
INNODOCT 2018

Valencia, 14th-16th November 2018

DOI: http://dx.doi.org/10.4995/INN2018.2018.8908

Editorial Universitat Politècnica de València

Implement of a high-performance computing system for parallel

processing of scientific applications and the teaching of multicore

and parallel programming1

Ph. D. Apolinar Velarde Martinez

Instituto Tecnológico el Llano Aguascalientes, Aguascalientes México

Abstract

Increasingly complex algorithms for the modeling and resolution of different

problems, which are currently facing humanity, has made it necessary the

advent of new data processing requirements and the consequent

implementation of high performance computing systems; but due to the high

economic cost of this type of equipment and considering that an education

institution cannot acquire, it is necessary to develop and implement

computable architectures that are economical and scalable in their

construction, such as heterogeneous distributed computing systems,

constituted by several clustering of multicore processing elements with

shared and distributed memory systems. This paper presents the analysis,

design and implementation of a high-performance computing system called

Liebres InTELigentes, whose purpose is the design and execution of

intrinsically parallel algorithms, which require high amounts of storage and

excessive processing times. The proposed computer system is constituted by

conventional computing equipment (desktop computers, lap top equipment

and servers), linked by a high-speed network. The main objective of this

research is to build technology for the purposes of scientific and educational

research.

Keywords: Single Instruction Multiple Data,Multiple Instruction Multiple

Data, Grid Systems, Cluster, Cloud Computing, MPI, Threads, High Speed

Computer Network.

1
 This project is sponsored by Tecnologico Nacional de México TecNM. 2018-2 110

203

http://dx.doi.org/10.4995/INN2018.2018.8908
http://creativecommons.org/licenses/by-nc-nd/4.0/

Implement of a high-performance computing system for parallel processing of scientific applications

and the teaching of multicore and parallel programming

Editorial Universitat Politècnica de València

1. Introduction

Without loss of generality, and according to the definitions proposed in the literature, the

systems of parallel and distributed computation or high-performance computing systems

are defined, such as systems that agglutinate a certain number of processing elements, also

called processors or nodes. that are physically separated; these processing elements, work

together for the solution of tasks or jobs that require large amounts of computing time

(Ragsdale, 1992) (Flynn, 1966) (Pacheco, 2011).

The implementation of different parallel computing systems such as multiprocessor

systems, multicomputer systems (Ragsdale, 1992) (Velarde, 2016) and currently cluster

systems (clusters), grid systems (grids) and cloud systems (Hameed, 2013), have been

motivated by two important aspects: first, the current information processing requirements

for the solution of scientific applications, which require computer systems with data

processing speeds, greater than those offered by conventional computer systems, such as

personal computers and servers with a single processor; Some of such scientific

applications are: such as the analysis of satellite data (Briceño, 2013), natural language

processing, recognition and digital processing of images, data analysis, data mining, among

others. Second, because of the limitations currently imposed by processor speeds, which are

caused by problems with energy consumption and heat dissipation, produced by the

integrated circuits inside the devices (Pacheco, 2011) (Qamhieh, 2013) (Flynn, 1966).

Parallel computing systems have been classified by two parameters, which distinguish

them: by software and by hardware. For example, in (Flynn, 1966), the classification is

based on the number of the instruction flow and the number of the data flow, which the

computer system uses in the processing of the algorithms; thus, in (Flynn, 1966) there are

single-instruction systems that process multiple data (SIMD, for its acronym in English

Single Instruction Multiple Data) and multiple-instruction systems, which process multiple

data (MIMD, for its acronym in English Multiple Instruction , Multiple Data) this type of

systems in turn are classified into shared memory systems and distributed memory systems.

In (Hameed, 2013), the current high performance computing systems are classified into

three groups: clusters, grids and clouds, this classification is based on the type of

architecture that the hardware has, and the type of software that each system handles.

In this work, we present the implementation of a high-performance computing system for

the parallel processing of scientific applications and the teaching of multicore and parallel

programming, based on the distributed memory scheme of the MIMD systems. The

implementation of a system with this type of architecture is due to the fact that these

systems have three important advantages in relation to other parallel computing systems, as

explained in (Pacheco, 2011):

204

http://creativecommons.org/licenses/by-nc-nd/4.0/

Apolinar Velarde Martinez

Editorial Universitat Politècnica de València

1. they offer a higher absolute performance compared to shared memory schemes,

providing uniform and faster memory access times,

2. they are designed to be scaled to hundreds or thousands of processors, adding more

hardware with different and complex processing potentials, allowing a great data

storage, and

3. reduce or eliminate central and global resources that produce bottlenecks that increase

complexity in the system, when the number of processors in the system also increases.

The general structure of a MIMD system or multicomputer system, is a locally concentrated

set of autonomous processing nodes, weakly coupled, with an identical structure in which

each node has its own private memory (Tannenbaum, 2000). Each node itself can consist of

a strongly coupled multiprocessor system, as shown in Figure 1, and referenced in

(Nehmer, 1987). When the nodes are presented as a strongly coupled system, then a MIMD

system can also be considered, a SIMD system (Flynn, 1966).

Figure 1. General structure of a multicomputer system

According to the previous paragraph, the expansion of the application area for parallel

computing will lead to an enormous need for software developers with parallel

programming skills; some chip manufacturers already demand to include parallel

programming as a standard course in computer science curricula (Rauber, 2010).

The objective of this research is to present the theoretical foundation, the justification for

the development, and the hardware implementation of the project: Liebres InTELigentes, a

distributed memory MIMD system, for the processing of parallel algorithms. The

technologies used for the development of the proposed algorithms are: MPI, OpenMP and

threads. The proposed algorithms implement scientific applications for educational and

research purposes, and are programmed with the specified tools.

The educational purposes that are pursued with the development of the system are:

1. allow engineering students in information technology to have access to the

programming of parallel computing systems and multicore systems with different

programming languages.

205

http://creativecommons.org/licenses/by-nc-nd/4.0/

Implement of a high-performance computing system for parallel processing of scientific applications

and the teaching of multicore and parallel programming

Editorial Universitat Politècnica de València

2. allow students of engineering in agronomy, business management and others, to use

software for mathematical modeling,

3. strengthen the preparation of students in distributed environments for the current needs

of the industry, and

4. establish comparisons of speeds and performances between single-user systems and

multi-user systems

The organization of this work is as follows: in the classification section of parallel

computing systems, the best known classification of this type of systems is presented; in the

basic concepts section, the formal definitions of the parts that make up a high-performance

computing system are presented; In the following section, we describe some examples of

Multicomputer systems that have been developed for educational purposes, for research

purposes or for commercial purposes; in the section justification of the design, development

and implementation of the parallel computing system, the causes that have led to the

development of this type of architecture are explained; The system implementation section

lists the hardware characteristics of the computing equipment that make up the Liebre

InTELigentes system. Finally, the projects that are intended to be developed with the

installed equipment are mentioned in the future works section. The conclusions that we

have reached with the development of this work are described at the end of this research

work.

2. Classification of parallel computing systems

Over the years, different classifications of parallel computing systems have been exposed;

In our work we address the classifications made in (Flynn, 1966) and (Hameed, 2013);

These classifications allow us to carry out the theoretical foundation and the justification of

why, a parallel system was implemented with the characteristics described here.

The classification proposed in (Flynn, 1966), called Flynn's taxonomy, is the classification

that is frequently used to classify parallel computing architectures. This taxonomy classifies

the systems according to the number of instructions flow, and the number of data flow that

the system can handle simultaneously (Flynn, 1966) (Ragsdale, 1992) (Pacheco, 2011).

This classification is the following:

Systems of a single instruction, multiple data (SIMD). This type of system operates on a

multiple data flow by applying the same instruction to multiple data elements; thus, an

abstract SIMD system has a single control unit and multiple arithmetic-logic units. Within

this type of systems, Vector Processing Systems and Graphic Processing Units are also

considered (Ragsdale, 1992).

206

http://creativecommons.org/licenses/by-nc-nd/4.0/

Apolinar Velarde Martinez

Editorial Universitat Politècnica de València

Multi-Instruction, Multiple Data Systems (MIMD). This type of systems supports multiple

instructions simultaneously operating on multiple data streams. MIMD systems consist of a

collection of independent processing units or cores, each of which has its own control unit

and its own arithmetic-logic units (ALU). MIMD systems are asynchronous, that is,

processors can operate at their own pace 2. In many MIMD systems, there is no global

clock and there can be no relationship between system times on two different processors.

Unless the programmer imposes some synchronization, the processors will execute exactly

the same sequence of instructions in a given time or they may be executing different

instructions at the same time.

MIMD systems are classified into two basic types, according to the way they access the

main memory of the data:

1. Shared memory systems

2. Distributed memory systems

In this paper, both systems are described briefly, for space reasons. Shared memory systems

(Ragsdale, 1992), use one or more multi-core processors, which can be directly connected

to a memory, or each processor can have a direct connection to a main memory block, and

processors can access any block of memory through of a special hardware, built inside the

processor. Figure 2 extracted from (Ragsdale, 1992), shows a shared memory system.

Figure 2. Shared memory system.

Distributed memory systems. In this type of systems the contents of the memory of a node

can be accessed only by the processor of that node (the memory is local to the node). When

the processor of one node requires information from another node, the information must be

sent explicitly as a message from one node to another. For the programmer, this means that

there are no shared variables, and there is no way for a processor to affect the data of

another processor untimely. Figure 3 shows a distributed memory system extracted from

(Ragsdale, 1992).

207

http://creativecommons.org/licenses/by-nc-nd/4.0/

Implement of a high-performance computing system for parallel processing of scientific applications

and the teaching of multicore and parallel programming

Editorial Universitat Politècnica de València

Figure 3. Distributed memory systems

These definitions offer a general idea of how the hardware is constituted, of the main types

of parallel systems that have been developed over time, and shows the general context in

which this research project is developed.

3. Related works

During the evolution of parallel computing systems, different architectures have been

proposed for educational, research and commercial purposes. The system described in this

paper is not intended to compare with other computer systems developed, in terms of speed,

storage capacity, etc., but with the sole purpose of showing some examples with their main

characteristics of hardware, software and type of applications that run.

INCAS Multicomputer Project (Nehmer, 1987). In its initial stage, it was built with 10

MC68000 microprocessors interconnected by a logical communication ring. The objective

of the development of this system has been to develop two distributed programming

languages: LADY and CSSA, the underlying philosophy of both languages was to structure

the distributed software for parallel programming, developing a hardware ad oc. The

structure of INCAS is made up of four logical levels: the physical network level, the LADY

system support level, the level of the distributed operating system and the distributed

application level. The INCAS project considers within its design the complete software

spectrum of Multicomputer systems, such as: distributed operating systems, distributed

programming languages, distributed applications and a methodology for distributed tests.

CM-5 Multicomputer (Z. Bozkus). It is a multiprocessor distributed memory system. The

processors are interconnected using three networks: data network, control network and

diagnostic network. The data network is used for communication between processors. The

control network is used to execute operations that require the participation of all nodes

simultaneously such as broadcast and synchronization. The communication between two

nodes can be made with the data network and the control network. The diagnostic network

is used for the maintenance and diagnosis of system failures. The CM-5 multicomputer

system is built with SPARC microprocessors from SUN Microsystems. Each

208

http://creativecommons.org/licenses/by-nc-nd/4.0/

Apolinar Velarde Martinez

Editorial Universitat Politècnica de València

microprocessor contains 4 unit vectors that function as memory controllers, a 33 Mhz

clock, a 64 Kbyte cache used for instructions and data. The microprocessors are rated at a

maximum performance of 22 million instructions per second (5 Mflops). This system,

implemented in the School of Computer Science, within the Center for Science and

Technology of the University of Syracuse, NY USA, has the purpose of developing

scientific applications for educational purposes.

Crystal Multicomputer (J. DeWitt). It is a multicomputer system based on 64-bit INTEL

processors, with a communications network with a ring topology (token ring); each node

has 2 network cards that allow point-to-point communication. The objective of the

development of this system is to design and implement parallel software for scientific

applications within the University.

M-Machine Multicomputer (M. Fillo). It is a multicomputer system with 3D mesh

architecture. In this system each node consists of a multi-ALU chip (for its acronym in

English, Arithmetic Logic Unit) and a DRAM unit (for its acronym in English, Direct

Random Access Memory). The central card of each node includes the network card that

functions in turn as a router and provides a bandwidth of 800 MBytes per second. The input

devices output can be connected to the controllers of each node. The M-Machine

Multicomputer system was designed to solve inherently parallel problems of fixed size,

rather than to achieve the maximum performance of the equipment that constitutes it, in the

solution of problems; for this, the nodes are designed to handle the parallelism at the

instructional level until reaching the process level.

4. Justification of the design, development and implementation of the parallel

computing system

The development of this project has two main aspects: the aspect of scientific research and

the educational aspect. In the first, the Liebres InTELigentes system processes scientific

applications that due to the high requirement of computational processing, conventional

computing equipment is insufficient, such as the genetic algorithm of islands and the

evolutionary algorithms that process more than one variable. Some of the projects where

these types of algorithms are applied are: the problem of the quadratic assignment in the

planning of tasks in parallel computing architectures (Velarde A. , 2014). Analysis of the

Opposition of the Objectives and the Pareto Front in the Planning and Assignment of Tasks

in a Multicomputer System (A. Velarde, 2014), whose objective is to show the results

obtained when evaluating the different opposing objectives in the planning and allocation

processes of processors in a Multicomputer system. EVIA (Interactive Virtual Learning

Spaces), which is constituted as a repository of contents of subjects that serve as a

complement to the subjects taught in person.

209

http://creativecommons.org/licenses/by-nc-nd/4.0/

Implement of a high-performance computing system for parallel processing of scientific applications

and the teaching of multicore and parallel programming

Editorial Universitat Politècnica de València

In the educational aspect, in personal computer equipment such as laptops and personal

desktop computers, it is becoming increasingly common to use processors that contain

architectures with multiple processing cores (from the dual core to the Intel Core i7),

which, through the programming of threads with languages such as JAVA (Rusty, 2005) (S.

Oaks, January 1999), support the execution of multiple tasks in parallel, so it is necessary to

study subjects where learners learn and interact, and take subjects that imply the

management, and operation of high performance computing systems at the professional

level, which will allow them to solve real problems that professional life poses, as well as

develop research projects in the area of systems communication, computer networks ,

applicability of high performance computing, among other areas.

5. System Implementation

An additional advantage that has motivated the construction of the Multicomputer system

described in this paper has been the implementation cost, which is lower in relation to the

acquisition of multiprocessor shared memory systems, as well as being flexible and scalable

in to the number of computing equipment that can be attached to the architecture. This

characteristic shows this type of systems as a viable alternative for its implementation and,

therefore, for the processing of scientific parallel applications and as platforms for teaching

in higher education institutions.

The three levels that constitute the objective system developed are: the level of hardware,

the level of communication and the level of software. As it was stated at the beginning, the

objective of this work is to show only the hardware implementation, since in the

implementation of the software, we are currently working.

The hardware level is made up of 2 servers equipped with a 4-core processor (multicore)

each, which allows the programming of intrinsically parallel applications in two aspects, as

established in (Pacheco, 2011) (H. Jin, 2011):

a. Through the MPI (Message Passing Interface) programming libraries that is the current

design standard in MIMD systems, and

b. Using the Open Message Interface libraries, which allow programming in multi-core

systems

According to the requirements of the research project that is developed, the programmer

can choose any of the two aspects.

The communication system is with a Switch, which allows the communication equipment

to equipment, equipment to all the equipment, and all to all the equipment, when the

210

http://creativecommons.org/licenses/by-nc-nd/4.0/

Apolinar Velarde Martinez

Editorial Universitat Politècnica de València

programming is developed through the MPI libraries. When the programming is done for a

multi-core system, the programmer decides on which node will run his application.

The software system, is the LINUX operating system with support for parallel

architectures.

6. Future research work

Once the hardware design phase has been completed, a set of research projects have been

proposed that will be implemented within the proposed system. For reasons of space, only

three of these projects are described below:

The first of these is the continuity of the Interactive Virtual Learning Environment (EVIA)

project, which is intended to be complemented using a skills approach, which will be

directed to the facilitator and the student, through the website, and allow, among others

things, publish more content of subjects, online exams, student-facilitator interactivity and

student-student, use of electronic messaging, and any information that the facilitator wishes

to publish for the good performance of the student in the subjects that he / she studies in his

/ her career.

The second project, the configuration of an accessible environment for the students of the

career of Engineering in Information Technology and Communications, is an environment

that allows access to the Multicomputer system for the realization of the design,

development and execution of parallel evolutionary algorithms, parallel genetic algorithms

and algorithms developed for the solution of real problems that require high computing

power developed in some of the languages described in the previous section.

The third project multicore programming, seeks to develop applications that allow to plan

tasks that seek to run in cores of distant nodes, to exploit the implicit parallelism in

systems, that for the execution of the processes, has more than one core of execution.

Examples of this type of systems can be seen in (R. Thakur, 2009) (A. Merigot, 2008).

7. Conclusions

Current computing equipment, both desktops and laptops, have processors that execute

increasingly fast tasks, due to the increase in the number of processing cores. While the

processors are getting faster in the execution of tasks, it is also necessary to create parallel

algorithms that exploit these processing speeds, making use of the different kernels

contained within the processors. This paper presents the implementation in hardware of a

parallel computing system that allows the design, programming and execution of parallel

211

http://creativecommons.org/licenses/by-nc-nd/4.0/

Implement of a high-performance computing system for parallel processing of scientific applications

and the teaching of multicore and parallel programming

Editorial Universitat Politècnica de València

algorithms applied to problems, which require excessive data processing and storage times,

in two aspects: for educational purposes and for investigation. The educational purposes are

with the intention that students at the undergraduate level, can study subjects related to the

area of parallelism and they are able to develop programs in real environments. The

research aims are aimed at executing algorithms that seek to solve problems that require

high data processing times, which conventional equipment can not offer.

References

A. Velarde, E. P. (2014). Análisis de la Contraposición de los Objetivos y el Frente de Pareto en

la Planificación y Asignación de Tareas en un Sistema de Multicomputadoras. CONGRESO

INTERNACIONAL DE INVESTIGACION DE ACADEMIA JOURNALS (págs. 5190-5197).

Celaya, Guanajuato, Mexico: Editorial Academia Journals.

Briceño, L. D. (2013). Robust static resource allocation of DAGs in a heterogeneous multicore

system. Jounal of Parallel and Distributed Computing, 1705-1717.

Flynn, M. (1966). Very High-speed Computing Systems. Proceedings IEEE 54, 1901-1909.

Hameed, H. e. (2013). A survey on resource allocation in high performance distributed

computing systems. Parallel Computing 39 ELSEVIER, 709–736.

J. DeWitt, R. F. (s.f.). The Crystal Multicomputer: Design and Implementation Experience.

Computer Science Department. University of Wisconsin . Wisconsin , Madison, EUA.

M. Fillo, W. K. (s.f.). The M-Machine Multicomputer. Massachusetts Institute of Technology

Artificial Intelligence Laboratory. . Obtenido de http://publications.ai.mit.edu

Nehmer, J. e. (1987). Key Concepts of the INCAS Multi computer Project. IEEE Transactions

on Software Engineering Vol. SE-13, NO. 8, 913 - 923.

Pacheco, P. (2011). An Introduction to Parallel Programming. Burlington MA USA:

ELSEVIER.

Qamhieh, M. e. (2013). Global EDF scheduling of directed acyclic graphs on multiprocessor

systems. Proceedings of the 21st International conference on Real-Time Networks and

Systems, 287-296.

Ragsdale, S. (1992). Parallel Programming. USA: McGraw-Hill.

Rauber, T. a. (2010). Parallel Programming for Multicore and Cluster Systems. Berlin

Heidelberg: Springer-Verlag.

Rusty, E. (2005). Java Network Programming. O’REILLY.

S. Oaks, H. W. (January 1999). JAVA Threads 2nd Edition Java 2. O’REILLY.

212

http://creativecommons.org/licenses/by-nc-nd/4.0/

Apolinar Velarde Martinez

Editorial Universitat Politècnica de València

Tannenbaum, A. (2000). Distributed Systems. Washington D. C. USA: Addison Wesley.

Velarde, A. (14 de Febrero de 2014). Planificación y Asignación de Tareas en un Sistema de

Multicomputadoras. . Tesis Doctoral. 2014. . Aguascalientes, Aguascalientes, México:

Universidad Autónoma de Aguascalientes.

Velarde, A. (2016). Planificar y asignar tareas en un sistema de multicomputadoras utilizando

algoritmos evolutivos. España: Editorial Académica Española.

Z. Bozkus, S. R. (s.f.). Modeling the CM-5 multicomputer. . Obtenido de Center for Science and

Technology, Syracuse University. Syracuse, NY: http://www.syr.edu

213

http://creativecommons.org/licenses/by-nc-nd/4.0/

