number of successful preambles
at an arbitrary RAO. That is, preambles selected by exactly one UE at a given RAO.
The state space of S is the number of successes {s ∈ N | s ≤ r }. Also, let n(i) be
the number of contending UEs at the ith RAO. That is, the total number of preamble
transmissions at the ith RAO. The expected value of S at the ith RAO is given as

E [S] = n(i)
(
1 − 1

r

)n(i)−1
(2.2)

Fig. 2.2 shows E [S] for several values of r and n(i). As it can be seen, E [S] is
an increasing function for low values of n(i) and presents its global maximum when
n(i) ≈ r . Then it becomes a decreasing function.

Based on this behavior, the following definition for the capacity of the PRACHwas
formulated in [71].

Definition 2.3.1. The PRACH capacityC (r) is given as the maximum achievable E [S]
for any n(i) ∈ R and for a given r .
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Figure 2.2: Expected number of successful preamblesE [S] given r available preambles
and n(i) contending UEs [71, Fig. 3].

Lemma 2.1. The value of n(i) ∈ R that maximizes E [S] as formulated in (2.2) is
n∗(i) =

[
log (r/ [r − 1])

]−1. Therefore, the capacity of the PRACH is given as

C (r) = max
n(i)
E [S] =

[
log

( r
r − 1

)]−1 (
1 − 1

r

) [ log
(

r
r−1

)]−1−1
. (2.3)

Proof. The value n∗(i) can be easily obtained by means of the first derivative test as
follows.

∂ E [S]
∂n(i)

=

(
1 − 1

r

)n(i)−1 [
1 + n(i) log

(
1 − 1

r

)]
= 0 (2.4)

which gives

n∗(i) = − 1
log

(
r−1
r

) =
[
log

( r
r − 1

)]−1
. (2.5)

This concludes the proof.

We observed in [95] that the PRACH capacity can be closely approximated by the
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following simple formulations.

C (r) ≈ r
(
1 − 1

r

)r−1
(2.6)

>
r
e

(2.7)

where e is Euler’s number. In particular, both (2.6) and (2.7) are lower bounds of (2.3);
these are derived in Appendix B.1.

Fig. 2.3 shows C (r) as in (2.3) and the relative error of lower bounds (2.6) and (2.7).
Clearly, the error of approximation (2.6) is negligible and can be directly used instead
of (2.3), but also that of approximation (2.7) is relatively low for practical values of r .
Typical values of r can be inferred from the fact that a total of 64 and 48 preambles
exist in LTE-A and NB-IoT, respectively. For instance, r = 54 is the most typical value
in LTE-A [1], whereas r = 30 for NB-IoT seems natural. For these values of r we have
C (54) = 20.05 and C (30) = 11.22, whereas for r = 30 the relative error with (2.6) is
below 1.7 · 10−2 and with (2.7) is below 1.5 · 10−4.

It will be showcased in Fig. 2.4 on page 27 that C (r) approximately coincides
with the maximum number of stationary UE arrivals per RAO that the PRACH can
handle efficiently. That is, when the whole RAP is performed and no limitations on the
PDCCH are considered. For instance, please assume themost typical value of r = 54 is
selected, which gives a theoretical capacity of C (54) = 20.05 successful preambles. In
a typical PRACHconfigurationRAOs occur once every trao = 5ms. Since the subframe
duration is ts1 ms, RAOs occur once every 5 subframes. Therefore, the maximum
number of stationary UE arrivals per second (i.e., stationary signaling traffic load)
that the most typical PRACH configuration can handle efficiently is approximately
C (r) /trao = 4010. In other words, 4010 successful accesses per second can be
achieved when the full capacity of the PRACH is utilized. Nevertheless, the number of
available preambles is not the only parameter that limits the capacity of the RAP and,
as it will be observed throughout this thesis, the capacity of the PDCCH oftentimes
has a greater impact on the performance of the RAP.

Specifically, the capacity of the PDCCH is measured in terms of control channel
elements (CCEs), and is fixed to 16 CCEs per subframe. Both, RAR and contention
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Figure 2.3: (a) PRACH capacity defined as in [71] and (b) relative error of approxi-
mations (2.6) and (2.7).

resolution messages (i.e., Msg2 and Msg4, respectively) are transmitted through the
PDCCH, hence resources are shared among these two messages. The size of each
uplink grant included inMsg2 and ofMsg4 is four CCEs. At each subframe, one RAR
message can be sent and at least four CCEs are reserved for aMsg4 transmission [79].
Therefore, the maximum number of uplink grants can be sent per ms is fg = 3. As
mentioned at the beginning of this section, the UEs wait for a predefined number of
subframes after preamble transmission to receive the uplink grant; this is called the
RAR window and its duration under the most typical configuration is trar = 5 ms (i.e.,
equal to the period of RAOs). As a result, the maximum number of uplink grants
that can be sent within a RAR window is g = fg trar. Building on this, we extend
Definition 2.3.2 as follows
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Definition 2.3.2. Let NG be the RV that defines the number of UEs that receive an
uplink grant at a given RAR window. That is, in response to preambles transmitted in
the previous RAO. Hereafter we refer to NG as the number of assigned uplink grants.
The capacity of the RAP is defined as the global maximum of E [NG] for any n(i), given
no wireless channel errors occur during preamble nor uplink grant transmissions.
Hence, the capacity of the RAP under the assumption that the eNB only decodes
preambles transmitted by exactly one UE is simply given as

C (r, g) = max
n(i)
E [NG] = min {C (r) , g} . (2.8)

2.4 Performance analysis of RA in cellular networks

In this section, we first describe the methodology for the performance analysis of the
RA in cellular networks under mMTC scenarios. Next, we investigate the relation
between the capacity of the PRACH alone and the maximum static number of arrivals
that this channel can handle efficiently. Then, we investigate the performance of the
RAP under different configurations of the PRACH, along with the potential benefits of
implementing an exponential backoff instead of the traditional uniformbackoff. Finally,
we evaluate the efficacy of the ACB scheme and identify its optimal configuration.

2.4.1 Methodology

The 3GPP has condense the enormous collection of variables and possible mMTC
scenarios in two different traffic models and also has provided five KPIs to assess
the performance of the RAP. The characteristics of the traffic model (TM) 1 and of
the TM 2 are shown in Table 2.1 [1]. Both traffic models correspond to mMTC
scenarios that are expected to occur in the near future as their characteristics are based
on observations performed in a highly dense urban area. However, the main difference
between them is that the TM 2 corresponds to a highly synchronized scenario, whereas
UE arrivals under the TM 1 are uniformly spread across the whole distribution period.
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Table 2.1: Characteristics of the different traffic models defined by the 3GPP for the
performance evaluation of the RAP [1].

Parameter TM 1 TM 2

Number of M2M UEs n {1000, 3000, 5000, 10 000, 30 000} {1000, 3000, 5000, 10 000, 30 000}
Distribution period tdist (s) 60 10

Distribution over tdist Uniform Beta(3, 4)

It has been observed that TM 2 causes severe congestion when themost typical PRACH
configuration is selected [1]. Therefore, we assume the TM 2 represents the default
behavior under mMTC scenarios and is used throughout the vast majority of results
presented in this section. In particular, we select n = 30 000UE arrivals that, according
to TM 2, follow a Beta(3, 4) distribution over 10 s.

The KPIs proposed by the 3GPP for the performance analysis of the RA are defined
as follows.

1. Success probability Ps: Ratio of successful to total UEs. To calculate this
parameter, let s(i) be the number of UEs that successfully complete the RAP at
the ith RAO. Then, Ps is simply given as

Ps =
1
n

imax∑

i=0
s(i) (2.9)

Throughout Chapters 2 to 4, Ps is considered themost important KPI and assume
performance is adequate only if Ps ≥ 0.95.

2. Access delay D: RV that defines the time elapsed between the arrival of a UE and
the successful completion of the RAP, given in seconds. We assess D in terms of
the 10th, 50th, and 95th percentiles denoted as D10, D50, and D95, respectively.
That is, the delay of φ percent of the UEs that successfully complete the RAP is
Dφ s or less.

3. Preamble transmissions K : RV that defines the number of preamble transmis-
sions performed by the UEs that successfully complete the RAP. As such, the
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transmissions performed by UEs that fail the RAP are not considered. We assess
K in terms of the expected value E [K].

4. Collision probability Pc: Ratio of collided to total number of available preambles
in the access period. For this, let c(i) be the number of collided preambles at
the ith RAO (i.e., preambles transmitted by multiple UEs). Also let imax be the
last RAO of the access period. Then it follows that

Pc =

imax∑

i=0

c(i)
r
. (2.10)

5. Number of contending UEs per RAO: Equivalent to the total number of pream-
ble transmissions in a RAO. This KPI serves as an indicator of the levels of
congestion of the RA channels.

The first three KPIs listed above will be the base to assess the performance of the
RAP. The reasons to overlook the collision probability and the number of contending
UEs are:

1. The collision probability highly depends on the period that is taken into account
for its calculation. That is, {i ∈ N | i ≤ imax}, but imax is not strictly defined.
Hence, results are not easily comparable with those obtained in the literature,
for example, with those included in [1]. This problem becomes more evident
when the ACB scheme is introduced.

2. The number of contending UEs per RAO directly impacts the number of suc-
cessful and collided preambles. Hence, this KPI is directly reflected on Ps ,
but the latter provides more information on the actual performance of the RAP.
Building on this, we use Ps as the primary KPI and employ the number of
contending UEs per RAO exclusively for illustration purposes.

A static implementation of the ACB scheme is considered throughout this section
and also throughout Chapter 3. This means that the barring parameters remain constant
throughout the operation of the network or, at least, throughout a whole observation
of it. In our case, each observation of the network begins at the first RAO in the
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Table 2.2: Default parameters for simulations.

Parameter Setting

Available preambles r = 54

Subframe length ts = 1 ms

Period of RAOs trao = 5 ms

RAR window length trar = 5 ms

Available uplink grants per RAR window g = 15

Maximum number of preamble transmissions kmax = 10

Backoff indicator bmax = 20 ms

Error probability for the kth preamble transmission Pr [Ek ] = 1/ek

Maximum number of Msg3 and Msg4 transmissions 5

Error probability for Msg3 and Msg4 transmissions 0.1

distribution period and ends when every M2M UE has concluded the RAP. This
allows us to simplify notation by defining pacb = pacb( j) and tacb = tacb( j) for all
j ∈ Z+.

Results presented in this section were obtained by means of a C-based simulator
that closely replicates the ACB scheme, the arrival process of the UEs, and the RAP
as described in the specifications [5, 10]. This simulator was developed in the early
stages of the PhD program. In each simulation, the n M2M arrivals are scheduled
within tdist, which begins at the zeroth RAO (i.e., i = 0). Each simulation ends when
every UE has terminated the RAP. The number of simulation runs is set to the smallest
number that ensures that all the cumulative KPIs obtained up to the last simulation
differ from those obtained up to the previous simulation by less than 0.01 percent. The
default configuration of the PRACH and PDCCH, along with the model for the quality
of the wireless channel are shown in Table 2.2. These were suggested by the 3GPP for
the performance evaluation of the RA in LTE-A and are used throughout this section
unless otherwise stated.

Furthermore, the timing parameters of the RAP, also defined by the 3GPP, are
shown in Table 2.3 [3, Table 16.2.1-1].
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Table 2.3: Timing of the four-message handshake in the LTE-A RAP [3, Table 16.2.1-
1].

Message Time (ms)

Preamble processing delay 2

Uplink grant processing delay 2

Connection request processing delay 4

Connection request round-trip time (RTT) 8

Contention resolution RTT 5

2.4.2 Results

As a starting point for the performance analysis of the RA in cellular networks, we
showcase the relation between the PRACH capacity C (r) and the maximum number of
stationary UE arrivals that the PRACH can handle efficiently. For this, let x(i) be the
number of UE arrivals at the ith RAO. As no access control scheme is implemented,
x(i) is also the number of UEs that transmit their first preamble at ith RAO. We use
our simulator to replicate the complete RAP and to generate a stationary distribution
of x(i) ∈ {1, 2, . . . , 40} UEs per RAO during a period that is long enough to consider
the system reaches a steady state. We eliminate the effect of the PDCCH capacity by
setting g = r . This allows us to evaluate the PRACH alone.

Fig. 2.4 shows Ps as a function of x(i) for different values of r . As expected, Ps ≈ 1
for low values of x(i), but then an abrupt drop occurs at approximately x(i) = C (r),
as calculated by (2.3). For example, Ps ≈ 1 until x(i) ≈ 20 for r = 54, which gives
C (54) = 20.05. Therefore, Fig. 2.4 demonstrates an important fact: if the PRACH
were the only limiting factor of the RAP, C (r) would be a close upper bound to
the stationary number of accesses per RAO that the PRACH can handle efficiently.
As stated above, during these tests we merely evaluated the impact of the PRACH
capacity, but similar conclusions can be drawn when g < C (r). To support this claim,
we proceed to evaluate the performance of the RAP under the TM 2 with n = 30 000
and with the default configuration shown in Table 2.2.

Fig. 2.5 shows the average number of UE arrivals, contending UEs, collided pream-
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Figure 2.4: Success probability Ps given x(i) stationary UE arrivals per RAO.

bles, and successful accesses per RAO under the TM 2. It can be easily observed in
Fig. 2.5 that the average number of contending UEs is far greater than the UE arrivals;
this effect is due to the high congestion that builds up when the capacity of the RAP is
exceeded. As it can be seen from Fig. 2.5, under these conditions the average number
of UE arrivals exceeds C (54, 15) = 15 from the 343th until the 1329th RAO, which
results in a congestion period of almost 5 s (i.e, 986 RAOs). The peak of congestion
occurs at exactly the 800th RAO, in which slightly more than 300 contending UEs (i.e.,
preamble transmissions) are observed on average. This point exactly coincides with the
global maximum of the average number of UE arrivals. Due to the exceedingly large
number of contending UEs, the average number of successful accesses is extremely
low during this period and a poor Ps = 0.313 is obtained. It is worth noting that our
results closely match those obtained by the 3GPP under this same conditions [1]; this
validates the correct operation of our simulator.

After these results were obtained, we focused on enhancing the performance of the
RAP by manipulating its configuration parameters and by implementing a different
backoff as the one defined in the 3GPP specifications [10]. That is, without incorpo-
rating the ACB or any other access control scheme. As Fig. 2.6 and Fig. 2.7 illustrate,
merely manipulating the configuration parameters or implementing a different backoff
is not sufficient to prevent congestion under highly synchronized mMTC scenarios.
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Figure 2.5: Average number of UE arrivals, contending UEs, collided preambles, and
successful accesses per RAO under the TM 2 with n = 30 000 M2M UEs.

Nevertheless, simple adjustments to some parameters such as the maximum number of
preamble transmissions or implementing an exponential backoff can lead to an increase
in Ps of around 30 percent when compared to the most typical configuration. In these
tests, H2H traffic was injected and H2H UE arrivals are uniformly distributed over
time at a rate of λ = 1 arrivals per second.

We begin our analysis of the impact on performance of configuration parameters
with the most intuitive one: the number of available preambles r . That is, we assume
the number of available uplink grants is not a limitation (i.e., g = r) and investigate
the number of preambles needed to achieve Ps ≥ 0.95 under the TM 2.

For this, please imagine r has no upper limit. We are set to find the minimum value
of r that results in Ps ≥ 0.95 under the TM 2; this is said to be the optimal value of
r , denoted as r∗. The most intuitive approach to find r∗ in a complex system is by
following a brute force approach, in which possible values of r are tested until r∗ is
found. Naturally, the range of possible values of r can be reduced by eliminating low
values for which we are sure we will obtain Ps < 0.95. For this, let Xi be the RV that
defines the number of UE arrivals at the ith RAO; hence {Xi }i∈N is a stochastic process.
We want to know the maximum expected value of Xi and the RAO in which this occurs
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Figure 2.6: Success probability, Ps of M2M UEs only given r available preambles.
M2M arrivals follow the TM 2 and λ = 1 H2H arrivals per second occur.

i∗. As mentioned above, by running a large number of simulations, we observed that
i∗ = 800, for which E [Xi∗ ] = 31.104 arrivals occur when n = 30 000 UEs follow
TM 2. These values will be confirmed in Chapter 3.3 by our analytical model. From
there, the first test value r∗ can be obtained by means of (2.7) as follows.

r∗ = de E [Xi∗ ]e (2.11)

which gives r∗ = 85.

Fig. 2.6 shows Ps for r = {1, 2, . . . , 108} and it can be seen that the achieved
Ps with r∗ is considerably high; concretely, Ps ≈ 0.8. However, Ps ≥ 0.95 only
if r ≥ 92. Clearly, such a dramatic increase in r is not possible in LTE-A nor in
NB-IoT due to the construction of preambles. In other words, it is not feasible to
incorporate such a high number of orthogonal Zadoff-Chu sequences nor subcarriers
to these systems. Therefore, the impact on performance of a different configuration
parameter was investigated: the maximum number of preamble transmissions kmax.

Parameter kmax is signaled by the eNB through the SIB 2 [10]. Naturally, this
parameter highly impacts the number of contending UEs during periods of congestion.
On the other hand, few collisions occur under light traffic load scenarios such as TM 1,
and the power ramping process makes it extremely rare that access failures occur due
to wireless channel errors during preamble transmission. To proof this claim, let
Pr [Ek] be the probability that the kth preamble transmitted by a UE is successful
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(i.e., exclusively selected by this UE) but lost due to a wireless channel error. Then,
the probability that a given UE transmits kmax successful preambles without success
according to the 3GPP [1] (see Table 2.2) is given as

Pr

kmax⋂

k=1
Ek

 =
kmax∏

k=1

1
ek
=

1

e
kmax (kmax+1)

2
. (2.12)

In other words, (2.12) defines the probability of an access failure in scenarios in which
there are no other contending UEs. Still, (2.12) approximates this probability under
scenarios with a relatively low traffic load, for example, TM 1.

Building on this, reducing kmax would have a minor impact on the probability of
access failure under scenarios with a low traffic load. On the other hand, it would
undoubtedly reduce the number of contending UEs during congestion and, as a con-
sequence, increase Ps . Please observe that increasing kmax would have the opposite
effect on the number of contending UEs and Ps under congested scenarios. Fig. 2.7a
shows the achieved Ps of M2M and H2H UEs for kmax = {1, 2, . . . , 10}. Naturally,
the probability of an access failure due to wireless channel errors increases slightly as
kmax decreases. Nevertheless, the maximum Ps is achieved with kmax = 3, which is a
relatively low value.

Besides, Fig. 2.7a showcases an important fact: H2H UEs always achieve a higher
Ps than M2M UEs under the TM 2. The reason for this is that H2H UE arrivals are
equally distributed along the distribution period. Hence, a large portion of these UE
arrivals occur when no congestion is present. For instance, tdist = 10 s and the period of
congestion is less than 5 s long. On the other hand, most of the M2M UEs arrivals are
highly synchronized, so most of these occur during the period of congestion, caused
by this same behavior.

Fig. 2.7b illustrates the benefits of reducing kmax by comparing the average number
of decoded preambles and successful accesses for kmax ∈ {3, 10}. As it can be
seen, the impact of reducing kmax is profound as the number of successful accesses
closely approximates g. In other words, reducing kmax reduces congestion levels,
and, as a consequence, most of the available resources are utilized. This maximizes
the performance of the RAP, but is not sufficient to achieve the desired Ps ≥ 0.95.
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Therefore, the potential benefits of implementing a different backoff are investigated
in the following.

As mentioned in Section 2.3, a uniform backoff is envisioned in the 3GPP specifi-
cations [10]. That is, whenever a collision occurs, involved UEs generate U [0, 1) ≡ a
random number with uniform distribution and schedule the next preamble transmission
after waiting for tb = U [0, 1) bmax, where bmax is the backoff indicator provided by
the eNB. The results presented up to this point demonstrate that this uniform backoff
policy, or at least with its most typical value bmax = 20 ms, is not sufficient to avoid
congestion under the TM 2. Instead, an exponential backoff in the form

tb = U [0, 10) 2k−1 (2.13)

may be sufficient to spread the preamble retransmission attempts and avoid congestion.
As such, the exponential backoff is implemented on M2M UEs only and H2H UEs
perform the traditional uniform backoff.

Fig 2.8 shows Ps as a function of the number of M2M arrivals under the TM 2
for the uniform and exponential backoff implementations. H2H traffic has also been
inserted. As can be seen, the exponential backoff increases the maximum value of
n that the RAP can handle efficiently by more than 2000. That is, Ps ≥ 0.95 for
n ≤ 16 000 with the uniform backoff and for n ≤ 18 000 with the exponential backoff.
However, M2M UEs achieve an insufficient Ps < 0.6 when n = 30 000 regardless of
the implemented backoff. As explained above, H2H UEs achieve a higher Ps than
M2M UEs.

It is important to observe that increasing the backoff time may slightly increase
Ps , but it will also increase the access delay of UEs whose preamble transmission
fails due to a wireless channel error even in low traffic scenarios. Because of this,
it can be concluded that modifying backoff is not a practical solution to congestion;
hence, an access control scheme is needed. De Andrade et al. [34] also studied the
potential benefits of an exponential backoff and came to a similar conclusion despite
the fact that they considered a different collision model for their study. Furthermore,
combining an exponential backoff with a reduced value of kmax is counterintuitive and
would eliminate the benefits of these approaches. Building on this, the remainder of
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Figure 2.7: Impact of kmax on the performance of the RAP. (a) Ps of M2M and
H2H UEs for kmax = {1, 2, . . . , 10}; M2M arrivals follow the TM 2 and λ = 1 H2H
arrivals per second occur. (b) Average number of UE arrivals, decoded preambles, and
successful accesses per RAO under the TM 2 given kmax ∈ {3, 10}.

this section is dedicated to evaluate the benefits of a static implementation of the ACB
scheme. That is, barring parameters, namely the mean barring time tacb and the barring
rate pacb, remain constant during the whole observation of the system. Access class
barring configurations (ACBCs) schemes, which aim to adapt the barring parameters
to the signaling traffic intensity in real time are studied in Chapter 4.

32



Chapter 2. Performance analysis of RA in cellular networks under mMTC scenarios

10 000 15 000 20 000 25 000 30 000
0

0.2

0.4

0.6

0.8

1

M2M

H2H

Number of M2M UEs n

Su
cc

es
s

pr
ob

ab
ili

ty
P
s

Uniform backoff
Exponential backoff

Figure 2.8: Success probability Ps of M2M and H2H UEs given n M2M UEs with
uniform and exponential backoff. M2M arrivals follow the TM 2 and λ = 1 H2H
arrivals per second occur.

We begin our analysis of the ACB scheme by showing the Ps achievedwith different
values of the barring parameters as defined in the technical specifications [10] in
Fig. 2.9; H2H traffic with λ = 1 arrival per second was considered and these UEs
are labeled as high priority traffic, so these are not subject to the ACB scheme.
Fig. 2.9 illustrates the Ps obtained with both, the uniform and exponential backoff
implementations. Clearly, the desired Ps ≥ 0.95 can only be achieved by selecting
pacb ≤ 0.5 in combination with a sufficiently long tacb. The reason for this is that the
maximum average number of M2M accesses is E [Xi∗ ] = 31.104 and selecting pacb ≤
0.5 reduces this peak to approximately g given tacb is sufficiently long. Furthermore,
Fig. 2.9 shows that for each pacb ≥ 0.5 there exists a maximum Ps that can be achieved,
regardless of the value of tacb. Once this maximum Ps is obtained, there is no reason
to further increase tacb.

Fig. 2.9a also shows that implementing an exponential backoff may reduce the
minimum tacb needed to achieve Ps ≥ 0.95 and, again, Fig. 2.9b demonstrates that
H2H UEs always achieve a higher Ps than M2M UEs. Fig. 2.9b only shows results
for the uniform backoff implementation as only this is implemented in the H2H UEs
and results obtained when the exponential backoff is implemented in M2M UEs are
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Figure 2.9: Success probability Ps of (a) M2M UEs, uniform and exponential backoff,
and (b) H2H UEs under the ACB scheme.

extremely similar. Building on this, it is easily concluded that H2H traffic has no
observable impact on the performance of the RA under TM 2 and that H2H UEs will
always achieve a better performance than M2M UEs. Hence, we focus merely on the
performance of M2M UEs.
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Figure 2.10: Average number of first preamble transmissions, contendingUEs, collided
preambles, and successful accesses per RAO under the TM 2 with n = 30 000 M2M
UEs given pacb = 0.5 and tacb = 4 s.

The reason for the efficacy of pacb ≤ 0.5 is illustrated in Fig. 2.10, where the
average number of first preamble transmissions, contending UEs, collided preambles,
and successful accesses per RAO are shown given pacb = 0.5 and tacb = 4 s. The
average number ofUE arrivals has been omitted as is exactly the same as that in Fig. 2.5.
Clearly, this combination of barring parameters successfully prevents congestion as
the number of contending UEs and collided preambles are drastically reduced when
compared to those shown in Fig. 2.5. For instance, this configuration of barring
parameters reduces the global maximum of the average number of contending UEs
from ≈ 300 to ≈ 75 and the global maximum of the average number of collided
preambles from ≈ 54 to ≈ 40. In addition, the average number of successful accesses
closely follows the average number of first preamble transmissions (i.e., the number
of UEs begin their RAP at each RAO). This clearly indicates the system is performing
correctly and the result is a sufficiently high Ps = 0.974. These are promising results
because they demonstrate that the ACB scheme is effective even under the TM 2, but
also that it could be easily configured given the capacity of the RA channels and the
global maximum number of UE arrivals in the period are known by the eNB.

Once we have identified the combinations of barring parameters that lead to Ps ≥
0.95, we illustrate the impact of the ACB scheme on the remaining KPIs: access
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Figure 2.11: Expected number of preamble transmissions for the successful M2MUEs
under the ACB scheme given Ps ≥ 0.95.

delay and the number of preamble transmissions. We begin by showing the expected
number of preamble transmissions E [K] for the combinations of pacb and tacb that lead
to Ps ≥ 0.95 in Fig. 2.11; other combinations of barring parameters have been omitted.
Clearly, long values of tacb decrease E [K] because these induce a longer delay to the
UE accesses than with low values of tacb; this in turn reduces the number of contending
UEs and also of collided preambles. It is also clear that this is the same reason why
E [K] decreases with pacb. However, it is interesting to observe that E [K] is exactly
the same for both the uniform and exponential backoff implementations with a given
combination of barring parameters despite the small differences in Ps illustrated in
Fig. 2.9a. This is another example of the profound impact that the ACB scheme has
on the UE arrivals and, hence, on the performance of the RAP.

Finally, we showcase the impact of the barring parameters on the access delay D.
Specifically, we focus on the 10th, 50th, and 95th percentiles of D. These are shown
in Fig. 2.12 for the combinations of pacb and tacb that lead to Ps ≥ 0.95. That is, the
same combinations that were shown in Fig. 2.11. An important aspect that can be
observed from Fig. 2.12 is that D10 can be up to 1000 times lower than D50. Clearly,
UEs with a delay ≤ D10 are the ones who succeed in the first barring check and at
the first preamble transmission. This conclusion can be drawn just by comparing most
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Figure 2.12: Percentiles of access delay D of M2M UEs under the ACB scheme for
the combinations of tacb with (a) pacb = 0.3 and (b) pacb = 0.5 that lead to Ps ≥ 0.95.

of the values of D10 with the minimum time needed to complete the RAP, which is
15 ms (see Table 2.3 on page 26). On the other hand, D10 ≈ 15 ms, D50 ≈ 20 ms,
and D95 ≈ 60 ms were obtained for H2H UEs and for any combination of the barring
parameters. These values are less than 10 percent away from those obtained when a
single UE access occurs. This demonstrates that high priority traffic is not affected by
mMTC applications given that the ACB scheme successfully prevents congestion.

On the other hand, a clear tradeoff can be identified by comparing the results
presented in Fig. 2.11 with those in Fig. 2.12: combinations of the barring parameters
that lead to a low E [K] result in a long access delay. Naturally, the reason for this is that
combinations of parameters that lead to a sharp drop in the number of contending UEs
per RAO also decrease E [K] significantly. However, a long access delay is needed to
sharply decrease the number of contending UEs per RAO. Building on this, barring
parameters must be carefully selected to meet with the performance requirements of
the target application. In the following, we assume D is the second most important
KPI and seek to find the optimal configuration of the ACB scheme, defined as the
combination of barring parameters that minimizes D95 while achieving Ps ≥ 0.95.

Fig. 2.13 shows the cumulative distribution function (CDF) of D for two of the
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Figure 2.13: CDF of access delay for the combinations of barring parameters and
backoff implementations that lead to the shortest D95 given Ps ≥ 0.95.

combinations of barring parameters, among those that have been considered for the
results presented in Fig. 2.11 and Fig. 2.11, that lead to Ps ≥ 0.95 with the minimum
D95. Please recall that so far the possible values of pacb and tacb have been restricted
to those available for selection in the SIB 2. Results shown in Fig. 2.13 include one
uniform backoff and one exponential backoff implementation. As observed previously,
a shorter D is achieved with the exponential backoff.

Our performance analysis of the ACB scheme by simulation concludes with the
identification of the optimal configuration for a vast collection of values for pacb and
tacb that are not restricted to those included in the SIB 2. For this, we first identify
the optimal value of tacb, denoted as t∗acb for pacb ∈ {0.01, 0.02, . . . , 0.99}. That is,
the value of tacb that minimizes D95 for a given pacb; we have observed that it also
corresponds to the minimum tacb that leads to Ps ≥ 0.95. Hence, t∗acb can be defined
as follows.

t∗acb = min {tacb | Ps (pacb, tacb) ≥ 0.95} (2.14)

As described above, Ps ≥ 0.95 cannot be achieved when pacb � 0.5. Specifically, the
greatest value of pacb for which Ps ≥ 0.95 was obtained was 0.56 with the uniform
backoff and 0.62 with the exponential backoff. Fig. 2.14 shows t∗acb as a function of
pacb. Then, Fig 2.15 shows E [K] and D∗95, where the tradeoff between these two
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Figure 2.14: Optimal mean barring time t∗acb given pacb.

parameters is evident. Also, form Fig. 2.15 the optimal value of pacb, defined as

p∗acb = arg min D95
(
pacb, t∗acb

)
(2.15)

can be obtained. For the uniform backoff p∗acb = 0.31 and t∗acb = 1.75; for the
exponential backoff p∗acb = 0.35 and t∗acb = 1.7. The resulting D95 is 13.554 and
11.239 s, respectively.

2.5 Conclusions

This chapter presented the description and the theoretical capacity of the RAP. Fur-
thermore, the ACB scheme was described and its benefits were investigated. Results
were obtained mainly by simulations and demonstrate that the resources available
at the PRACH and at the PDCCH are not sufficient to handle the large number of
synchronized UE arrivals that occur in mMTC. We observed that manipulating the
configuration parameters such as the maximum number of preamble transmissions
per UE may maximize the utilization of available resources, but, since these are not
sufficient, the achieved performance was not acceptable with any of the studied param-
eter combinations. Furthermore, the implementation of a different backoff favorably
impacts performance but is also insufficient to relieve congestion and to achieve the
target success probability of 0.95.
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Figure 2.15: Achieved (a) E [K] and (b) D∗95 given t∗acb.

On the other hand, the ACB scheme is a promising solution to congestion under
mMTC applications as even a simple implementation, in which barring parameters
remain constant throughout the distribution period, can lead to the desired success
probability. In addition, a careful selection of barring parameters may lead to a
balance between access delay and preamble transmissions that satisfies the application
requirements. However, it is important to emphasize that the achieved access delay
and, more specifically, the minimum achievable 95th percentile of access delay is
longer than 10 s. As a consequence, the ACB scheme is an appealing solution to
congestion, but is only suitable for delay tolerant applications.
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Chapter 3

Analytical modeling of RA in cellular
networks

3.1 Introduction

he capacity of the RA procedure (RAP) in cellular networks and the benefits of the
access class barring (ACB) scheme to relieve congestion under massive machine-type
communication (mMTC) scenarios were investigated in Chapter 2. In particular,
we focused on the scenario that results in the highest access intensity according to
studies performed by the 3rd Generation Partnership Project (3GPP) on dense urban
environments: the traffic model (TM) 2 [1]. Results presented in Chapter 2 are in line
with those obtained in the literature [1, 34, 40] and demonstrate that congestion is likely
to occur under highly synchronized mMTC scenarios. For instance, only Ps = 0.313
of the user equipments (UEs) successfully complete the RAP when n = 30 000 UEs
access the evolved NodeB (eNB) according to the TM 2. Hence, the RAP is not
efficient for mMTC applications.

The main reasons for achieving such a poor performance are the complexity of the
RAP and the limitations of its uplink and downlink physical channels. Nevertheless,
we also observed in Chapter 2 that the performance can be greatly enhanced by
implementing and correctly configuring the ACB scheme. The ACB is an access
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control scheme that redistributes the UE arrivals through time, so that the capacity
of the RAP is not exceeded. That is, the ACB scheme is effective given adequate
configuration parameters are selected.

Up to this point, most of the results on the performance of the random access (RA)
(including the ACB scheme) that have been presented have been obtained by means
of simulations, which have a high computational cost and, more importantly, are
not easily reproducible. Instead, an analytical model would provide with much more
computational efficiency, reproducibility, andwith amuchmore in depth understanding
of its behavior; hence, having an analytic model of the RAP at our disposal was of
prime importance for our research.

Our search for an analytical model in the literature revealed one of the first efforts
to model the RAP was presented by Zhou et al. in 2008 [83], but only the first step,
preamble transmission, was considered. In fact, we found that there were just a few
analytic models of the complete RAP and, as it will be seen in Section 3.4, their
accuracy suffers when compared to simulations [20, 30, 109].

As a starting point, we decided to use the model provided by Wei et al. [109];
hereafter we refer to this as the reference model (RM). To the best of our knowledge,
this was the most thorough analytic model for the performance evaluation of the RAP,
and was later extended to incorporate an access control scheme called extended access
barring [30]. Therefore, the basic model of the RAP presented by Cheng et al. is
the same as the RM. Furthermore, the model presented by Arouk et al. [20] is also of
similar nature to that of the RM, but only the average delay is calculated in the former
while in the latter, the probability mass function (pmf) is calculated.

Nevertheless, we observed the RM is inaccurate, especially when the number
of successful accesses per random access opportunity (RAO) approaches the RAP
capacity C. That is, when most resources are utilized. This is an enormous downside
because, as we observed in Chapter 2 and will observe in Chapter 4, the point of
optimal operation of the RAP under massive mMTC scenarios is when most resources
are being utilized. Therefore, the main objective of access control schemes is to
maintain the system at this optimal point. Clearly, we cannot rely on an analytic model
that fails to deliver the required accuracy when it is most needed.
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Building on this, we decided to study the components that contribute to reduce
the accuracy of the RM. We reached the same conclusion as Arouk et al. [20]: the
accuracy of the RM is mainly reduced by exclusively using the expected values of
several random variables (RVs). Instead, using the whole pmfs seems much more
appropriate. Then, a new model of the RAP with this distinctive characteristic was
developed.

As mentioned above, an access control is needed to support mMTC in cellular
networks. Therefore, the ACB scheme was also envisioned to be incorporated to our
model. As described in Chapter 2, oftentimes the behavior of the ACB scheme is
misinterpreted. For example Lin et al. [71] assume the time UEs must wait after each
failed barring check (i.e., the barring time) is fixed, whereas the technical specifications
clearly state that it is calculated randomly [10]. On the other hand, our preliminary
work [68] was one of the first studies in the literature to evaluate the benefits of
the ACB scheme with the behavior described by the 3GPP [10, Section 5.3.3.11].
The information collected during this process with respect to the behavior of the
ACB scheme led to the development of an analytic model of the ACB scheme that, in
combination with the analytic model of the RAP, has allowed us to thoroughly evaluate
the complete RA.

In this chapter, we present our novel analytic model for the performance evaluation
of the RA in cellular networks. Bymeans of this model, the following key performance
indicators (KPIs) (selected from the ones suggested by the 3GPP [1]) can be accurately
calculated:

1. Success probability, defined as the probability to successfully complete the RAP
within the maximum number of preamble transmissions.

2. Collision probability, defined as the ratio between the total number of preambles
transmitted simultaneously by multiple UEs and the total number of available
preambles in the period in which accesses occur.

3. Probability distribution of the number of preamble transmissions performed by
the UEs that successfully complete the RAP.

4. Probability distribution of the access delay.
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We assess the accuracy of our model by comparing the results obtained with both,
our model and the RM with those obtained by simulation. As it will be observed
throughout Section 3.4, our model surpasses the accuracy of the RM in the vast
majority of KPIs and network configurations, and has allowed us to reach important
conclusions regarding the behavior of the RAP. In addition, results can be obtained
with our model within a few tens of seconds for the selected scenario. These results in
turn have served us as a base to develop the adaptive access class barring configuration
(ACBC) scheme presented in Chapter 4.

An important aspect regarding the behavior of the RAP is the lack of consensus in
the literature on the outcomes and assumptions regarding preamble collisions during
preamble transmission. That is, there are several causes for the eNB to decode or not
decode preambles transmitted by multiple UEs simultaneously; hereafter we refer to
these as collided preambles. These possible causes and their implications are also
studied in this chapter.

The rest of the chapter is organized as follows. In the following section, we
summarize the RAP as defined by the 3GPP. Please refer to Section 2 for an in-
depth description of the RAP. Then, we describe the two different outcomes that may
occur when multiple UEs transmit the same preamble simultaneously, along with the
most common assumptions in the literature regarding these outcomes. Then, our
analytical model is presented in Section 3.3. Next, Section 3.4 presents relevant
results on the accuracy of our model and on the performance of the RA under different
network configurations. These results include the performance of the RAP under the
two different assumptions regarding the outcome of preamble collisions. Finally, we
present our conclusions in Section 3.5.

3.2 RA in cellular networks: possible outcomes and
common assumptions

This section provides a brief description of the ACB scheme and of the RAP defined
by the 3GPP [5, 10] for the initial access in cellular networks, along with a detailed
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description on the possible outcomes and common assumptions regarding preamble
collisions.

Upon arrival, UEs obtain the configuration of the network through System Informa-
tion Blocks (SIBs). These include, among others, the number of available orthogonal
preambles available, these are Zadoff-Chu sequences in LTE Advanced (LTE-A) and
single tone frequencies in narrowband Internet of Things (NB-IoT), the period of time-
frequency resources in which preamble transmissions are allowed (known as RAOs),
and barring parameters. With this information and before initiating the RAP, the UEs
are subject to the ACB scheme. That is, before initiating the transmission of the first
preamble, UEs must succeed in a barring check. This occurs with probability equal to
the barring rate; otherwise, the UE must wait for a period calculated randomly.

UEs that succeed in a barring check are allowed to initiate the RAP, which com-
prises a four-message handshake. The first message is preamble transmission (Msg1),
where preambles are selected randomly and transmitted in RAOs. Then, the eNB may
send up to one uplink grant in response to each preamble decoded successfully (Msg2).
The eNB can only respond to preambles transmitted in a RAO during the next RA re-
sponse (RAR) window, whose duration is oftentimes equal to the period of RAOs. UEs
that receive an uplink grant send a connection request (Msg3) through dedicated re-
sources and, finally, the eNB responds with the contention resolution message (Msg4).
Msg3 and Msg4 are protected with hybrid ARQ (HARQ) mechanisms. Therefore,
several retransmissions of these messages are attempted untilMsg4 is received or until
themaximum number of attempts is reached. Whenever the latter occurs or if preamble
transmission fails and if the maximum number of preamble transmissions has not been
exceeded, the UE waits for a random backoff time, increases the transmission power,
and then transmits a newly selected preamble at the next RAO.

Preambles are orthogonal sequences. Therefore, it is clear that multiple UEs can
access the eNB at the same RAO, using different preambles. Also, it is clear that
preambles transmitted by exactly one UE, hereafter denoted as successful preambles,
and transmitted with sufficient power are decoded by the eNB. On the other hand, the
reasons for a RA failure are manifold and give rise to two different outcomes when
multiple UEs transmit the same preamble simultaneously; hereafter we refer to these as
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collided preambles. These two outcomes and the circumstances involved are described
in the following.

• The eNB does not decode the transmitted preamble. This may occur if the
eNB determines a preamble was transmitted by multiple UEs. This case can be
identified, for example, based on the received signal power and the time shift
between the multiple received copies of the preamble. A different cause for
this outcome is that all preamble transmissions are lost due to wireless channel
errors, and can occur, for example, if the interference caused by the multiple
preamble transmissions is exceedingly high. Regardless of the cause, the UEs
will not receive an uplink grant by the end of the next RAR window; it is at this
point in time that the implicated UEs will detect the collision.

• The eNB correctly decodes the transmitted preamble. This outcome may
occur if the received power from one of the preamble transmissions is signif-
icantly higher than that of the other simultaneous transmissions of the same
preamble, commonly known as the capture effect. Other possible cause for
this outcome is that all but one of these preamble transmissions are lost due to
wireless channel errors. In both cases, the multiple UEs that transmitted the
preamble will receive the exact same uplink grant and continue with the RAP
by sending Msg3. Then, the eNB will receive multiple Msg3s with different
data at the exact same time-frequency resources and will not transmit Msg4 in
response. As a consequence, the preamble collision will be detected until the
maximum number of Msg3 transmission attempts is reached without success.

Naturally, in a real life scenario either of these two outcomes may occur with a
given probability. However, this probability is not known and highly depends on the
wireless environment of the cell of interest. Therefore, the 3GPP recommends to
assume collided preambles are never decoded by the eNB [1]. This assumption has
been adopted in most of the literature [20, 30, 71, 94, 109]. Nevertheless, some studies
assume the opposite. That is, collided preambles are always decoded by the eNB [33–
35, 79]. Throughout this thesis we assume collided preambles are never decoded by
the eNB as suggested by the 3GPP, but also investigate the impact on performance of
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assuming the opposite. Specifically, the analytical model presented in the following
section was designed under the assumption that collided preambles are never decoded
by the eNB. Therefore, most of the results presented in Section 3.4 were obtained under
this assumption. results on the performance of the RAP given the opposite assumption
are presented in Section 3.4.

3.3 Analytical model of the RA in cellular networks

This section presents the analytical model for the performance evaluation of the RA
in cellular networks, which includes the RAP and the ACB scheme. For illustration
purposes, we assume the most typical configuration of the physical RACH (PRACH)
and physical downlink control channel (PDCCH) in LTE-A, along with its timing
parameters. That is, the default value of the period of RAOs is trao = 5 ms unless
otherwise stated. Table 3.1 presents other important parameters used throughout this
chapter. Needless to say, our model can be easily adapted to other configurations and
timing parameters. For example, to typical values in NB-IoT.

3.3.1 Modeling the UE arrivals

Let RV A define the number of RAOs elapsed between the beginning of the distribution
period i = 0 and the arrival of a specificUE. That is, theRAO inwhich theUE schedules
the beginning of its RAP; the pmf of A for each UE is given by the selected traffic
model [1].

Under the TM 2, UEs arrivals follow a Beta (3, 4) distribution over tdist = 10 s [1].

Definition 3.3.1. The probability density function (pdf) of a continuous RV T ∼
Beta(α, β) whose support is t ∈ [0, 1], is defined as follows.

f (t; α, β) =
tα−1 (1 − t)β−1∫ 1

0
vα−1 (1 − v)β−1 dv

=
tα−1 (1 − t)β−1

B (α, β)
(3.1)
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Table 3.1: Parameters for the selected PRACH and PDCCH configuration and TM 2.

Parameter Setting

Number of machine-to-machine (M2M) UEs n = 30 000

Distribution period tdist = 10 s

Distribution of UE arrivals Beta (3, 4)

Subframe length ts = 1 ms

Subframe frequency fs = 1 subframes per ms

Period of RAOs trao ∈ {2, 5, 10} ms

RAR window size trar = trao ms

Available preambles r = 54

Maximum frequency of uplink grants fg = 3 per ms

Available uplink grants per RAR window g = fgtrar

Maximum number of preamble transmissions kmax = 10

Backoff Indicator bmax = 20 ms

ACB barring rate pacb = 0.5

ACB barring time tacb = 4 s

Preamble processing delay dp = 2 ms

Uplink grant processing delay dug = 5 ms

Msg3 processing delay dcr = 4 ms

Msg3 round-trip time (RTT) dm3 = 8 ms

Msg4 RTT dm4 = 5 ms

Maximum number Msg3 and Msg4 transmissions hmax = 5

Error probability for the kth preamble transmission Pr [Ek] = 1/ek

Error probability for Msg3 and Msg4 transmissions Pr [Eh] = 0.1
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where B (·) is the Beta function, defined for any α, β ∈ N as

B (α, β) =
(α − 1)! (β − 1)!

(α + β − 1)!
(3.2)

Next, let Xi be the RV that defines the the number of UE arrivals at the ith RAO;
hence {Xi }i∈N is a stochastic process. In most of the literature, the expected value of
Xi is obtained as follows [1, 30].

E [Xi] = n
∫ ti+1

ti

f
(

t
tdist

; α, β
)

dt (3.3)

where ti = itrao and f (t/tdist; α, β) is the pdf of a transformed version of RV T with
support t ∈ [0, tdist]. According to the 3GPP [1], this pdf is given as

f
(

t
tdist

; α, β
)
=

tα−1 (tdist − t)β−1

tα−β−1
dist B (α, β)

. (3.4)

In the most widely studied mMTC scenario, UE arrivals follow the TM 2, where α = 3,
β = 4, and tdist = 10 s. But obtaining E [Xi] directly from the previous formulations
is cumbersome. Instead, the following approach to calculate E [Xi] directly from a
discrete Beta (3, 4) distribution, is proposed.

Lemma 3.1. Let idist = tdist/trao be the last RAO within the distribution period. As
such, the support of A is {i ∈ N | i ≤ idist} and its pmf under the TM 2 can be given as

pA(i) =
60i2 (idist − i)3

i6dist − i2dist
. (3.5)

From there it follows immediately that

E [Xi] = npA(i) =
60ni2 (idist − i)3

i6dist − i2dist
for i ∈ {0, 1, . . . , idist}. (3.6)

The proof of Lemma 3.1 is in Appendix B.2.

The three chapters of this thesis dedicated to mMTC in cellular networks focus on
the performance evaluation of theRAPunder typical configurations of the PRACH.The
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most typical value of the period of RAOs is trao = 5ms; hence, this is the value selected
from Chapter 2 to Chapter 4. In addition, the impact of selecting trao ∈ {2, 10} ms is
also studied in this chapter. For trao ∈ {2, 5, 10} idist = {5000, 2000, 1000}, which takes
us to the following proposition used in our previous work [60, 69].

Proposition 3.1. It is immediate to see that a/
(
i 6
dist − i2dist

)
≈ a/i 6

dist for sufficiently
large idist. Building on this, (3.6) can be expressed in an even simpler form that matches
its continuous version as defined by (3.4) as

pA(i) ≈ 60 i 2 (idist − i)3

i 6
dist

. (3.7)

Therefore the expected value of Xi can be calculated as follows.

E [Xi] ≈ 60 n i 2 (idist − i)3

i 6
dist

for i ∈ {0, 1, . . . , idist}. (3.8)

Now the critical values of E [Xi] presented in Section 2.4 can be confirmed; these
values were previously obtained by simulation to estimate the minimum number of
available preambles r that may lead to Ps ≥ 0.95. To confirm these values, let i∗ be
the value of i that maximizes E [Xi]; it can be easily obtained by the first derivative
test as follows.

∂ E [Xi]
∂i

=
60 n

(
2i (idist − i)3 − 3i2 (idist − i)2

)

i 6
dist

= 0 (3.9)

which gives i∗ = (2idist) /5. Naturally, this result matches the mode of a Beta (3, 4)
distribution with support t ∈ [0, 1] but shifted to the right by a factor of idist. The
maximum expected number of UE arrivals is E [Xi∗ ] = 31.104, the exact same value
obtained by simulation.

3.3.2 Modeling the ACB scheme

Once we have obtained the distribution of UE arrivals we proceed to present the model
of the ACB scheme. In this chapter, similarly as in Chapter 2, we assume every UE is
subject to the ACB scheme with fixed parameters. That is, the barring rate pacb( j) and

50



Chapter 3. Analytical modeling of RA in cellular networks

the barring time tacb( j) remain constant for all j ∈ N SIB 2 transmissions. Hence, to
simplify notation we simply denote these as pacb and tacb, respectively.

Next, let W be the RV that defines the number of RAOs that the first preamble
transmission of a UE is delayed due to the ACB scheme. That is, the number of
RAOs that a UE has to wait to begin the RAP due to failed barring checks. Hence,
the sample space of W is i ∈ N. Also, let Y be the RV with sample space y ∈ Z+
that represents the number of barring checks performed by a UE. It is clear that the
preamble is transmitted immediately if the UE succeeds in its first barring check. That
is, Pr [W = 0 | Y = 1] = 1, which occurs with probability pacb. At this point, we define
the function

δ (i) ≡


1, i = 0

0, otherwise
(3.10)

which allows us to easily define the pmf of W | Y = 1 as

pW |Y (i | 1) = δ (i) . (3.11)

From there, it is clear that the pmf of W | Y = 2 is positive between iW,min =

d0.7 tacb/traoe and iW,max = d1.3 tacb/traoe. Its pmf is given as

pW |Y (i | 2) =
1

0.6 tacb



i trao − 0.7 tacb, i = iW,min

trao, iW,min < i < iW,max

1.3 tacb − (i − 1) trao, i = iW,max,

(3.12)

then, the pmf of W | Y can be calculated recursively as

pW |Y (i | y) =
iW ,max∑

v=iW ,min

pW |Y (v | 2) pW |Y (i − v | y − 1) , y = 3, 4, . . . (3.13)

Naturally, each barring check is a single Bernoulli trial. Hence, Y is a geometric
RV whose pmf is given as

pY (y) = pacb (1 − pacb)y−1 , for y = 1, 2, . . . (3.14)
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Now we are able to calculate the pmf of W as

pW (i) =
∞∑

y=1
pW |Y (i | y) pY (y) , for i = 0, 1, 2, . . . (3.15)

Please observe that the support of both W and Y is infinite, which impedes their
inclusion in out model. To circumvent this problem, we define ymax as the maximum
number of barring checks performed by the UEs. Therefore, the pmf of Y is truncated
at ymax. This implies that, in our model, UEs that fail the first ymax barring checks
desist and consider the RA as terminated without success (i.e., failed). The probability
that a given UE fails the first ymax barring checks and terminates the RA is simply

pEacb = (1 − pacb)ymax . (3.16)

As such, ymax can be calculated for a target pEacb from (3.41) as

ymax =

⌈
log pEacb

log (1 − pacb)

⌉
, (3.17)

where pEacb is selected empirically. This allows us to approximate pW (i) by truncat-
ing (3.15) as

pŴ (i) = pW |Y≤ymax (i) =
1

1 − pEacb

ymax∑

y=1
pW |Y (i | y) pY (y) . (3.18)

Please observe that pŴ (i) is indeed a probability distribution and that pW (i) → pŴ (i)
when pEacb → 0. Throughout this chapter we select pEacb = 10−5 as the target
probability that a UE terminates the RA during a barring check and denote pŴ (i)
simply as pW (i). From there, let DACB be the RV that defines the delay due to the
ACB scheme in seconds. It can be easily calculated as the following function of W .

Pr [DACB = i trao] = Pr [W = i] . (3.19)

Fig. 3.1 shows FW (i), the cumulative distribution function (CDF) of W for the
target pEacb = 10−5 and two combinations of barring parameters. The first one is
pacb = 0.5, tacb = 4 s and corresponds to the optimal configuration of the ACB with
fixed values available for selection in the SIB 2. The second one is pacb = 0.31,
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Figure 3.1: CDF of the barring time W in RAOs for pacb = 0.5, tacb = 4, and
Pr [Eacb] = 10−5.

tacb = 1.75 s and corresponds to the optimal configuration found in Chapter 2 for an
expanded collection of values of pacb and tacb.

Now that we have obtained the pmf of the UE arrivals pA (i) and of the barring
time pW (i) we proceed to calculate the number of UEs that begin the RAP at each
RAO.

Please recall that k is the number of preamble transmissions performed by a UE
and that kmax is the maximum number of transmissions allowed and is transmitted by
the eNB in the SIB 2; hence, k ∈ {1, kmax}. Next, let Ni (k) be the RV that defines
the number of UEs that perform their kth preamble transmission at the ith RAO. The
expected number of UEs that perform their first preamble transmission (i.e., begin the
RAP) at the ith RAO is given as

E [Ni (1)] = n Pr [A +W = i] = n
i∑

v=0
pA (v) pW (i − v) . (3.20)

Please observe that E [Ni (1)] = E [Xi] if Pr [W = 0] = 1, which occurs when the ACB
scheme is disabled (i.e., when pacb = 1). The expected number of UEs that are about
to perform their kth preamble transmission will later be obtained recursively by means
of (3.37) on page 61.
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Figure 3.2: Expected number of first preamble transmissions per RAO E [Ni (1)] under
the TM 2 with n = 30 000 for three cases: 1) disabled ACB scheme; 2) ACB with
pacb = 0.5 and tacb = 4; and 3) ACB with pacb = 0.31 and tacb = 1.75.

Fig. 3.1 shows E [Ni (1)] for three configurations. In the first one, no ACB scheme
is implemented. This same behavior can be achieved by selecting pacb = 1. In the
second one pacb = 0.5 and tacb = 4. In the third one pacb = 0.31, tacb = 1.75. It can be
sen that the latter ACB configuration leads to a higher E [Ni (1)] than pacb = 0.5 and
tacb = 4, which, as observed in Chapter 2, also leads to a shorter access delay while
achieving Ps ≥ 0.95. Throughout the rest of this chapter we focus on evaluating the
performance of the RA with pacb = 0.5 and tacb = 4, as it is the optimal configuration
with values provided in the SIB 2. The performance achieved with the combination
pacb = 0.31 and tacb = 1.75 will be further investigated in Chapter 4. We now proceed
to describe our analytical model of the RAP.

3.3.3 Modeling the RAP

The analytical model that is presented in the following has been developed under the
assumption that the eNB can only decode preambles transmitted by exactly one UEs at
the same RAO. This goes in line with the 3GPP recommendations for the performance
evaluation of the RA procedure [1], with most of the literature [20, 30, 71, 94, 116].

Let Ni be the RV that defines the number of contending UEs at the ith RAO. The
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sample space of Ni is n(i) ∈ N and its expected value can be obtained as

E [Ni] =
kmax∑

k=1
E [Ni (k)] . (3.21)

As a starting point, we obtain the pmfs of preambles transmitted by exactly one
(successful transmissions) and by multiple UEs (collisions) given n(i) ∈ N. Then, we
derive these same pmfs for any E [Ni] ∈ R≥0

The process of preamble selection and transmission can be modeled as a bins and
balls problem, in which a given number of balls is placed randomly in one out of the
available bins [109]. Please recall that r is the number of available preambles and let
Si and Ci be the RVs that define the number of successful preambles (i.e. transmitted
by exactly one UE) and collided preambles (i.e., transmitted by multiple UEs) at the
ith RAO, respectively. Therefore {Si } and {Ci } are stochastic processes.

Back to the bins and balls problem, E [Ni] represents the number of balls and
r the number of bins, whereas Si and Ci represent the number of bins with exactly
one ball and the number of bins with more than one ball at the ith realization of
the experiment, respectively. The sample space of Si is the number of successes
S = {s ∈ N | 0 ≤ s ≤ smax}, where smax = min{r,E [Ni]}. On the other hand, the
sample space of Ci is the number of collided preambles C = {c ∈ N | 0 ≤ c ≤ cmax},
where cmax = min{r,E [Ni] /2}.

Proposition 3.2. To solve this problem efficiently, we first define the auxiliary RVs S

and C; these are analogous to Si and Ci , but defined for an arbitrary experiment and
for m ∈ N. Then, we calculate the joint probability distribution of S and C for a given
m recursively as follows.

pS,C (s, c; m) =
(

r − s + 1 − c
r

)
pS,C (s − 1, c; m − 1) +

c
r

pS,C (s, c; m − 1)

+
s + 1

r
pS,C (s + 1, c − 1; m − 1) ∀s ∈ S and c ∈ C (3.22)

given the initial condition pS,C (0, 0; 0) = 1.
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That is, we derive the probability of having s successful and c collided preambles
for a given discrete value m from the case in which m − 1 UEs have already selected
their preamble. For this, three possibilities exist:

• s − 1 preambles are selected by exactly one and c preambles are selected by
multiple UEs ; then a new UE selects any of the r − (s − 1) − c preambles that
have not been selected by other UEs.

• s preambles are selected by exactly one and c preambles are selected by multiple
UEs ; then a new UE selects one of the c preambles.

• s + 1 preambles are selected by exactly one and c − 1 preambles are selected by
multiple UEs ; then a new UE selects one of the s + 1 preambles.

The marginal pmfs of S and C are easily calculated as

pS (s; m) =
cmax∑

c=0
pS,C (s, c; m) (3.23)

pC (c; m) =
smax∑

s=0
pS,C (s, c; m) . (3.24)

These can be calculated once for a sufficiently large m and stored in a two-dimensional
matrix for further use. For example, we have observed that under the TM 2 with no
ACB scheme and trao = 5 ms, the maximum expected number of contending UEs
is around 300. Hence, calculating the pmf of S and C for all m = 1, 2, . . . , 350 is
sufficient.

In recent studies [96], we have compared the computational complexity of (3.22)
with that of other formulations presented in the literature [20, 35, 109]. Results
show (3.22) is up to 6000 and at least 70 times faster than the other formulations found
in the literature for r = 54 and m = 400.

Fig. 3.3 shows the pmfs of S and C given r = 54 for characteristic values of m.
Clearly, the pmf of S for low values of m is highly variable, but tends to a normal
distribution for m ≈ r . On the other hand, Pr [S = 0] → 1 and Pr [C = r] → 1 as
m → ∞.
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Figure 3.3: Pmf of the number of (a) successful S and (b) collided C preambles for
r = 54 and m ∈ {9, 54, 108, 350} contending UEs.

Now we are able to derive the pmf of Si from the marginal pmf of S by means of
the linear interpolation

pSi (s) = pS (s; dE [Ni]e) (E [Ni] − bE [Ni]c)
+ pS (s; bE [Ni]c) (1 − E [Ni] + bE [Ni]c) . (3.25)

The pmf of Ci can be derived from the marginal pmfs of C analogously.
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As described in the previous section, preamble transmissions can fail due to a
collision or to a wireless channel error. That is, each one of the successful preambles
has a certain probability of being correctly decoded at the eNB. The 3GPP suggests to
model the probability of a wireless channel error in the kth preamble transmission of
a UE as [1]

Pr [Ek] = 1/ek (3.26)

which decreases with k due to the power ramping process. This model has been
adopted in most of the literature [30, 34, 109]. From there, we calculate the average
preamble detection probability at the ith RAO as

f (i, Pr [Ek]) =
1
E [Ni]

kmax∑

k=1
(1 − Pr [Ek]) E [Ni (k)] . (3.27)

Next, let ND,i be the RV that defines the number of UEs whose preamble transmissions
are correctly decoded by the eNB at the ith RAO; its pmf is

pND, i (s) =
r∑

v=s

(
v

v − s

)
(1 − f (i, Pr [Ek]))v−s f (i, Pr [Ek])s pSi (v) ∀s ∈ S

(3.28)
and its expected value is

E
[
ND,i

]
=

smax∑

s=0
s pND, i (s) . (3.29)

At this point we have concluded the modeling of preamble transmission (Msg1),
so we proceed to model the RAR (Msg2). Parameters involved in the RAR are the
maximum number of available uplink grants per millisecond fg and the length of the
RAR window trar. With these values, we easily calculate the number of available
uplink grants per RAR window asg = fgtrar. Common values for these parameters are
listed in Table 3.1.

Let
{
NG,i

}
i∈N be the stochastic process that defines the number of UEs that will

receive an uplink grant in response to a preamble transmitted at the ith RAO; its sample
space is the number of successes s ∈ S. In other words, NG,i is the RV that defines
the number of UEs that successfully complete the first two steps of the RAP at the ith
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RAR window. The pmf of RV NG,i is obtained by truncating the pmf of ND,i at s = g

and accumulating the remaining values in Pr
[
NG,i = g

]
. That is,

pNG, i (s) =



pND, i (s) , for s ≤ g − 1
r∑

v=g

pND, i (v) , for s = g.
(3.30)

Then we obtain E
[
NG,i

]
analogously to (3.29). Next, let NG,i (k) be the RV that

defines the number of UEs that successfully complete the first two steps of the RAP at
the ith RAR window in the kth preamble transmission. The expected value of NG,i (k)
is derived from that of NG,i as follows.

E
[
NG,i (k)

]
=
E

[
NG,i

]
E [Ni (k)] (1 − Pr [Ek])

E [Ni] f (i, Pr [Ek])
. (3.31)

On the other hand, let NF,i (k) be the RV that defines the number of failed UE
access attempts at the ith RAO; its expected value can be easily calculated from (3.31)
as

E
[
NF,i (k)

]
= E [Ni (k)] − E [

NG,i (k)
]
. (3.32)

It will be latter observed that the probability of failing the RAP during Msg3 or
Msg4 transmissions is very close to zero. Therefore, NF,i (k) is sufficiently close to
the exact number of UEs whose access attempt fails when considering the full RAP.
Building on this, it is safe to assume NF,i (k) is the number of UEs whose kth access
attempt fails at the ith RAO.

This concludes the analytical model of the RAR. But before moving into the model
of the backoff procedure, we illustrate the difference between the pmfs of Si , ND,i ,
and NG,i for the i = 343th RAO under the TM 2 without the ACB scheme in Fig. 3.4.
As mentioned in the previous chapter, this is a RAO of especial interest under the
TM 2 without ACB scheme as is the first RAO in which the expected number of
UE arrivals exceeds the capacity of the RAP (i.e., E [Xi] > C (54, 15) = 15). At
this particular RAO, E [Ni] = 36.05 and E

[
NG,i

]
= 13.71. Fig. 3.4 clearly shows

that E [Si] > E
[
ND,i

]
> E

[
NG,i

]
, which showcases the great influence of g on the

capacity of the RAP.
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Figure 3.4: Pmf of the number of successful preambles Si , decoded preambles at the
eNB ND,i , and assigned uplink grants NG,i for the i = 343th RAO under the TM 2.

Fig. 3.4 also allows us to showcase one of the main weaknesses of the analytical
model proposed by Wei et al. [109]: the effect of g on the number of successful
accesses. In their model, only the expected values of the previously introduced RVs
are used. Therefore, the only possible approach to account for the effect of the number
of available uplink grants g is to define E

[
N ′G,i

]
= min

{
E

[
ND,i

]
, g

}
,1 which is not

accurate. For instance, at the 343th RAO this definition would lead to E
[
N ′G,i

]
= 15

whereas the correct value is E
[
NG,i

]
= 13.71 as mentioned above. Now we proceed

with the model of backoff time.

The UEs whose preamble transmission failed will not receive an uplink grant by
the end of the next RAR window. Therefore, it is at the end of the RAR window that
the UEs become aware of a failed access attempt. The time elapsed since preamble
transmission and the end of the RAR window is given as

d f = 1 + dp + trar. (3.33)

That is, one ms is required for preamble transmission, dp ms to process the trans-
mitted preambles at the eNB, and the duration of the RAR window is trar ms. If the
maximum number of preamble transmissions kmax has not been reached, failed UEs:

1The apostrophe has been added to differentiate the definition of provided by Wei et al. [109] from ours.
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1) increase the preamble transmission counter k; 2) wait for a random backoff time
tb ≡ U [0, 1) bmax; and 3) transmit a newly selected preamble. The model for the
backoff is described in the following.

Let B be the RV that represents the total number of RAOs a UE has to wait due
to backoff during the RAP. Hereafter B is denoted simply as the backoff time, but is
given in RAOs; hence it sample space is i ∈ N. Also, let K be the RV that represents
the number of preamble transmissions performed by a UE that successfully completes
the RAP. Naturally, no backoff procedure is performed if a UE successfully completes
the RAP in its first preamble transmission. Therefore, it is clear the pmf of B | K = 1
is

pB |K (i | 1) = δ (i) . (3.34)

It is also clear that the conditional pmf of B | K = 2 is positive between iB,min =⌈
d f /trao

⌉
and iB,max = d(df + bmax)/traoe; hence,

pB |K (i | 2) =
1

bmax



i trao − df, if i = iB,min

trao, if iB,min < i < iB,max

d f + bmax − (i − 1) trao, if i = iB,max.

(3.35)

The conditional pmf of B | K = 2 is of special importance because it allows us to
model the backoff process at each RAO as follows.

Let imax be the last RAO in which a preamble transmission can occur. Please also
recall ymax is the maximum number of barring checks before determining an access
failure and iW,max is the maximum number of RAOs UEs can wait due to one failed
barring check. With these data, imax can be easily calculated as

imax = idist + (kmax − 1) iB,max + (ymax − 1) iW,max (3.36)

Next, we define ımin = min{iB,min, i}, ımax = min{iB,max, i}; these allow us to model the
backoff process at each RAO by means of the following recursion

E [Ni (k)] =
ımax∑

v=ımin

E
[
NF,i−v (k − 1)

]
pB |K (v | 2) ,

for i = 1, 2, . . . , imax; k = 2, 3, . . . , kmax (3.37)
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Figure 3.5: Pmf of the total number of RAOs a UE has to wait due to backoff given the
UE succeeds at the kth preamble transmission B | K ∈ {2, 4, 6, 8, 10} for bmax = 20ms.

given the initial condition E [N1 (k)] = 0 for k ≥ 2.

From (3.35), the pmf of B | K can be calculated recursively as follows.

pB |K (i | k) =
iB,max∑

v=iB,min

pB |K (v | 2) pB |K (i − v | k − 1) , for k = 3, 4, . . . , kmax.

(3.38)

Fig. 3.5 shows the pmf of the backoff time (in RAOs ) given trao = 5 ms, d f = 8 ms,
and bmax = 20 ms.

Finally, let DBO the RV that represents the total delay due to backoff for a UE that
successfully completes the RAP, given in milliseconds. Clearly, the pmf of DBO | K

can be easily calculated as the function of B | K

Pr [DBO = i trao | K] = pB |K (i | k) . (3.39)

The RAP concludes with the transmission of connection request (Msg3) and con-
tention resolution (Msg4) messages. These are sent through dedicated resources, and
are protected by robust a HARQmechanism. Generally speaking, HARQ is a complex
mechanism in which packets received with errors are stored instead of being discarded;
these are combined with posterior retransmissions to increase the probability of recov-
ering erroneous data. Hence, packets are not simply retransmitted in HARQ. Instead,
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the amount of redundancy increases at each transmission, which also increases the
probability of recovering the original packet.

Because of this complexity, the 3GPP simply advises to assume a constant error
probability Pr [Eh] to each of theMsg3 andMsg4 transmissions. A maximum number
of transmissions for each of these packets hmax is also defined. Due to their similarity,
we exemplify the modeling of both message transmissions withMsg3 only as follows.
The modeling forMsg4 is analogous to that ofMsg3 but with a different RTT as shown
in Table 2.3 on page 26 [3, Table 16.2.1-1].

Let DM3 be the RV that defines the time elapsed between the first Msg3 transmis-
sion attempt by a given UE and its reception at the eNB, conditioned to the correct
transmission of this message within the maximum number of attempts. The distri-
bution of DM3 depends on the RTT dm3 ms, the error probability Pr [Eh], and hmax.
Also let H be the RV that defines the number of attempts required for the successful
transmission of Msg3 whose support is h ∈ {1, 2, . . . , hmax}. It is easy to see that the
pmf of DM3 | H = h is

pDM3 |H (d | h) = δ (d − (h − 1) dm3) . (3.40)

As described above, the probability of performing hmax attempts without success
is extremely low even for relatively high values of Pr [Eh]. This holds true for the case
in which both Msg3 and Msg4 are considered. Concretely, the probability that hmax

Msg3 or Msg4 transmissions fail is

Pr [Em] = Pr [Eh]hmax
(
2 − Pr [Eh]hmax

)
(3.41)

which is very low (i.e., 2 ·10−5) for the suggested value Pr [Eh] = 0.1 (see Table 3.1 on
page 48). This value is coherent with the maximum admissible packet error ratio for
data packets in LTE-A of 0.1 [4, Sec. 7.2.3]. Hence, Pr [Eh] = 0.1 can be seen as the
worst case scenario forMsg3 andMsg4 transmissions, which takes us to the following
proposition.

Proposition 3.3. Given the probability of a UE failing an access attempt during the
transmission of either Msg3 or Msg4 is extremely low, it is safe to assume these UEs
do not go back to preamble transmission and terminate the RAP at this point.
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Figure 3.6: CDF of the access delay due to the transmission of Msg3 and Msg4 for
the given error probability during transmission, Pr [Eh] = 0.1; the RTTs of Msg3 and
Msg4 are 8 and 5 ms, respectively.

Building on this proposition, the distribution of DM3 alone can be calculated as
follows.

pDM3 (d) =
1 − pEh
1 − phmax

Eh

hmax∑

h=1
ph−1
Eh δ (d − (h − 1) dm3) (3.42)

where 1 − phmax
Eh is a normalization factor to ensure pDM3 (d) is a pmf.

As stated above, the pmf of DM4 can be obtained in analogously to that of DM3 but
substituting the RTT, dm3, with dm4.

Next, let DM be the RV that denotes the time elapsed between the first transmission
attempt of Msg3 and the successful transmission of Msg4. Naturally, DM is the sum
of RVs DM3 and DM4, whose pmf can be calculated by the convolution

pDM (d) = Pr [DM3 + DM4 = d] =
d∑

v=0
pDM3 (v) pDM4 (d − v) (3.43)

since DM3 ⊥ DM4. Fig. 3.6 shows the CDF of DM3, DM4, and DM for the selected
configuration.

Now we are able to calculate the number of UEs that successfully complete the
RAP. For this, let the RV NS,i (k) define the number of UEs that successfully complete
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the RAP in the kth preamble transmission, performed at the ith RAO. The expected
value of NS,i (k) can be calculated as

E
[
NS,i (k)

]
= (1 − Pr [Em]) E

[
NG,i (k)

]
. (3.44)

The final component of our model is the calculation of the minimum time needed
to complete the RAP

dmin = min {d | Pr [D = d] ≥ 0} = 4 + dp + dug + dcr. (3.45)

That is, 4 ms are needed for the transmission of the four messages that comprise the
RAP; dp, dug, and dcr are the processing delays of the preamble, uplink grant, and
connection request messages, respectively [3, Table 16.2.1-1]. From there, we can
define the RV Dmin as the minimum access delay, whose pmf is

pDmin (d) = δ (d − dmin) . (3.46)

3.3.4 Obtaining the KPIs

In this brief subsection we describe the process for obtaining the KPIs defined in
Section 3.1 for the performance evaluation of the RAP.

The first and most important KPI is the success probability, denoted as Ps and
defined as the ratio of successful to total UEs. Please recall that RV NS,i (k) defines the
number of successful accesses that occur at the kth preamble transmission and at the
ith RAO. Building on this, let NS be the RV that defines the total number of successful
accesses throughout the access period, its expected value is

E [NS] =
imax∑

i=0

kmax∑

k=1
E

[
NS,i (k)

]
. (3.47)

Hence, Ps is simply

Ps =
E [NS]

n
. (3.48)
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Next, the collision probability, denoted as Pc and defined as the ratio of collided to
available preambles throughout the access period is calculated as

Pc =
1

(imax + 1) r

imax∑

i=0

r∑

c=1
cpCi (c) (3.49)

where Ci defines the number of collided preambles at the ith RAO.

The pmf of RV K , which defines the number of preamble transmissions performed
by the successfully accesses UEs, is calculated as follows.

pK (k) =
1

E [NS]

imax∑

i=0
E

[
NS,i (k)

]
, for k = 1, 2, . . . , kmax, (3.50)

From there, its expected value E [K] and φth percentile Kφ can be calculated. The
former is given analogously to (3.29) and the latter is derived by means of a linear
interpolation of the CDF of K FK (k).

The calculation of the access delay D concludes our model. But first, the delay
induced by the transmission of RAR messages within the RAR window, defined by
RV DRAR, must be calculated. for this, please recall that there are fg uplink grants
available per millisecond (i.e., per subframe), and that the length of the RAR window
is trar ms. Building on this, the sample space for DRAR is d ∈ {0, 1, . . . , trar} ms and its
pmf can be obtained as

pDRAR (d) =
1

E [NS]

imax∑

i=0
max

{
0,min

{
fgts,E [MS (i)] − (d fg)

}}
;

for d = 0, 1, . . . trar − 1. (3.51)

Finally, the pmf of D can be calculated as

pD (d) = Pr [DACB + DBO + DRAR + DM + Dmin = d] . (3.52)

That is, we assume independence between the RVs that contribute to the access delay.
These are, from left to right in (3.52) the increase in delay due to: 1) the ACB scheme
DACB; 2) backoff DBO; 3) RAR DRAR; and 4) Msg3 and Msg4 transmissions DM.
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The last component of (3.52) is the minimum time needed to complete the RAP. The
expected value of the access delay E [D], its CDF FD (d), and φth percentile Dφ are
obtained analogously to those of K .

3.3.5 Assessing the accuracy of our model

In the following section, we assess the accuracy of our model with respect to simula-
tions. Similarly as in Chapter 2, each simulation starts at i = 0 and ends when every
UE has terminated the RAP and the number of simulation runs is set to the smallest
number that ensures that all the cumulative KPIs obtained up to the last simulation
differ from those obtained up to the previous simulation by less than 0.01 percent.
Then, we compare the accuracy of our model with that of the RM [109]. For this, we
first define adequate metrics to assess the accuracy of the obtained KPIs.

It is clear that the accuracy of the success Ps and collision Pc probabilities can be
easily assessed in terms of the relative error. On the other hand, assessing the accuracy
of the pmfs of the number of preamble transmissions and access delay requires more
sophisticated mechanisms. In our previous work [60, 69], the accuracy of these pmfs
was assessed in terms of the relative error of numerous percentiles. Nevertheless,
this mechanism is not capable of reflecting the level of likeliness between the pmfs
obtained by simulation and by an analytical model.

Building on this, we now assess the accuracy of our model and of the RM by
means of the Jensen-Shannon Divergence (JSD). The JSD measures the increase in
the Shannon’s entropy when a given pmf is assumed to be the real pmf of an RV. In
other words, the JSD measures the loss of information when an approximated pmf is
assumed to be the real pmf of an RV. It is defined for two pmfs as follows.

JSD (psim (x) , p (x)) ≡ H
(

psim(x) + p(x)
2

)
− H (psim(x)) + H (p(x))

2
. (3.53)

where psim(x) is the real pmf (in our case, the one obtained by simulation), p(x) is the
pmf we assume to be the real one, and H (·) is the base-e Shannon’s entropy defined
as

H (p(x)) ≡ −
∑

∀x∈X
p(x) log p(x). (3.54)
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When the base-e Shannon’s entropy is used, we have

0 ≤ JSD (psim(x), p(x)) ≤ log 2, (3.55)

where JSD = 0 indicates that both pmfs are identical. On the other hand, JSD = log 2
can only be obtained if no element in the support of one of the RVs is in the support
of the other.

3.4 Results and discussion

In this section we showcase the accuracy of our model by presenting the results
obtained from the performance evaluation of the RA in cellular networks. Concretely,
we compare the accuracy of our model with that of the model presented by Wei et
al. [109] with respect to simulations. As mentioned above, we refer to the model
presented by Wei et al. simply as the RM, and was the most thorough and accurate
analytical model of the RAP prior to ours. The PRACH and PDCCH configuration
parameters are enlisted in Table 3.1 on page 48.

The performance evaluation of the RA was conducted under two mMTC scenarios
in which n = 30 000 UE arrivals occur according to TM 2. As such, this section
is divided in two subsections. In the first one, we present our results given no ACB
scheme is implemented. In the second one, we present our results given the ACB
scheme is implemented with pacb = 0.5 and tacb = 4; these are fixed throughout the
access period. As observed in Chapter 2, this is the combination of barring parameters,
among those available for selection at the SIB 2, that leads Ps ≥ 0.95with theminimum
D95 [68, 95].

As described above, our model was designed under the assumption that preambles
transmitted bymultiple UEs are never decoded by the eNB. Therefore, the vast majority
of the results presented in this sectionwere obtained under this assumption. In addition,
our model was modified to accommodate the assumption that preambles transmitted by
multiple UEs are always decoded by the eNB. Results obtained under this assumption
are presented at the end of this section.
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3.4.1 Disabled ACB scheme

As a starting point, we show the expected number of successful accesses E
[
NS,i

]
at

each RAO obtained by simulation, by the RM, and by our model Fig. 3.7a. In addition,
Fig. 3.7b shows the absolute error obtained by calculating E

[
NS,i

]
with either of both

analytical models with respect to simulations.

Fig. 3.7 clearly shows that the results obtained by both models and by simulation
are extremely similar for most of the RAOs. The most notorious exception is observed
for the RM in RAOs where E

[
NS,i

] ≈ 15; here, an absolute error of up to 2 successful
accesses is observed. The main reason for this is that the expected number of assigned
uplink grants per RAO is calculated directly from the expected number of decoded
preambles. As a result, the RM overestimates the number of successful accesses for
the selected scenario. This problem has also been identified by Arouk et al. [20].

In our model, we follow a different approach and use the whole pmf (see (3.30) and
Fig. 3.4). As a result, this error is not present in our model, which leads to a maximum
absolute error of up to one order of magnitude lower than the obtained with the RM as
illustrated in Fig. 3.7.

To proceed, we show the KPIs obtained by simulation for trao ∈ {2, 5, 10} ms in
Table 3.2; these values correspond to PRACH configurations prach-ConfigIndex ∈
{3, 6, 13}, respectively.

Nowweprovidewith an in-depth look at the accuracy of theRMandof our proposed
model by listing the relative error of these models with respect to simulations for the
KPIs listed in Table 3.2. It is clear that the higher accuracy of our model is reflected in
the obtained KPIs, as the relative error is less than 3 percent for all the values shown
in Table 3.2. For instance, the relative error exceeds 2 percent only twice with our
model, which accounts for less than 6 percent of the listed KPIs. In contrast, the
RM leads a relative error higher than 2 percent for more than half of the listed KPIs
and the error is particularly high for the access delay. One of the main contributing
factors to such a high error is the use of the expected delay of RAR, Msg3, and Msg4
transmissions instead of the pmf. This causes the abrupt changes in the CDF of access
delay calculated with the RM, depicted in Fig. 3.8. It can also be seen in Fig. 3.8 that
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Figure 3.7: (a) Comparison and (b) absolute error (in logarithmic scale) of the expected
number of successful accesses E

[
NS,i

]
at each RAO obtained by simulation, by the

RM [109], and by our proposed model; disabled ACB scheme.

the CDF of access delay calculated with our model highly resembles the one obtained
by simulation.

To further showcase the advantages of our model with respect to the RM, we show
the JSD of both models with respect to simulations in Fig. 3.9 for RVs K and D.
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Table 3.2: KPIs obtained by simulation with different values of trao (ms); disabled
ACB scheme.

KPI trao = 2 trao = 5 trao = 10

Success probability (%) 66.44 31.33 9.89
Collision probability (%) 18.02 43.48 60.02
Number of preamble
transmissions

Expected value 4.10 3.45 3.23
10th percentile 1.00 1.00 1.00
50th percentile 2.87 1.98 1.83
90th percentile 8.01 7.30 6.93
95th percentile 8.95 8.57 8.38

Access delay (ms)
Expected value 67.52 68.76 81.42
10th percentile 15.00 15.08 15.01
50th percentile 54.05 46.93 54.16
90th percentile 136.66 155.60 196.35
95th percentile 153.52 182.59 236.56

As described in Section 3.3, the JSD is a measure of the loss of information about a
RV when an approximated pmf is assumed to be the real one. The pmf obtained by
simulation is assumed to be the real pmf and the base-e logarithm was used, so the
JSD is lower bounded by 0 and upper bounded by log 2.

Fig. 3.9 clearly shows that the pmf of K obtained with both models is highly similar
to the one obtained by simulation. For instance, the JSD of ourmodel decreases slightly
as trao increases. On the other hand, the JSD of the RM for RV K presents a drastic
drop for trao = 10. The reason for this phenomenon can be inferred from Fig. 3.7b: the
accuracy of the RM increases as the number of successful accesses decreases during
periods of high congestion and trao = 10 is most congested scenario of the three. At
first glance this seems to be an advantage of the RM over ours, but this increase in the
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Table 3.3: Relative error (%) for the reference model (RM) and our proposed model
(PM) with different values of trao (ms); no ACB scheme.

trao = 2 trao = 5 trao = 10

KPI RM PM RM PM RM PM

Success probability 0.35 0.08 2.70 0.29 0.59 0.36
Collision probability 1.15 0.13 1.63 0.20 0.02 0.09
Number of preamble
transmissions

Expected value 1.39 0.69 2.90 0.97 0.35 0.76
10th percentile 0.00 0.00 0.00 0.00 0.00 0.00
50th percentile 3.19 1.54 3.60 1.71 0.48 1.29
90th percentile 0.28 0.08 2.35 0.48 0.22 0.50
95th percentile 0.11 0.02 1.07 0.20 0.20 0.16

Access delay
Expected value 21.36 2.17 3.18 2.59 11.53 2.28
10th percentile 26.67 0.10 25.97 0.55 59.92 0.30
50th percentile 10.59 1.64 12.82 2.30 0.59 2.16
90th percentile 19.26 0.12 10.62 0.33 2.34 0.38
95th percentile 19.17 0.09 6.51 0.34 10.08 0.24

accuracy of K and in Pc (see Table 3.3) are not reflected on Ps nor in D. In fact, the
10th percentile of D obtained with the RM given trao = 10 ms results in the highest
relative error overall, exceeding 50 percent.

In fact, the JSD of the RM for RV D is so high that is comparable to log 2; this is
the upper bound for the JSD. For instance, the JSD obtained by comparing a uniform
distribution U [0, 400] to the pmf of D obtained by simulation given trao = 5 is even
lower: JSD = 0.304. In other words, more information about D is lost by using the
RM than by assuming D is uniformly distributed between 0 and 400. The JSD for D

obtained with our model is more than two orders of magnitude lower.
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Figure 3.8: CDF of access delay FD (d); disabled ACB scheme.
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Figure 3.9: JSD in the pmfs of (a) the number of preamble transmissions K and (b)
access delay D obtained by simulation and by the analytical models; disabled ACB
scheme.

3.4.2 Enabled ACB scheme

Now we preset our results when the ACB scheme is implemented. We have observed
previously that the accuracy of our model not affected by different values of trao.
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Therefore, from this point on, results are only presented for trao = 5.

It is important to mention that the ACB scheme was not included in the RM.
Therefore, we incorporated our model of the ACB scheme as an input to the RM.
Then, we calculate the overall access delay D as the convolution of the pmf of access
delay provided by the RM and the pmf of the barring time DACB. By doing so, we
are able to obtain the desired results with a model that only comprises the RAP. We
denote this extension as the extended RM (ERM).

Once more, our evaluation begins with the expected number of successful accesses
at each RAO E

[
NS,i

]
. These are shown in Fig. 3.10a, and the absolute error for

E
[
NS,i

]
between the analytic models and simulations is shown in Fig. 3.10b. Here we

observe the same behavior described above: the RM overestimates E
[
NS,i

]
for values

close to g. On the other hand, the absolute error obtained with our model is always
below 0.1, except at one RAO, where it is lower than 0.2.

Results shown in Fig. 3.10 illustrate the accuracy of our model of the RAP, but
also that of the ACB scheme. That is, the highest error marks observed in Fig. 3.10b
are due to the RM itself.

Table 3.4 shows the KPIs obtained by simulation and the relative error of both
analytic models. Clearly, our model is much more accurate than the ERM. The only
two exceptions are in the expected and the 10th percentile of access delay. The reason
for this is that we assume the RVs of delay at each of the steps of RA are independent,
which is not the case. For instance, the UEs whose access is barred a relatively long
time are more likely to contend with fewer UEs. On the other hand, UEs that succeed
in the first barring check are more likely to contend with a large number of UEs;
hence, preambles transmitted by these UEs have a higher collision probability than
those transmitted by highly delayed UEs. Nevertheless, this effect fades when high
percentiles of delay are considered and our model provides more information on the
real pmf of D than the ERM. To support this statement, we present the JSD of both
models with respect to simulations in Fig. 3.11 for RVs K and D.

Fig. 3.11 clearly shows that the JSD of our model is more than one order of
magnitude lower than that of the ERM for both RVs even though some values presented
in Table 3.4 suggest a slightly higher accuracy for the ERM. In other words, it is mere
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Figure 3.10: (a) Comparison and (b) absolute error of the expected number of suc-
cessful accesses at each RAO E

[
NS,i

]
, obtained by simulation, by the ERM, and by

our proposed model; implemented ACB scheme with fixed pacb = 0.5 and tacb = 4.

coincidence that some relative errors obtained with the ERM are lower than those
obtained with our model. In other words, the JSD provides more information on the
accuracy of the pmfs obtained by the analytical models.

We provide a close look at the behavior of the CDF of D in Fig. 3.12. Specifically,
Fig. 3.12a shows the complete CDF of D, then Fig. 3.12b shows only its first 250 ms.
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Table 3.4: KPIs obtained by simulation and the relative error obtained by the ERM
and by our proposed model (PM) for the selected scenario; ACB scheme with fixed
pacb = 0.5 and tacb = 4.

Rel. error (%)

KPI Simulation ERM PM

Success probability 97.48% 1.39 0.18
Collision probability 1.62% 18.00 3.28
Number of preamble
transmissions

Expected value 2.45 7.29 1.35
10th percentile 1.00 0.00 0.00
50th percentile 1.40 5.77 2.04
90th percentile 4.54 14.31 1.70
95th percentile 6.13 13.30 1.40

Access delay
Expected value 4141.86 ms 2.36 2.37
10th percentile 18.12 ms 4.83 12.32
50th percentile 2945.89 ms 92.63 4.47
90th percentile 11 839.26 ms 1.04 1.04
95th percentile 15 809.89 ms 0.88 0.87

Clearly, the CDF obtained by the analytical models grows more rapidly than the
one obtained by simulation. This phenomenon, combined with the fact that the ERM
overestimates the number of successful accesses, causes a relative error of 92.63 percent
in the 50th percentile of access delay obtainedwith the latter. However, themain reason
for such a high error in this particular percentile is that it coincides with the barring
rate pacb = 0.5, which causes the step observed at the first RAOs of Fig. 3.12a. On
the other hand, it is observed in Fig. 3.12b that this error is relatively low, but causes
the CDFs obtained by the ERM to exceed 0.5 much earlier than the one obtained by
simulation.
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Figure 3.11: JSD in the pmfs of the number of preamble transmissions K and access
delay D obtained by simulation and by the analytical models; implemented ACB
scheme with fixed pacb = 0.5 and tacb = 4.

3.4.3 The eNB decodes the preambles transmitted bymultiple UEs

As briefly explained in Section 3.2, two outcomes are possible when multiple UEs
transmit the same preamble at the same RAO. In the first one, the eNB does not decode
these preambles; throughout this study, we have assumed that this outcome occurs
every time multiple UEs transmit the same preamble. In the second one, the eNB
correctly decodes the transmitted preambles. The two major effects of decoding the
preambles transmitted by multiple UEs are: 1) uplink grants may be sent in response to
preambles transmitted by multiple UEs and 2) the multiple UEs that receive the same
uplink grant will send theirMsg3s in the same reserved uplink resources. Needless to
say, these two effects negatively impact the performance of the RAP [34, 79, 95], and
their implications are described in the following.

If uplink grants are sent in response to preambles transmitted by multiple UEs, less
than g uplink grants will be available to respond to successful preambles. In other
words, downlink resources are wasted onUEs that have cannot successfully completing
the RAP. Furthermore, if multiple UEs send their Msg3 in the same reserved uplink
resources, a collision will occur at this point. Moreover, the UEs will not be aware of
the collision until hmax Msg3s are transmitted and no Msg4 is received. That is, only
after the maximum number of Msg3 transmissions is reached; only then, these UEs
will perform backoff. As a consequence, the delay of these UEs will increase when
compared to that of the outcome assumed throughout this thesis.

77



Chapter 3. Analytical modeling of RA in cellular networks

0 5000 10000 15000 200000

0.2

0.4

0.6

0.8

1

Access delay d (ms)

C
D

F

Simulation
Extended reference model
Proposed model

(a)

0 50 100 150 200 2500

0.1

0.2

0.3

0.4

0.5

Access delay d (ms)

C
D

F

Simulation
Extended reference model
Proposed model

(b)

Figure 3.12: (a) Overall view and (b) first 250 ms [colored area in the lower left corner
of (a)] of the CDF of the access delay FD (d) obtained by simulation, by the ERM and
by our model; implemented ACB scheme with fixed pacb = 0.5 and tacb = 4.

We have adapted our model and also the RM, also referred to as the ERM, in order
to evaluate the performance of the RAP when uplink grants may be transmitted in
response to collided preambles. Table 3.5 shows the results obtained by simulation,
by adapting the RM and by our model. The same principles employed to adapt our
model were used to adapt the RM.

78



Chapter 3. Analytical modeling of RA in cellular networks

Fig. 3.13 shows the E
[
NS,i

]
obtained by simulation and by both analytical models,

along with the absolute error when compared to simulations. It can be easily observed
from Fig. 3.13a that the achieved E

[
NS,i

]
is lower under this assumption than in the

previous one, but also that both analytical models exhibit a roughly similar accuracy.
This is confirmed in Fig. 3.13b, where the absolute error is always below 1. The
reasons for this similar accuracy are twofold. First, E

[
NS,i

]
is nowhere near g; hence

the accuracy of the ERM is not greatly affected. Second, the adaptations included in
the analytical models are analogous and have a great impact on performance.

Next, we present the KPIs obtained by simulation and the relative errors obtained
with the analytical models. As it can be seen, our model exceeds the accuracy of the
ERM in success probability, collision probability and several delay percentiles. The
accuracy of both models is similar for the different metrics of the number of preamble
transmissions. We have also observed that the accuracy of both is similar by comparing
the JSD and this similarity holds when the ACB scheme is implemented.

3.5 Conclusions

This chapter presented a thorough analytic model of the RA in cellular networks that
includes the model of the ACB scheme with fixed parameters. This model was used
to accurately assess the performance of RA under mMTC scenarios. Specifically, the
accuracy of our model was assessed under several PRACH configurations with respect
to simulation results and then compared it with that of the model proposed byWei et al.
Although the latter was the most accurate model prior to ours, its accuracy drops when
the number of successful accesses per RAO approximates the RAP capacity. That is,
when most of the available resources are being utilized. These are the scenarios of
highest interest because themain objective of access control schemes is that of reducing
congestion while maximizing the utilization of resources. This latter statement will
become evident in the next chapter, in which our adaptive solution to support mMTC
is presented.

Throughout this chapter, it was observed that the accuracy of our model is not
affected by the distribution of the UE arrivals, by the signaling traffic intensity, nor
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Figure 3.13: (a) Comparison and (b) absolute error of the expected number of suc-
cessful accesses at each RAO E

[
NS,i

]
, obtained by simulation, by the ERM, and by

our proposed model; the eNB decodes collided preambles.

by the selected PRACH configuration; still, it maintains an acceptable degree of
computational complexity. For instance, by implementing our model in Octave, results
were obtainedwithin a few tens of seconds for the case inwhich noACB is implemented
and within a couple of minutes for the case in which the static ACB is implemented.

In addition, we adapted our model in order to evaluate the performance of the
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Table 3.5: KPIs obtained by simulation and the relative error obtained by the ERM and
by our proposed model (PM) for the selected scenario; the eNB decodes the preambles
transmitted by multiple UEs .

Rel. error (%)

KPI Simulation ERM PM

Success probability 16.42% 1.36 0.30
Collision probability 49.46% 0.38 0.09
Number of preamble transmissions

Expected value 3.43 1.42 1.48
10th percentile 1.00 0.00 0.00
50th percentile 1.88 2.35 2.66
90th percentile 7.53 0.66 0.65
95th percentile 8.73 0.28 0.28

Access delay
Expected value 103.38 ms 3.57 8.27
10th percentile 15.00 ms 26.67 3.95
50th percentile 69.83 ms 24.34 19.23
90th percentile 256.60 ms 0.44 5.97
95th percentile 306.21 ms 5.39 5.33

RAP under the assumption that the eNB correctly decodes the preambles transmitted
by multiple UEs. The same process used to adapt our model was used to adapt the
reference model in order to consider this latter assumption. Results show that the
accuracy of our model is preserved even under this assumption.

A distinctive characteristic of our model is the inclusion of the static ACB scheme.
Results indicate that our model of the ACB scheme is highly accurate and can be easily
incorporated into other analytic models. For instance, it was incorporated to the model
provided by Wei et al. to obtain the results presented in Table 3.4. However, there
are a two main considerations that must be taken into account when incorporating our
model of the ACB scheme to other models for the RAP. The first one is that percentiles

81



Chapter 3. Analytical modeling of RA in cellular networks

of access delay that are close to the selected barring rate may be highly affected by the
lack of accuracy of the selected model of the RA procedure. The second one is that
the CDF of access delay obtained by our model may raise more rapidly in the first few
subframes than the one obtained by simulation. The reason for this is that we assume
the RVs involved in the calculation of the access delay are independent, while a slight
correlation exists. However, doing otherwise would greatly complicate our model,
which in turn would compromise its computational efficiency.

82



Chapter 4

Adaptive access control for efficient mMTC in
cellular networks

4.1 Introduction

Chapters 2 and 3 have focused on studying the efficacy of the RA procedure (RAP)
defined by the 3rd Generation Partnership Project (3GPP) for cellular networks under
massive machine-type communication (mMTC) applications. Results shown in both
of these chapters have revealed that an access control scheme is needed under these
conditions to prevent congestion in the random access (RA) channels. One of the
most promising access control schemes is the access class barring (ACB), which
redistributes the access of user equipments (UEs) through time to reduce the signaling
traffic intensity. In particular, under the ACB scheme, each UE begin the RAP with
probability equal to the barring rate. Otherwise, the UE must wait for a random time,
selected according to the mean barring time. Both barring parameters, the barring rate
and mean barring time are provided by the cellular base station (known as the evolved
NodeB (eNB) in 4th generation (4G)).

A traditional ACB scheme in which the barring parameters are fixed throughout
the operation of the network has also been studied in Chapter 2 and Chapter 3. In this
chapter, we refer to the methods to select the barring parameters as the access class
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barring configuration (ACBC) schemes. Hence, we refer to the traditional approach
to use fixed parameters as the fixed ACBC scheme. Results presented in previous
chapters highlight that the fixed ACBC scheme can relieve congestion under highly
synchronized mMTC applications given adequate barring parameters are selected.
Nevertheless, the fixed ACBC scheme presents two main drawbacks:

1. The barring parameters must be selected before the distribution period of UEs.
Hence, no prior knowledge of the number of accessingUEs nor of the distribution
of accesses may be available. If barring parameters are not selected to suit these
two characteristics, severe congestion will occur.

2. The access of UEs will be delayed even under low signaling traffic scenarios
(i.e., when no congestion occurs). Clearly, this is not desirable.

Efficiently supporting mMTC is one of the pillars of 5th generation (5G) [6, 49],
and 4G will surely be the basis of 5G networks. Therefore, recent research efforts have
been focused on ACBC schemes to adapt the barring parameters to the intensity of
accesses in real time [34, 35, 71, 94, 97]. In theory, such ACBC schemes are the only
ones capable of providing an optimal performance. That is, maximize the utilization
of resources and to guarantee the access of the vast majority of the UEs to the eNB.

However, the vast majority of ACBC schemes presented in the literature [35, 71, 94]
were designed for an idealized ACB scheme, in which every UE is subject to the
ACB scheme even after the beginning of its RAP and in which there is no delay in
the notification mechanisms (i.e., System Information Block (SIB) 2 transmissions).
Therefore, these cannot be implemented at the eNB in their current form.

The development of a dynamic ACBC scheme capable of adapting its parameters
in a real-time fashion is a challenging task [34] that is mainly hindered by the following
factors.

1. The selectivity of the ACB scheme: Only the UEs that have not yet begun the
RAP are subject to the ACB scheme. That is, those who have not yet performed
their first preamble transmission. Once a UE has transmitted its first preamble,
it is no longer subject to the ACB scheme [10, 53].
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2. The delay of notification mechanisms: The barring parameters are broadcast
through the SIB 2, whose period is much longer than the period of random
access opportunities (RAOs) (resources in which preamble transmissions are
allowed). Therefore, it is not possible to set precise barring parameters in a
RAO-by-RAO basis.

3. The limited information available at the eNB regarding the number of contending
UEs: The eNB ignores the number of contending UEs at a given time, the exact
number of UEs deployed within the cell and, clearly, the distribution that the UE
accesseswill followbefore these occur. After eachRAO, the eNB is clearly aware
of the number of successful accesses, but the number of failed accesses may not
be known as several causes for an access failure exist; these were explained
in detail on page 44 (Chapter 3). Therefore, the eNB can only approximate
the number of UEs deployed in a cell based on the number of UEs registered
previously and the number of decoded preambles at each RAO. Needless to say,
the accuracy of such an approximation will suffer.

In this chapter, we present an adaptive ACBC scheme that can be directly imple-
mented in the current 4G and in the coming 5G systems. Our ACBC scheme relies
on the number of UEs that successfully complete the RAP and in an adaptive filtering
process to adjust the barring parameters to the perceived signaling traffic intensity. The
main objective of the filtering process is to enhance the selection of the barring rate by
reducing the effect of the inherent randomness of the distribution of UE accesses and
of the RAP. The main contributions of our ACBC scheme are as follows.

1. It effectively operates with minimal information regarding the signaling traffic
intensity. In fact, only the number of successful accesses per RAO and the
total amount of available resources are needed to accurately set the barring
parameters. These values are clearly known by the eNB.

2. It efficiently tolerates the long period between SIB 2 transmissions. As men-
tioned above, the barring parameters are exclusively broadcast through the SIB 2,
whose shortest period is 80ms, as defined in the specifications [10]. In a typical
configuration of the physical RACH (PRACH), RAOs occur once every 5ms.
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Therefore, the period of the SIB 2 is typically 16 times longer than the period of
RAOs [10].

3. It successfully configures the barring parameters of the ACB scheme as defined
in the RRC specification [10]. Hence, it efficiently relieves congestion given that
the ACB scheme only affects the UEs that have not yet begun the RAP.

Our ACBC scheme incorporates the simple and robust least-mean-square (LMS)
algorithm to continuously adapt the weights of a filter according to the perceived
signaling traffic intensity. Two different configurations of the LMS are considered.
The first one is a typical adaptive line enhancer (ALE) configuration, whose purpose
is to remove a wideband noise from a narrowband information-bearing signal. The
second one is a novel twist on the typical ALE configuration. Preliminary results on
the performance analysis of our ACBC scheme with this second configuration can be
found in [66].

Initial tests were performed with a different adaptive algorithm, namely the recur-
sive least-squares (RLS), and with finite-duration impulse response (FIR) filters with
fixed weights. Nevertheless, the benefits of the latter approaches were lesser when
compared to those provided by the LMS algorithm. Results derived from our tests
with the RLS algorithm are included in Appendix C.

We assess the performance of our ACBC scheme by means of the idealized scheme
with full state information presented byDuan et al. [35]; it was also used for benchmark
purposes in their work. This scheme cannot be implemented in cellular networks
but serves as an upper bound to the performance of ACBC schemes. Results show
that a remarkable performance can be obtained by implementing our ACBC scheme
with either of the two adaptive filter configurations. For instance, the probability of
successfully completing the RAP during periods of congestion can go from a poor 31.3
percent with no implemented ACB scheme to more than 95 percent with our ACBC
scheme. In addition, the difference in the access delay of UEs when compared to the
benchmark scheme under these conditions is minor. Moreover, the access delay is
not affected during periods of no congestion. These characteristics make our ACBC
scheme one of the few efficient and practical solutions to congestion caused by mMTC
applications in cellular networks.
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The rest of the chapter is organized as follows. Section 4.2 presents a review of
state-of-the-art solutions to congestion in cellular networks under mMTC scenarios.
Next, Section 4.3 presents our ACBC scheme; this includes the adaptive filter algo-
rithms and configurations it incorporates. Section 4.4 describes the test scenarios and
the methodology we use to optimize our ACBC scheme. Afterwards, Section 4.6
presents the achievable performance with our ACBC scheme. In this section we use
an idealized ACBC scheme for benchmark purposes; we also evaluate the impact of
realistic assumptions on the performance of the latter scheme. Finally, we present our
conclusions.

4.2 Related work

One of the most promising and widespread approaches to implement an ACBC scheme
is to estimate the total number of contending UEs [12, 34, 35, 51, 94, 108]. In most
cases, the number of successful and collided preambles is used for this purpose.
With this information, an optimal barring rate, typically defined as the barring rate
that maximizes the expected number of preambles transmitted by exactly one UE per
RAO [108]. Highlights of some of the studies that follow the approach described above
are summarized as follows.

Wang et al. provide a closed-form approximate solution to the problem of obtaining
the optimal barring rate is presented in [108]. Jin et al. propose a pseudo-Bayesian
ACBC scheme in which the number of idle preambles is used for the estimation [51].
Tavana et al. use a Kalman filter to enhance the accuracy of the estimation [94]. While
this latter study only considers the first step of the RAP, preamble transmission, the
idea of using adaptive filters for this purpose is promising.

Abbas et al. proposed an ACBC scheme that considers the use of different barring
rates for different groups of UEs based on their delay requirements [12]. As we will
observe in Section 4.6, the access delay of UEs under any ACB scheme and during
periods of congestion is only suitable for delay tolerant applications, even when the
optimal barring parameters are selected. Hence, the potential delay gains of using
different barring parameters for different groups of UEs are minimal.
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Duan et al. propose an ACBC scheme that employs the number of successful
and idle preambles, along with the total number of UEs registered previously for the
estimation [35]. An extension of this latter approach is also provided in the same paper
to dynamically select the number of available preambles allocated to machine-type
communications (MTC) UEs.

The performance of the above mentioned ACBC schemes is typically compared
with that of idealized solutions that exploit the benefits of having full state information
and can make a priori decisions [35, 94, 108]. Clearly, these full state information
solutions cannot be implemented at the eNBs but provide an upper bound to the
performance of the ACB scheme. As it will be seen in Section 4.6, we will adopt this
approach and compare the performance of our ACBC scheme with that of the idealized
and full state information scheme described by Duan et al. [35].

Results presented from most of the studies listed above [35, 94, 108] show that the
performance of the proposed ACBC schemes is close to that of the idealized solution.
Nevertheless, these ACBC schemes cannot be implemented in 3GPP cellular networks
because were developed based on an idealized ACB scheme in which every UE is
subject to the ACB scheme, even after the beginning of the RAP and the barring
rate is calculated and broadcast by the eNB at each RAO. While the first assumption
is a simplification of the ACB scheme that overrides the backoff procedure, it is
certainly not possible to broadcast a newly calculated barring rate at each RAO.
As mentioned throughout this dissertation, the shortest period of the SIB 2 (where
the barring parameters are broadcast) is 80 ms. This is, under a typical PRACH
configuration, 16 times longer than the period of RAOs.

Yet another factor that hinders the implementation of theACBC schemesmentioned
above is that, in order to accurately approximate the number of contending UEs, the
eNB must be aware of the number of successful preambles and also of at least one
of the following: 1) the number of preambles not transmitted by any UE (i.e., idle
preambles); or 2) the number of preambles transmitted by more than one UE (i.e.,
collisions). In a real world implementation, this information may not be available and
the reasons for this are manifold. For instance, the eNB may not be able to decode the
preambles transmitted by multiple UEs, or some preambles transmitted by exactly one
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UE may be lost due to a wireless channel error. mode details on this matter can be
found in Chapter 3 and in studies such as Wei et al. [109] and de Andrade et al. [34].

Lin et al. follow a different approach: the use of a state transition diagram for the
dynamic activation of the ACB scheme [71]. That is, the state of the system depends
on the average number of successful preamble transmissions and the ACB scheme is
activated when the system reaches the state of severe congestion. This approach is
simpler to implement and analyze as it does not depend on an accurate approximation
of the contending UEs. However, the authors do not consider that the number of
available uplink grants is limited and is, in a typical configuration, the main bottleneck
of the RAP [1]; this will be described in detail in Section 4.4. Furthermore, the
performance of the presented ACB scheme is only assessed in terms of the success
probability, while other key performance indicators (KPIs) are neglected.

De Andrade et al. [34] proposed and evaluated the performance of an ACBC
scheme, along with several other access control schemes. The presented schemes
consider the delay of each notification mechanism and their performance is assessed
in terms of numerous KPIs. Results show that their ACBC scheme leads to the highest
success probability (i.e., the probability to successfully complete the RAP) under a
highly congested scenario. Nevertheless, the obtained success probability is lower
than 0.8. Throughout this chapter, as in previous ones, we assume the target success
probability is 0.95.

Finally, Tello-Oquendo et al. [97] presented an ACBC scheme that incorporates
a reinforcement learning technique. The proposed ACBC scheme may indeed be
implemented in cellular networks as it was designed with the restrictions described
above. For instance, the shortest period of the SIB 2 was considered. On the other
hand, the results obtained with this ACBC scheme were not entirely satisfactory. That
is, a sufficiently high success probability can be obtained with this ACBC scheme
under a highly congested scenario, but the access delay is more than 25 percent longer
when compared to a near-optimal implementation of the fixed ACBC scheme.

Results presented by de Andrade et al. [34] and by Tello-Oquendo et al. [97]
showcase the difficulty of designing ACBC schemes and the impact that the delay of
notification mechanisms have on performance.
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The work and results presented in the two previous chapter have lead to the deve-
lopment of our novel adaptive ACBC scheme. As will be shown in Section 4.3, our
ACBC scheme can be directly implemented in cellular networks as it considers each
and every one of the system limitations and can lead to a success probability higher
than 95 percent while maintaining a near-optimal access delay.

4.3 Adaptive ACBC scheme

In this section we describe in detail the operation of our novel ACBC scheme. It is
important to emphasize that one of its remarkable features is that it strictly adheres
to the ACB scheme as defined in the specifications [5, 10]. That is, we provide an
efficient method to calculate adequate parameters for the ACB scheme defined in the
3GPP standards. Therefore, it can be directly implemented at the eNBs in 3GPP
cellular systems.

The block diagram shown in Fig. 4.1 describes the operation of the RAP with our
ACBC scheme. From Fig. 4.1 two main blocks can be clearly identified: RA and
ACBC. Depicted in the upper part of Fig. 4.1 is the RA, which comprises the barring
checks and the RAP. These were thoroughly described in Chapter 2.3. Clearly, the
RA can be initiated at any RAO. Therefore, the discrete time index i of the variables
involved in the RAP stands for the epoch number, where the epoch duration is one
RAO.

Fig. 4.1 introduces x(i), defined as the number of UEs that attempt to switch from
idle to connected mode for the first time at the ith RAO (i.e., UE arrivals). That is,
x(i) is outcome of a single experiment for random variable (RV) Xi . Before initiating
the RAP, these UEs must perform a barring check. The UEs that fail the barring
check consider their access as barred and must wait for a random time, calculated as
tw =

(
0.7 + 0.6 U [0, 1)

)
tacb( j). This process is performed until a barring check is

successful, when the UE is allowed to initiate the RAP

Next, please recall n(i, k), k ∈ {1, 2, . . . , kmax} is defined as the number of UEs
that transmit the kth preamble at the ith RAO. Then, n(i, 1) denotes the number of UEs
whose first preamble is transmitted at the ith RAO. That is, the UEs whose barring
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check at the ith RAO is successful; these UEs initiate the RAP immediately. Finally,
we define g (i) as the number of UEs that have successfully transmitted a preamble at
the ith RAO and that will receive an uplink grant within the ith (i.e. next) RA response
(RAR) window. Strictly speaking, g (i) is the observed value of the stochastic process
{
NG,i

}
i∈N at time index i, defined in (3.30) on page 59. It was observed in Chapter 3

that the probability that a UE successfully completes the RAP, given an uplink grant
was received, closely approaches one. Hence, g (i) is a tight upper bound to the
number of successful accesses at the ith RAO that can be calculated immediately after
the eNB decodes the preambles 2 ms after transmission and is a close approximation
to the number of UEs that successfully complete the RAP. On the other hand, the eNB
would have to wait until the end of the RAP (e.g., at least 15 ms given trao = 5 ms) to
obtain this information.

In the ACBC block, depicted in the lower part of Fig. 4.1, the eNB calculates the
barring parameters that will be broadcast through the jth SIB 2: mean barring time
tacb( j) and barring rate pacb( j). The SIB 2 is broadcast once every tsi RAOs, hence,
these parameters are adapted according to the perceived signaling traffic intensity
throughout this period. As such, the discrete time index j stands for the epoch number
when the epoch duration is tsi RAOs. Consequently, the ACBC block operates at a
time scale that is tsi times greater than that of the RA block. Specifically, the jth SIB 2
is broadcast at the i = ( jtsi)th RAO. As such, pacb( j) and tacb( j) remain constant from
the ( jtsi + 1)th until the

( [
j + 1

]
tsi

)
th RAO. We now describe in detail the process to

calculate the barring parameters.

The eNB calculates the ratio of utilized to available resources immediately before
the jth SIB 2 transmission. For this, let n(i) be the number of contending UEs (i.e.,
total number of preamble transmissions) at the ith RAO. Please recall the theoretical
capacity of the RAP C (r, g) is defined as the maximum expected number of uplink
grants transmitted within a RAR window that can be obtained for a given number of
available preambles r , uplink grants g, and for any n(i) ∈ R≥0 (Definition 2.3.2 on
page 22, Chapter 2). This capacity is achieved when the number of contending UEs
is n(i) =

[
log (r/(r − 1))

]−1 and is calculated in (2.8) as the minimum between the
PRACH and physical downlink control channel (PDCCH) capacities.
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y( j)

{tacb ( j), pacb ( j) }

ACB configuration
(ACBC)

Random access (RA)ACB

Figure 4.1: Block diagram of the RAP with our novel ACBC scheme. The random
access is performed at each RAO, whereas the ACBC can only be performed once
every tsi RAOs.

With this information, the ratio of utilized to available resources is calculated in the
scaling filter block shown in Fig. 4.1 immediately before the jth SIB 2 transmission
(i.e., at the ( jtsi)th RAO) as

ĝ ( j) =
1

tsi C
(
r, nug

)
jtsi∑

i=( j−1)tsi+1

g (i) . (4.1)

Then, let u( j) be the ratio of idle to available resources for the jth SIB 2 broadcast
interval. It is easily calculated as

u( j) = 1 − ĝ ( j) (4.2)

and serves as the input to the adaptive filtering process. The filter output y( j) is used
to calculate the barring rate for the jth SIB 2 broadcast interval

pacb( j) = min {y( j), 1} . (4.3)

Hence, the pacb( j) with the ratio of idle to available resources. This increases the
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probability of delaying the beginning of the RAP when most of the resources have
been utilized.

Finally, we propose the dynamic selection of the mean barring time tacb( j) as a
function of pacb( j). For this, let tmax be the longest mean barring time that can be
broadcast by the eNB. Hereafter we refer to tmax simply as the barring indicator; it is
fixed and selected empirically by the network administrator. Then, the mean barring
time is calculated as

tacb( j) = (1 − pacb( j))ω tmax; (4.4)

where exponent ω ∈ R≥0. The impact of parameter ω on the performance of our
ACBC scheme is discussed in Section 4.6. We now proceed to describe the selected
adaptive algorithm and the two different configurations that were implemented in our
ACBC scheme.

4.3.1 Adaptive filter algorithm configurations

The LMS is an adaptive filter algorithm that is widely used because of its simplicity
and numerical robustness [45]. Concretely, the complexity of the LMS algorithm is
O (`), where ` is the filter length. That is, its complexity scales linearly with the filter
length as 2` + 1 multiplications and 2` + 1 additions are performed per iteration (in
our case, per ACBC process) [45]. Since the eNBs possess great computational power,
they can easily implement the LMS algorithm.

The block diagram of the LMS adaptive filter algorithm is shown in Fig. 4.2. A
buffer has been incorporated to clearly illustrate that the ratio of idle resources during
the last ` SIB 2 intervals

u( j) =
[
u( j), u( j − 1), . . . , u( j − ` + 1)

]
(4.5)

serves as the input to the algorithm. In other words, a single value of u( j) is the input
to the buffer (as indicated by the thin arrow in Fig. 4.2) and the output of the buffer is
a vector (as indicated by the thick arrows).

Fig. 4.2 also shows that the LMS algorithm consists of two processes: the filtering
and the adaptive process, which result in a feedback loop. In the filtering process, the
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Figure 4.2: Block diagram of the LMS adaptive filter algorithm.

output of a finite-duration impulse response (FIR) filter y( j) is computed from u( j).

In the adaptive process, the output y( j) is compared to the desired response d( j)
to obtain the a priori error e( j). Then, e( j) serves as an input to the adaptive weight
control mechanism. The latter is in charge of adapting the weights of the FIR filter

w( j) =
[
w0( j),w1( j), . . . ,w`−1( j)

]
(4.6)

automatically based on e( j) and on the adaptation step size µ. The LMS adaptive filter
algorithm is summarized in Algorithm 2.

It is important to mention that µ determines the so-called energy constraint or rate
of adjustment α, which links the a priori error e( j) with the a posteriori error ε( j) as
follows [102, Chapter 5.3].

ε( j) = d( j) − uT( j) w( j + 1)

= d( j) − uT( j) (w( j) + µ u( j) e( j))

= (1 − α( j)) e( j);

(4.10)

where α( j) = µ ‖u( j)‖2 is the energy constraint at time index j and ‖ · ‖ is the
Euclidean norm operator. As such, parameter α determines the rate at which w( j) is
adjusted, based on u( j).

For the LMS algorithm to be stable, the value of µ must satisfy [45, 102, 111]

|1 − α( j) | ≤ 1 ∀ j, (4.11)
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Algorithm 2 LMS adaptive filter algorithm.
Require: the filter length `
Require: the adaptation step size µ
1: Initialize the vector of filter coefficients w (0) and the input vector u (0) as

wm (0) = u (−m) = 0, m ∈ {0, 1, . . . , ` − 1} (4.7)

2: for all j = 1, 2, . . . do
3: Select the desired response d( j)
4: Filtering process:

y( j) = wT( j)u( j) (4.8)

5: Adaptive process:

e( j) = d( j) − y( j) (4.9a)

w ( j + 1) = w( j) + µe( j)u( j) (4.9b)

6: end for

which gives
0 < αmax ≤ 2; (4.12)

where αmax = µ max
{
‖u( j)‖2

}
for all j.

Please observe that, in our ACBC scheme, αmax is achieved when no UE arrivals
occur during ` consecutive RAOs. In such case, all the resources during are idle, which
gives u( j − m) = 1 for m ∈ {0, 1, . . . , ` − 1}; hence, we have αmax = µ`. Building on
this, the possible values of µ are bounded by the inequality

0 < µ ≤ 2
`
. (4.13)

One of the most typical applications of the LMS adaptive algorithm is that of an
ALE. An ALE is a system that may be used to detect a sinusoidal or narrowband
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information-bearing signal buried in a wideband noise background [45, Chapter 6].
In our ACBC scheme, sudden variations of u( j) represent the wideband noise, in
which the narrowband information signal is buried. In other words, u( j) is affected
by the randomness of both, the distribution of UE arrivals and of the RAP. Hence, the
filter weights are automatically adjusted by the LMS algorithm to suppress the sudden
variations of u( j).

In this study we propose and evaluate the performance of two different configura-
tions of the LMS ALE. The first one is the typical ALE configuration and the second
one, is a novel twist in the ALE configuration that causes the LMS algorithm to “pull”
towards a desired output which is selected empirically. Hereafter we refer to the lat-
ter as the “pulling” ALE (PALE) configuration. These two configurations are now
described in detail.

ALE: This a typical ALE configuration, in which the desired response (primary
input) is the ratio of idle to available resources calculated at the jth SIB 2 broadcast
interval d( j) = u( j), while the (reference) input is a delayed version of the latter. That
is, the input of the algorithm is u( j−∆), where ∆ is the decorrelation delay. Therefore,
the input vector is given as

u( j − ∆) =
[
u ( j − ∆) , u ( j − ∆ − 1) , . . . , u ( j − ∆ − ` + 1)

]
. (4.14)

By implementing the ALE configuration, the filter weights are automatically ad-
justed to minimize the error between u( j) and its past values u( j − ∆ − m) for
m ∈ {0, 1, . . . , ` − 1}. As a consequence, sudden variations are suppressed from
y( j). To implement this configuration, it is sufficient to substitute d( j) with u( j), and
u( j) with u( j − ∆) in equations (4.8), (4.9a), and (4.9b) of Algorithm 2. Fig. 4.3
shows the block diagram of the ALE with the LMS adaptive algorithm.

A consideration of importance is to set ∆ to a sufficiently large value, so the noise
in u( j) is not correlated with that in u( j − ∆). We have observed that, since tsi is large
when compared to trao, it is sufficient to set ∆ = 1.

PALE: This is a new twist on the typical ALE configuration, in which the desired
response d( j) is set to be a constant selected empirically. On the other hand, the
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Figure 4.3: Block diagram of the ALE with the LMS adaptive algorithm.

(reference) input is simply u( j). Clearly, no correlation exists between the constant
d( j) and the variations in u( j − ∆) for all ∆ ∈ N. Therefore we can set ∆ = 0.

By implementing the PALE configuration, the filter weights are automatically
adjusted to minimize the error between d( j) and u( j), and to suppress the sudden
variations of the latter. As a result, pacb( j) is “pulled” towards d( j). Building on this,
we suggest to set d( j) = 1. That is, equal to the maximum value of u( j), which is only
obtained when all the resources during the SIB 2 broadcast interval are idle. As it will
be seen in Section 4.6, setting d( j) = 1 minimizes the delay of UEs during intervals
of low signaling traffic intensity.

4.4 Test scenarios, tools, and methodology

Access control schemes must provide an adequate performance under several traffic
conditions and network configurations. Hence, we evaluate the benefits of our ACBC
scheme under the twomMTC trafficmodels suggested by the 3GPP for the performance
evaluation of the RAP [1]. These models were introduced in Table 2.1 on page 23.
As a matter of summary, we denote a period of 60 seconds in which n = 30 000 UE
arrivals occur according to a uniform distribution as the traffic model (TM) 1; this
represents a low signaling traffic load interval. Moreover, we denote a period of 10
seconds in which n = 30 000 UE arrivals occur according to a Beta(3, 4) as the TM 2;
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this represents a high signaling traffic load interval. The TM 2 is the one that has
attracted the most attention from the research community [30, 71, 109] and is the one
we have focused in previous chapters. For instance, we have observed in Chapter 2
that only 31.31 percent of the UEs successfully complete the RAP when a typical
configuration is selected.

Throughout the following section, we adopt the most typical configuration of the
PRACH and PDCCH channels, presented in Table 3.1, but also incorporate the case
in which the number of available preambles r = 30, besides the traditional r = 54.
The reason to incorporate the former value is that fewer preambles are available in
narrowband Internet of Things (NB-IoT) (i.e., 48) when compared to traditional LTE
Advanced (LTE-A) (i.e., 64). As the eNB commonly reserves some preambles for high
priority UEs in LTE-A and for higher coverage enhancement (CE) levels in NB-IoT,
selecting r = 30 for CE level zero in NB-IoT allows for the reservation of the remaining
18 preambles for UEs with a higher CE level. As described in Section 2.3 on page 12,
the number of UEs in CE level zero is expected to be far greater than those in CE levels
one and two. Hence, these contribute the most to the signaling traffic intensity and
congestion.

The two possible values of r are quantitatively different from the perspective of
our ACBC scheme. To showcase this difference, Fig. 4.4 shows the expected number
of assigned uplink grants at the ith RAR E [NG] window as a function of n(i) when
r ∈ {30, 54} preambles and g = 15 uplink grants are available; the capacity of the RAP
for these two combinations of r and g is also included. These results were obtained
by means of the analytical model presented in Chapter 3 [60, 69] and by (2.8) on
page 22, respectively. As it can be seen, E [NG] is a concave function whose global
maximum is exactly at n∗(i) =

[
log (r/ [r − 1])

]−1, same as in (2.3). In it worth
mentioning that the curve for r = 30 in Fig. 4.4 highly resembles that in Fig. 2.2 on
page 19 for the same r , where the expected number of successful preambles is shown.
On the other hand, there is a noticeable difference between the curves for r = 54 in
these two figures. Furthermore, the rate of change when r = 30 is higher than when
r = 54, especially as n(i) → [

log (r/(r − 1))
]−1. The main reason for this is that

C (30, 15) (i.e., the theoretical capacity of the RAP for r = 30) is limited by r . That is,
C (30) = 11.23 < 15, hence C (30, 15) = 11.23. Conversely, C (54) = 20.05 > 15 is
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Figure 4.4: Expected number of assigned uplink grants at the ith RAR window given
r available preambles, g = 15, and n(i) contending UEs. The x-axis is shown in
logarithmic scale.

clearly limited by the g, hence C (54, 15) = 15. As will be confirmed throughout the
following section, this in turn makes the adequate configuration of our ACBC scheme
more challenging for r = 30 than for r = 54.

For the results presented in the following section we select tsi = 16 RAOs as the
period of the SIB 2. This value is the result of selecting the most typical period of
RAOs trao = 5 ms and the minimum period for SIB transmissions, 80 ms. Please
recall the SIB 2 carries the barring parameters, hence, we have selected the maximum
frequency of update for these parameters.

Results were obtained by incorporating the adaptive algorithm configurations pre-
sented in Section 4.3 to the simulator used to obtain the results presented in previous
chapters. In each simulation, the adaptive algorithm is initialized as described previ-
ously and the filter weights are stabilized. Then, n = 30 000 UE arrivals are scheduled
within the distribution period tdist, which begins at i = 0. The jth SIB 2 is broadcast
at the ( jtsi + ir )th RAO, where ir = U [0, tsi − 1] is a discrete random time shift. A
simulation run ends when every UE has terminated the RAP. As in previous chapters,
the number of simulation runs is set to the smallest number that ensures that all the
cumulative KPIs obtained up to the last simulation differ from those obtained up to the
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previous simulation by less than 0.01 percent.

4.4.1 Performance metrics and methodology

The performance of the RA with our adaptive ACBC scheme is assessed in terms of
the following KPIs.

1. Success probability Ps , defined as the probability to successfully complete the
RAP within the maximum number of preamble transmissions.

2. Access delay D, defined as the time elapsed between the first access attempt
(barring check or preamble transmission) of a UE and the successful completion
of its RAP. It is assessed in terms of the 95th percentile D95 given in seconds.
That is, the delay of 95 percent of the UEs that successfully complete the
RAP is D95 or less. The performance under the TM 1 is assessed in terms of
the increase in delay due to the implementation of an ACBC scheme given as
∆D95 = D95 − D∗95, where D∗95 is the 95th percentile of access delay obtained
with no ACB scheme for the selected configuration.

3. Number of preamble transmissions performed by the UEs that successfully
complete the RAP K . It is assessed in terms of its expected value E [K].

The methodology for our study is as follows. We first find an adequate value of
parameter µ. For this, we observe the behavior of ourACBC scheme under the TM1 for
different values of µ in the range defined by (4.13). An adequate value of µ is selected
empirically based on the response from the adaptive filter. Specifically, we aim to
suppress the sudden variations of u( j) while achieving the fastest possible convergence
toward its expected value E

[
u( j)

]
. It is important to emphasize that similar trial and

error approaches to select µ are the most common in the practice [110]. The reason
for this is that µ depends on several factors that are application-specific and may not
be known. For example, adequate values of µ highly depend on the variability of the
input. Consequently, the selection of an optimal value is oftentimes impossible.

Then, we continue to find the “optimal” configuration of our ACBC scheme. It is
defined as the combination of the barring indicator tmax, filter length `, and exponent
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ω that leads to the minimum D95 under both traffic models given Ps ≥ 0.95 under the
TM 2 for a given r . We denote the optimal values of these parameters as t∗max, `∗, and
ω∗, respectively.

Duan et al. [35] proposed an idealized full state information scheme that is used
as a benchmark for their ACBC scheme; the latter is called D-ACB. As described by
Duan et al. [35], the benchmark scheme has full state information on the number of
contending UEs at each RAO, hence, it can select the optimal barring rate accordingly.
On the other hand, their D-ACB scheme estimated the number of contending UEs
based on the number of successful and idle preambles, but also on the number of
previously registered UEs.

It is important to observe that the every ACBC scheme presented by Duan et
al. [35] was designed for an idealized ACB scheme. That is, they assume the barring
parameters are calculated and transmitted at each RAO and also that every UE is
subject to the ACB scheme even after initiating the RAP. This is not the behavior of
the ACB scheme as defined in the protocol specifications [10].

We have extended the original benchmark scheme proposed by Duan et al. [35]
to cope with the periodicity of the SIB 2 tsi. As such, the optimal barring rate is
calculated as

p∗acb( j) = min
{

1,
r

n′( j)

}
(4.15)

where

n′( j) =
1
tsi

jtsi∑

i=( j−1)tsi+1

n (i) ; (4.16)

please recall that n(i) is the number of contending UEs at the ith RAO.

Also, please observe that (4.15) is exactly as defined by Duan et al. [35] for
tsi = 1, and we simply introduce n′( j) to obtain the average optimal barring rate
for any tsi ≥ 1 RAO. Hereafter we refer to this extended scheme simply as the
idealized full state information (IFI) scheme; it is used to assess the performance of
our ACBC scheme. The barring time tacb( j) at each barring check under both schemes
is deterministic of one RAO [35].
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In the following section, we present relevant results derived from the performance
analysis of both, the ALE and PALE configurations, along with their optimal parameter
configurations.

4.5 Results and discussion

In this section we present and discuss relevant results obtained from the performance
evaluation of the RAP with our ACBC scheme. As a starting point, we find an
adequate value for parameter µ. Then, we compare the performance of our ACBC
scheme with that of: 1) our ACBC scheme with no filtering process; 2) a static ACBC
scheme with fixed p∗acb( j) and t∗acb( j) as in previous chapters; and 3) the IFI scheme.
The optimal configuration of each of these schemes is assumed. Next, showcase the
robustness of our ACBC scheme by evaluating the impact that deviations from the
optimal configuration have on performance. Finally, we discuss the impact of realistic
assumptions on the performance of the IFI scheme.

We investigate the impact of µ on the response of the adaptive algorithm by
observing its behavior under the TM 1. For this, Fig. 4.5 shows the response of
the algorithm during the first 100 SIB 2 transmissions with the ALE configuration
for µ ∈ {2/`, 1/(25`), 1/(50`)}. Results from a single simulation run are shown to
showcase the impact of µ; we have confirmed that these results represent the common
behavior of the adaptive algorithm. Typical values ` = 32 and r = 54 have been
selected and UEs ignore the ACB scheme (e.g., were assigned to high priority ACs).
That is, at this point we are only interested in observing the difference between the
calculated u( j) and pacb( j), not in their effect in the UE arrivals.

In particular, we are set to find a setting for µ that successfully reduces the variations
of u( j) with the fastest possible convergence toward E

[
u( j)

]
. Under the traffic model

1, n = 30 000 UE accesses are uniformly distributed within 60 s. Next, please recall
{Xi }i∈N is the stochastic process that defines the number of UE accesses at each RAO
within the distribution period. Hence, x(i) is the outcome of a single experiment for RV
Xi . Given trao = 5 ms, we have E [Xi] = n/12 000 = 2.5 s.t. {i ∈ N | i < idist}, where
idist is the last RAO in the distribution period. From there, the following approximation
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Figure 4.5: Ratio of idle to available resources u( j) and barring rate pacb( j) calculated
at the jth SIB 2 for µ ∈ {2/`, 1/(25`), 1/(50`)}; UEs ignore the ACB scheme.

can be obtained by substituting g(i) with E [Xi] in (4.1) and (4.2).

E
[
u( j)

] ≈ 1 − 1
tsi C (r, g)

jtsi∑

i=( j−1)tsi+1

E [Xi] = 1 − E [Xi]
C (r, g)

(4.17)

which gives E
[
u( j)

] ≈ 5/6 for r = 54. This value has been confirmed by simulation
and by the analytical model presented in Chapter 3 [69].

It can be seen in Fig. 4.5 that the maximum possible value of µ = 2/` does not
provide the desired response because the variations of pacb( j) are even greater than
that of u( j). On the other hand, the LMS algorithm behaves as a low-pass filter with
a sharp cutoff bandwidth that successfully suppresses the sudden variations of u( j)
when lower values of µ are selected. However, it can also be observed in Fig. 4.5 that
µ = 1/(50`) induces a slightly higher delay than µ = 1/(25`). That is, the curve for
µ = 1/(50`) converges more slowly toward E

[
u( j)

]
than the curve for µ = 1/(25`)

and the variations of both are comparable. Hence, µ = 1/(25`) is used throughout the
remainder of the paper. The interested reader is referred to [45, Chapter 6] for more
details on the impact of µ in the response of the LMS algorithm.
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Table 4.1: Optimal configuration of the different ACBC schemes.

ACBC scheme Parameter Optimal value

r = 30 r = 54

ALE ω 3 3

` 32 32

tmax 3.8 0.3

PALE ` 16 32

tacb ( j) = tmax 4.2 0.6

No filtering ω 0 2

tmax 5.4 3.3

Static pacb ( j) 0.11 0.31

tacb ( j) 1.2 1.75

4.5.1 Performance of ACBC schemes with the optimal configura-
tion

We begin our performance analysis by presenting the optimal configuration of the
selected ACBC schemes given tsi = 16 RAOs in Table 4.1. As mentioned above, the
optimal configuration of each ACBC scheme is defined as the configuration that leads
to the shortest D95 under both traffic models given Ps ≥ 0.95 under the TM 2. To find
the optimal configuration of our ACBC scheme, we have evaluated the performance
with ω ∈ N, ` ∈ {1, 2, 4, . . . , 128}, and tmax ∈ {0.1, 0.2, . . . , 10} s for each r ∈ {30, 54}.
We have observed that the optimal value of the mean barring time for the PALE
configuration is simply p∗acb( j) = t∗max.

The KPIs obtained under both traffic models with the optimal configuration of
each of the selected ACBC schemes are shown in Table 4.2. KPIs obtained with no
implemented ACB scheme have been included as a reference. The success probability
Ps under the TM 1 has been omitted because it is equal to one for all cases.

It is important to emphasize that the IFI scheme cannot be implemented in 3GPP
cellular networks. As a consequence, the performance reported in Table 4.2 for the
IFI scheme is not achievable in practice. However, it provides an upper bound for
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Table 4.2: KPIs obtainedwith the optimal configuration of the selected ACBC schemes
and with no ACB scheme under the TM 2.

Expected number

Success 95th percentile of preamble

probability of access delay (s) transmissions

ACBC scheme r = 30 r = 54 r = 30 r = 54 r = 30 r = 54

ALE 0.951 0.965 14.450 6.807 2.438 2.584

PALE 0.968 0.979 14.425 7.286 2.557 2.485

No filtering 0.997 0.967 21.440 10.839 2.065 2.189

Static 0.951 0.950 30.927 13.584 2.348 2.635

IFI 0.988 0.971 11.491 5.468 3.123 3.392

No ACB 0.115 0.313 0.175 0.182 3.157 3.452

Table 4.3: KPIs obtainedwith the optimal configuration of the selected ACBC schemes
and with no ACB scheme under the TM 1.

Expected number

95th percentile of preamble

of access delay (s) transmissions

ACBC scheme r = 30 r = 54 r = 30 r = 54

ALE 0.110 0.057 1.576 1.500

PALE 0.065 0.059 1.575 1.500

No filtering 6.984 0.165 1.567 1.500

Static 30.349 13.379 1.548 1.494

IFI 0.060 0.055 1.576 1.500

No ACB 0.060 0.055 1.575 1.500

the performance of the ACB scheme. A detailed study on the impact of realistic
assumptions on the performance of the IFI scheme is presented on page 114.

Table 4.2 reveals that Ps ≥ 0.95 can be obtained with any of the selected ACBC
schemes under the TM 2 for both r ∈ {30, 54}. As it can be seen, the D95 obtained
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with our ACBC scheme with the ALE and PALE configurations is up to 50 percent
shorter than with no filtering process. This showcases the benefits of incorporating an
adaptive filter. Moreover, the D95 obtained with our ACBC under the TM 2 is, in the
worst case, around 28 percent longer than the one obtained with the IFI scheme. This
difference is significant, but is important to emphasize that our ACBC scheme can be
implemented in the eNBs in its current form.

Yet another interesting aspect is that the D95 obtained with our ACBC scheme
under the TM 2 is around 48 percent shorter than the one obtained with the static
ACBC despite the long period tsi = 16. However, the achieved D95 with any of the
ACBC schemes under the TM 2 is in the order of a few seconds; such long delay is
only suitable for delay-tolerant applications.

Needless to say, the optimal performance under the TM 1 is obtained with no ACB
scheme, but also with the IFI scheme. That is, the effect of the deterministic barring
time of one RAO combined with a sufficiently high p∗acb( j) is not observable in the
selected KPIs. On the other hand, the longest D95 under the TM 2 is obtained with the
static ACBC and a similar D95 is obtained under the TM 1. Naturally, the static ACBC
is not an efficient solution to congestion.

Table 4.2 also shows that the D95 obtained with our ACBC scheme under the TM 1
is less than seven percent higher than the minimum, achieved with no ACB scheme.
The only exception occurs with the ALE configuration for r = 30. In this case, setting
ω = 3 is not sufficient to achieve a lower D95 and, as it will be discussed later in this
section, selecting ω ≥ 4 sharply increases t∗max to the point that there is no tmax ≤ 10 s
that leads to Ps ≥ 0.95 under the TM 2. Moreover, the effect of increasingω on t∗max is
magnified if no filtering process is incorporated to our ACBC scheme. Concretely, no
combination of tmax and ω > 0 given r = 30 exists for which Ps ≥ 0.95 and selecting
ω = 0 results in an excessively long access delay under the TM 1.

We have also evaluated the performance of our ACBC scheme with the optimal
configuration shown in Table 4.1 under congestion scenarios comparable to the TM 2.
For instance, when n = 30 000 UE arrivals follow a Beta (4, 4) distribution over
tdist = 10 s. The peak in the average number of UE arrivals is around five percent
higher for Beta (4, 4) than for Beta (3, 4). The performance of our ACBC scheme under
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this traffic model is comparable to that under the TM 2 (see Table 4.2) as Ps ≥ 0.93 is
achieved with both the ALE and PALE configurations for r ∈ {30, 54}. Furthermore,
the difference in D95 between these two traffic models is less than one percent.

Now we proceed to compare the behavior of the ALE and PALE configurations.
For this, Fig. 4.6 shows the ratio of idle to available resources u( j) and pacb( j) with the
optimal ALE and PALE configurations given r = 54. A similar behavior was observed
for r = 30, so these results have been omitted.

It is important to point out that the first 12 000 RAOs after the beginning of the
distribution period are shown in Fig. 4.6a and Fig. 4.6b as tsi = 16RAOs. On the other
hand, the first 3200 RAOs are shown in Fig. 4.6c and Fig. 4.6d. Again, results from a
single simulation run are shown and we have confirmed that these correspond to the
common behavior of our ACBC scheme.

We can clearly observe in Fig. 4.6 that the filtering process smooths out the sudden
variations (noise) of u( j). The result is a much more stable and accurate selection of
pacb( j). Also it can be seen that the calculated u( j) with the ALE configuration under
the TM 1 (see Fig. 4.6a) is similar to the one calculated with the PALE configuration
(see Fig. 4.6b) despite the fact that for the former pacb( j) < 1 for all j. This is caused
by the selection of ω∗ = 3 and t∗max = 0.3 s, which results in tacb( j) ≈ 1 · 10−3 s for all
j, which is negligible.

On the other hand, the “pulling” effect of the PALE configuration can be clearly
observed in Fig. 4.6b and in Fig. 4.6d. That is, pacb( j) > u( j) for most j with the
PALE configuration under the TM 2, and for every j under the TM 1. This effect
is emphasized by the red arrows, which indicate the difference in amplitude between
u( j) and pacb( j). For instance, Fig. 4.6c clearly shows that u(20) < pacb(20), while
u(160) > pacb(160) with the ALE configuration. This is caused by the delay in the
response of the algorithm. On the other hand, Fig. 4.6d shows that u( j) < pacb( j)
for both j ∈ {20, 160} with the PALE configuration. Although the difference between
u(160) and pacb(160) is barely noticeable.
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Figure 4.6: Ratio of idle to available resources u( j) and barring rate pacb( j) calculated
at the jth SIB 2 for a single simulation run and r = 54 for the: (a) ALE, TM 1; (b)
PALE, TM 1; (c) ALE, TM 2; and (d) PALE TM 2.

4.5.2 Robustness of the proposed ACBC scheme

In this subsection we showcase the robustness of our ACBC scheme by showing
the impact that deviations from the optimal ALE and PALE configurations have on
performance.

We first investigate the impact of deviations from the optimal value of ω on the
performance of the ALE configuration. For this, the obtained ∆D95 (under the TM 1)
is shown in Fig. 4.7a and the obtained D95 under the TM 2 is shown in Fig. 4.7b for
ω ∈ {0, 1, . . . , 7} and r ∈ {30, 54}, given t∗max. Fig. 4.7 only shows plots corresponding
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to r = 30 when ω ≤ 3 because there is no t∗max ≤ 10 s for ω > 4. That is, there is
no tmax ≤ 10 s that leads to Ps ≥ 0.95 for ω ≥ 4 when r = 30. This same occurs for
ω ≥ 8 when r = 54.

Fig. 4.7a also shows that high values of ω sharply decrease ∆D95 but, as described
above, excessively high values ofωmay greatly increase t∗max. Building on this,ωmust
be carefully selected to reduce the access delay under the TM 1, but also to achieve an
adequate response under the TM 2, especially if r = 30.

Next, we evaluate the impact on performance of deviations from `∗ and from t∗max,
given thatω∗ is selected. For this, we illustrate Ps and D95 under the TM 2 for the ALE
and PALE configurations in Fig. 4.8; ` ∈ {8, 16, 32, 64} and tmax ∈ {0.1, 0.2, . . . , 5} s.
Again, only results for r = 54 are shown as a similar behavior was observed for r = 30.
Results obtained with no ACB scheme are also included as a reference.

Fig. 4.8 shows that the Ps obtained with our ACBC scheme is higher than that
with no ACB with any tmax ∈ R>0. It can also be observed that Ps > 0.95 for all
tmax > t∗max. That is, selecting tmax > t∗max results in an adequate Ps but slightly
increases D95. For example, D95 = 8.380 and D95 = 8.108 for the ALE and PALE
configurations respectively if an intuitive value tmax = 1 s is selected along with
`∗ = 32. On the other hand, selecting tmax < t∗max results in a drastic drop in Ps , except
for the ALE configuration with ` = 16. Building on this, and on the fact that in a
real world implementation it would be hard to select t∗max since the exact distribution
of the arrivals is ignored, it is advisable to follow a preventive approach and select a
relatively high tmax.

Also, it can be observed from Fig. 4.8 that the best performance is obtained with
` = 32. That is, the lowest t∗max was obtained by selecting ` = 32, which leads to the
lowest D95. However, the performance obtained with other values of ` is just slightly
inferior. Consequently, the performance of our ACBC scheme is not greatly affected
by the selected value of `, given that excessively short or long values are avoided.
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Figure 4.7: (a) Increase in the 95th percentile of access delay under the TM 1 ∆D95

and (b) 95th percentile of access delay D95 under the TM 2 given t∗max, `∗, and ω for
the ALE configuration; r ∈ {30, 54}. No t∗max ≤ 10 s exists for ω ≥ 4 and r = 30

4.5.3 Stability test

The analysis of our ACBC scheme concludes with a test of its stability when themMTC
scenario occurs repeatedly over time. For instance, this scenario may arise when a
smart metering system, such as the one deployed in a parking lot, is set to shut down
when not in use. Therefore, the system will continuously switch between on and off
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Figure 4.8: Success probability Ps for the: (a) ALE and (b) PALE configurations, and
95th percentile of access delay D95 for the: (c) ALE and (d) PALE configurations as a
function of tmax under the TM 2; r = 54 and ω∗.

states; massive accesses will occur every time the system is switched on.

The typical mMTC described by the TM 2 is used for this test. Specifically, the
TM 2 is replicated ten times, one after the other. The time between each distribution
period is set to 50 s to allow for the stabilization of the filter coefficients; no accesses
occur during this period. For this test we follow a different approach before in the
sense that we assume an arbitrary tmax = 1 s is selected in combination with `∗ and ω∗

(see Table 4.1).
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Figure 4.9: Average number of UE arrivals, first preamble transmissions, and success-
ful accesses per RAO for the ALE (middle) and PALE (bottom) configurations under
the scenario defined to evaluate the stability of our ACBC.

Fig 4.9 shows the average number of UE arrivals, first preamble transmissions, and
successful accesses per RAO for the ALE and PALE configurations under the described
scenario and given r = 54. As it can be seen, the response of the ALE configuration is
adequate for each and every one of the distribution periods. The resulting KPIs with
the ALE configuration are: Ps = 0.997, E [K] = 2.206, and D95 = 8.302 s. That is,
the success probability is extremely close to one and the D95 is less than 22 percent
higher than with the optimal configuration. Such a difference should be negligible in
the vast majority of delay-tolerant applications.

On the other hand, Fig. 4.9 shows a clear performance degradation with the PALE
configuration. Specifically, the average number of successful accesses closely follows
that of first preamble transmissions during the first three distribution periods. This is
an indicator of an adequate response that is not observed in the rest of the plot. As a
result Ps = 0.646, which is greatly distant from the target Ps ≥ 0.95. The main reason
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Figure 4.10: Average filter weights wm( j) for the PALE configuration before the
beginning of each distribution period under the scenario defined to evaluate the stability
of our ACBC.

for such a great performance degradation is described in the following. The swiftness
in the response from the PALE configuration is largely influenced by the filter weights
w. These wights are adapted by the LMS algorithm to minimize the distance between
the desired response and the input to the algorithm. However, there may be several
combinations of values of each of the elements in w that minimize this distance under
low traffic loads. As a result, the values in w after each distribution period may be
different. This is clearly observed in Fig. 4.10, where we show the filter weights before
each distribution period.

It is important to observe that the concavity of the plots in this figure increases with
time. This phenomenon causes the filter to assign a greater importance to the oldest
values of the oldest load indicator (i.e., ratio of idle to available resources) u( j − `+1).
In other words, the barring rate pacb( j) is greatly affected by an input that is 2.56 s
old. This delay is the result of selecting ` = 32, tsi = 16, and trao = 5 ms. This lack of
stability persists even when low signaling traffic loads (in the order of a few accesses
per RAO) are injected and is the main drawback of the PALE configuration.

Nevertheless, the identification of this problem in turn allows us to propose some
solutions to it. For example, some adaptive algorithms may interpret an abrupt change
in the input as a renewed initialization with different initial parameters. In our case,
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the high access intensity under the TM 2 represents such a change. The recommended
practice in these cases is to reset the filter weights afterwards [45, Chapter 10]. In our
case, this would be after each distribution period in which UE arrivals follow the TM 2.
This simple solution would make the PALE configuration to “forget” its previous states
and to always provide an adequate response from our ACBC scheme.

4.5.4 Impact of realistic assumptions on the performance of the
IFI scheme

Weconclude our performance analysis by evaluating the performance of the IFI scheme
under different scenarios. By doing so, we illustrate the impact of the factors that hinder
the accurate selection of barring parameters. We assume the eNB always has perfect
information on the number of UEs that will perform an access attempt at each RAO
(i.e., even before the RAO occurs), and, hence, can select the optimal barring rate as
in (4.15).

The scenarios are defined by two different factors. The first one is the selectivity
of the ACB scheme and the second one is the periodicity of the SIB 2 tsi. That is,
we assume that either: 1) every UE is subject to the ACB scheme; or 2) only the UEs
that have not yet begun the RAP are subject to the ACB scheme. We also consider
tsi ∈ {1, 16}. Hence, we consider the hypothetical case in which tsi = 1 besides the
lowest achievable tsi = 16 RAOs in LTE-A. The combination of these two factors
results in the four scenarios included in Table 4.4, where we show the Ps obtained with
the IFI scheme.

As it can be seen, the main factor that hinders the proper operation of the IFI
scheme is the selectivity of the ACB scheme. That is, the IFI scheme can deal with the
real periodicity of the SIB 2 because a sufficiently high Ps ≥ 0.95 is achieved when
every UE is subject to the ACB scheme. On the other hand, the performance of the
IFI scheme is poor if the UEs are only subject to the ACB scheme before they initiate
the RAP.

Concretely, if we compare the IFI scheme in this latter scenario with the case
in which no ACB scheme is implemented (see Table 4.2 on page 105), a similar
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Table 4.4: Success probability obtained with the IFI scheme under different scenarios.

UEs subject to the SIB 2 periodicity Success

IFI scheme tsi (RAOs) probability Ps

r = 30 r = 54

Every UE 1 0.987 0.988

16 0.988 0.971

Only the UEs that have not 1 0.106 0.313

yet begun the RAP 16 0.100 0.312

Ps = 0.313 is obtained with r = 54. On the other hand, the Ps obtained with r = 30
is even lower with the IFI scheme than with no ACB scheme (i.e., Ps = 0.115 with no
ACB scheme). This problem may be solved by an adequate selection of the barring
time tacb( j), but no strategies to fine-tune this parameter were investigated in [35].

4.6 Conclusions

This chapter presented a novel adaptive ACBC scheme; this is our proposed solution
support mMTC in 3GPP cellular networks and can be directly implemented at the
eNBs. In our ACBC scheme, the selection of the barring parameters is based on
the ratio of idle to available resources, which serves as the input to an adaptive
filtering process. The LMS adaptive algorithm was selected because of its numerical
robustness and simplicity. However, any adaptive algorithm can be selected, but it is
also important to recall that initial tests confirmed the superiority of the LMS algorithm
when compared to the RLS adaptive algorithm; results with this latter algorithm are
included in Appendix C. Therefore, two different configurations for the LMS were
analyzed. the first one is the typical ALE and the second one is a novel twist on the
latter in which the response is “pulling” toward a desired response. We call this the
PALE configuration.

Throughout this chapter we have observed that the target success probability of
95 percent under the TM 2 can be obtained by means of numerous ACBC schemes.
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Nevertheless, our ACBC scheme is one of the few that combines the following three
characteristics: 1) leads to a nearly optimal performance under periods of no con-
gestion; 2) successfully relieves congestion under mMTC scenarios while obtaining
a short access delay; and 3) can be directly implemented in 3GPP cellular networks.
And, to the best of our knowledge, is the one that provides the best performance.

Between the ALE and PALE configurations, the latter is the only configuration
that minimizes the access delay during intervals of low signaling traffic intensity when
r = 30. That is, when the RAP capacity is exclusively limited by the number of
available preambles. On the other hand, a similar performance can be obtained with
both configurations when r = 54. That is, when the signaling capacity is limited by
the number of available uplink grants. The main practical difference between these
configurations relies on the ease of correctly setting the configuration parameters.
Concretely, the range of adequate values of tmax is larger for the ALE configuration
than for the PALE configuration. On the other hand, the PALE configuration eases the
selection of parameters as no exponential ω is needed.

We observed that the stability in the response of the PALE configuration may be
compromised if mMTC scenarios occur repeatedly. Nevertheless, this problem can be
easily solved by sporadically resetting the filter weights to their original value. On the
other hand, results show the stability of the ALE configuration is guaranteed as it is
not affected by frequent massive access periods.
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Chapter 5

Performance analysis of RA event-reporting in
wireless sensor networks (WSNs)

5.1 Introduction

Previous chapters have dealt with massive machine-type communication (mMTC)
from the 3rd Generation Partnership Project (3GPP) standard perspective. That is,
the performance analysis of the channels involved in the random access (RA) in 4th
generation (4G) cellular networks, including the signaling capacity and the access
class barring (ACB) scheme, was presented in Chapter 2. Then, an analytical model
of the RA in 4G that includes the ACB scheme was presented in Chapter 3. Finally, an
adaptive method to fine-tune the ACB parameters was presented in Chapter 4. In this
chapter we focus on machine-type communications (MTC) from the wireless sensor
network (WSN) perspective. That is, a proprietary solution to relatively small MTC
deployments that may be present in urban environments, which aim to improve the
quality of life by providing the population with real-time information and services [85].

WSNs are cost-efficient solutions to massive monitoring thanks to its capacity
of identifying and reporting a wide range of physical parameters inside the area of
interest. A clear example of WSN applications is smart metering, where the network is
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in charge of collecting and transmitting environmental parameters such as temperature,
pressure, humidity, electrical power, etc.

Advances in the electronics have enabled a sharp increase in the complexity of
WSN applications, where multiple physical parameters may be monitored and each of
these has its own delay and reliability requirements that must be fulfilled. Specifically,
applications that have strict delay and reliability requirements are known as time-critical
applications. In these applications, nodes are usually in charge of detecting hazardous
conditions, hence, achieving the required report latency is of utmost importance as
it allows a proper reaction from the network to the occurring phenomena. In other
words, a swift response is needed in order to ensure the timely activation of disaster
contention mechanisms and reduce the damage caused to the network, the environment
or the population.

The overall behavior of a WSN is determined by the selected WSN protocol, so its
selection must be based on the monitoring needs of the WSN user (i.e., owner). WSN
protocols are usually a combination of routing and medium access control (MAC)
protocols. In the former, nodes are organized depending on their spatial distribution
to optimize data transmission paths. Cluster-based protocols are a classic form of
organization widely used nowadays as they considerably reduce transmission distances
and, in turn, energy consumption [13, 115]. In these protocols, nodes are divided in
groups named clusters during a cluster formation (CF) phase. Each cluster contains
a cluster head (CH) node, which is in charge of collecting the data packets from the
other nodes in the cluster, cluster members (CMs), and its transmission to the sink
node. The latter is a node with higher computational capabilities that gathers the WSN
information. It can be, for instance, a personal computer.

MAC protocols, on the other hand, establish the communication links and define
the manner in which the nodes share the communication resources. Please observe that
the characteristics of the selected MAC protocol must be in line with the requirements
of the target application [16, 21, 86]. Otherwise, when the selected protocol is unable
to meet the basic application requirements, the whole network is inoperative.

A WSN protocol can perform continuous monitoring, event-driven detection, or
both. Continuous monitoring is a proactive approach in which the WSN transmits
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environmental information regardless of the state of the physical parameter of interest.
On the other hand, event-driven detection is a reactive approach in which the WSN
transmits information only when a change in the physical parameter is detected.

My M.Sc. studies were focused on simple WSN protocols with continuous moni-
toring and event-driven detection capabilities [65]. Then, the beginning of my Ph.D.
focused on the analytical modeling of WSN protocols for event-driven detection and
reporting in time-critical applications. During these preliminary studies I identified
an important aspect that is typically overlooked by MAC protocols for these types of
applications is the number of event reports required at the sink node to characterize the
occurring phenomena [43]. Naturally, it is not feasible to wait for the reception of the
transmissions of every detecting node at the sink. This is simply because WSNs are a
distributed entity, and the total number of event detecting nodes is not known prior to
the transmission of their packets. Then, a threshold on the number of received event
reports must be set to activate the network contention mechanisms in a timely manner.
Therefore, the number of required event reports depends on the application. That is,
receiving a single event report may be sufficient in certain applications, but in target
positioning and tracking applications, which usually use trilateration or triangulation,
at least three packets are needed. Besides, when the WSN is in charge of extracting the
mobility pattern of targets, the higher the number of transmitted packets, the higher
the accuracy [77].

Given the basic application requirements are met, the efficiency of WSN protocols
is measured in terms of quality of service (QoS) parameters. Nodes being battery
supplied, energy consumption is the QoS parameter most widely studied in the litera-
ture [18, 86, 112, 113] as it directly affects network lifetime (period of time for which
the network remains functional). The relevance of other QoS parameters such as report
latency and event overlooking probability is application dependent. For critical-time
applications, these can be equally or even more important than energy consumption.

Despite the high importance of report latency, this parameter is commonly assessed
in the literature in terms of its mean value; this is clearly insufficient for time-critical
WSN applications. High percentiles or the whole probability distribution of report
latency are much better suited in these applications and provide the network adminis-
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trator with more meaningful information regarding the behavior of the system than its
mean value. Still, the research in this area is scarce.

Building on this, I propose a novel method to calculate the probability distribution
of report latency and mean energy consumption in cluster-based RA WSNs. In this
method, the probability mass function (pmf) of detecting nodes is first obtained by
simulation. Then, discrete-timeMarkov chains (DTMCs) are used tomodel the process
of RA event reporting. From there, the probability distribution of report latency and
the mean energy consumption are obtained. We use this method to evaluate the
performance of RA event reporting in applications that require the transmission of a
given number of packets to fully characterize the event; a simple RA protocol with
overhearing is proposed and evaluated for this kind of applications. That is, neighbors
sense the wireless medium to identify when the required number of successful event
reports is reached; as it will be observed in Section 5.4 overhearing greatly enhances
event reporting when compared to traditional RA, in which every packet is transmitted.
Furthermore, we use our method to optimize the QoS of event reporting by identifying
the optimal transmission parameters for the selected application prior to network
deployment.

One of the main challenges when trying to optimize event reportingWSN protocols
is that the optimal transmission parameters depend on the number of detecting nodes
for each event occurrence. Naturally, the number of detecting nodes may be different
at each event occurrence and is not known before the event detection. In this chapter,
we focus on optimizing event report latency by identifying the ideal transmission
parameters of detecting nodes in two different approaches: fixed backoff (FB) and
adaptive backoff (AB). In the FB, transmission parameters are selected prior to network
deployment and remain constant throughout event reporting. In the AB, transmission
parameters are selected prior to network deployment and modified by the CMs at each
collision.

Results show that increasing the time between successive transmissions, as in the
AB can reduce the energy consumption during event reporting when compared to the
FB. As an additional benefit, the AB mitigates the negative effects of the inaccurate
selection of transmission parameters. This results in a noticeable increase in the
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stability of QoS parameters when compared to the FB. These results hold true even
when the network operates in a multi-event environment, where it is in charge of
monitoring multiple types of events with different characteristics.

The main contributions of this chapter were published in [62], while a preliminary
version was published in [63].

5.2 Related work

The importance of theQoS provided byWSNprotocols in time-critical applications has
increased with recent advances in power electronics [78]. that is, early WSN protocols
were specially designed to improve network lifetime [46, 113, 114], and these have
served as a base for more complex protocols that aim to reduce report latency and
packet loss probability in time-constrained packets. Nevertheless, energy efficiency
still is one of the main concerns in WSN, hence these more advanced protocols also
have a clear focus on maintaining an adequate energy consumption.

Energy efficiency being so important in WSN, techniques such as sleep scheduling
strategies and multi-hop delivery have been proposed to further enhance this param-
eter [41]. While these techniques reduce energy wastage, they may increase report
latency [28, 88, 113] and network congestion [75]. Therefore, sleep scheduling strate-
gies are not optimal for time-critical applications. Other techniques such as dynamic
re-routing may be capable of reducing latency and energy consumption but oftentimes
rely on a centralized view of the whole network [78], which is not commonly applicable
to WSNs.

Hybrid protocols are a distributed energy-efficient solution for time-critical appli-
cations [73, 114]. These protocols are capable of adapting its behavior depending on
the characteristics of the application and are commonly capable of performing con-
tinuous monitoring and event-driven detection simultaneously. The downside of these
protocols is, usually, an increase in complexity [64, 65].

In previous studies, we have presented and evaluated the performance of the RA
phases of hybrid protocols by means of Markov models [64, 65], but our results were
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limited to mean values of energy consumption and report latency. While this is a
common practice in the literature [59, 70], it is clearly insufficient for time-critical
applications. A feasible option to circumvent this problem in WSN protocols with a
scheduled transmission scheme is to assess the report latency bymeans of its maximum
value (i.e., worst-case latency). Such is the case of [117], where a MAC protocol for
industrial applications is proposed and analyzed. Nevertheless, assessing report latency
in terms of high percentiles or the whole distribution of report latency are much better
suited for time-critical applications.

Generic analytic methods for evaluating the performance of RA protocols designed
for other types of wireless networks may not be easily adapted for the analysis of
cluster-based WSNs due to their particular characteristics. Such is the case of the
queuing model for the IEEE 802.11 protocol, presented in [98]. In addition, most
of the existing methods for obtaining the probability distribution of report latency
in WSNs are protocol specific. The work of Souil et al. [92] and of Siddiqui et
al. [89] are clear examples of these protocol-specific methods. Furthermore, Souil
et al. and of Siddiqui et al. measure report latency as the time required for the first
successful transmission to occur; as mentioned in the Introduction, the transmission
of a minimum number of packets may be necessary for the accurate characterization
of the occurring phenomena. Wang et al. [107] are one of the few to consider the need
for the transmission of a minimum number of event packets during event reporting
and propose a spatio-temporal fluid model, along with a simplified model to obtain the
distribution of report delay in multi-hop WSNs. The downside of this model is that its
accuracy drops when the node density is low or the traffic rate is high.

At early stages of my studies, we identified the need for a method capable of
calculating the report latency distribution for a wide range of WSN protocols and
environments. Hence, we developed a hybrid method for obtaining the distribution of
report latency. Preliminary results, where only a fixed backoff was considered, were
presented in [63]. This latter work was extended to analyze the benefits of adaptive
transmission probabilities during RA event reporting WSNs, but also to optimize
event reporting. That is, to identify the transmission probabilities that minimize report
latency for the fixed and adaptive backoffs, but also reduce energy consumption prior
to network deployment.
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5.3 Hybrid method for the QoS analysis of RA WSN
protocols

In this section we present the network model and the hybrid method for the QoS
analysis of RA event reporting WSN protocols. The network model is presented
in Subsection 5.3.1, where the network topology, the RA protocol, and the energy
consumption model are described. The remaining subsections are dedicated to the
describe our hybrid method, which comprises three main phases: 1) obtaining the
distribution of detecting CMs; 2) defining theMarkov reward process; and 3) obtaining
the QoS parameters.

5.3.1 Network model

Following the line ofmy previous studies [64, 65], we adopt a network topology that has
been commonly used in the literature since Heinzelman et al. published their paper on
the well-known LEACH protocol [46]. In this topology, m = 100 nodes are uniformly
distributed in a squared area of 100m × 100m. That is, from coordinates (0, 0) to
(100, 100). The sink node is located outside the supervised area at the coordinates
(200, 0).

During event reporting and CF phases, the network operates on a slotted channel,
where each time slot is the time required for the transmission of a data or control packet
from a CM to the CH and its immediate retransmission to the sink node. The size of
the data packet is l = 2 kbits, which comprises the data payload, and the identification
and type fields. The size of the control packet is lc = 1 kbits, which comprises the
same fields but with a shorter payload. The transmission data rate is R = 40 kbps and,
since two data packets are transmitted one after the other to reach the sink node (i.e.,
one from the CM to the CH and one from the CH to the sink node) the slot duration
during event reporting phases is ts = 0.1 s.

Our study focuses on cluster-based protocols, where the role of nodes acting as
either CHs or CMs shifts constantly throughout the operation of the network. This
approach avoids the fast battery depletion of nodes acting as CHs. Hence, it reduces
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the probability of suffering from the well-known energy hole problem, that may result
in some areas being disconnected from the network due to the battery depletion of
some critically-placed nodes. Throughout this study we use one of the most important
clustering algorithms: LEACH, developed by Heinzelman et al. [46]. Through the
years, LEACH has served as a base to develop and to assess the efficiency of other
routing protocols, this continues to be true even after more than a decade since its
publication [13, 28]. However, it is important to emphasize that our hybrid method
presents a general structure, so any clustering algorithm can be easily incorporated. As
it will be seen in the rest of this chapter, the selected clustering algorithm merely deter-
mines the distribution of detecting nodes and clusters; this is obtained by simulation
at the first phase of our hybrid model.

The distributed clustering algorithm of the LEACH protocol is performed as fol-
lows. The operation of the network is divided into rounds and a CF phase is performed
at the beginning of each round. At each CF phase, each node has a certain probability
of being elected as a CH; this probability increases with the number of rounds. Once
a node has been elected as a CH, the probability of being elected as a CH once more
in the next few rounds becomes 0. Afterwards, the CHs inform their status to the
other nodes by broadcasting an advertisement message (using CDMA). The remaining
nodes join a given cluster based on the received signal strength of the CH transmission;
this is, typically, the one with the closest CH. The interested reader is referred to [46]
for more details on the LEACH protocol.

The energy to receive a packet depends on its length and on the energy required
per bit by the communication circuits Eelec as

Erx(l) = lEelec. (5.1)

In this study we adopt a generic energy consumption model that is widely used in the
literature, in which Eelec = 50 nJ/bit [28, 46, 114]; though any energy consumption
model can be incorporated to our hybrid method.

During random access, the communication circuits in every CH must be active
whenever CM transmissions can occur, so they are able to relay any received data
packet containing an alarm or control message from its CMs to the sink node with
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minimal latency. The energy required to transmit a packet depends on both the length
of the packet l and the selected transmission range d m [46]. Therefore, the total
energy consumed during a packet transmission is given as

Etx(l, d) = lEelec + lεampdpl , (5.2)

where the energy required per bit and per square meter by the transmission amplifier
is εamp = 10 pJ/bit/m2 and pl is the path loss exponent.

Two power levels are defined for packet transmissions: low and high power. Low
power transmissions consume Ecmtx J and are used for CM to CH communication. By
using this power level, nodes are able to perform transmissions at up to dl = 35 m.
High power transmissions consume Echtx J and are used for CH to sink communica-
tion. By choosing this power level, nodes are able to transmit from the farthest possible
coordinates within the network to the sink node, which is dh =

√
2002 + 1002 m. This

approach eliminates the need of calculating the minimum energy required for trans-
mission; this latter approach is used by Heinzelman et al. [46]. An additional benefit
of defining these two power levels is that packet loss probability due to changes in
the wireless environment is considerably reduced when compared to the minimum
energy approach. For instance, the minimum energy required for a successful packet
transmission may vary through time due to changes in the wireless channel conditions,
so it must be calculated periodically. Furthermore, event-driven detection WSN pro-
tocols are characterized by infrequent transmissions. For instance, the frequency of
occurrence of relevant events may range from once a day for highly frequent events,
to once a month for relatively infrequent events, or even to once a year for rare events.
Therefore, energy efficiency is not significantly affected by following this approach
when compared to the minimum energy approach.

Events are generated as in Calafate et al. [25], where a model for indoor gas
propagation is presented. Each event has originating coordinates (w, h), which are
selected by means of a two-dimensional uniform random variable (RV). That is, w, h ≡
U [0, 100]; w and h are selected independently. A node detects an event when the
reading of the phenomena of interest causes the reading in one or more of its sensors
to exceed a threshold. In our case, we assume the sensitivity of the sensors is such
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Figure 5.1: Example of a cluster-based WSN for event detection and reporting. Nodes
detecting the event will transmit a data packet to their CH. Different colors indicate
different clusters.

that the threshold is exceeded when the node is located within r ∈ {5, 10, 15, 20, 30} m
from the event originating coordinates.

In order to evaluate the performance of RA protocols in extreme conditions, it is
assumed that the event is detected simultaneously by all the CMs within a radius r

from the event originating coordinates. On the other hand, the event is not detected
by CMs located at a radius greater than r from the event originating coordinates. We
assume that only one packet is generated per node per detected event. This behavior
can be achieved, for example, by implementing a double sliding window scheme [42].
Furthermore, we do not consider the possibility that an event occurs while the reporting
of a previous event is still ongoing in the same cluster. Please observe that this is a
valid approach because, due to the nature of the events, this scenario has an extremely
low probability of occurrence.

Fig. 5.1 summarizes the considered scenario. In this figure, nodes are uniformly
distributed in the area of interest. As indicated by the different colors in Fig. 5.1, nodes
form five clusters. Then, an event occurs and is detected by several nodes; in this
case, the event is detected by nodes from two different clusters. Detecting nodes will
transmit a data packet to their CH, which is in charge of relaying this packet to the sink
node.
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Given the random nature of the event occurring coordinates and of the network
topology, the number and the spatial distribution of detecting nodes may be different
for each event occurrence. Building on this, we define RV Ntot as the total number of
detecting CMs, RV Nc as the number of clusters with detecting CMs, and RV Ni as the
number of detecting CMs in the ith cluster. That is, each detecting cluster is assigned
an index i ∈ {1, 2, . . . , Nc } that serves as a temporal identifier. In addition, to simplify
notation we define RV N as the number of detecting CMs at a given cluster, whose
support is n ∈ {Z+ | n < m}, the number of nodes.

In the following, the RA protocol used for event reporting is described. Please
observe a similar RA protocol is implemented for CF phases. Upon the occurrence of
a new event, detecting nodes attempt transmission with probability τ per time slot and
backoff is used for collision handling. That is, the transmission probability of the CMs
for the first transmission attempt is τ at each time slot. Then, the transmission prob-
ability for collided CMs (CBMs) becomes β = τ/b for the subsequent transmissions,
where b ≥ 1. Clearly, b = 1 and b > 1 correspond to the FB and AB approaches,
respectively. Whenever the CH receives an event packet, it is directly transmitted to the
sink node in the same time slot (i.e., second half) in order to minimize report latency.
At the end of event reporting, nodes reset their transmission probabilities to the initial
value τ.

Code Division Multiple Access (CDMA) is used to avoid inter-cluster collisions.
For this, a CDMA code is selected per cluster and used for transmissions from CMs to
the CH and from the CH to sink [48]. Consequently, it is safe to assume that, during
CF and event reporting phases, collisions can only occur between CMs from the same
cluster. In other words, we consider each cluster operates independently during RA.
As such, we analyze event reporting in terms of independent clusters by means of a
DTMC.

Next, let k be the number of messages required to fully characterize the occurring
phenomena. Once the sink node receives k event messages, it reacts accordingly.
Conversely, in cases where k > Ntot, the event is overlooked. During event reporting,
the network can be configured to transmit either N or k data packets per cluster.
In the former, every detecting CM is set to transmit its data packet, which results
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Figure 5.2: RA event reporting in time-critical applications with overhearing for k = 3.

in Ni transmissions to the sink node from the ith cluster. In the latter, CMs sense
(i.e., overhear) the wireless medium during event reporting until the kth packet is
successfully transmitted. At this point in time, the remaining Ni − k CMs in the ith
cluster discard their data packets, which reduces energy wastage. Fig. 5.2 illustrates
the process of event reporting for the considered set of applications.

It isworth noting that a consequence of usingCDMAto avoid inter-cluster collisions
is that CMs are only aware of successful transmissions within their own cluster. As a
result, event reports can be restricted within clusters but not within the entire network.
Consequently, whenever each cluster is set to send k packets and an event is detected
in Nc > 1 clusters, more than k packets can be received at the sink node.

5.3.2 Obtaining the distribution of detecting CMs

The probability distribution of the number of nodes that detect the event simultaneously
is the input to our analytical model. Hence, its adequate calculation is mandatory to
effectively calculate the QoS parameters and to optimize the RA protocol. Since
we focus on cluster-based WSN protocols and each cluster operates independently
during event reporting (due to the use of CDMA), we obtain the distribution of the
number of detecting clusters (i.e., clusters with at least one detecting node) Nc and of
detecting CMs per cluster Ni for i ∈ {1, 2, . . . , Nc } by simulation. For this, we have
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developed a discrete event simulator in C, in which the selected clustering algorithm
is implemented, along with the generation and detection of events. As mentioned at
the beginning of this section, the LEACH protocol is used throughout this chapter, but
any clustering algorithm can be selected.

In each simulation, nodes are first randomly distributed within the area of interest;
their coordinates are selected by generating two random numbers with uniform distri-
bution independently for each node, namely h and w. Then, nodes are organized in
clusters according to the selected clustering protocol. Next, 1000 events are generated
after each CF phase and the number of detecting nodes is obtained and stored. A
total of 20 CF phases are performed for each simulation run, hence, 20 000 events are
generated per simulation.The number of simulation runs is such that the error between
the cumulative results (i.e., the distribution of detecting CMs) obtained until the j

simulation differ from those obtained at the ( j − 1)th simulation by less than 10−5.

Fig. 5.3 and Fig. 5.4 present the results obtained by simulation. Specifically, Fig. 5.3
shows the cumulative distribution function (CDF) of the number of detecting nodes
for a given number of detecting clusters. That is, FN |Nc (n) for Nc ∈ {1, 2, 3, 4} given
r ∈ {5, 10, 15, 20, 25, 30} m. Naturally, the greater the number of detecting clusters,
the smaller the number of detecting CMs per cluster.

Next, Fig 5.4 shows the CDF of the number of detecting clusters and, as expected,
this number grows with the event detection radius. Still, it is important to observe that,
for the selected topology, more than 97 percent of the events with r = 5 are detected
in only one cluster. On the other hand, events are rarely detected in 5 or more clusters,
even when the largest event radius r = 30 is selected.

The behavior depicted in Fig. 5.3 and Fig. 5.4 has especial significance when
calculating the event overlooking probability Pr [Ntot < k]. That is, the probability
that less than k nodes detect an occurring event. In such cases event reporting is
unsuccessful as the sink is unable to obtain the necessary information to characterize
the event.

Event overlooking probability can be easily calculated with results obtained from
simulation and is shown in Fig. 5.6. Naturally, this probability is sharply reduced as
r increases. Nevertheless, as the number of detecting nodes sharply increases with
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Figure 5.3: CDF of the number of detecting CMs per cluster, N , given the event is
detected in Nc clusters for r ∈ {5, 10, 15, 20, 25, 30} m and: (a) Nc = 1, (b) Nc = 2, (c)
Nc = 3, and (d) Nc = 4.

r , the chances of network congestion in RA protocols also increase. Therefore, the
network administrator must configure the thresholds in the nodes’ sensors to achieve
a sufficiently long detection radius, and hence, a sufficiently low event overlooking
probability. But also, r should be sufficiently short to avoid excessive event detections.

Clearly, the lower limit for the event detection radius highly depends on the density
of deployed nodes within the network and on the requirements of the application. For
the considered node density of 0.01 nodes/m2, and k = 3, we assume that r ≥ 15 m
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Figure 5.4: Pmf of the number of detecting clusters Nc for r ∈ {5, 10, 15, 20, 25, 30} m.

results in an adequate Pr [Ntot < 3] < 0.09. Hence, k = 3 will be selected throughout
Section 5.4 and the focus will on r ≥ 15 m. Please observe the selected value of k = 3
goes in line with the requirements of target positioning and tracking applications. That
is, these usually use trilateration or triangulation, so at least three packets are needed.
Building on this, in Section 5.4 we focus on assessing and optimizing the energy
consumption and report latency for large event detection radii. That is, to identify the
transmission probabilities that optimize performance given a sufficiently large r has
been selected.

5.3.3 Defining the Markov reward process

As mentioned above, the use of CDMA allows us to analyze the system in terms of
independent clusters. For this, we seek to define a DTMC that describes the process
of event reporting within each cluster. As a starting point, we present the Markov
model for the FB approach. The resulting DTMC is depicted in Fig. 5.6. This model
shares some similarities with those used in our previous studies [63–65], where the
transmission probability remains unaffected during backoff (i.e., b = 1). But also
presents an important difference that is described in the following.

The model starts at state (N = n), where n is the number of CMs that have detected
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Figure 5.5: Event overlooking probability for the considered node density of
0.01 nodes/m2, k ∈ {1, 2, . . . , 5}, and r ∈ {5, 10, 15, 20, 25}.

n n − 1 n − 2 . . . n − `

qn qn−1 qn−2 1

pn pn−1 pn−2 pn−`+1

Figure 5.6: DTMC that describes the random access event reporting over a slotted
channel with the FB.

the event in a given cluster. That is, n is the outcome of a single experiment for RV
N . As such, n can be different for each event. Therefore, the state-space of the DTMC
is S = {x ∈ N | n − ` ≤ x ≤ n}; x represents the number of CMs with pending
event transmissions. At each time slot, the DTMC can either transition towards the
absorbing state (n − `), where ` = min{k, n}, or remain in the same state. Please mind
the use of variable ` instead of k. The reason for this is that the number of detections
within a cluster n can be less than k. Still, these cases contribute to event reporting
within the network; this is a critical difference with respect to models used in previous
studies.

A transition from an arbitrary transient state (x) to (x − 1) occurs with probability
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px ; this is the probability of a successful transmission, which occurs whenever a single
CM sends a data packet. Conversely, the probability of remaining in the same state is
the probability of an unsuccessful event report qx = 1 − px . This occurs either when
none of the CMs attempts transmission or when a collision occurs.

Next, let S(x) be the RV that defines the number of event transmissions within a
cluster at an arbitrary time slot for a given x. Building on this, a successful transmission
occurs with probability

px = Pr [S(x) = 1] = xτ(1 − τ)x−1. (5.3)

The absorbing DTMC that describes the process of event reporting (i.e., the trans-
mission of the first ` = min{k, N } messages within a cluster) is depicted in Fig. 5.6.
Then, the substochastic matrix that represents the transitions within transient states is

T =



qn pn 0 · · · 0
0 qn−1 pn−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · pn−`+2

0 0 0 · · · qn−`+1


Also, from Fig. 5.6 we derive a Markov reward process that allows us to calculate

the mean energy consumption during event reporting E. For this, rewards are given
as the mean energy consumption at each system transition. In basic RA (no medium
sensing) successfully transmitting an event packet requires a CM to CH (Ecmtx) and a
CH to sink (Echtx) transmission. Thus, the transition from any arbitrary transient state
(x) to (x − 1) has a reward

ρ′(px ) = Ecmtx + Echtx. (5.4)

In case no transmission is attempted by the CMs or a collision occurs, the system
remains in the same state. As a result, the reward for remaining in state x is given as the
energy consumed by a CM transmission times the expected number of transmissions,
given none or multiple transmissions occurred

ρ′(qx ) = EcmtxE [S(x) | S(x) , 1] =
xτ − px
1 − px

Ecmtx. (5.5)
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In order to identify the time slots in which successful and failed transmissions
occur within the cluster, the CMs must be set to overhear CH transmissions during
event reporting. This enables the CMs to discard any remaining event packets once k

messages have been successfully transmitted. Therefore, the reward for the transition
from state (x) to (x − 1) becomes

ρ(px ) = ρ′(px ) + (x − 1)Eelec = Ecmtx + Echtx + (x − 1)Eelec (5.6)

and remaining in the same arbitrary transient state x has a reward given as

ρ(qx ) = ρ′(qx ) + (x −E [S(x) | S(x) , 1])Eelec =
(Ecmtx − Eelec)(xτ − px )

1 − px
+ xEelec.

(5.7)
We use these rewards to construct the reward matrix

R =



ρ(qn) ρ(pn) 0 · · · 0
0 ρ(qn−1) ρ(pn−1) · · · 0
...

...
...

. . .
...

0 0 0 · · · ρ(pn−`+2)
0 0 0 · · · ρ(qn−`+1)


This concludes the model for the FB approach. In the following, we present theMarkov
model for the AB approach.

Given the AB is implemented, N nodes initiate the event reporting process with
transmission probability τ. Then, whenever a collision occurs, the transmission prob-
ability of implicated CMs becomes β = τ/b, where b ≥ 1. The rationale behind
this approach is simple: collisions indicate that several CMs are indeed competing for
medium access. Hence, reducing the transmission probabilities decreases collision
probability; this in turn increases the probability of successful transmissions. Please
observe that following the opposite approach (i.e., b < 1) will rarely enhance the per-
formance of RA protocols, while b = 1 corresponds to the FB approach. The number
of CMs that have caused a collision and perform backoff, hereafter denoted as backoff
CMs (BCMs), is z. Once event reporting is concluded, the transmission probability of
CMs is reset to its original value τ. As a summary, the Markov model that is presented
in the following is a generalization of the model for the AB, where b = 1.
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Figure 5.7: Possible transitions of the two-dimensional DTMC from an arbitrary
transient state (y, z).

In this model, the states of the DTMC are determined by the number of detecting
CMs that have not yet attempted transmission y and by the number of BCMs z. In other
words, the state-space of the DTMC for the AB is S = {y, z ∈ N | n− ` ≤ y + z ≤ n};
hence the number of CMs with pending transmissions is x = y + z. The transmission
probabilities of the y and z CMs are τ and β, respectively. The DTMC begins at state
(N = n, 0). that is, N CMs detecting the event and 0 BCMs with reduced transmission
probability, and evolves towards state (0, 0).

Fig. 5.7 shows every possible transition from an arbitrary transient state (y, z).
Please observe now transitions depend on the number of CMs and BCMs that perform
a transmission at a given time slot, defined by S(y) and S(z), respectively, but also on
their transmission probabilities τ and β, respectively.

Specifically, transitions from the arbitrary transient state (y, z) to (y − 1, z) occur
with probability

py,z = Pr
[
S(y) = 1

]
Pr [S(z) = 0] = yτ(1 − τ)y−1(1 − β)z, (5.8)

which represents a successful transmission from one out of the y CMs. Transitions
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from state (y, z) to (y, z − 1) occur with probability

φy,z = Pr
[
S(y) = 0

]
Pr [S(z) = 1] = (1 − τ)y z β(1 − β)z−1, (5.9)

which represents a successful transmission from one out of the z BCMs. Therefore,
the probability of a successful transmission is

py,z + φy,z . (5.10)

Conversely, the probability of remaining in the same state is

qy,z = Pr
[
S(y) = 0

]
Pr [S(z) , 1] = (1 − τ)y

(
1 − z β (1 − β)z−1

)
, (5.11)

which occurs whenever none of the y CMs and none or multiple of the z BCMs
transmit.

Finally, transitions from (y, z) to (y−v, z+v) denoted as qy,z (v), where v represents
the number of CMs that become BCMs, are divided in two cases: v = 1 and v ≥ 2. In
the former, one out of the y CMs and at least one of the z BCMs attempt transmission,
which occurs with probability

qy,z (1) = Pr
[
S(y) = 1

]
Pr [S(z) , 0] = yτ(1 − τ)y−1 (1 − (1 − β)z

)
(5.12)

In the latter, v ≥ 2 of the y CMs are involved in a collision, which occurs with
probability

qy,z (v) = Pr
[
S(y) = v | v ≥ 2

]
=

(
y

v

)
βv (1 − β)y−v , v ≥ 2. (5.13)

Please observe that the number of transmitting BCMs S(z) is irrelevant for qy,z (v)
when v ≥ 2.

At this point we have defined the probability of every possible transition. With this
information, we build the substochastic matrix that represents the transitions between
transient states as follows.

Ta =



qn,0 0 qn,0(2) · · · 0
0 qn−1,1 qn−1,1(1) · · · 0
0 0 qn−2,2 · · · 0
...

...
...

. . .
...

0 0 0 . . . q1,n−` (1)
0 0 0 . . . q0,n−`+1


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The dimension of this square substochastic matrix depends on the initial number
of detecting nodes for a specific experiment n and k. Specifically, the number of
rows/columns of matrix Ta is

`−1∑

j=0
n + 1 − j = ` (n + 1) −

`−1∑

j=0
j . (5.14)

That is, state (n, 0) has n + 1 possible transitions to states in which the total number of
contending CMs remains unaffected and only transition to state (n − 1, 0) reduces the
total number of contending CMs by 1; this transition occurs with probability pn,0.

From there, we build the reward matrix Ra in the same manner as R, where the
reward for a successful transmission at an arbitrary state (z, y) is

ρa (py,z ) = ρa (φy,z ) = Ecmtx + Echtx + (y + z − 1)Eelec. (5.15)

The reward for remaining at the same state, that is, when none of the y CMs and either
none or more than two of the z BCMs perform a transmission is given as

ρa (qy,z ) =
(Ecmtx − Eelec)(z β − φy,z )

1 − φy,z + xEelec
(5.16)

and the reward for transition from the state (y, z) to (y − v, z + v) is

ρa (qy,z (v)) = ρa (qy,z ) + v (Ecmtx − Eelec) . (5.17)

Building on this, the resulting reward matrix is

Ra =



ρa
(
qn,0

)
0 ρa

(
qn,0(2)

) · · · 0
0 ρa

(
qn−1,1

)
ρa

(
qn−1,1(1)

) · · · 0
0 0 ρa

(
qn−2,2

) · · · 0
...

...
...

. . .
...

0 0 0 . . . ρa
(
q1,n−` (1)

)

0 0 0 . . . ρa
(
q0,n−`+1

)


As in the transition matrix, we generate a different reward matrix for each possible

value of N . By building these matrices, we are now able conduct the performance
analysis of event reporting for any given value of b ∈ [1,∞).
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5.3.4 Obtaining the QoS parameters

Once we have constructed the transition T and reward R matrices, we proceed to
calculate the energy consumption during event reporting. As a starting point, we
obtain the energy consumption in each arbitrary transient state for the RA protocol
with FB (i.e., b = 1) by solving the following set of Bellman equations [23].

Ex = qx
[
r (qx ) + Ex

]
+ px

[
r (px ) + Ex−1

]
. (5.18)

That is, (5.18) can be solved either as a set of linear equations or recursively for all
possible values of the initial number of detecting CMs n, given the initial condition
En−` = 0. That is, the energy consumption at the absorbing state is 0 J. For the
AB where b , 1, the energy consumption in each arbitrary transient state (y, z) is
calculated similarly

Ey,z =qy,z
[
ρ(qy,z ) + Ey,z

]
+ py,z

[
ρ(py,z ) + Ey−1,z

]
+ φy,z

[
ρ(φy,z ) + Ey,z−1

]
+

y∑

j=1
q ( j)y,z

[
ρ(qy,z ( j)) + Ey−j,z+j

]
.

(5.19)

Please recall that our first step was to obtain the pmf of the number of clusters with
detecting CMs Pr [Nc = i] and of the number of detecting CMs given Nc detecting
clusters Pr [N = n | Nc = i] by simulation. With this information, the mean energy
consumption during event reporting in a given scenario, denoted as E, can be obtained
as

E =
imax∑

i=1
i Pr [Nc = i]

nmax∑

n=1
Pr [N = n | Nc = i] En, (5.20)

where nmax and imax are the maximum values of n and i obtained by simulation. From
there, the mean energy consumption for the case where b , 1 is easily calculated by
substituting En with En,0 in (5.20), since z = 0 at the beginning of event reporting.

Next, we calculate the event report latency. For this, let T` be the RV that defines
the number of time slots elapsed between the occurrence of an event, detected by N

CMs, and the end of the event reporting process in a single cluster. Please recall that
event reporting in a given cluster is completed when ` = min{k, n} out of a total N = n

packets are transmitted successfully from the detecting CMs to the sink node. As

138



Chapter 5. Performance analysis of RA event-reporting in WSNs

such, T` is the time to absorption in one of the DTMCs defined earlier in this section;
absorption occurs when the `th packet is successfully transmitted.

Therefore, T` has a phase-type (PH) distribution with representation (α,T ), where
α is the row vector of initial probabilities andT is the substochastic matrix of transient
states. In other words, α defines the probabilities that the system starts at each of the
transient states. Also let 1 be a column vector of 1s of the same dimension as T .

For the FB approach depicted in Fig. 5.6, α = [1 0 . . . 0] of length `. On the other
hand, for the AB approach depicted in Fig. 5.7, the length of vector α is the number of
rows in matrix Ta, defined in (5.14). Once α is defined, the expected value of T` can
be easily obtained as

T` = α(I −T )−11, (5.21)

where I is the identity matrix of the same dimension as T [17]. Then, let T be the
RV that defines the report latency for a given scenario, described by Pr [Nc = i] and
Pr [N = n | Nc = i]. Its mean value can be calculated as

T =
imax∑

i=1
Pr [Nc = i]

nmax∑

n=1
Pr [N = n | Nc = i]T` . (5.22)

However, as stated above, we are especially interested in obtaining the probability
distribution of the report latency T . For this, Let s be the number of elapsed time
slots since the detection of the event. Next, let {Xs (c)}s∈Z+ be the stochastic process
(i.e., collection of RVs) that defines the total number of packets that are successfully
transmitted from c clusters to the sink node s time slots after the detection of the event.
Therefore, the support of RV Xs (c) is j ∈ {0, 1, . . . , nmax}.

Then, the pmf of RV Xs (c) conditioned to the number of detecting clusters i can
be determined by means of the following recursion.

pXs ( j, c | i) = Pr
[
Xs (c) = j | Nc = i

]

=

j∑

u=0
pXs (u, c − 1 | i)pXs ( j − u, 1 | i),

for c ∈ {1, 2, . . . , i} and j ∈ {0, 1, . . . , nmax} (5.23)
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where

pXs ( j, 1 | i) =
nmax∑

n=1
Pr [N = n | Nc = i] Pr

[
Xs (1) = j

]
(5.24)

is the probability that j packets are successfully transmitted within one cluster in s

time slots or less after an event is detected in i clusters.

But we are still missing Pr
[
Xs (1) = j

]
; the remaining piece of information to

calculate the pmf of T . However, it can be easily obtained from the vector of initial
states α and matrix T as follows.

α(s) = α(s−1)T (5.25)

given the initial condition α(0) = α.

Then, for the FB approach depicted in Fig. 5.6 we have

Pr
[
Xs (1) = j

]
= α(s)

j = α(s)T e j, for j ∈ {1, 2, . . . , ` − 1} (5.26)

where e j is a column vector of length `; this vector has a 1 at position j + 1 and the
rest of the entries are 0s. This probability is obtained analogously for the AB approach
depicted in Fig. 5.7; the only difference is the number of entries of the vectors involved.
Please observe that (5.25) and (5.26) are different to the equations presented in our
previous work [62]. The reason for this is that the formulas presented in this chapter
are much more computationally efficient than those used in prior work.

We proceed to obtain the probability that the system is at any of the transient states
at time index s,

Pr [T` > s] = α(s)T1. (5.27)

Naturally, Pr [T` > s] = 1 if s ≤ ` − 1. Building on this, we obtain the CDF of T` as
follows.

FT` (s) = 1 − Pr [T` > s] = Pr [Xs (1) = `] . (5.28)

Finally, when the number of event packets required at the sink is k, the CDF of T given
the number of affected clusters is Nc = i is

Pr [T ≤ s | Nc = i; k] =
∑

j≥k
pXs ( j, i | i) = 1 −

∑

j<k

pXs ( j, i | i). (5.29)
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Finally, we can obtain the CDF of report latency for a specific environment as

FT (s) = Pr [T ≤ s; k] =
imax∑

i=1
Pr [T ≤ s; Nc = i, k] Pr [Nc = i] , (5.30)

given the distribution of N and Nc are known. In the following section, we study the
impact that transmission probabilities and event detection radii have on performance.

5.4 QoS analysis

The present section has been divided in three main subsections. The first two sections
are dedicated to the FB and AB approaches, respectively, under environments in which
a single type of event occurs. That is, every occurring event has the same detection
radius r . The third subsection presents results derived from environments where two
type of events occur; these two types of events have different detection radii r .Results
presented in this section highlight the capabilities of the proposed method for QoS
analysis and also showcase the robustness of the AB to the inadequate selection of
parameters.

The relevant network parameters used throughout this section are listed in Table 5.1.

Please recall that at the beginning of the previous section we performed a study to
determine the event overlooking probability; results were presented in Fig. 5.5. That
is, in cases where ntot < k, the sink is unable to obtain the necessary information
for characterizing the event. Hence, event reporting is unsuccessful and the event is
overlooked. This probability depends on k, the number of event packets required at the
sink node to accurately characterize the event and the event detection radius r . Results
from Fig. 5.5 show that less than 9 percent of the events are overlooked by selecting
k = 3 and r ≥ 15 m; we consider this to be adequate so k = 3 is used throughout this
section. Nevertheless, in this section we also explore the rest of possible values of r

depicted in Table 5.1.
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Table 5.1: Network parameters.

Parameter Value

Area Size 100m × 100m
Sink node location (200, 0)
Number of nodes in the area m = 100
Data packet length l = 2 kbits
Control packet length lc = 1 kbits
Data rate R = 40 kbps
Time slot duration ts = 0.1 s
Energy consumed by the communication circuits Eelec = 50 nJ/bit
Low-power transmission range dl = 35 m
High-power transmission range dh =

√
2002 + 1002 m

Path loss exponent pl = 2
Energy consumed by the amplifier εamp = 10 pJ/bit/m
Event detection radius r ∈ {5, 10, 15, 20, 25, 30} m
Number of event reports required at the sink k = 3
Transmission probabilities τ ∈ {1, 2, . . . , 100} · 10−2

Factor of reduction for τ b ∈ {1, 2, . . . , 10}
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Figure 5.8: Mean energy consumption E for the transmission of k = N and k = 3
event packets for the three longest detection radii r ∈ {20, 25, 30} m, and τ ≤ 0.35.

5.4.1 FB approach

We begin our analysis of energy consumption in RA event reporting by comparing two
different approaches. In the first one, each of the N detecting nodes is set to transmit a
packet to the CH; this is the typical approach followed in the literature. In the second,
CMs overhear the CH transmissions in order to identify the kth successfully transmitted
packet. Then, the remaining packets are discarded to avoid energy wastage due to the
transmission of redundant packets. Fig. 5.8 shows the mean energy consumption
during event reporting E for both approaches. It is clear that energy consumption
is greatly affected when high values of τ are selected. A similar but lesser effect is
observed as the detection radius r increases. In other words, selecting lower values
of τ and r is beneficial for energy efficiency, but the event overlooking probability
increases as r decreases.

Furthermore, it can be seen from Fig. 5.8 that restricting the number of transmitted
packets with overhearing reduces energy consumption for relatively low values of τ.
In these cases, the network is not highly congested. Conversely, if high values of τ are
selected, restricting the number of transmitted packets slightly increases the energy
consumption with respect to the traditional approach. This is mainly caused by the
congestion of the wireless medium.
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Figure 5.9: Mean report latencyT assuming k = 3 event packetsmust be received at the
sink node for several event detection radii r and transmission probabilities τ ≤ 0.35.

Next, we begin our analysis of report latency by showing its mean value in Fig. 5.9;
hereafter we assume k = 3. Here we observe that high values of τ reduce report
latency for small detection radii. On the other hand, high values of τ increase report
latency for large detection radii. Hence, for large detection radii, report latency is
correlated to energy consumption. This is relevant because selecting a large detection
radius reduces event overlooking probability. Therefore, these results suggest the
selection of a sufficiently long r and low τ is the most efficient solution for time-
critical applications. Specifically, this approach sharply reduces report latency and
event overlooking probability, while maintaining an adequate energy efficiency.

As stated earlier, obtaining the probability distribution of report latency provides
with much more valuable information regarding the behavior of the system than mean
report latency; this is especially important in time-critical applications. However, it
may be difficult to select a proper metric to assess the report latency from its whole
distribution. For the sake of simplicity, hereafter we assess the report latency in terms
of its 90th percentile defined as

T90 ≡ min
s
{s | FT (s) ≥ 0.9} . (5.31)

That is, 90 percent of the events are successfully reported in s or less time slots. Since
themean report latency and event overlooking probability are enhanced for large values
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Figure 5.10: 90th percentile of report latency T90 for r = 30 m.

of r , we obtained the T90 for r = 30 m. Specifically, Fig. 5.10 shows the T90 given
Nc ∈ {1, 2, 3, 4, 5} and also T90 alone for the given scenario. Here, two tendencies
are clearly observed: report latency steeply increases with τ and, the more clusters
are involved in event reporting, the lower the time needed for receiving the required
packets at the sink. Both of these tendencies confirm that the combination of low
transmission probabilities with a large detection radius enhances event reporting. for
instance, the minimum T90 is achieved by selecting τ = 0.06. It is also important to
observe that the report latency given Nc = 1 highly contributes to the overall report
latency, whereas the contribution to this parameter fades considerably as Nc increases.

5.4.2 AB approach

In this subsection we use the hybrid method to analyze and optimize the performance
of RA event reporting when an AB is implemented. As described previously, we first
use our simulator to obtain the probability distribution of the number of detecting
nodes, which allows us to calculate the energy consumption and report latency during
event reporting analytically.

Our first step is to evaluate the energy efficiency of theAB. For this, themean energy
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Figure 5.11: Mean energy consumption during event reporting E for the AB with
r = 30 m.

consumption during event reporting given r = 30 m, τ ∈ (0, 1), and b ∈ {1, 2, 3, 5, 10}
is obtained and shown in Fig. 5.11. Please recall that b = 1 corresponds to the FB.

Clearly, E is a concave function, regardless of the value of b. Building on this, we
define E

∗
(b) as the global minimum of E | b and τ∗(b) as the value of τ that leads

to E
∗
(b); i.e., the only critical value of τ. Therefore, a value of τ that minimizes

energy consumption can be obtained. It is clear from Fig. 5.11 that τ∗(b) lies around
τ = 0.1 for each of the selected values of b. Since τ only assumes discrete values with
granularity 10−2, τ∗(b) can be easily identified by simple search over nearby values of
τ(i.e., brute force). The obtained values will be presented in Table 5.2.

A clear trend can be identified from Fig. 5.11: E grows rapidly with τ, given
τ > τ∗(b) and b = 1, but the rate of change is drastically reduced as b increases. On
the other hand, E is greatly similar for every b when given τ < τ∗(b). This is an
intuitive result because collisions will rarely occur when τ is sufficiently small; hence,
the transmission probabilities will rarely be modified. On the other hand, selecting a
relatively high b reduces the negative impact of the selection of an exceedingly high
value of τ when compared to b = 1. In other words, the robustness of the system
increases with b.

We now proceed to investigate the behavior of report latency for each possible
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Figure 5.12: 90th percentile of the report latency T90 for the AB with r = 30 m.

value of τ ∈ (0, 1) and b ∈ {1, 2, 3, 5, 10} given r = 30 m. The overall T90 obtained in
this scenario is shown in Fig. 5.12. In this figure we observe a similar behavior than in
Fig. 5.11, T90 is a concave function. However, the image of E is continuous whereas
that of T90 is discrete. Consequently, numerous global minima and critical points can
be identified in Fig. 5.12.

It is interesting to observe that τ∗(b), the critical points of E | b, are also critical
points for T90 | b, for any b. Therefore, we conclude that τ∗(b) optimize the perfor-
mance of the RA protocol for a given b. The obtained critical points τ∗(b) are listed
in Table 5.2, along with the achieved E and T90.

Table 5.2 shows that τ∗(2) = 0.07 leads to the globalminimum energy consumption
in the network. However, extremely similar values are obtained when selecting other
values of b. Therefore, it is safe to say that an optimal performance can only be
obtained with the AB. Still, a comparable performance can be obtained with the
optimal configuration of the simple FB.

In Fig. 5.11 and Fig. 5.12 we observed that the robustness of the performance
increases with b. In other words, increasing b widens the set of possible values of
τ that lead to a near-optimal performance. At least in a scenario in which all events
have similar characteristics (i.e., event detection radii r). We emphasize this latter
statement by showing the relative increase in the 90th percentile in E and T90 due
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Table 5.2: Transmission probabilities τ∗(b) that optimize performance for the given
b ∈ {1, 2, 3, 5, 10} and achieved E and T90.

b τ∗(b) E
∗
(b) (J) T∗90(b)

1 0.06 0.09812 10
2 0.07 0.09707 10
3 0.07 0.09714 10
5 0.07 0.09749 10
10 0.08 0.09838 10

to slight deviations from τ∗(b) for b ∈ {1, 2, 10} in Fig. 5.13. The relative increase
is calculated for each point as the ratio between the achieved QoS parameter and its
global minima. It is observed that failing to select τ∗(1) highly affects performance.
This is clear even for errors as low as τ = τ∗(1) ± 0.03, for which an increase of up to
7 percent inE and up to 40 percent in T90 can occur with respect to the optimal τ∗(1).
On the other hand, the energy consumption and report latency that the AB provides
are much more robust to the inaccurate selection of parameters.

So far we have merely assessed the event report latency T in terms of its mean
and 90th percentile. Results presented in Table 5.2 suggest there is no difference in
this parameter regardless of the selected value of b, but this conclusion might not be
precise. Hence, we now provide an in-depth look at the behavior of RV T by showing
its complementary CDF (CCDF) (i.e., 1−FT (s)) for b ∈ {1, 2, 10} in Fig. 5.14. In other
words, Fig. 5.14 shows the probability that event reporting has not been successful
s time slots after event detection. Therefore, the lower the amplitude of the curve,
the better the performance. Fig. 5.14 clearly shows that selecting τ∗(b) leads to an
almost identical distribution of T and confirms our previous conclusion: a comparable
performance can be obtained with the simple FB and AB approaches. Nevertheless,
selecting τ∗(2) will lead to the minimum report latency in most occasions. The
opposite occurs when selecting τ∗(10).

This concludes our analysis in simple single-event environments. Hence, the
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Figure 5.13: Relative increase in the (a) mean energy consumption E and (b) 90th
percentile of report latency T90 due to slight deviations from τ∗(b) given r = 30.

following subsection focuses on the performance of RA in slightly more complex
multi-event environments.

5.4.3 Multi-event environments

In multi-event environments, the network is in charge of monitoring several types of
events and each of them presents different characteristics. This is a typical scenario
in complex WSN applications as nodes may include a wide arrange of sensors for

149



Chapter 5. Performance analysis of RA event-reporting in WSNs

0 20 40 60 80 10010−3

10−2

10−1

100

τ∗ (1) = 0.06

τ∗ (2) = 0.07
τ∗ (10) = 0.08

Report latency (time slots)

C
C

D
F

Figure 5.14: CCDF of report latency 1 − FT (s) given r = 30 m.

different physical parameters.

The remainder of this section is dedicated to evaluate and optimize the performance
of RA event reporting in an environment where two types of events occur. Specifically,
we assume an environment in which the detection radius of 75 percent of the events is
r = 30m and the detection radius of the remaining 25 percent of the events is r = 15m.
That is, Pr [r = 30] = 0.75 and Pr [r = 15] = 0.25.

We used our hybrid method to obtain τ∗(b) for each b, and the combination of
τ∗(b) and b as described in the previous subsection. Table 5.3 shows τ∗(b) and the
achieved QoS parameters. This table reveals that, again, selecting τ∗(2) leads to the
global minimum energy consumption, but also to the same T90 with any b. Yet another
interesting result is that the values τ∗(b) in the multi-event environment are greatly
similar to those obtained in the single-event environment. This result suggests that
there is no need to possess a deep knowledge on the characteristics of the events (i.e.,
event detection radii) to achieve a near-optimal performance. We further investigate the
validity of this latter statement by obtaining the relative increase in the QoS parameters
due to inaccurate selection of τ.

Fig. 5.15 shows the relative increase in E and T90 due to slight deviations from
τ∗(b). Here we observe that the implementation of an AB in multi-event environments
leads to a similar behavior as in single-event environments. That is, b = 2 minimizes
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Table 5.3: Transmission probabilities τ∗(b) that optimize performance for the given
b ∈ {1, 2, 3, 5, 10} and achieved E and T90 in the multi-event environment.

B τ∗(b) E
∗
(b) (J) T∗90(b)

1 0.07 0.08456 13
2 0.07 0.08287 13
3 0.07 0.08293 13
5 0.08 0.08321 13
10 0.08 0.08406 13

E and increasing, and leads to the second and third lowest E even if slight errors are
made in the selection of τ. Furthermore, increasing b increases the robustness of event
reporting in the sense that the stability of the achieved QoS parameters increases with
b. However, Table 5.2 and Table 5.3 show that the energy efficiency drops slightly as
b increases. Hence, selecting an arbitrarily large value of b is not recommended.

We conclude our analysis of event reporting in multi-event environments by show-
ing the CCDF of RV T within each independent cluster for b ∈ {1, 2, 10} given τ∗(b) in
Fig. 5.16. In other words, Fig. 5.16 shows the probability that event reporting has not
been successful in one cluster s time slots after event detection. As for Fig.5.14, the
lower the amplitude of the curve, the better the performance. Fig. 5.16 illustrates the
same behavior as Fig. 5.14: selecting τ∗(2) will lead to the shortest report latency in
most occasions. On the other hand, selecting τ∗(10) will lead to the highest report la-
tency (when compared to b ∈ {1, 2}) in most occasions. However, here the differences
between the selected τ∗(b) are much more noticeable than in Fig. 5.14. The reason for
this is that selecting b = 10 when events with a relatively short event radius occur (i.e.,
r = 15), leads to an excessively low β after a collision occurs. This in turn causes a
relatively large number of time slots in which no BCM attempts transmission.
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Figure 5.15: Relative increase in the (a) mean energy consumption E and (b) 90th
percentile of report latency T90 due to slight deviations from τ∗(b) in the multi-event
environment.

5.5 Conclusions

This chapter presented a hybrid method for the QoS analysis of RA WSN protocols
that is capable of obtaining the pmf of report latency. Because of this, our method is
especially useful to assess the QoS of WSNs in time-critical applications, where event
reporting is time-constrained and fault-sensitive. It also considers a basic structure
and can be easily adapted to accommodate a wide range of routing protocols and to
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Figure 5.16: CCDF of report latency within one cluster given Pr [r = 15] = 0.25,
Pr [r = 30] = 0.75.

analyze a wide range of MAC protocols.

In our method, the pmf of detecting nodes is obtained by simulation and allows
the calculation of the overlooking probability, given the event detection radii and the
required number of messages to characterize the occurring event are known. Then,
we use DTMCs to obtain the two most important QoS parameters in WSNs: energy
consumption and report latency.

Our simulation results confirmed an intuitive trade-off: large detection radii re-
duce the event overlooking probability but may increase congestion and, hence, energy
consumption during event reporting. However, an adequate selection of the parame-
ters of the RA protocol can effectively relieve congestion, but also minimize energy
consumption and report latency. This latter statement was emphasized in Section 5.4,
dedicated to the performance analysis and optimization of a simple RA protocol. That
is, results presented showcase the importance of the adequate selection of transmission
probabilities for the given event detection radius.

It is clear that an optimal performance can only be obtained with the optimal con-
figuration. Nevertheless, this implies having perfect information on the characteristics
of the occurring phenomena. In our case, this is represented by knowing the exact
detection radii of the events. Still, results obtained with our hybrid model suggest that,
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even if the knowledge of the occurring phenomena is scarce, a near-optimal perfor-
mance can be obtained by following some recommendations: 1) set a relatively low
threshold in the nodes to achieve a relatively long detection radius; 2) implement a RA
protocol with overhearing and set each cluster to transmit three event reports to elimi-
nate redundant transmissions; 3) set the transmission probabilities to a relatively low
value, for example 0.1; and 4) implement an AB approach with b = 2, this mitigates
the negative effects of the inaccurate selection of the transmission probability. These
recommendations hold under both, single-event and multi-event environments.
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Chapter 6

Network-coded cooperation (NCC) for
efficient massive content delivery through
cellular networks

6.1 Introduction

Wireless data traffic is increasing dramatically. For instance, the amount of traffic
transmitted in 2016 grew 63 percent when compared to 2015. By 2021, a data traffic
of 49 exabytes per month by 2021 is expected. This represents an increase of around
700 percent and from 60 to 78 percent of this traffic will be caused by mobile video.
Furthermore, cellular data consumption is expected to rise from slightly less than 1 GB
in 2016 to around 5.7 GB per month in 2021; that is more than a five-fold increase
in five years [32]. Such a dramatic increase in data traffic poses important challenges
to the actual 4th generation (4G) technology that are completely different to those
investigated Chapters 2 to 5, where massive machine-type communication (mMTC)
was investigated. Instead, in this chapter we focus on the second of the three main use
cases for 5th generation (5G): enhanced mobile broadband (eMBB).

Since the commercialization of 2nd generation (2G) in 1991, where digital wireless
communications were first introduced to the phone industry, the evolution of mobile
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technology has focused on merely increasing data rate. That is, the achievable data
rate in mobile phones has increased from less than 1 Mbps in 2G, to around 60 Mbps
in 3rd generation (3G), and to up to 500 Mbps in 4G. Nevertheless, few advances
have been made in other aspects such as latency and, more importantly, the number of
users supported by the mobile base stations. These are key to provide efficient gaming,
virtual/augmented reality, and video streaming applications to the masses. Hence, are
key components of the 5G eMBB.

For instance, the user equipments (UEs) that request access to a given content
(e.g., video streaming) through LTE Advanced (LTE-A) are connected via a unicast
link from the cellular base station (evolved NodeB (eNB)). This is true even though
the exact same content is transmitted to these UEs simultaneously. Therefore, a large
number of replicated unicast sessions are created in the latter case. For example, such
a scenario can occur with the passengers in the same train, with the audience in a music
festival or in a football stadium, or by players in augmented reality mobile games.

The industry is aware that the current LTE-A system will not be able to handle the
expected increase in data traffic in the coming years. Consequently, several systems
have been deployed in order to provide multicast capabilities to LTE-A. A system that
took advantage of this necessity in the early 2010s was the LTE-A evolved multime-
dia broadcast multicast service (eMBMS) [104]; a multicast implementation through
LTE-A small cells. However, several issues were detected during its implementation.
For example, the eMBMS may suffer from unexpected disconnections [26], reduced
transmission range, high energy consumption, and poor spectral efficiency [36]. There-
fore, different content delivery mechanisms to reduce the amount of traffic requested
directly from cellular networks must be designed.

Cooperative mobile clouds (MCs) are a promising solution to the described content
delivery scenario [82]. An MC is a cooperative architecture in which a group of UEs
share the available wireless resources opportunistically. For instance, UEs cooperate
through a short-range technology, such as WiFi, which sharply reduces the consumed
resources in the LTE-A link [39]. Hence, MCs may drastically offload the data traffic
at the eNB, but can also provide many other benefits; some of these benefits will
be investigated throughout this chapter. It is important to mention that WiFi and
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cellular interfaces are not entirely integrated in 4G. On the other hand, 5G promises
full integration with these two interfaces [19]. This greatly increases the potential
benefits of MCs in 5G.

Some content delivery systems that combine long and short-range technologies
have been proposed in the literature, but short-range unicast sessions are oftentimes
used [22, 54]. Since the UEs within an MC are closely located, the use of multicast
short-range links for content delivery is possible and much more efficient than the
use of independent unicast sessions. It is in multicast wireless networks where novel
approaches, such as network coding (NC). have proven to be highly valuable to ensure
a high data rate and a low error rate [15].

In traditional data transmission, data packets are created by joining a header (i.e.,
control information) and the payload; this (source) packet is transmitted and, hopefully,
it will reach the destination. Depending on the technology, different feedback mech-
anisms can be used. Hence, a lost packet triggers a retransmission request from the
destination. For example, hybrid ARQ (HARQ) is used in LTE-A, where redundancy
is added to each retransmission until it is received without errors.

Instead, NC is a novel communications paradigm in which linear combinations of
packets are created; these are transmitted instead of the original source packets. For
this, the transmitter combines a batch of packets contained in its coding matrix, known
as a generation, to produce coded packets. As such, the receiver only needs to receive
sufficient linearly independent packets to decode the whole batch [15].

Random linear NC (RLNC) is one of the most widely used NC schemes [47]. In
RLNC, each packet in the generation is multiplied by a coefficient chosen randomly
from a Galois-field of size q, denoted as GF(q). Then, these packets are combined
to form a coded packet; the coded packet is sent along with the coding coefficients
so the receiver can decode the batch. The systematic RLNC is a variant of RLNC
in which the source packets are first sent one after the other. Then, coded packets
are transmitted to recover the errors that may have occurred during the transmission
of the source packets. Fig. 6.1 presents an example to transmit three data packets
with traditional feedback mechanisms, full-vector RLNC, and systematic RLNC. In
this particular example, packets are transmitted from right to left, and the second and
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Figure 6.1: Example to transmit three data packets with: (a) traditional feedback
mechanisms; (b) full-vector RLNC; and (c) systematic RLNC.

third transmissions are lost due to wireless channel errors. As it can be seen, RLNC
schemes provide the valuable benefit of eliminating feedback messages.

In addition, research has shown that less packet transmissions are needed with the
systematic RLNC than with the traditional full-vector RLNC (i.e., in which only coded
packets are transmitted). This considerably reduces energy consumption and increases
throughput. As an added benefit, systematic RLNC reduces the decoding complexity
at the UEs when compared to full-vector RLNC [52]. It is clear from Fig. 6.1 that this
difference in the computational complexity is due to the fact that less packets have to
be coded and decoded. Therefore, it occurs in both, the source and the destination.

The combination of cooperative approaches such as MCs with RLNC schemes
has lead to the innovative communication paradigm of NCC [55, 87]. NCC has the
potential to provide increased performance in multicast applications when compared to
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either MCs and RLNC alone [47]. In this chapter, we propose a simple NCC protocol
for the efficient content delivery in cellular networks. It comprises two phases, namely
the cellular and MC phases. In the cellular phase, the eNB segments the requested
content in batches of size g packets; hereafter we refer to the batch size g as the
generation size. These g packets are transmitted to an MC through time multiplexed
unicast links. Then, in theMC phase, the UEs cooperate under a distributed systematic
RLNC scheme to distribute these packets through multicast WiFi links.

One of the main drawbacks of existing cooperative systems is the transmission
of a large number of feedback messages within the MCs, which are needed to keep
track of the state of the UEs [27]. Hence, in this study we eliminate the transmission
of feedback messages from the UEs and instead use a simple but accurate analytical
model to calculate and minimize the number of coded packet transmissions needed to
achieve a predefined reliability of distributing the whole generation to the MC. This
approach solves the problem of excessive feedback and also optimizes the utilization
of resources.

However, two main challenges arise when modeling the multicast transmissions
under an RLNC scheme. The first challenge is to model a multicast problem with
multiple sources. That is, the content is distributed among the UEs in the MC and
the packets received at each node are not present at the remaining UEs. Single-source
multicast scenarios under RLNC schemes have been studied in the literature and the
formulation of the exact decoding probability is complicated [101]. Concretely, exact
formulations only exist for the case of one source and two destinations [55] and lower
bounds must be used for a higher number of destinations. In our model, we incorporate
a lower bound to solve this problem, whose accuracy under a simple multicast setup
that incorporates the systematic RLNC scheme has been confirmed in [101].

The second challenge is to model the inclusion of packets received from both, the
eNB and MC neighbors in the coding matrix of the UEs. This approach enhances the
throughput when compared to other policies like, for example, only include packets
received directly from the eNB in the coding matrix [99]. Needless to say, finding an
accurate expression for the linear independence of every coded packet transmission in
our scenario is also a cumbersome task. Therefore, we use an upper bound for the

159



Chapter 6. NCC for efficient massive content delivery through cellular networks

probability of linear independence of coded packets and evaluate its accuracy; it is
described in Section 6.4.

We also use our analytical model to calculate the energy consumption at the UEs.
Our results show that energy savings of more than 37 percent when compared to single
unicast content delivery can be achieved with our protocol in addition to a reduced
LTE-A bandwidth utilization. Specifically, the exact same amount of LTE-A resources
utilized by a single-user unicast download are needed for each MC. Hence, LTE-A
bandwidth gains grow linearly with the number of UEs in the MC.

The rest of the chapter is organized as follows. Section 6.2 presents the state of the
art of cooperative systems for massive content delivery. Then, Section 6.3 presents
the proposed NCC protocol and Section 6.4 presents the formulated analytical model,
including the process for the optimization of our NCC protocol. Section 6.5 presents
our main results and their implications. Finally, Section 6.6 presents our conclusions.

6.2 Related work

As mentioned above, the eMBMS system has several drawbacks. One of the most
important ones is that it suffers from unexpected disconnections and lacks mechanisms
to provide quality of service (QoS) guarantees. Therefore, diverse solutions to the
massive content delivery in LTE-A have been developed. For instance, the idea of
organizing microcells in cloudlets was first described in [38]. Cooperative relaying
was proved to increase network performance in [56] whereas Ahlswede et.al advocated
the concept of network information flow and its advantages in [15]; this work is
considered the precursor ofNC schemes. Moreover, the interplay between subgrouping
in cloudlets and NC was first proposed in [87].

Despite the clear advantage of short-range NC multicast in the cloud, most existing
cooperative systems consider unicast short-range data transmissions. Some examples
are the MicroCast [54], and CoopStream [22] systems, whose main focus is to offload
data traffic from the eNB. Clearly, the performance of all these previous technologies
might increase by using WiFi multicast in the short-range.
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Wang et al. presented a new NC-based video conference system for mobile devices
in multicast network called NCVCS [105]. NCVCS demonstrates the advantages of
multicast over short-range unicast, but lacks the cellular communication backhaul.

The main motivation for this work is the NCC system first proposed in [100]. The
main focus of this NCC network was to offload the LTE-A network, but also, important
throughput and energy gains were observed. Consequently, demonstrators were built
and presented at MWC 2017, and IEEE CCNC 2018/CES 2018 [80], and IEEE 5G
Summit 2018. This latter demo was the product of my collaboration with the Deutsche
Telekom Chair of Communication Networks of the Technische Universität Dresden,
Germany, during a six-month research stay.

Regarding the analytical modeling of RLNC multicast, a thorough study on the
decoding probability in a one-source multicast scenario with both, full-vector and
systematic RLNC was conducted by Tsimbalo et al. [101]. Specifically, Tsimbalo et
al. define the probability of successful content delivery to be the probability that every
node receives the whole generation. Please observe that this definition magnifies the
importance of considering the correlation between the packets received at each node
to calculate the desired probability. Tsimbalo et al. concluded that the effect of this
correlation may be negligible only if the systematic RLNC is used. On the other hand,
neglecting the effect of correlation can affect the accuracy of models if full-vector
RLNC is used. As it will be seen in Section 6.4, we deal with a similar but even more
complex problem because in our NCC protocol: a) content distribution within the
MCs is performed through multiple multicast sessions; b) the eNB distributes the data
packets among the UEs; and c) coding is performed by combining the packets received
from the eNB and from neighboring UEs. Therefore, we propose a different definition
for the probability of successful content delivery that increases the accuracy and
simplicity of our calculations when compared to the definition provided by Tsimbalo
et al. [101].
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Table 6.1: Comparison between related systems

LTE-A NC Short-range

eMBMS [26] 3 7 7

MicroCast [54] 3 3 Unicast
CoopStream [22] 3 3 Unicast
NCVCS [105] 7 3 Multicast
NCC system [100] 3 3 Multicast

6.3 NCC protocol and basic assumptions

In this section we describe the NCC protocol we propose for massive content delivery
through cellular networks. In addition, we outline simple assumptions used for our
analysis.

As a starting point, groups of UEs called MCs are formed. For this, let n be the
maximum number of UEs that are allowed in an MC, hereafter referred to as the cloud
size; n is signaled by the eNB as a configuration parameter. MCs are groups of at
most n UEs that: a) have LTE-A connection to the same eNB; b) request access to
the exact same content; and c) are fully interconnected by a short-range technology,
namely WiFi. It is out of the scope of our study to develop the rules and the protocol
for the formation of MCs. Instead, we focus on the content delivery once the MCs
have been formed. Nevertheless, a similar approach to that of clustering algorithms
for wireless sensor networks (WSNs), such as the one described in Chapter 5, can be
used.

Content delivery occurs in two phases: the cellular and MC phases. In the cellular
phase, the eNB segments the requested content in batches of g data packets; g is
commonly known as the generation size. These g packets are transmitted to an MC
through n unicast sessions. Then, at the MC phase, the UEs first multicast the packets
received from the eNB without coding. Afterwards, the UEs multicast coded packets
to recover the errors that may have occurred in the previous transmissions. Fig. 6.4
illustrates the basic operation of our NCC protocol in the cellular and MC phases;
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Figure 6.2: Overview of the (a) cellular and (b) MC phases that comprise our NCC
protocol.

frequency

time

12 subcarriers
180 kHz

7 symbols
per PRB

2 PRBs per subframe
ts = 1 ms

Figure 6.3: Structure of the physical resource blocks (PRBs) in LTE-A.

these are described in detail in the following.

Cellular phase: The eNB transmits the g data packets to the n UEs through
n unicast sessions. In LTE-A, data transmission takes place in a slotted channel,
whose minimum scheduling unit is one subframe, with duration ts = 1 ms [8]. The
minimum unit for data downlink transmission in LTE-A is the physical resource block
(PRB), which is defined as the set of 7 of consecutive orthogonal frequency-division
multiplexing (OFDM) symbols in the time domain and 12 consecutive subcarriers in
the frequency domain [8]; in the time domain, two PRBs fit in one subframe. Fig. 6.3
illustrates the structure of the PRBs.

We assume the n unicast sessions are multiplexed, either in time or in frequency,
so packets are transmitted to the UEs in a round-robin fashion. For this, each of the
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n UEs is assigned an index, in the set N = {i ∈ Z+ | i ≤ n}, that defines the order
in which they will receive the data packets from the eNB. Therefore, if time-division
multiplexing (TDM) is used, only one data packet transmission occurs simultaneously
at each cloud. On the other hand, if frequency-division multiplexing (FDM) is used,
the number of simultaneous data packet transmissions at each MC is the minimum
between n and the maximum number of simultaneous data packet transmissions that
can be accommodated in one cellular carrier. The latter is determined by the cell
bandwidth and the selected data rate. Please observe FDM unicast may not be possible
under certain applications that generate the data on the fly. Live video streaming
applications are clear examples of such applications. For these, TDM unicast must be
used.

Throughout this chapter, we assume the MCs are closely located to the eNB so
that no wireless channel errors can occur during the cellular phase. This is a valid
assumption as the considered data rate is relatively low (see Table 6.3 on page 175),
LTE-A is provided with highly reliable data transmission mechanisms such as HARQ,
and is set to modify the modulation and coding scheme (MCS) if the packet erasure
ratio (PER) is higher than 0.1 [4, Sec. 7.2.3]. As such, the cellular phase is comprised
of g transmissions, distributed among the n UEs, which must cooperate to distribute
these packets in the MC phase.

MC phase: The UEs are in charge of redistributing the g packets received from
the eNB through the MC. No feedback messages are transmitted in this phase, so the
eNB must inform the number of time slots allocated for the content distribution within
the MC to the UEs.

The index i assigned to each UE in the cellular phase is used to create a time-
division multiple access (TDMA) schedule. At each time slot, a UE performs a WiFi
multicast packet transmission to the remaining n − 1 UEs in the MC. Therefore, the
set of neighbors of the ith UE is Ni = { j | j ∈ N \ i} and has n − 1 elements. The
transmitting UE changes at each time slot to uniformly distribute energy consumption
among the MC members. Please observe that the time slot duration at this phase is not
necessarily the same as that of the LTE-A subframe, hence a higher or lower data rate
can be used.
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At the end of the cellular phase, gi packets are present at the ith UE and these are
not present in the remaining n − 1 UEs. A distributed systematic RLNC scheme is
implemented in this phase, hence, gi source (i.e., not coded) packets are transmitted
by the ith UE. In other words, UEs relay the source packets received from the eNB, but
not from their neighbors. Therefore, the first g packet transmissions within the MC
are not coded. Then, coded packet transmissions are performed in order to recover the
errors that occurred during the g source packet transmissions.

Exactly g time slots are needed for the transmission of the g source packets.
Therefore, the eNB only has to calculate the number of time slots allocated for the
transmission of coded packets s. An MC phase concludes when g + s time slots
have elapsed. Then, the eNB continues with the transmission of the next generation if
needed, hence a new cellular phase begins. Otherwise, data transmission is terminated.

The timing diagram at each phase of our NCCprotocol for n = 3, g = 5, and s = 2 is
illustrated in Fig. 6.4. Naturally, the same amount of resources are utilized when either
TDM or FDM are used in the cellular phase. But FDM greatly reduces the cellular
phase length. In the MC phase depicted in the diagram (right block), wireless channel
errors occur at the second and fourth time slots. Each of these errors is recovered with
one of the two coded packet transmission because UEs include packets transmitted by
neighboring UEs in their coding matrices.

It is important to mention at this point that cellular and MC can be performed
in sequence or in parallel, depending on the multi connectivity capabilities of the
UEs (i.e., smart phones) in the MC. That is, if cellular and WiFi interfaces can be
used simultaneously, these phases can occur in parallel after the first source packet is
transmitted by the eNB. Otherwise, these must be performed in sequence. Current
4G smart phones are not likely to support this kind of multi connectivity. On the
other hand, 5G promises full integration between these two technologies, hence, it
is only natural to assume this kind of multi connectivity will be widely available in
commercial devices. Hereafter, we refer to the case in which cellular and MC phases
are performed in sequence as the 4G scenario. Conversely, we refer to the case in
which cellular and MC phases are performed in parallel as the 5G scenario.
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Figure 6.4: Timing diagram for the proposed NCC protocol given n = 3, g = 5, and
s = 2. The errors that occurred at the second and fourth time slots are recovered with
the coded packet transmissions.

6.4 Analytical model

In this section we provide a simple but accurate analytical model to optimize our NCC
protocol. For this, let s be the number of coded packet transmissions performed in the
MC. That is, from every i ∈ N ; please observe s is selected by the eNB and informed
to the UEs. Building on this, we seek to obtain s∗, defined as the minimum value of
s needed to achieve a desired reliability τ. Once s∗ has been obtained, the maximum
throughput and the average energy consumption per UE can be easily calculated.

To find s∗, let S be the random variable (RV) that defines the total number of
coded packet transmissions needed so the n nodes at the MC decode the generation.
Therefore, S has a phase-type (PH) distribution that describes the probability that the
coding matrices of the UEs in the MC are full rank. A coding matrix is full rank when
it has exactly the same number of columns and linearly independent rows. The linearly
independent rows are known as degrees of freedom (DOFs). The rank of D can be
calculated by performing Gaussian elimination so that the matrix is in reduced row
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
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0 0 1 X

0 0 0 1


Figure 6.5: Example of a full-rank 4 × 4 matrix.

echelon form and counting the number of ones in the diagonal, these ones are known
as pivots. Fig. 6.5 illustrates a 4 × 4 matrix that is full-rank.

Hereafter, we refer to S as the probability of successful content delivery, whose
support is the number of time slots allocated for the transmission of coded packets s.
Building on this, s∗ is defined as

s∗ ≡ min
s
{s | FS (s; n) ≥ τ} (6.1)

where FS is the cumulative distribution function (CDF) of RV S. That is, τ is a
threshold for S and its value must be selected depending on the needs of the content
delivery application. The process to calculate S is described in the following.

At the end of the cellular phase, g source packets have been distributed among the
n UEs in the MC following a round-robin scheduling. We define gi as the total number
of data packets received by the ith UE in the cellular phase. Clearly, gi is also the
number of source packets transmitted by the ith UE in the MC phase, and is given as

gi =

⌈
g − (i − 1)

n

⌉
. (6.2)

To proceed, please recall the set of neighbors of the ith UE isNi = { j | j ∈ N \ i}.
From there, we define the time index si as the number of coded packet transmissions
towards the ith UE (i.e., from every j ∈ Ni). Also let ε be the PER at the WiFi links
(i.e., we assume the same ε for each pair of UEs {i, j}). Building on this, we define
the stochastic process

{
Xsi (i)

}
si ∈N as the rank of the coding matrix of the ith UE at

time index si , whose support for any si is x = {0, 1, . . . , g}. The RV of the stochastic
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process defined above at si = 0 X0(i) is our starting point and has special significance
as it defines the rank of the coding matrix of the ith UE at the end of the source packet
transmissions. The probability mass function (pmf) of X0(i) is

pX0 (x; i) = Pr [X0(i) = x] =
(
g − gi
x − gi

)
(1 − ε )x−gi εg−x . (6.3)

Please observe that, since only source packets have been transmitted up to this point,
X0(i) is also the number of non-zero columns in the coding matrix of the ith UE at
si = 0.

Next, coded packet transmissions are performed at every si ≥ 1. Let, S(i) be the
RV that defines the number of coded transmissions from the j ∈ Ni UEs needed for
the coding matrix of the ith UE to be full rank. S(i) also has a PH distribution whose
domain is the set of values for time index si . We calculate the CDF of S(i) as

FS (si; i) = FXsi
(g; i) = Pr

[
Xsi (i) = g

]
. (6.4)

Clearly, S(i) depends on the PER, denoted as ε , and on the probability of linear
independence of each of the sith coded packet transmissions, denoted as Pli(si).
Nevertheless, the correlation between the packets received at each pair of UEs is needed
in order to obtain the exact value for Pli(si). Therefore, we define the stochastic process
Zsi (i, j) as the number DOFs that are missing from the coding matrices of both, the
ith and jth UEs at si . The joint pmf of X0(i) and Z0(i, j) is given as

pX0Z0 (x, z | i, j) =

εg−x+z
∑

u

[(
gj

u

) (
γ

x − gi − u

) (
γ − x + gi + u

z

)
(1 − ε )γ+u−z

]
(6.5)

where γ = g − gi − gj and u represents the number of DOFs in the coding matrix of
the ith UE that were transmitted by the jth UE. The summation in (6.5) is performed
in the set of possible values{

u ∈ N | max{0, x − γ − gi + z} ≤ u ≤ min{gj, x − gi }
}
.

The exact value of Pli(si) for a given x and z is defined as

Pli (si | x, z) = Pr
[
Xsi+1(i) = x + 1 | Xsi (i) = x ∩ Zsi (i, j) = z

]

= 1 − qx+z−g . (6.6)
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That is, Pli(si) depends on x and z, but also on the selected Galois-field size q and on
the generation size g.

Clearly, different pairs of UEs {i, j} may have different joint distributions of
X0(i) and Z0(i, j), as these depend on gi , gj , and γ. Furthermore, the joint pmf of
Xsi (i) and Zsi (i, j) is different for each si . That is, the joint pmf of Xsi (i) and Zsi (i, j)
must be calculated for every possible si and for each {i, j} in order to calculate the
exact Pli(si). This makes our problem intractable even for small values of n and si . For
instance, a related problem has only been solved for one transmitter and two receivers
by Khamfroush et al. [55], but no exact formulations exist for a higher number of
receivers.

Instead, we approximate Pli(si) by assuming that every one of the missing DOFs
in the decoding matrix of the ith receiving UE is present in the coding matrix of the
jth transmitting UE. That is, Pr

[
Zsi (i, j) = 0

]
= 1 for each si , i, and j, which gives

P′li(si) = Pli (si | x, 0) = 1 − qx−g; (6.7)

this is clearly an upper bound for Pli(si) and allows us to use the pmf of Xsi (i) alone
instead of the joint pmf of Xsi (i) and Zsi (i, j) to calculate S(i).

Naturally, (6.7) is exact for for q ≈ ∞ and also for n = 2 since g = g1 + g2 in
this latter case. The mean squared error (MSE) of the upper bound in (6.7) can be
calculated as

MSE
[
P′li(si)

]
=

∑

∀x,z
pXsi

Zsi
(x, z | i, j)

(
qx+z−g − qx−g)2

. (6.8)

Table 6.2 shows the MSE for the first coded transmission in the MC, MSE
[
P′li(0)

]
,

for characteristic values of n, g, ε , and q. The first coded transmission for n = 3 and
for n = 100 is performed by the second and the first UEs, respectively. Therefore,
MSE

[
P′li(0)

]
was obtained with i = 1 and j = 2 for n = 3, and with i = 2 and j = 1

for n = 100.

Clearly, (6.7) provides a highly accurate approximation, and the parameter that has
the greatest impact on accuracy is the field size q. Concretely, a relatively high error
is only obtained with q = 2 by setting: a) a short g and high PER; and b) a large g and
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Table 6.2: MSE between the approximate and exact probability of linear independence
of the first coded packet transmission.

n = 3 n = 100

g = 10 g = 100 g = 10 g = 100

ε = 0.02
q = 2 6.95 · 10−5 3.09 · 10−4 1.77 · 10−4 5.58 · 10−4

q = 28 1.64 · 10−8 5.38 · 10−8 4.12 · 10−8 8.20 · 10−8

ε = 0.16
q = 2 2.54 · 10−3 1.33 · 10−5 4.63 · 10−3 5.92 · 10−7

q = 28 4.86 · 10−7 1.53 · 10−10 7.69 · 10−7 1.44 · 10−12

low PER. As it will be seen in Section 6.5, the error introduced by this approximation
in the pmf of S is negligible. Therefore, (6.7) is used hereafter.

Now we proceed to obtain the probability of successful content delivery S. For
this, let Cr×c be a coding matrix of dimension r × c s.t. r ∈ N and {c ∈ Z+ | c ≤ g},
whose elements are selected uniformly at random from GF(q). The probability that
matrix Cr×c is full rank, denoted as F (r, c), is

F (r, c) =



0 for r < c,
c−1∏

j=0

(
1 − q j−r ) otherwise.

(6.9)

Then we use (6.9) to obtain the CDF of T |X0(i) as

FS |X0 (si | x; i) =
si∑

u=g−x

(
si
u

)
(1 − ε )u ε si−u F (u, g − x) (6.10)

which allows us to calculate the marginal CDF of S(i),

FS (si; i) =
g∑

x=gi

pX0 (x; i) FS |X0 (si | x; i)

=

g+si∑

u=g

(1 − ε )u−gi εg+si−u
g∑

x=xmin

(
si

u − x

) (
g − gi
x − gi

)
F (u − x, g − x) (6.11)
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where xmin = max{gi, u − si }.
To obtain the distribution of S, we first define the number of coded transmissions

towards the ith UE si as a function of the number of time slots allocated for the
transmission of coded packets s, as

si = f (s, i, n, g) = s + gi −
⌈
g + s − (i − 1)

n

⌉
. (6.12)

That is, si transmissions will be performed by the UEs in Ni until time index s.

Tsimbalo et al. [101] define the probability of successful content delivery to be the
probability that each and every UE in the MC decodes the generation. Let SN be the
RV that defines the probability of content delivery as defined by Tsimbalo et al.. The
exact CDF of SN is defined as

FSN (s; n) ≡ Pr


n⋂

i=1
Xsi (i) = g

 . (6.13)

But obtaining the exact FSN (s; n) is complicated. Instead, it is commonly assumed
that, at each s, Xsi (i) ⊥⊥ Xsj ( j) for all {i, j ∈ N | i , j}. Hence, the lower bound

F ′SN (s; n) ≡
n∏

i=1
Pr

[
Xsi (i) = g

]
=

n∏

i=1
FXsi

(g; i) (6.14)

is commonly used. In particular, Tsimbalo et al. found (6.14) to be a tight lower
bound for FSN (s; n) under the systematic RLNC for a wide range of values of q and g.
Preliminary results on the performance of our NCC protocol were obtained with the
definition of the probability of successful content delivery described previously [61].
Nevertheless, we find this definition to be inconvenient and unfair. Specifically, it is
inconvenient in the sense that it is not exact, hence adopting this previous definition
introduces an approximation error. We provide the following example to highlight the
lack of fairness of the latter definition.

Please recall our main goal is to find s∗, defined as the minimum number of coded
packet transmissions s needed to achieve the desired reliability τ. If we set the cloud
size to be n = 2 and substitute FS with F ′SN in (6.1), we have

s∗ ≡ min
s

{
s | Pr

[
Xs1 (1) = g

]
Pr

[
Xs2 (2) = g

] ≥ τ} . (6.15)
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Therefore, on average, the probability of decoding the generation at each UE must be
≥√τ when n = 2. Now assume n = 100. If we follow the same approach as described
above, on average, the probability of decoding the generation at each UEmust be ≥ 100√τ
when n = 100. Since τ < 1, the required S(i) to reach the desired reliability grows
with n. In other words, individual UEs in a small MC will have a lower probability to
decode the generation than those in a larger MC. To solve this fairness problem, we
propose to adopt the following definition for RV S.

Proposition 6.1. Let S be the RV that defines the minimum probability that a given
UE decodes the generation among the UEs in a specific MC at each coded packet
transmission. That is, the minimum value of S(i) among all the i ∈ N at each coded
packet transmission. The CDF of S can be easily calculated as

FS (s) ≡ min
i

FS (si; i) = min
i

Pr
[
Xsi (i) = g

] ∀s ∈ N . (6.16)

Yet another interpretation of the proposed definition of S is the probability that the
worst UE in the MC decodes the generation at each coded packet transmission. Please
observe the proposed definition ensures a higher S(i) for the rest of the UEs that is
independent of the cloud size n.

Therefore, we use FS (s; n) as defined in (6.16) to calculate s∗ for a given τ as in
(6.1). Building on this, s∗ defines the minimum number of coded packet transmissions
needed so that S(i) ≥ τ, for all i ∈ N . Hence, (6.1) can be rewritten as follows.

s∗ ≡ min
s

{
s | min

i
FS (si; i) ≥ τ

}
. (6.17)

Once s∗ has been obtained, we can calculate the maximum achievable throughput
per UE R∗, given in bits per second. For this, let d be the length of the cellular
phase in subframes. That is, the number of subframes needed to deliver the generation
from the eNB to the MC. Since we assume no errors occur in the cellular phase, d

is a deterministic value that highly depends on the multiplexing used for unicast data
transmission. Therefore, we distinguish two main cases: TDM and FDM. In TDM,
d only depends on the generation size g. On the other hand, in FDM, d depends on
the generation size g, the cloud size n, the cellular data rate R, and the maximum
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throughput in the carrier B. The latter depends on the selected MCS and the carrier
bandwidth. Building on this, the length of the cellular phase is given as follows

d =



g for TDM,
g

min
{
n,

⌊
B
R

⌋ }
 for FDM.

(6.18)

Please observe that the length of the cellular phase would be an RV if wireless
channel errors can occur. However, this latter case can be easily extended from (6.18)
as these errors do not affect the operation of our NCC protocol.

To proceed with the calculation of the achievable throughput, let ρ be the ratio
of WiFi to cellular data rate. Oftentimes in 4G, only one interface can be used
simultaneously. Hence, cellular and MC phases must be performed one after the other.
As a result of this, the achievable throughput per UE in 4G is given as

R∗4G(n) =
`

ts

g

d + 1
ρ (g + s∗)

=
R

d
g +

1
ρ

(
1 + s∗

g

) , if n ≥ 2. (6.19)

On the other hand, 5G will provide full integration between cellular and short-range
interfaces, so the cellular andMCphases can be performed in parallel after the first eNB
transmission. As a result, the achievable throughput per UE in 5G can be calculated
as

R∗5G(n) =
`

ts

g

1 + 1
ρ (g + s∗)

=
R

1
g +

1
ρ

(
1 + s∗

g

) , if n ≥ 2. (6.20)

That is, the MC phase can begin immediately after the first source data packet is
transmitted from the eNB toward the MC in 5G. As a consequence, the multiplexing
method used for unicast sessions is irrelevant.

Finally, we calculate the average energy consumption per UE Eue. For this, let

E
[
S(i) | s∗

]
=

f (s∗,i)∑

u=0
u pS (u; i) (6.21)

be the expected number of subframes that the ith UE is in reception mode and in which
coded packets are transmitted. Please observe pS (u; i) is the pmf of Su (i), which can
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be easily obtained from its CDF calculated by (6.11). We also calculate the expected
number of source packets received at each of the UEs as

E [X0] =
1
n

n∑

i=1

g∑

x=0
x pX0 (x; i) (6.22)

From there we calculate Eue(n) as

Eue(n) =
`

n

[
g Ecel,rx + (g + s∗) Ewifi,tx + *,(n − 1) g +

n∑

i=1
E

[
S(i) | s∗

]+- Ewifi,rx

+
[
s + n (g − E [X0])

]
Ee/d(q)

]
(6.23)

where Ecel,rx, Ewifi,rx, and Ewifi,tx define the energy consumed per bit in the LTE-A
transmission, and WiFi reception and transmission, respectively. Ee/d(q) is the energy
consumed per bit to encode or decode a packet for a given Galois-field size GF(q).
Please observe a different amount of energy can be consumed during encoding than
during coding duties. However, the work of Sørensen et al. found the difference
between these two to be negligible, hence it is safe to assume the same amount of
energy is consumed [91].

6.5 Results

In this section we first compare the results obtained by our model with those obtained
by Monte Carlo simulations and study the behavior of RV S. Second, we present the
optimal number of coded transmissions s∗ as a function of the cloud size n and discuss
the achievable throughput gains. Finally, we evaluate the energy savings that can be
achieved with our NCC protocol.

Throughout this section we select the generation size to be g = 64. The latter is
one of the values that provide the highest benefits in NC [81, 91]; hence it is commonly
used in the literature. Other common alternative is g = 32. Please recall the subframe
duration in LTE-A is ts = 1 ms. A typical UDP data packet of length ` = 1470 bytes is
used. Up to one data packet is transmitted to each UE in the MC per subframe, which
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Table 6.3: Parameter settings.

Parameter Symbol Settings

Cell bandwidth – 20 MHz
Generation size g 64 packets
Galois-field size q {2, 28}
Cloud size n {2, 3, . . . , 100} UEs
Desired reliability τ 1 − 10−3

Packet erasure rate (PER) ε {0.2, 0.4, 0.8, 0.16}
Subframe duration ts 1 ms
Packet length ` 1470 bytes
Data rate at the LTE-A and WiFi links R 11.76 Mbps
Energy consumption for LTE-A reception [57] Ecel,rx 78.68 nJ/bit
Energy consumption for WiFi transmission [93] Ewifi,tx 37.64 nJ/bit
Energy consumption for WiFi reception [93] Ewifi,rx 37.64 nJ/bit
Energy consumption for encoding/decoding [91] Ee/d

(
28

)
3.5 nJ/bit

gives a cellular data rate of R = 11.76 Mbps. We assume this same data rate for the
WiFi links. Energy consumption parameters were obtained from the LTE-A and WiFi
energy consumption models provided by Lauridsen et al. [57] and by Sun et al. [93],
respectively. We assume the same energy per bit is consumed during transmission
and reception over WiFi. The energy consumption during encoding and decoding is
obtained from the work of Sørensen et al. [91], where a Samsung Galaxy S5 was
considered. Other parameter settings are listed in Table 6.3.

A C-based simulator was developed to assess the accuracy of the analytical model;
it comprises the coding, transmission, and encoding stages. The number of simulation
runs is set to ensure the relative margin of error for each point of the pmf of successful
content delivery S is less than 0.5 percent at a 95 percent confidence interval. For
example, the minimum number of simulation runs to ensure the described accuracy
was found to be one million for each combination of parameters.

Just as in Chapter 3, the accuracy of our model is assessed by means of the Jensen-
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Table 6.4: JSD between the pmfs of successful content delivery obtained by our model
and by simulations.

n = 3 n = 100

g = 32 g = 64 g = 32 g = 64

ε = 0.02
q = 2 3.49 · 10−5 6.85 · 10−5 5.26 · 10−4 4.68 · 10−4

q = 28 2.26 · 10−5 1.87 · 10−5 7.73 · 10−4 6.30 · 10−4

ε = 0.16
q = 2 1.21 · 10−3 1.10 · 10−3 1.17 · 10−3 1.42 · 10−4

q = 28 1.12 · 10−4 2.20 · 10−4 1.68 · 10−4 1.54 · 10−5

Shannon Divergence (JSD), which measures the increase in the Shannon’s entropy
when an approximated pmf is assumed to be the real pmf of an RV. The formula to
calculate the JSD between two pmfs was defined in (3.53). To calculate the JSD,
we denote the pmfs of S obtained by our model and by simulation as pS (s; n) and
pSsim (s; n), respectively, to explicitly indicate these are calculated for a specific value
of n. Building o this, (3.53) can be written as

JSD (pS (s; n))≡H
(

pSsim (s; n) + pS (s; n)
2

)
− H

(
pSsim (s; n)

)
+ H (pS (s; n))

2

where H (·) is the base-e Shannon’s entropy. As such, the JSD is upper bounded by
log 2 and a JSD of zero indicates both pmfs are identical. Hence, 0 ≤ JSD (·) ≤ log 2.

Table 6.4 shows the JSD between pS (s; n) and pSsim (s; n) for typical values of g ∈
{32, 64}, q ∈ {2, 28}, and for widely distinct values of n ∈ {3, 100} and ε ∈ {0.02, 0.16}.
As it can be seen, the JSD is extremely low regardless of the cloud and generation
sizes. As a reference, the obtained JSD for n = 2, where our formulations are exact, in
combination with g = 64, q = 28, and ε = 0.02 is 2.145 · 10−4. The JSD for the same
combination of n, g, and q, but with ε = 0.16 is 2.65 · 10−3. One million simulations
were performed for these cases, hence, we consider all cases that lead to a comparable
of lower JSD to be exact.

We begin the analysis of our NCC protocol by comparing the complementary
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Figure 6.6: CCDF of successful content delivery S for q = 28, ε = {0.02, 0.08, 0.16},
and n = {2, 4, 8, 16}; y-axis in logarithmic scale.

CDF (CCDF) of successful content delivery 1 − FS (s; n), for n = {2, 4, 8, 16} and
ε = {0.02, 0.08, 0.16} in Fig. 6.6. In other words, Fig 6.6 shows the probability that the
worst UE in the MC does not decode the generation. Therefore, lower values indicate
a better performance. As it can be seen, large cloud sizes usually reduce the number
of coded packet transmissions needed to achieve the desired reliability. The reason
for this is that the ratio of transmissions from the UEs in Ni to total transmissions in
the MC phase si/s∗ increases with n. In other words, the frequency of the packets
transmitted in the MC towards each of the n UEs increases with n. This can be clearly
seen in the plots for n = 2. In these, the UEs receive up to one packet every two
subframes and transmit in the other. Hence, these can receive up to 50 percent of the
transmitted packets. This effect can be observed in the step-like shape of these curves.
Instead, UEs in an MC for which n = 16 receive 15 data packets every 16 subframes.
Hence, these receive up to 93.75 percent of the transmitted packets. In the following,
we obtain s∗ for τ = 1 − 10−3.

The effect of cloud size on performance can be clearly observed in Fig 6.7, where
we show s∗ and the achieved throughput per UE as a function of n and ε for q = 28.
The results presented in Fig. 6.7b were obtained under the assumption that TDM is
used for the unicast sessions under 4G. That is, data packets are transmitted one after
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the other and the MC phase begins at the end of the cellular phase. Specifically, the
selection of n = 2 results in the largest s∗ and the lowest throughput. Clearly, s∗ is not
a monotonically decreasing function. Nevertheless, it is clear that increasing the cloud
size will oftentimes be beneficial. For instance, selecting n ≥ 7 and n ≥ 10 is optimal
for ε = 0.02 and for ε = 0.04, respectively. On the other hand, selecting 15 ≤ n ≤ 32
and 26 ≤ n ≤ 32 is optimal for ε = 0.08 and for ε = 0.16, respectively. Interestingly,
the global minima of s∗ for each of the values of ε ∈ {0.02, 0.04, 0.08, 0.16} are
{7, 10, 15, 26}, which coincides with the values of n that lead to these values. Also of
interest is that, if q = 2 were to be selected instead of q = 28, the achievable throughput
would be reduced around 6 and 3 percent for ε = 0.02 and for ε = 0.16, respectively.

Please observe that the maximum achievable throughput per UE within the MC
using TDM in 4G is lower than that of a single unicast session R = 11.76 Mbps. For
example, Rue(n) ≈ R/2.15 for all n given ε = 0.08. This slight decrease in throughput
can be seen as the main overhead of our NCC protocol, and, as described by (6.19),
occurs because g packet transmissions are performed in the cellular phase, followed
by g systematic and s∗ coded transmissions in the MC phase.

Nevertheless, this decrease in throughput can only occur if the cellular bandwidth
is sufficient to allocate n unicast sessions in parallel, which is needed to maintain the
throughput per UE equal to the data rate in traditional unicast content delivery. On
the other hand, our NCC protocol can provide throughput gains when the cellular
bandwidth is not sufficient. For this, let the cellular bandwidth be 20 MHz, which is
the maximum bandwidth of an LTE-A carrier. If the highest MCS of 256 quadrature
amplitude modulation (QAM) is used, the maximum data rate that can be achieved in
such carrier is B = 97.896 Mbps [8]. Therefore, the maximum throughput per UE
following the traditional approach is Rmax(n) = min{R, 97.896/n}. Building on this,
Fig. 6.8 shows the achievable throughput gains per UE with our NCC protocol for a
given n, defined as

Gth(n) =
R∗(n)

Rmax(n)
− 1. (6.24)

Three cases are considered in Fig. 6.8 with respect to cellular data transmission: 1)
TDM in 4G; 2) FDM in 4G; and 3) 5G. Please recall that we assume only one interface
at the time can be used in 4G, so cellular and MC phases must be performed in
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Figure 6.7: (a) Optimal number of coded packet transmissions s∗ and (b) throughput
per UE given TDM is used for the unicast sessions under 4G; τ = 1−10−3 and q = 28.

sequence. On the other hand, these phases can be performed in parallel in 5G, hence,
the multiplexing method is irrelevant to the calculation of the throughput.

As it can be seen, throughput losses occur with small cloud sizes and the reason
for this was described above. However, throughput gains are obtained if n ≥ 21 and if
n ≥ 14 for the TDM and FDMmethods in 4G. On the other hand, throughput gains are
obtained if n ≥ 12 in 5G. It is important to mention that these results were obtained
with ε = 0.16, which represents a high PER and can be even be seen as an upper bound
for this parameter. In other words, these results may be seen as a worst case scenario
for WiFi transmissions.
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Figure 6.8: Achievable throughput gains with our NCC protocol given: 1) TDM in
4G; 2) FDM in 4G; and 3) 5G; ε = 0.16.

Clearly, an inherent benefit of our NCC protocol is offloading the cellular link.
This in turn results in the added benefit of cellular data savings for the UEs in the MC.
Naturally, UEs in an MC only download a fraction of the data from the cellular link,
which is inversely proportional to n. Hence, the cellular data savings for the UEs can
be easily calculated as 1 − 1/n.

Finally, we present the sharp reduction in the energy consumption (i.e., energy
savings) that can be achieved at the UEs. For this, Fig 6.9 shows an area plot of the
average energy consumption per UE as a function of n for ε = 0.16. Colors indicate
the energy consumption at each interface and process, namely LTE-A reception, WiFi
reception and transmission, and encoding/decoding. For example, the energy con-
sumption for the direct transmission of the g packets to each UE through the cellular
link is 59.17 mJ. On the other hand, the energy consumption per UE for n = 20 is
37.47 mJ and is further reduced as n increases. Therefore, energy savings of more than
37 percent can be achieved with our NCC protocol, even with relatively small cloud
sizes and a high PER.

Fig. 6.9 also shows that the main contributing factor to the overall energy savings
is that the number of packets transmitted from the eNB to each UE decreases as n

increases. Conversely, the number of packets transmitted through WiFi to each UE
increases with n, but the power consumption during reception in the WiFi link is
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Figure 6.9: Average energy consumption per UE given ε = 0.16 and q = 28.

much lower than in the cellular link. The energy consumed for WiFi transmissions
becomes particularly small for large cloud sizes. Finally, the energy consumption
during encoding and decoding is, in general, the least contributing factor to overall
energy consumption despite it slightly increases with n. Nevertheless, the latter
surpasses the average energy consumed during WiFi transmissions for n ≥ 94.

6.6 Conclusions

In this chapter, we presented anNCCprotocol formassive content delivery and a simple
but accurate analytical model that allows to fine-tune its parameters. Specifically, the
presented analytical model was used to find the optimal configuration for the NCC
protocol. Our analytical model incorporates an upper bound for the probability of
linear independence of coded packets that sharply reduces its complexity. We evaluated
the error of this upper bound and observed that its impact is negligible when typical
generation and Galois-field sizes are selected.

Our results show that important energy savings of more than 37 percent can be
achieved with our protocol, even with relatively small cloud sizes and considerably
high PERs. The main overhead of our protocol is the decrease in throughput when
compared to data transmission through parallel unicast LTE-A links. But an eNB can

181



Chapter 6. NCC for efficient massive content delivery through cellular networks

only serve a limited number of unicast sessions in parallel at a high data rate (or at any
data rate if the number of UEs is extremely large). Hence, important throughput gains
are achieved when the cellular bandwidth is insufficient to serve the requesting UEs at
the desired data rate. In our studies, this occurs when more than 14 UEs request the
same content and are served with a single LTE-A (i.e., 4G) carrier. In 5G, throughput
gains can be achieved with only 12 UEs or more. In addition to energy savings and
throughput gains, our NCC provides dramatic cellular data savings that grow with the
number of UEs in the MC. The combination of these benefits makes our NCC protocol
an appealing solution under massive content delivery scenarios.

A relevant characteristic that is not captured by our model is that the PER between
some pairs of UEs increases with the cloud size in practical implementations. As a
result, important differences in the PER between pairs of UEs are expected if largeMCs
are formed. Hence, the achievable throughput will be limited by the maximum PER in
the MC. Building on this, we advise to set the minimum cloud size that results in the
maximum throughput. By doing so, small MCs will be formed with closely-located
UEs and, still, important energy savings will be achieved.
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Conclusions and future perspectives

This thesis mainly focuses on efficiently supporting massive machine-type communi-
cation (mMTC) in cellular networks, but also incorporates analyses on mMTC over
wireless sensor networks (WSNs) and a potential solution to achieve efficient enhanced
mobile broadband (eMBB) in cellular networks under massive content delivery scenar-
ios. As such, it presents analyses and solutions to two out of the three main use cases
for the 5th generation (5G) of mobile networks. 5G networks promise full integration
with 4th generation (4G) and short-range technologies, and will adopt several aspects
of 4G directly. Therefore, the analyses presented in this thesis that assume the typical
configuration in 4G can be immediately extended to 5G.

The results presented in Chapters 2, 3, and 4 exhibited the inefficiency of the RA
procedure (RAP), defined by the 3rd Generation Partnership Project (3GPP) for the
initial access to cellular networks, undermMTC. TheRAP is a four-message handshake
between the user equipments (UEs) and the cellular base station, whose first step:
preamble transmission, suffers from the same limitations as a simple multichannel
slotted ALOHA protocol. In addition, downlink signaling resources used to signal
the success of preamble transmissions present a second limitation that can be even
more restrictive. As a result of this, the probability that a UE successfully completes
the RAP (i.e., success probability) in LTE Advanced (LTE-A) under the most typical
mMTC behavior is only 0.313. This situation becomes even more critical for the
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narrowband Internet of Things (NB-IoT) standard, simply because the number of
available preambles is lesser when compared to traditional LTE-A. For example, it
was observed in Chapter 4 that the success probability under an mMTC scenario with
30 available preambles is barely 0.115. These values are far from the target success
probability, defined to be 0.95.

AC-based simulator and an analyticalmodel of the RAPwere developed to evaluate
the performance of the RAP and to investigate possible solutions to the problem of
congestion under mMTC scenarios. The analytical model described in Chapter 3 is
among the most accurate models that can be found in the literature. For instance, the
maximum relative error obtained with our model with respect to simulations in the
success probability was 0.36 percent. Furthermore, our model can be easily adapted
to different assumptions with respect to the handling of preamble collisions; this
characteristic was showcased in Section 3.3.5. This analytical model is one of the
main contributions of this thesis.

Simulation and analytical results, presented in Chapter 2 and Chapter 3, respec-
tively, revealed that severe congestion occurs whenever the number of accesses per
random access opportunity (RAO) exceeds the capacity of the RAP; this capacity is
calculated by (2.8). Initial efforts were focused on increasing the success probability
by fine-tuning the configuration parameters of the system. These include: increasing
the frequency of RAOs, increasing the number of available preambles, reducing the
maximum number of access attempts per UE, and replacing the uniform backoff de-
fined in the standards with an exponential backoff. Our results were conclusive: even
though the manipulation these parameters can lead to a higher success probability,
the target success probability of 0.95 can only be obtained with an exceedingly large
number of available preambles. This is unattainable in the practice and implies that
the target success probability can only be obtained by implementing an access control
scheme.

The access class barring (ACB) scheme is an access control scheme defined in the
3GPP standards that uses a probabilistic approach to redistribute the access attempts
through time. The benefits of the ACB scheme with fixed parameters were investigated
by simulation in Chapter 2 and by the analytical model in Chapter 3. Our results
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show that the parameters of the ACB scheme can be optimized according to the
signaling traffic characteristics. That is, these can be tailored to achieve a success
probability higher than 0.95 with the minimum access delay. However, the minimum
95th percentile of access delay that can be achieved with an ACB scheme with fixed
parameters is 13.58 swith the uniform backoff and 11.24 swith the exponential backoff.
These values are exceedingly long, even for delay-tolerant applications. Nevertheless,
our results suggested that access delay can be considerably reduced by adapting the
ACB parameters to the signaling traffic intensity in real time.

Chapter 4 presented an efficient and practical solution to congestion under mMTC
scenarios in the form of an adaptive mechanism to automatically adapt the ACB
parameters to the intensity of accesses: an access class barring configuration (ACBC)
scheme. This ACBC scheme can efficiently relieve congestion under mMTC scenarios
and is one of the few solutions reported in the literature that adheres to the 3GPP
standards. Therefore, it can be directly implemented at the cellular base stations.
This scheme relies on the ratio of idle to available resources as the main load indicator,
whose sudden variations are suppressed by an adaptive filter. The result is a muchmore
stable output when compared to the case with no adaptive filter. Our results show that
the ACBC scheme can reduce the 95th percentile of access delay by up to 50 percent
when compared to the optimal configuration of the ACB with fixed parameters. Yet
another relevant characteristic of the ACBC scheme is that it is able to maintain a
near-optimal performance even when one of its main configuration parameters, the
barring indicator, is selected to be higher than the optimal value. Specifically, this
inaccurate configuration only results in a slight increase in the access delay.

Future work in the area of mMTC in cellular networks includes the update of the
simulator and of the analytical model to new enhancements to the RAP that may be
introduced in the second standardization phase of 5G. This would provide a reliable
picture to the impact of these new enhancements on the capacity of the new RAP.
Yet another interesting line of research is that of cooperative random access (RA)
approaches. For instance, the formulation of grouping or clustering algorithms that
are specific to cellular networks can efficiently prevent congestion and provide a shorter
access delay than access control mechanisms. For example, for the scenario studied in
Chapters 2 to 4, the creation of groups with only three UEs can reduce the signaling
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traffic intensity below the capacity of the RAP and prevent congestion.

On the other hand, while the ACBC scheme presented in Chapter 4 leads to
remarkably positive results, it may give the impression that too many configuration
parameters are involved. The fact that some of these parameters must be selected
empirically is one of the main contributing factor to this perception. While all the
configuration parameters involved in our ACBC scheme were studied in this thesis and
their adequate or optimal values were presented, slightly different parameters may be
needed when the target mMTC scenario is widely different to the traffic model (TM) 2.
Sadly, the need to select some configuration parameters empirically is indeed one of
the main inherent drawbacks of adaptive filters, so little to no refinements can be made
to our scheme by following this same approach.

It is important to recall that, although other adaptive algorithms such as the recursive
least-squares (RLS), along with fixed filters, were studied, these were outperformed by
the least-mean-square (LMS). This is the reason the LMS is implemented in our ACBC
scheme. On the other hand, recent advances in machine learning techniques can be
incorporated to our ACBC scheme. That is, to use the same mechanism to calculate
the load indicator, described in Chapter 4 (i.e., the ratio of idle to available resources),
as an input to a machine learning algorithm that selects the highest possible barring
rate to achieve the desired success probability. Such approach may yield to similar
results as the ones presented in this thesis, but with fewer configuration parameters
that determine the efficacy of the scheme.

Chapter 5 provided a different perspective to mMTC. Namely, Chapter 5 investi-
gated RA protocols for event reporting in cluster-based WSNs. This is a more general
and traditional approach tomachine-type communications (MTC) than the one covered
in Chapters 2 to 4. Specifically, a hybrid model that combines simulation results with
analytical modeling was presented. The results provided by this model exhibited two
approaches that greatly enhance the performance of RA event reporting. The first one
is to set a maximum of event reports to be transmitted per cluster and instruct nodes
to overhear packet transmissions. By doing so, redundant packets can be discarded.
The second one is to reduce transmission probabilities when a collision occurs. The
latter approach, known as the adaptive backoff (AB), is certainly intuitive and has been
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explored in the literature, but its combination with the first approach intensifies its
benefits. For instance, our results show that a similar energy consumption and access
delay can be achieved with and without the AB, but network performance is much
more robust with the AB. That is, the network performance is much more resilient to
the inaccurate selection of transmission probabilities. For instance, a relative error of
more than 40 percent can be made in the selection of the transmission probabilities
and still achieve the minimum 90th percentile of access delay. Whereas such an error
without the AB causes a one-fold increase in the 90th percentile of access delay. It is
important to emphasize that the guidelines provided in Chapter 4 can be easily applied
to more complex WSN protocols, but also in other related systems of similar nature.
For example, these guidelines can be applied to the formation of clusters or groups for
the cooperative RA to cellular networks. In such an approach, the few first UEs that
successfully complete the RAP under an mMTC application can inform their status
to neighboring UEs and serve as cluster heads (CHs). Then, neighboring UEs would
compete to join the cluster with the closest CH.

Finally, Chapter 6 complements the analyses on mMTC by providing an energy
efficient solution to eMBB in cellular networks. The proposed solution is based on
network-coded cooperation (NCC), which is the combination of network coding (NC)
with cooperative architectures known as mobile clouds (MCs). Specifically, Chapter 6
presented an NCC protocol to offload the cellular link under massive content delivery
scenarios. In this protocol, only a fraction of the data is sent to each of the UEs in the
cloud. Then, these UEs cooperate through multicast WiFi links to distribute the data
among the MC. In addition, an analytical model of this protocol was formulated; with
this model, the minimum number of coded packet transmissions to achieve a target
reliability was calculated. Our results show that the potential gains offered by this
NCC protocol when compared to traditional content replication through independent
unicast cellular links are numerous. For instance: 1) energy savings can exceed 37
percent, even with relatively small cloud sizes of 20 UEs; 2) throughput gains that
increase linearly with the number of UEs can be achieved when the cellular bandwidth
is insufficient; and 3) cellular data savings are proportional to the number of UEs in
the MC.

Future work related to NCC includes the refinement of the analytical model and
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the real-life implementation of the NCC protocol in current smart phones, but also the
extension of this work to other scenarios in which the benefits of diverse wireless inter-
faces are exploited. This topic has acquired great significance as one of the priorities
of 5G is to provide a deep level of integration between cellular and short-range inter-
faces and its potential benefits are numerous. Some of the possible applications are:
coverage extension in rural areas, cooperative massive access, platooning, vehicular
networks, and many more.
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Appendix A

Notations

X Upper case symbols represent random variables
Xs A lower case subindex in a random variable represents the time index
XS An upper case subindex in a random variable serves as an additional identifier
{Xs } A random variable with time index and between braces represents a stochastic process
x Boldface lower case symbols represent vectors
X Boldface upper case symbols represent matrices
X Calligraphic symbols represent sets and events
X Upper case roman symbols represent frequently used functions
x∗ An asterisk in the superscript represents the optimal value of a given variable
pX (x) Probability mass function (pmf) of random variable X whose domain is x

FX (x) Cumulative distribution function (CDF) of random variable X whose domain is x

Pa Probability that event a occurs; only used when frequently repeated
Pr [X = x] Probability that random variable X is equal to x

R Set of real numbers
N Set of natural numbers, including 0
Z+ Set of positive integers
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Derivations

B.1 Lower bounds for the physical RACH (PRACH)
capacity

Simple lower bounds for the PRACH capacity C (r) are derived in this Appendix.
These were introduced in (2.6) and (2.7). For this, please recall that n∗(i) =
[
log (r/ [r − 1])

]−1 is the number of contending UEs that maximizes the expected
number of successful preambles E [S] at the ith RAO. Next, from inequalities

1 − 1
a
< log(a) < a − 1 for a > 0 (B.1)

we obtain ( r
r − 1

− 1
)−1

<
[
log

( r
r − 1

)]−1
<

(
1 − r − 1

r

)−1
(B.2)

which gives
r − 1 < n∗(i) < r . (B.3)

By applying the inequalities in (B.3) to (2.3), which defines the PRACH capacity and
is

C (r) = max
n(i)
E [S] =

[
log

( r
r − 1

)]−1 (
1 − 1

r

) [ log
(

r
r−1

)]−1−1
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we obtain
r
(
1 − 1

r

)r
< C (r) < r

(
1 − 1

r

)r−2
. (B.4)

From there, it can be easily seen that

r
(
1 − 1

r

)r
< r

(
1 − 1

r

)r−1
< r

(
1 − 1

r

)r−2
, for r > 0; (B.5)

therefore, r (1 − 1/r)r−1 ≈ C (r).

Now, by observing that both, the increasing function (1 − 1/r)r → e−1 and the
decreasing function (1 − 1/r)r−1 → e−1 as r → ∞ we can see that

r
(
1 − 1

r

)r
<

r
e
< r

(
1 − 1

r

)r−1
. (B.6)

Therefore, r (1 − 1/r)r−1 and r/e are lower bounds for C (r) that correspond to (2.6)
and (2.7), respectively.

B.2 Proof of Lemma 3.1.

This appendix presents the proof of Lemma 3.1.

Proof. As described by (3.1) on page 47, the continuous-time Beta distribution is
defined by numerator tα−1 (1 − t)β−1 and the denominator B (α, β) merely serves as
a normalization constant. Building on this, the probability mass function (pmf) of a
discrete time random variable (RV) Td ∼ Beta (α, β) can be defined as follows.

pTd

(
i

idist
; α, β

)
=

(
i

idist

)α−1 (
1 − i

idist

)β−1

idist∑

i=0

(
i

idist

)α−1 (
1 − i

idist

)β−1

=
iα−1 (idist − i)β−1

idist∑

i=0
iα−1 (idist − i)β−1

(B.7)
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For α = 3 and β = 4 as defined for the TM 2, the numerator in (B.7) becomes

idist∑

i=0
i2 (idist − i)3 =

i 6
dist − i2dist

60
=

i 6
dist − i2dist
B (3, 4)

(B.8)

which gives

pTd

(
i

idist
; 3, 4

)
=

60i2 (idist − i)3

i 6
dist − i2dist

. (B.9)
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Appendix C

Performance of the proposed ACBC scheme
with the RLS algorithm

The process to configure our ACBC scheme, presented in Chapter 4, with the RLS
algorithm and its potential benefits are presented in this Appendix. As with the LMS
algorithm, the RLS is to be implemented at the “Adaptive filtering” block depicted in
Fig. 4.1 on page 92.

The RLS belongs to a different family of adaptive algorithms to that of the LMS.
That is, the RLS is a recursive implementation of the method of least squares, whereas
the LMS is an application of the method of stochastic gradient descent. Both of these
algorithms have advantages and disadvantages. In particular, the rate of convergence
of the RLS is up to an order of magnitude faster than that of the LMS [45]. On the other
hand, the LMS is less sensitive to disturbances (i.e., more robust) and less complex
(computationally speaking) than the RLS. In particular, the complexity of the RLS
algorithm is on the order of O

(
`2

)
, which is higher than that of the LMS algorithm:

O (`). Nevertheless, the mathematical formulation and implementation of the RLS is
relatively simple [45].

Like the LMS, the RLS adaptive filter algorithm, summarized in Algorithm 6,
consists of a filtering and an adaptive process.

It is essential to observe the difference between the a priori estimation error ξ ( j),
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Algorithm 3 RLS adaptive algorithm.
Require: the number of filter coefficients `
Require: regularization parameter δ > 0
Require: forgetting factor λ
1: Initialize the vector of filter coefficients w (0) and the input vector u (0) as

wm (0) = u (−m) = 0, m ∈ {0, 1, . . . , ` − 1} (C.1)

2: Initialize the inverse correlation matrix P (0) = δ−1 I

3: for all j = 1, 2, . . . do
4: Filtering process:

y( j) = wT( j − 1)u( j) (C.2)

5: Adaptive process:

k ( j) =
λ−1 P ( j − 1) u( j)

1 + λ−1 uT( j) P ( j − 1) u( j)
(C.3a)

ξ ( j) = d( j) − w ( j − 1) u( j) (C.3b)

w ( j) = w( j − 1) + k ( j)ξ ( j) (C.3c)

P ( j) = λ−1 P ( j − 1) − λ−1 k ( j) uT( j) P ( j − 1) (C.3d)

6: end for

calculated in the RLS algorithm and the a posteriori estimation error e( j), calculated
in the LMS algorithm. The latter is the difference between the desired response d( j)
and the output of the filter at time j. Conversely, the former represents an estimate of
the desired response d( j) based on the old least-squares estimate of w ( j − 1). Please
refer to [45, Chapter 10] for a thorough discussion on this matter.

The selected configuration of the RLS algorithm for ourACBC scheme is analogous
to that of the “pulling” ALE (PALE) configuration with the LMS algorithm depicted
in Fig. 4.2, hence, the desired response is set to be d( j) = 1. Fig. C.1 illustrates the
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Adaptive weight
control

FIR filter w ( j − 1) Buffer

∑

u ( j)y( j)

–

u( j)

ξ ( j)

+

d( j)

Adaptive filtering

Figure C.1: Block diagram of the RLS adaptive filter algorithm.

internal structure of the algorithm.

The RLS algorithm has two parameters that must be selected empirically, namely
the regularization parameter δ (please observe this is different to function δ(i)) and the
forgetting factor λ (this parameter is also different to the one used in Chapter 2, which
refers to the access intensity of human-to-human (H2H) UEs). The latter determines
the rate at which the algorithm “forgets” the previous inputs. As with parameter µ
for the LMS, there is no exact method to select δ nor λ. However, the following
recommendations exist.

• Regularization parameter δ: Select a small positive value when the input (in our
case u( j)) is relatively high with respect to its sudden variations. Select a large
positive value otherwise.

• Forgetting factor λ: Select a positive value that is close to, but less than, 1. This
ensures past values of the input u( j) are forgotten by the algorithm. On the other
hand, λ = 1 corresponds to the method of least squares.

Therefore, an adequate value for these parameters must be selected by observing
the response of the algorithm. We find adequate values for these parameters in an
analogous process as the one described in Chapter 4. That is, we disable the ACB
scheme and aim to identify the values that successfully suppress the sudden variations
of u( j), but with the fastest possible convergence of the barring rate pacb( j) toE

[
u( j)

]
.
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In Fig. 4.5 we observed that the variations of u( j) are relatively low when compared
to E

[
u( j)

]
under the the TM 1. Building on this, we know we need to select a small

positive value for δ.

To find adequate values for δ and λ, we observed the response of the algorithm
with δ ∈ {0.001, 0.01, 0.1, 1} and λ ∈ {0.99, 0.999, 0.9999}. Fig. C.2 illustrates the
response of the algorithm with all possible combinations of these values given r = 54,
along with the calculated u( j). Clearly, the response is not adequate for λ = 0.99.
Also, the difference in the response between selecting λ = 0.999 and λ = 0.999 is
negligible, and a similar behavior was observed for higher values of λ.

Fig. C.2 also shows that the response is highly variable with δ = 1 and the slowest
convergence occurs with δ = 0.001; the latter value also causes the response to be
lower than the expected value of u( j) under the traffic model 1 E

[
u( j)

] ≈ 5/6. Please
refer Chapter 4.6 for details on the calculation of this value. On the other hand, it is
difficult to determine whether the best response is provided by selecting δ = 0.1 or
δ = 0.01. Therefore, we select the latter value for the following tests.

Once we have identified the adequate values for λ = 0.999 and δ = 0.01, we can
find the optimal performance of our ACBC scheme with theRLS algorithm. Please
observe that the calculated pacb( j), as shown in Fig. C.2, is always lower than 1, so we
must define ω > 0 to avoid an unnecessary delay under the TM 1. In particular, we
select ω = 3.

With these values, we found the optimal configuration to be `∗ = 32 and tmax = 1 s,
which led to Ps = 0.962, D95 = 7.531 s, and E [K] = 2.415, given r = 54. The values
reported inChapter 4.6with the adaptive line enhancer (ALE) and PALE configurations
are D95 = 6.807 s and D95 = 7.286 s, respectively.

Finally, Fig. C.3 shows Ps and D95 under the TM 2 for our ACBC scheme with the
RLS algorithm given ` ∈ {4, 8, 16, 32} and tmax ∈ {0.1, 0.2, . . . , 5} s. The minimum
D95 obtained with the ALE configuration, denoted as ALE*, is also illustrated. From
this Fig. C.3 it can be seen that the behavior of our ACBC with the RLS is comparable
to that of the LMS, but it is less robust. For example, the Ps obtained with ` = 16
increases to ≈ 1 by tmax = 1, but then drops slightly for 1 < tmax < 4. These results
confirm the superior benefits are provided by the LMS algorithm.
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Figure C.2: Ratio of idle to available resources u( j) and barring rate pacb( j) calculated
at the jth SIB2 for a single simulation run and r = 54 for the RLS algorithm with
δ ∈ {1, 0.1, 0.01, 0.001} and (a) λ = 0.99, (b) λ = 0.999, and (c) λ = 0.9999.
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Figure C.3: (a) Success probability Ps and (b) 95th percentile of access delay D95

for the ACBC scheme with the RLS algorithm as a function of tmax under the TM 2;
r = 54 and ω∗.
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Appendix E

Research projects

This work has been developed in the framework of the following research projects:

• TIN2013-47272-C2-1-R: PLASMA -Platform of Services for Smart Cities with
Dense Machine-to-Machine Networks.

• TEC2015-71932-REDT: Elastic Networks - New Paradigms of Elastic Networks
for a World Radically Based on Cloud and Fog Computing.
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