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The ZULU competition 

Zulu is an active learning competition. Participants are to build algorithms that can learn 
deterministic finite automata (DFA) by making the smallest number of membership queries to 
the server/oracle.  
 
Motivations  
When learning language models, techniques usually make use of huge corpora that are 
unavailable in many less resourced languages (such as the Zulu language). One possible way 
around this problem is to interrogate an expert with a number of chosen queries, in an 
interactive mode, until a satisfying language model is reached. In this case, an important 
indicator of success is the amount of energy the expert has spent in order for learning to be 
successful. A nice learning paradigm covering this situation is that of Query Learning, 
introduced by Dana Angluin.  
 
In the field of Grammatical Inference, Query Learning was thoroughly investigated to learn 
deterministic finite automata (DFA). As negative results, it was proved that DFA could not be 
learned from just a polynomial number of membership queries nor from just a polynomial 
number of strong equivalence queries. On the other hand, algorithm L* designed by Angluin, 
was proved to learn DFA from a polynomial number of both membership and equivalence 
queries. These results yield several successfull applications in Robotics, Games and Agents 
Technologies, Information Retrieval, Hardware and Software Verification.  
 
However, what has not been hardly studied is how to optimise the learning task by trying to 
minimize the number of queries while making queries for which the Oracle's work and answers 
are simple. These are strong motivations for stemming research in the direction of developing 
new interactive learning strategies and algorithms, that is the aim of this competition. 
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Learning Random DFAs with Membership Queries:
the GoodSplit Algorithm

Sarah Eisenstat1? and Dana Angluin2??

1 CSAIL, MIT, Cambridge MA USA
seisenst@mit.edu

2 Computer Science Department, Yale University, New Haven CT USA
dana.angluin@yale.edu

Abstract. We consider the problem of learning a random deterministic finite
state acceptor using membership queries and review known lower and upper
bounds for the problem. We describe our entry in the Zulu competition, Good-
Split, and present empirical results on its performance.

1 Introduction

The problem of learning deterministic finite acceptors has been studied in many con-
texts using a variety of different data sources and criteria of successful learning. The
Zulu competition [1] presented the task of learning to predict the behavior of a ran-
domly generated deterministic finite state acceptor given a limited number of member-
ship queries. After making (at most) that many queries, the algorithm is evaluted by
determining the fraction of labels of a randomly generated sequence of test strings it
predicts correctly. The given number of queries may not be sufficient for exact identifi-
cation of the target machine, making it important to use partial information well.

Let Σ denote a finite alphabet of symbols and Σ∗ the set of all finite strings over Σ.
Concatenation of u and v is denoted by u · v or uv. The length of a string w is denoted
|w|. The empty string is denoted by λ. The notations Σ`, Σ≤` and Σ<` denote the set
of strings of symbols from Σ of length exactly `, at most ` and less than `, respectively.

Domaratzki, Kisman and Shallit [2] give results on how many distinct languages are
accepted by automata with n states over an alphabet of k symbols. Their results imply

(k − 1)n log2 n+Θ(n)

bits are necessary and sufficient to specify a language from this set, which gives a lower
bound on the number of membership queries for exact identification.

The assumption that the target DFA is randomly generated may be helpful in finding
efficient learning algorithms. A result of Korshunov [3] (quoted in Trakhtenbrot and
Barzdin [4], p. 276) implies that a test set consisting of all strings of length at most
about logk log2 n is sufficient to distinguish all inequivalent pairs of states in almost all
DFAs of n states with input alphabet of size k. For d = ε + logk log2, querying all
suffixes in Σ≤d for each state and state successor entails about k1+εn log2 n queries.
? Research supported by the Akamai MIT Presidential Graduate Fellowship.

?? Research supported by the National Science Foundation under Grant CCF-0916389.
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2 The GoodSplit Algorithm

GoodSplit maintains the following data. The set of queries asked so far isA = A0∪A1,
where A0 is the queries answered 0 and A1 is the queries answered 1. This information
is cached and consulted before a new query is made; its maintenance is implicit below.
The variable ` is the maximum length of suffixes currently being considered (initially
0.) D is a set of strings known to lead to pairwise distinct states of the target machine
(initially {λ}.) P contains the strings in D and all of their one-symbol extensions, i.e.,
P = D ∪ (D · Σ). Two strings u1 and u2 are consistent if for every v ∈ Σ≤`, if both
u1v and u2v have been queried, then they are both in A0 or both in A1, that is, both
were answered the same way.

Until the query limit is reached, GoodSplit repeats the following sequence of steps.

1. The algorithm updates D and P as follows. For each s ∈ D and a ∈ Σ, if sa is not
in P , then sa is added to P and queried. For each s ∈ (P −D) that is not consistent
with any s′ ∈ D, s is added to D. These actions are repeated until neither P nor D
changes.

2. At this point, each string in (P−D) is consistent with one or more strings inD, and
the algorithm attempts to refine the possible identifications for each string down to
one. For a string s, letDs denote the set of strings s′ ∈ D that are consistent with s.
For each string s ∈ (P −D), as long as |Ds| > 1, the algorithm greedily chooses
a suffix t ∈ Σ≤` and queries st.
The greedy choice is made as follows. For b ∈ {0, 1} let

vb(s, t) = |{s′ ∈ Ds : s′t ∈ Ab}|,

that is, the number of s′ in Ds such that s′t has been queried and answered b. Then
t ∈ Σ≤` is chosen to maximize

v(s, t) = min{v0(s, t), v1(s, t)},

(with ties broken randomly.) (Because pairs of elements of Ds are inconsistent,
there will be at least one t with v(s, t) ≥ 1. The greedy choice maximizes the
minimum number of possible identifications that could be eliminated by the query.)

3. The algorithm decides whether or not to increase the current maximum suffix length
` using the following heuristic. If the fraction of all pairs (s, t) ∈ (P −D)×Σ≤`
such that st ∈ A is greater than 90%, then ` is increased by 1.

4. The algorithm then makes additional membership queries according to the follow-
ing heuristic. For d|D|/2e random choices of (s, t) ∈ (P − D) × Σ≤` such that
st 6∈ A, the algorithm queries both st and s′t such that s′ ∈ D is consistent with s.
The algorithm then returns to step 1.

When the query limit is reached, the algorithm executes step (1) once more and then
constructs a DFA hypothesis as follows. The states are the strings in D and the initial
state is λ. The state s is accepting if s ∈ A1, rejecting if s ∈ A0, and its label is chosen
randomly if s 6∈ A. The transition function δ(s, a) maps to sa if this string is in D.
Otherwise, δ(s, a) is chosen to be s′ ∈ D such that sa and s′ are consistent. (If more
than one s′ is consistent with sa, then one is chosen at random.)
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3 Results and Discussion

We present results of empirical tests of GoodSplit with randomly generated (by rejec-
tion sampling) minimized DFAs with n states and k alphabet symbols. Each test set
is 1800 randomly generated strings. For given n and k we generate ten DFAs, and for
each DFA we consider the median of ten trials of GoodSplit on that DFA. To illustrate
the learning curve of GoodSplit, we show the fraction of correct labels of the test set as
a function of the number of queries asked by GoodSplit for n = 200 states and k = 5
in Figure 1.

We also compare the number of queries needed by GoodSplit to achieve 100%
correctness on the test set with the lower bound of (k − 1)n log2 n for the number of
queries needed for exact identification. In Figures 2(a), 2(b), 2(c) we show the median
of the medians for k = 2, 5, 15 for n from 20 to 200 by 10. In Figures 2(d), 2(e),
2(f) we show the median of the medians for n = 20, 70, 120 for k from 2 to 20. The
“bumps” in the latter three curves correspond to transitions between different integral
distinguishabilities and are related to the 90% parameter in step (3) of the algorithm.
Much remains to be done to understand and improve the performance of GoodSplit.
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Fig. 1. GoodSplit: Learning curve for n = 200, k = 5
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A Lazy L∗ Algorithm for Learning Regular
Languages from Queries

Franco M. Luque

Grupo de Procesamiento de Lenguaje Natural
Universidad Nacional de Córdoba & CONICET

Córdoba, Argentina
francolq@famaf.unc.edu.ar

Abstract. We present an algorithm for the problem of learning regular
languages through membership queries and possibly equivalence queries
This algorithm is a modification of Dana Angluin’s L∗ algorithm (1987).
Our algorithm saves queries at each step, allowing the execution of more
steps than L∗ with the same amount of queries, and therefore build-
ing more confident hypothesis. The algorithm, along with some other
improvements and adaptations, took part in the automata learning com-
petition Zulu under the name LTA*.

1 Introduction

In the interactive learning problem, a teacher or oracle is available to answer
certain types of queries that the learner can do. Here, we address the problem
of learning regular languages with membership queries and equivalence queries.
The membership queries allow the learner to ask if a particular element is a
member of the target language. The equivalence queries allow the learner to
ask if a certain Deterministic Finite Automaton (DFA) correctly describes the
target language. If it doesn’t, the oracle answers with a counterexample, this is,
an element that is in the difference between the DFA’s language and the target
language.

In [1], Dana Angluin presents the L∗ algorithm that learns from membership
and equivalence queries, and proves that the regular languages can be learned
with this algorithm. At each step, L∗ mantains a table that, when it satisfies cer-
tain properties, encodes an hypothetical DFA acceptor for the target language.

In this work, we present a learning algorithm based on the L∗ algorithm.
Our algorithm saves queries by avoiding filling some unnecessary entries of the
L∗ table. This allows us to execute more steps and build bigger tables than the
original algorithm with the same amount of queries. These bigger tables will be
incomplete but will contain more relevant information, therefore providing more
confident DFA hypothesis.

An implementation of our algorithm took part in the Zulu interactive learn-
ing competition [2]. In Zulu, the goal is to learn a DFA only with a limited
number of membership queries. After doing the queries, the learner must label
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Franco M. Luque

(a) λ

λ 1
a 0
b 0
aa 1
ab 0
ba 0
bb 1

(b) λ a

λ 1 0
a 0 1
b 0 0
aa 1 0
ab 0 0
ba 0 0
bb 1 0

(c) λ a

λ 1 ?
a 0 1
b 0 0
aa 1 ?
ab 0 0
ba 0 0
bb 1 ?

(d) S0

λ

0 44jjjjjj
1

**TTTTTT

S1

(e) S00

a
0 33hhhhhh
1

++VVVVVV

λ

0 44iiiiii
1

))TTTTTT S01

S1

Fig. 1. (a) An inconsistent table. (b) L∗ resolution of the inconsistency. (c) Lazy L∗

resolution. (d) State tree before the lazy resolution and (e) after it.

a given test set, and its score is given by the number of correctly labeled ele-
ments. As a baseline, a modified version of the L∗ algorithm is offered, where
the equivalence queries are simulated through a sequence of membership queries.
The implementation of our algorithm was based on this baseline, doing the same
simulation of the equivalence queries, and introducing some other optimizations
specific to the Zulu setting.

2 The Lazy L∗ Algorithm

The main modification that we introduce to the L∗ algorithm is the way that
inconsistencies are solved. Consider, for instance, the target language L = {s ∈
{a, b}∗|∃n,m : |s|a = 2n, |s|b = 2m}, that are the strings with an ever number
of a’s and an even number of b’s, and consider the L∗ table shown in Fig. 1 (a).
This table is inconsistent, because the prefixes s1 = a and s2 = b have the same
row (0), so they go to the same state, but s1a and s2a have different rows (1
and 0 respectively), so they go to different states. This means that the prefixes
s1 and s2 must go to different states, so their rows must be differentiated by
adding a new suffix as column.

The way that the L∗ algorithm solves this inconsistency is by adding the new
column a and filling all the column doing the necessary membership queries (or
using previously known information). In the example, we must do four queries.
The resulting table has different rows for s1 and s2, as can be seen in Fig. 1 (b).

What we observe here is that the goal of the algorithm is to solve the incon-
sistency by splitting the state represented by the row 0 into two new states. The
rows corresponding to other states, in the example only the row 1, have nothing
to do and there is no need to fill the new column for them. So, our algorithm
would solve the inconsistency as shown in Fig. 1 (c), doing only two queries, two
less queries than the original algorithm.

This new way of treating the inconsistencies leads to a very different behavior
of the algorithm in at least two senses. In first place, the states represented
in the table can be organized as the leaves of a binary tree that encodes the
history of splittings. The internal nodes of the tree are labeled with suffixes
(column headers), starting from the root λ, and the transitions are labeled with
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A Lazy L∗ Algorithm for Learning Regular Languages from Queries

0 and 1 indicating the value for that suffix in the row. The state tree for our
example before and after the resolution of the inconsistency is shown in Fig. 1 (d)
and (e) respectively. In second place, there will be no more unclosures in the
algorithm. The row of any new prefix added by a counterexample will be resolved
by traversing the state tree, so it will surely fall in a previously known state.

3 Conservative Counterexample Treatment

Another important improvement is the treatment of the counterexamples re-
turned by the equivalence queries (or its emulation). This improvement of the
algorithm is independent of the lazyfication presented in the previous section
and can be used with the original L∗ algorithm.

When L∗ finds a counterexample, it adds as rows in the table the counterex-
ample and all its prefixes, and depending on the length of the counterexample
sometimes this implies lots of queries. The addition of the new rows forces the
appearance of inconsistencies and/or unclosures in the table that must be solved
in subsequent steps.

However, we observe that the goal must be to force the appearance of an
inconsistency or an unclosure doing the least possible number of queries. A way
to do this is to add the prefixes in increasing size, starting from the shortest prefix
of the counterexample that is not already in the table, stopping the first time
that an inconsistency or unclosure appear. In the case of the lazy L∗ algorithm,
it will surely stop with an inconsistency because there are no unclosures.

An interesting observation is that this way of treating counterexamples im-
plies that usually the counterexamples themselves are not added to the table.
Therefore, it is not guaranteed that the next hypothetical DFA will correctly
classify the counterexample. So, before doing a new equivalence query, we can
check if the DFA now correctly classifies all the previously seen counterexample,
maybe finding a still valid counterexample without doing any query.

4 Other Improvements

When equivalence queries are not available, as in the Zulu competition, they can
be emulated by sampling random strings and doing membership queries until a
counterexample is found. In the L∗ implementation offered as baseline for Zulu,
the positive examples, this is, those strings that are not counterexamples, and
their correct classification, are not saved. But we observe that a positive example
may become a counterexample for a subsequent hypothetical DFA, because it
will be different from the current hypothesis. So, along with the reusage of coun-
terexamples presented in the previous section, we can also save all the positive
examples and re-check them before doing the equivalence query emulation.

There is another improvement specific to the Zulu competition, where the
oracle only offers a limited number of membership queries. The baseline version
of L∗ for Zulu, when the limit is reached, just terminates and keeps the last
hypothetical DFA that was obtained from the last time that the table was closed
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and consistent. But we observe that it may happen, and will usually do, that we
already found a counterexample for this DFA and the limit was reached before
reaching a new consistent and closed version of the table. So, these steps and
their associated queries should not be lost and should influence in some way the
final DFA. We took what we believe is the simplest approach to do this. When
the limit of queries is reached, we take the last hypothetical DFA and see how it
classifies every string queried after its construction. Then, we modify the DFA
adding for each misclassified string a new ad-hoc path of states that corrects its
classification.

5 Discussion

In order to test the algorithms before the Zulu competition, we set up a bench-
mark with problems of different alphabet size and number of states. We saw that
both the lazyfication described in Sect. 2 and the counterexample treatment de-
scribed in Sect. 3 improved significantly the performance over the baseline L∗.

However, our final algorithm, called LTA*, did not do well in the Zulu com-
petition. We believe that the main weakness of our algorithm is in the simulation
of equivalence queries, that we left untouched from the provided baseline L∗. In
this point is where heuristics can be introduced to generate strings that are more
likely to be counterexamples. The few simple heuristics we had the time to try
did not clearly improve the algorithms, at least according to our benchmark.

Besides the usage of heuristics for counterexample generation, we have several
other ideas to improve our algorithm. These include even more lazyness, even
more conservative counterexample treatments, query guessing with correction
through counterexamples, etc.

Our modifications does not change in spirit the original L∗ algorithm. We
believe that the same theoretical properties of L∗ proved in [1] can be proved
for our algorithm, including correctness and termination.
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Optimising Angluin Algorithm L* by Minimising the 
Number of Membership Queries to Process 

Counterexamples 

Muhammad Naeem Irfan, Roland Groz and Catherine Oriat 
LIG, Computer Science Lab, 

Grenoble Universities, 
38402 Saint Martin d’Hères, France 

{Irfan, Groz, Oriat}@imag.fr  

Abstract. Angluin algorithm L* is a well known approach for learning unknown models as 
minimal deterministic finite automata (DFA) in polynomial time. It uses concept of oracle 
which presumably knows the target model and comes up with a counterexample, if the 
conjectured model is not correct. This algorithm can be used to infer the models of software 
artefacts and a cheap oracle for such components uses random strings (built from inputs) to 
verify the inferred models. In such cases and others the provided counterexamples are rarely 
minimal. The length of the counterexample is an important parameter to the complexity of the 
algorithm. The proposed technique tends to reduce the impact of non minimal counterexamples. 
The gain of the proposed algorithm is confirmed by considering a set of experiments on DFA 
learning. 

Keywords: counterexample; deterministic finite automata; deterministic finite automata 
inference. 

1   Introduction 

The algorithm L* by Angluin [1] was designed to learn the unknown models as 
DFAs. This algorithm operates with the assumption of existence of a minimally 
adequate oracle (teacher) which can always reply with a counterexample, if the learnt 
model is not correct. When we apply this algorithm to learn the models of software 
black box components, the existence of such an oracle is a strong assumption, which 
is not met in the general case. To circumvent the lack of oracle, we try to find 
counterexamples with random walks, as was suggested by Angluin. A 
counterexample is a sequence of inputs, whose output for the target model is different 
from the output for the learnt conjecture. We randomly construct a string of inputs 
which is provided in parallel to the unknown model and to the conjecture until we 
find a discrepancy between both outputs. The counterexamples produced with this 
naïve method are not minimal; this phenomenon affects the complexity of the 
algorithm negatively. The variants of Angluin’s initial algorithm for treating 
counterexamples have been proposed, in particular by Rivest and Schapire [2], Maler 
and Pnueli [3] and Shahbaz [4]. 

In this paper, we present Suffix1by1 algorithm [5] which has gain over the above 
mentioned counterexample processing methods, when counterexamples provided by 
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the oracle are not minimal. The motive behind Suffix1by1 strategy is to process 
counterexample efficiently by adding only the sequences to the observation table from 
counterexample, which help refining the learnt model. Contrary to Rivest and 
Schapire algorithm, this method respects the important properties of prefix and suffix 
closure for the observation table. 

2   Background 

Angluin [1] proposed an algorithm which learns minimal deterministic finite 
automata DFA of target models in polynomial time with the complexity O(|I| mn²), 
where n is the number states of minimum DFA, m is the length of the longest 
counterexample and I is the set of inputs. The data structure used by the algorithm to 
record the observations is a matrix whose rows are indexed by S  S.I and columns 
by E, where S is a prefix-closed set of inputs, and E a suffix-closed set of inputs. This 
matrix is called observation table, it records OT(s, e) the observations on whether s.e 
is a member of the language to be recognized by the DFA where s  S  S.I and e  
E. Once the observation table is complete and satisfies the properties (closure and
consistency) required by the algorithm then a model is constructed from the
observations. If the conjectured model is not correct, the oracle replies with a
counterexample. If we have a counterexample CE, the original method of processing
the counterexamples adds all the prefixes of CE to S and then extends the table. After
adding the prefixes of CE with this method the observation table can be not closed or
inconsistent. Rivest and Shapire [2] proposed a new version by introducing some
amendments in L* by requiring the relaxation on prefix and suffix closure properties.
Relaxation on such properties may classify the treated counterexample again as
counterexample. Maler and Pnueli [3] in their amendment, proposed to add the
suffixes of counterexample to the columns instead of rows of observation table to
avoid inconsistency. Their method adds all the suffixes of the CE to columns E of the
observation table. The counterexample processing method by Shahbaz [4] divides the
CE as u.v where u is the longest prefix in S  S.I and adds all the suffixes of v to E.
This method tends to improve the complexity of the algorithm, which is reduced to
O(|I| qn²), where q is the length of suffix of the counterexample used to add new
columns. We have q < m, because the length of prefix removed from the
counterexample CE is always greater than 1, i.e. | u | ≥ 1, as S  S.I or rows indices of
the observation table always include I, so CE will always have a prefix of length at
least 1 matching rows indices of the observation table.

Two rows r1, r2  (S  S.I) in the observation table are said to be equivalent, iff e 
 E we have

 
T (r1,e)=T (r2,e), which is denoted by r1 E r2.  

An observation table is closed iff r1  S.I\S r2  S such that (r1 E r2). It is 
consistent iff r1 , r2  S if (r1 E r2)  iI (r1 . i E r2 . i). 

We denote by suffixj(CE), the suffix of CE of length j and prefixj(CE), the prefix of 
CE of length j. For example, if we have a counterexample sequence CE = c.b.a.a.a.c, 
then suffix4(CE) = a.a.a.c and prefix4(CE) = c.b.a.a. 
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3   Improved Technique 

While searching the counterexamples, the oracle implementations can traverse the 
states in the unknown model which are already present in the conjecture before 
reaching a state which is not learned yet. Such traversals may always not be minimal. 
The intent for the presented technique is to reduce the effect of counterexamples 
generated from less efficient traversals, on learning. This method processes the 
suffixes from the counterexample CE by increasing length up to the suffix which 
forces refinement (makes the observation table not closed). On finding such a suffix it 
stops adding the suffixes to the columns of the observation table and makes the table 
closed and consistent. It is important to note that this method adds rows to S only 
when the observation table is not closed, so S always has only non-equivalent rows, 
which results in the reduction of consistency check. After processing till a suffix of 
the counterexample which forces refinement and finding a new conjecture which has 
at least one more state than the previous conjecture, we check whether CE is still a 
counterexample for the newly built conjecture. If this is the case, we repeat the above 
method to process CE and we continue until the counterexample can no longer help in 
refining the conjectured model. 

Input: Pre-refined table (S, E , T), CE 
Output: Refined observation table (S, E , T) 

begin 
while CE is a counterexample loop 

for j = 1 to |CE| loop 
if suffixj (CE)  E then 

add suffixj (CE) to E 
construct the output queries for the new column 
fill (S, E , T) by running output queries 
if (S, E , T) is not closed break for loop 

end if 
end for 
make (S , E , T) closed 
construct the conjecture M 

end while 
return refined observation table (S , E , T) 

end 

This variant may look like a minor and contrived change to Shahbaz method for 
minimal counterexamples. However, in the case of non-minimal counterexamples, it 
can have a dramatic impact, as can be observed from the experiments. The rationale 
behind proposed improvement comes from the observation that random walks can 
cycle through states of the target model before reaching new states which are not 
present in the learned model. Therefore, only the tail parts of such counterexamples 
actually correspond to discriminating sequences, so considering suffixes of such 
counterexamples makes it possible to get rid from unproductive parts of traversals. 

11



If p is the length of the longest suffix added by Suffix1by1 counterexample 
processing method, then the complexity of algorithm is given as: O(| I | pn²), and p ≤  
q < m, where q is the length of suffix of CE added to the columns of the observation 
table by Shahbaz method and m is the length of the CE. 

4   Experiments 
To have a significant set of experiments and assess the impact of various factors on 

the complexity, we use sets of randomly generated machines. In Figure 1 we can 
observe the results for machines generated with inputs set | I | = {3,4,5...10}, outputs | O | 
= 7 and number of states n = 10. We can note that Suffix1by1 clearly outperforms the 
initial method of processing counterexamples. 

5   Conclusion 
We investigated the inference of unknown models as DFAs with the new method of 

processing counterexamples. New technique to process the counterexamples has a 
gain over the existing techniques and it reduces significantly the effect of non 
minimal counterexamples, which is confirmed by the considered examples. Possible 
extensions of proposed work involve experimenting with more comprehensive set of 
examples and adaptation of this technique for learning unknown models as non-
deterministic and parameterised machines. 
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Figure 1   | I | = {3,4,5...10}, | O | = 7, n = 10
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1 Inference of teams of automata

Three out of four of the algorithms used by our group are based on the
inference of a team of automata [1]. Each automata in the team is obtained
using a generalized Blue-Fringe inference scheme [2]. Briefly, the generaliza-
tion consist of: first, a random selection of a blue state; second, the random
traversal of the red states set; if a red-mergible state is found, the blue state
is deterministically merged, otherwise, the blue state is promoted to the red
set; in both cases the blue set is updated. This process ends when the blue
set is empty.

Note that the process is not deterministic and that each run of this
scheme may return different automata. Thus, after n iterations of this pro-
cess we may obtain a set of n automata. This team can be used in several
ways to classify test samples. The one we used consist of the processing of
the test samples by the automata in the team. If the automata accepts (re-
jects) the sample, it gives a positive (negative) vote inversely proportional
to the square of its size.

2 Maximum discordance criterion

The first algorithm designed by our group uses the above described team
inference process.

Briefly speaking, the initial training set is obtained using a small set of
the queries available. A team of automata is inferred using this training
set. The team is used to classify a set of random generated strings of a
certain length. Those strings with higher discordance are selected to query

∗Work partially supported by Spanish Ministerio de Educación y Ciencia under project
TIN2007-60769
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the oracle and added to the training set. This process is iterated while there
are queries available.

The discordance value of a string is function of the distance among the
absolute value of the vote obtained by the string and the absolute value of
the maximum vote that any string can obtain.

In each iteration, in order to select each new set of p queries, a bigger pool
of np strings of length k are randomly chosen. If the number of discordant
strings in that pool is lower than p, then, the value of k is incremented in
one unit, and a new pool of np strings of length is randomly generated. This
process is repeated while the number of discordant strings is lower than p.
The next iteration considers the final value of k of the previous iteration
decremented in one.

3 Canonical generation of L∗ experiments

The L∗ algorithm by Angluin [3] is the core of the other algorithms our
group proposes.

We recall that the algorithm by Angluin uses equivalence queries. This
queries guide the experiments to include in the evidence table. The lack of
such queries is substituted by the canonical generation of the experiments
to include.

Two different traversals (depth-first and breath-first) can be followed to
fill in the table. The behaviour of both approaches is quite different, and
therefore, both were considered as different algorithms.

Once the limit of queries has been reached, two options were considered:
the construction of an automaton from the information on the table; and,
the inference of a team of automata using the above described method and
the strings queried to the oracle.

The team of automata is inferred using the prefix-tree acceptor of the
strings queried to the oracle, where those states detected during the con-
struction of the table are marked as red states.

References
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Abstract. We describe the two algorithms that participated in the re-
cent Zulu competition. This is a competition about automata learning
from membership queries. Our algorithms bootstrap the Blue-Fringe al-
gorithm that learns finite state automata from given data. Unfortunately,
they did not perform well in the competition.

1 Introduction

Under the query learning model, a learner can make queries to an oracle whose
answers are used to infer a hypothesis about the object to be learned. We com-
ment here two algorithms that participated in the Zulu competition [2], which
aimed at testing learning algorithms based only on membership queries. Our
algorithms bootstrap the well known Blue-Fringe algorithm [3].

We describe the competition first, then the algorithms and their performance
in the competition. Finally, we outline some conclusions.

2 The Zulu Competition

The task of this competition was to learn regular languages using membership
queries, i.e. the learners had access to an oracle that given a string answered true
if the string belonged to the target language and false otherwise. The learners
had a limited number of queries, after which they had to classify a set of test
strings. The oracle was implemented via a web server that received queries and
answered them using a simple protocol.

Eighteen different tasks were originally defined: two for each of the nine pos-
sibilities combining small, medium and large automata sizes with small, medium
and large alphabets. For each task, an automaton was randomly generated. The
number of queries was defined by running a modified version of L∗, the algorithm
from [1]. The number of queries that the algorithm needed to reach an error rate
below 40% was allocated to the task.

In six additional tasks of the (medium alphabet, medium size) category, only
25%, 50% and 75% of the queries made by L∗were allocated to the automata.

The performance of L∗was considered the baseline for comparing the algo-
rithms.
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3 The Algorithms

Our two algorithms follow this schema:

1. Initial queries are performed for the empty string and each of the strings
consisting in just one symbol of the alphabet.

2. The already made queries are used as a corpus for inferring an automaton
using an algorithm for automata learning from given data.

3. Statistics of the usage of the arcs of the automaton inferred in step 2 are
used to decide next query.

Steps 2 and 3 are repeated until no more queries are available. The two
algorithms differ in how they produce the next query.

3.1 Automaton inference

Let C be a set {(xi, bi)}ni=1 where each xi is a string belonging to Σ∗ and each
bi is a Boolean value that is true if xi belongs to the target language and false
otherwise. We can use C to build an automaton consistent with it by using an
algorithm for automata learning from given data. These algorithms find an au-
tomaton consistent with a set of samples and, if the set is large enough, that au-
tomaton corresponds to the language. We have used the Blue-Fringe algorithm,
described in [3]. This is one of a family of algorithms that build an automaton by
merging the states of a tree-like representation of the data. The merging order
is then critical. In the case of the Blue-Fringe algorithm, this order is based on
the information about each state, which in turn is related to how many common
tails the strings departing from each state have.

The automaton was completed with a sink state which was final or not ac-
cording to a majority vote from C.

3.2 Selection of the new query

We have decided that our corpus will be prefix-complete, i.e. if x ∈ C1 then
x′ ∈ C for every x′ that is a prefix of x. This implies that the new query will
be formed by appending one letter of the alphabet to one of the strings in the
corpus, i.e. the set of candidates will be {xa | x ∈ C, a ∈ Σ, xa 6∈ C}.

We need a criterion for selecting one candidate. As commented above an
important information for Blue-Fringe is the number of tails that depart from a
state. When looking for a new query, we will try to increase this number. The
idea is first to obtain usage statistics of each arc of the automaton and then
use those statistics to score the candidates. To this end, we will concentrate in
what we call “last arcs”. These are the arcs used in parsing the last symbol of a
string. So the first set of statistics we collect is which of the arcs of the automaton
have been used a minimal number of times as last arc. We have followed this
algorithm:
1 Abusing notation we will use x ∈ C as a shorthand for x ∈ {y | ∃b : (y, b) ∈ C}.

16



Next question, please

1. For each corpus string, parse it and increment in one the count of the arc
corresponding to the last symbol of the string.

2. Assign a score of one to those arcs that have been used the minimum number
of times and zero to the other arcs.

Now, when selecting a string from the candidates, we use two criteria giving
rise to the two different algorithms that we presented to Zulu:

– QLLA (query learning from last arcs): prefer those candidates for which their
last arc has a score of one.

– QLSLA (query learning form sum of last arcs): prefer those candidates that
maximize the number of arcs with score one, not counting repetitions, using
in parsing them.

In either case, there will usually be more than one selected candidate. We
complement those criteria with two additional conditions:

– Compute usage statistics for the arcs of the automaton while parsing the
strings. Prefer the strings with lower sum of usages.

– If still there are ties, prefer the first string in shortlex order (shortest string
first; for strings of equal length, use lexicographical order).

3.3 Implementation issues

We implemented the algorithm in Haskell. Unfortunately, the speed of the Blue-
Fringe algorithm was too slow so we resorted to two compromises. The first one
was that instead of inferring an automaton after each query, we only inferred
an automaton after failed queries. That is, if the result of a query agreed with
the prediction of the automaton, the next query was computed using that same
automaton. We suspect that the effect of this decision is small.

A more profound modification was due to the long computation times for
the larger tasks. As the end of the computation approached, it was clear that
it was not possible to end the execution on time. The solution was to generate
the queries until the limit by enumerating the strings over Σ in shortlex order
and skipping those already in the corpus. This was needed for both algorithms
in tasks 17 and 18 (large automata, large alphabet) and for QLSLA in task 16
(medium automata, large alphabet).

4 Results of the competition

The algorithms were scored by comparing the percentage of correctly classified
test strings with the corresponding percentage for the baseline algorithm. The
results over the original tasks are presented in Table 1. In each cell, there are
three numbers: the smaller ones are the ratios for the two tasks in the category
and the third is their average. Values smaller than one mean that the success
rate of the proposed algorithm is worse than the baseline. In that sense, only
QLLA in the middle tasks performed adequately.
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Table 1. Results of the algorithms in the original tasks

Automata sizeAlphabet
size

Algorithm
Small Medium Large

Small QLLA 0.905 (1.000, 0.809) 0.977 (0.993, 0.961) 0.924 (1.057, 0.790)

QLSLA 0.835 (1.000, 0.670) 0.701 (0.642, 0.760) 0.711 (0.706, 0.716)

Medium QLLA 0.892 (0.891, 0.892) 1.043 (1.029, 1.057) 0.924 (0.934, 0.915)

QLSLA 0.904 (0.930, 0.878) 0.857 (0.753, 0.961) 0.698 (0.620, 0.777)

Large QLLA 0.882 (0.834, 0.930) 0.836 (0.837, 0.835) 0.785 (0.792, 0.778)

QLSLA 0.727 (0.684, 0.769) 0.884 (0.881, 0.888) 0.770 (0.803, 0.737)

Table 2. Results of the algorithms in the restricted data tasks

Reduction percentage
Algorithm

25% 50% 75%

QLLA 0.939 (0.879, 0.999) 0.762 (0.703, 0.820) 0.744 (0.660, 0.828)

QLSLA 0.768 (0.683, 0.853) 0.676 (0.638, 0.713) 0.661 (0.611, 0.711)

It is more difficult to extract conclusions in the case of the restricted data
tasks (Table 2) because obviously a worsening of the values is expected.

In any case, it is clear that QLLA outperforms QLSLA. In the global com-
petition, QLLA ranked 18 and QLSLA ranked 20 of a total of 23 algorithms.

5 Conclusions

We have presented two algorithms for learning automata using membership
queries. These algorithms bootstrap on an algorithm for learning from given
data. The overall performance was not good. In restrospect, the criteria used for
finding the next query should have used also information from the heads of the
previous queries instead of relying on the tails only.

Acknowledgments. Work partially supported by the Spanish Ministerio de
Ciencia e Innovación (Consolider Ingenio 2010 CSD2007-00018) and Fundació
Caixa Castelló-Bancaixa (P1·1B2006-31).
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Universitat Politècnica de Catalunya, Barcelona
bballe@lsi.upc.edu

Abstract. Two algorithms for learning dfa with membership queries are described. Both
of them are based on Kearns and Vazirani’s version of Angluin’s L∗. Our algorithms tied in
the third place in the Zulu competition.

1 Introduction

This short note descibes two algorithms we used to participate in the Zulu competition. This was
a competition for algorithms that learn dfa using only membership queries, a problem which has
many practical applications (see [3]).

Algorithms entering the competition were given several tasks to solve. Those tasks consisted
on learning randomly generated dfa with different number of states n and alphabet sizes |Σ|.
There was a limit in the number of queries a learning algorithm could make for each task. These
limits depended on the performance in each particular task of a baseline algorithm provided for
the competition: an implementation of Angluin’s L∗ algorithm [1] using only membership queries.
Since the competition’s focus was on approximating the target automata, the quality of hypotheses
was measured by means of a test set generated from a (mildly) target-dependent distribution. The
predicted labels were used to evaluate the hypothesis accuracy.

All notation and definitions used are standard in the literature.

2 Algorithms

In this section we describe two algorithms we entered in the competition — named Balle1 and
Balle3 there, L1 and L2 here — which tied in the third place. Both algorithms are based on the
version of L∗ introduced by Kearns and Vazirani in [4], which we will denote by L∗kv to avoid
confusion. Our two algorithms differ only in the method used to simulate the equivalence queries
in L∗kv by means of membership queries. The actual implementation was done with Matlab.

Although the differences between L∗ and L∗kv are subtle enough to be considered implemen-
tation issues (cf. [2]), they matter a lot in practical applications. It is known that, given access
to membership and equivalence queries, L∗kv can be implemented using a number of membership
queries that, at least for acyclic dfa, is optimal up to constant factors in the worst case — note
this is also the case for the version given by Rivest and Schapire [5]. Furthermore, L∗kv presents
a feature that is unique among its relatives: the new hypothesis obtained by processing a coun-
terexample s does not necessarily classify s correctly (cf. [4]). This is a valuable property for an
algorithm in the Zulu setting, where finding new counterexamples may require spending a large
number of membership queries.

Internally, L∗kv keeps a data structure called discrimination tree that contains information about
the states of its current hypothesis, which correspond to equivalence classes of states in the target
dfa. Each leaf on the tree corresponds to a different state in the current hypothesis and is identified
by a string, the access string of that state. A discrimination tree together with a dfa (usually the
target to be learned) define a partition of Σ∗ in as many sets as leafs in the tree. The process
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by which a string s is assigned to a leaf is called sifting and goes as follows: starting at the root
node, recursively follow the right branch if the dfa accepts the concatenation of s with the string
labeling the current internal node of the tree, and follow the left branch otherwise; repeat until a
leaf is reached. When constructing a hypothesis from the tree, the transition labeled by σ leaving
a state s is directed towards the leaf τ(s, σ) obtained by sifting the word sσ down the tree. An
example of a discrimination tree plus an hypothesis obtained from it is shown in Fig. 1.

As suggested in [2], our implementation of L∗kv uses a caching strategy to avoid repeated queries
to the oracle. The procedure for asking membership queries is implemented as a proxy that keeps
a dictionary with all the answers already obtained from the oracle. If the algorithm asks a query
whose answer is cached in the dictionary, that answer is returned. Otherwise, a new query to the
oracle is made and the answer is stored in the dictionary.

Equivalence queries in the original L∗kv are replaced in our implementation by a two-layer simu-
lation using membership queries. The first layer is in charge of confronting the current hypothesis
with all the answers cached in the dictionary. This takes advantage of the particular feature of
L∗kv mentioned above. If a counterexample is found in the dictionary, it is returned. Otherwise, the
algorithm enters the second layer, detailed in Fig. 2. It is in this second layer where the difference
between our two algorithms lies, in particular in the function Sample. This function receives as
input a length (drawn at random in our case) and outputs a word of that length sampled from
a certain distribution — the uniform distribution over Σl in the case of L1. Note that this is the
same distribution used in the baseline provided for the Zulu competition.

In the case of L2 the distribution uses some information obtained from the current hypothesis
and discrimination tree, which is based on the following observation: the number of membership
queries used for identifying the destination τ(s, σ) of a transition in the hypothesis is the number
of steps needed to sift sσ; that is, the height of the corresponding target leaf in the tree. Based on
this observation one can make the heuristic guess that transitions ending in shorter leafs — closer
to the root — are less ‘informed’ than transitions going to taller leafs, and thus more likely to
be wrong. Accordingly, in L2 the distribution used by Sample is obtained from a random walk of
length l over the hypothesis, with the probability of each transition depending on its destination’s
height. Under this distribution, strings traversing more transitions towards shorter leafs are more
probable. Hopefully, these strings are more likely to be counterexamples to the current hypothesis.
In our implementation, a weight is assigned to each transition using the expression

w(s, σ) =
(

1
hτ(s,σ) − hmin + 1

)2

, (1)

where hτ(s,σ) is the height of the leaf corresponding to the state τ(s, σ) and hmin is the height of the
shortest leaf in the discrimination tree. Transition probabilities are obtained by normalizing these
weights for each state: p(s, σ) = w(s, σ)/Ws where Ws =

∑
σ w(s, σ). The example hypothesis in

Fig. 1 has its transition probabilities computed according to this rule.

3 Discussion

The fact that L1 performs much better than the baseline — note both of them use the same
sampling strategy to search for counterexamples — indicates that implementation issues matter
a lot in practical applications.

Even though L2 seems more principled than L1, both algorithms performed similarly in the Zulu
competition. After the competition, further experiments were conducted on these algorithms, but,
surprisingly enough, no statistically significant difference was observed between both algorithms.
At the present moment we have no reasonable explanation for this phenomenon.

Acknowledgements. This work is partially supported by: the Generalitat de Catalunya 2009-
SGR-1428 (LARCA), the EU PASCAL2 Network of Excellence (FP7-ICT-216886), and an FPU
fellowship (AP2008-02064) from the Spanish Ministry of Education.
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Fig. 1. Discrimination tree with superimposed hy-
pothesis

Input: current hypothesis c and maximum
sample size k

Output: a counterexample s or equal

for i← 1 to k do
// U ∼ Unif([0, 1])

l←
p

U · (Depth(c) + 6)2 + 1;
s← Sample(l);
if c(s) 6= MQ(s) then return s;

end

return equal;

Fig. 2. Simulation of an equivalence query with
membership queries
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Introduction

The concept of query learning (due to Dana Angluin [1]) is used and developed
in several different communities today. The TU Dortmund team originates in
the area of program verification. Active learning in this community is used to
produce exact and complete models of a system under test. Having in mind this
application of learning, we entered the ZULU challenge with the goal to improve
in (1) saving membership queries and (2) finding counterexamples, while still
producing exact models. In both disciplines we proceeded in two steps: first
finding good generic solutions and then customizing these to reflect the specific
profile of the ZULU problems. Our main contribution is a highly configurable
learning algorithm, which can mimic most of the known algorithms, and a new
approach to steering the search for counterexamples using a monotone growing
hypothesis annotated with coverage information.

A Configurable Inference Framework

The learning algorithm we used can best be described as an implementation
of generalized Observation Packs [2]. It combines a discrimination tree [3] with
a reduced observation table [4]. The realization as a general framework allows
us to switch between different strategies for handling counterexamples easily as
well as using a non-uniform observation table (i.e., a table with multiple sets
of distinguishing suffixes). Additionally, these sets can be initialized arbitrarily
(e.g., as {ε} for deterministic finite automata (DFA) or as Σ for Mealy machines).

For ZULU, we configured two versions of our learning algorithm, both using a
strategy for analyzing counterexamples that is based on [4]. The strategy extracts
from each counterexample (1) a new distinguishing suffix and (2) the word from
the SA-set that will produce an unclosure subsequently. The registered algorithms
differed as follows.

Initial set of distinguishing suffixes: In one configuration, the initial set of
distinguishing suffixes was initialized as {ε} (as in the literature). In the other
configuration, we used {ε}∪Σ in order to simulate the effect of changing from
DFA to Mealy models.
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Figure 1. Continuous Equivalence Query

Observation Table: We used uniform and non-uniform observation tables. In
a non-uniform table, the sets of distinguishing suffixes are managed inde-
pendently for each component (cf. [2]). This leads to using less membership
queries but more equivalence queries than a uniform table does.

Continuous Equivalence Queries

Active learning algorithms proceed in rounds. Each round is opened by an equiv-
alence query. A counterexample returned from such a query will be analyzed and
exploited during the rest of the round. This general formulation suggests that
equivalence queries in different rounds are independent, i.e., run on unrelated
conjectures. But, using a reduced observation table (or more precisely: analyz-
ing counterexamples as in [4]) will guarantee a monotone growing hypothesis:
the S-set of access sequences will only be extended by elements from the SA-set.
The prefix-closed set S can be understood as a successively produced spanning
tree of the target automaton. This observation has two consequences:

1. finding counterexamples coincides with proving transitions (elements from
the set SA) leading to yet undiscovered states,

2. different conjectures can be related using the S-set.

Relating the different conjectures results in using only one evolving hypothesis
automaton. In this automaton, only the transitions that correspond to elements
from the SA-set can change (and only in a monotone fashion). This allows the
formulation of continuous equivalence tests: each transition in the hypothesis
can be annotated with a measure, e.g., counting the number of tests that have
been executed for this transition; the counter will be reset when the transition
changes. This global coverage criterion can be used to steer the search for coun-
terexamples. Fig. 1 shows schematically one round of such a continuous equiv-
alence query: after updating the hypothesis, single transitions are selected and
then tested with some future (i.e., suffix word) until either a counterexample is
found or a termination criterion is met. For the ZULU challenge, we concretized
this general scheme as follows.

Select transition & Book keeping: For the E.H.Blocking algorithm, transi-
tions from the SA-set were chosen randomly. Once used, a transition was ex-
cluded from subsequent tests. When no transitions were left to choose from,
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Table 1. Algorithms: Configuration and Ranking

Algorithm Dist. Set Equivalence Query Training Rank
Init. Uniform Continuous Strategy (Avg.)

E.H.Blocking yes block transitions 89.38 1
E.H.Weighted {ε} no yes weight transitions 89.26 2
Random no random walks 88.93 6

run random no random walks 80.17 14
run blocking1 {ε}∪Σ yes yes block transitions 79.89 15
run weighted1 yes weight transitions 79.65 16

all transitions were re-enabled. The E.H.Weighted algorithm uses weights on
all transitions, which will be increased each time a transition is selected. The
probability of choosing a transition is inversely proportional to the weight.

Generate future: The suffixes were generated randomly with increasing length.
The length was initialized as some ratio of the number of states in the hy-
pothesis automaton, and was increased after a certain number of unsuccessful
tests. The exact adjustment of the suffix length was developed in a trial-and-
error way to fit the properties of the problems in the ZULU challenge.

We did not use an explicit termination criterion. A query terminated as soon as
the number of queries granted by ZULU was reached.

Results

For the actual competition, we registered six candidate algorithms: three using
a non-uniform observation table with a DFA-style initial set of distinguishing
suffixes and three using a uniform observation table with a (modified) Mealy-
style initial set of distinguishing suffixes. Those two groups correspond to the
decisions discussed above.

Both groups were equipped with the same three equivalence algorithms: (1)
E.H.Blocking, (2) E.H.Weighted, and (3) a plain random walks algorithm as
reference. The random walks algorithm tested randomly generated words. Ta-
ble 1 shows the configuration of the algorithms, their average scores during the
training phase and the rankings from the competition phase.

On the training problems, we also ran algorithms for the other two possible
configurations of the learning phase. There was, as can partly be seen in Table 1
and Table 2, a significant gap between algorithms using uniform tables and
algorithms using non-uniform tables (about 10 to 15 points). For the algorithms
using the same kind of table, there were gaps of 2 to 5 points between the versions
with different initial sets of distinguishing suffixes; DFA-style initial sets leading
to better results.

Compared to the big differences in the scores that were caused by the con-
figuration of the learning phase, the differences between the three equivalence
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Table 2. Detailed Training Example: Problem 49763507

Algorithm New Membership Queries Rounds States Score
Close Obs. Analyze CEs Search CEs

E.H.Blocking 6,744 358 999 259 352 94.11
E.H.Weighted 6,717 349 1,035 262 351 94.61
Random 6,586 519 996 228 332 93.28
run random 8,080 14 7 5 312 74.89
run blocking1 8,074 11 16 6 319 73.06
run weighted1 8,077 9 15 6 319 74.39

algorithms at first glance seem to be not significant. But, this is due to the ZULU
rating mechanism as shown in Table 2 for the training problem 49763507. While
the ratings do not differ significantly, the number of states does. The continuous
equivalence algorithms produce conjectures with significantly more states using
the same amount of queries (over all) as the random walks algorithm does.

Conclusion

We played the ZULU challenge following the same pattern for the learning phase
and for the equivalence phase. We first built good general frameworks and then
customized these to reflect the special requirements of the ZULU scenario: The
problems were best learned as DFA and using a non-uniform observation table.
Both decisions aim at keeping the table as small as possible, i.e., saving mem-
bership queries. Counterexamples were found considerably faster (especially for
bigger systems) using an evolving hypothesis. This allowed spending more queries
on the learning part. Also, due to their structure, the analysis of the counterex-
amples from the continuous equivalence queries required less membership queries
than analyzing randomly generated counterexamples.

The configuration we used for the learning phase made us compete at eye
level with the other players. Finally, the solution for finding counterexamples
fast resulted in the small but deciding advance (89.39 vs. 88.93 in the training
phase, but 1st vs. 6th in the competition phase).
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