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Abstract

Hu proved in [4] that a metric space (X, d) is complete if and only if for

any closed subspace C of (X, d), every Banach contraction on C has

fixed point. Since then several authors have investigated the problem

of characterizing the metric completeness by means of fixed point theo-

rems. Recently this problem has been studied in the more general con-

text of quasi-metric spaces for different notions of completeness. Here

we present a characterization of a kind of completeness for quasi-metric

spaces by means of a quasi-metric versions of Hu’s theorem.
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1. Introduction

It is an obvious consequence of the Banach contraction principle that every Banach

contraction on any closed subspace of a complete metric space has fixed point.

Hu proved in [4] that if every Banach contraction on any closed subset of a metric

space (X, d) has fixed point then (X, d) is complete. Indeed, suppose that (X, d) is

not complete, so X contains a nonconvergent Cauchy sequence {xn}n∈N of distinct

terms. For each xn define ln = inf{d(xn, xm) : m > n}. By the Cauchyness, given

r ∈ (0, 1) and ln there exists k(n) > n such that d(xi, xj) < rln for all i, j > k(n).

If not d(xi, xj) < rln < ln, with j > i, a contradiction. Then, the mapping T

defined as Txn = xk(n) for all n ∈ N is a Banach contraction on the closed set

{xn : n ∈ N} with no fixed point.

Therefore, a metric space (X, d) is complete if and only if for any closed subspace

C of (X, d), every Banach contraction on C has fixed point.

Since Hu obtained this result, several authors have investigated the problem of

characterizing the metric completeness by means of fixed point theorems. Recently

this problem has been studied in the more general context of quasi-metric spaces

for different notions of quasi-metric completeness ([1, 5, 6]). Here we present a

characterization of a kind of completeness for quasi-metric spaces by means of a

quasi-metric version of Hu’s theorem.

2. Basic notions and preliminary results

Our basic reference for quasi-metric spaces is [2].

By a quasi-metric on a set X we mean a function d : X ×X → [0,∞) such that

for all x, y, z ∈ X :

(i) x = y ⇔ d(x, y) = d(y, x) = 0;

(ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a nonempty set and d is a

quasi-metric on X .
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Given a quasi-metric d on X , the function d−1 defined by d−1(x, y) = d(y, x) is

also a quasi-metric on X , called the conjugate of d, and the function ds defined

by ds(x, y) = max{d(x, y), d−1(x, y)} is a metric on X .

Each quasi-metric d on X induces a T0 topology τd on X which has as a base the

family of open ball {Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, r) = {y ∈ X : d(x, y) <

ε} for all x ∈ X and ε > 0.

A subset C of a quasi-metric space (X, d) is called doubly closed if C is closed

with respect to τd and with respect to τd−1 .

If τd is a T1 (resp. a Hausdorff) topology on X , we say that (X, d) is a T1 (resp. a

Hausdorff) quasi-metric space. Note that a quasi-metric space (X, d) is T1 if and

only if for each x, y ∈ X , condition d(x, y) = 0 implies x = y.

A quasi-metric space (X, d) is called d -sequentially complete if every Cauchy se-

quence in the metric space (X, ds) converges with respect to the topology τd.

Similarly, a quasi-metric space (X, d) is called d−1-sequentially complete if every

Cauchy sequence in the metric space (X, ds) converges with respect to the topology

τd−1 .

Definition 1 [3]. Let (X, d) be a quasi-metric space.

A d-contraction on (X, d) is a mapping T : X → X such that there is a constant

r ∈ [0, 1) satisfying d(Tx, T y) ≤ rd(x, y), for all x, y ∈ X .

A d−1-contraction on (X, d) is a mapping T : X → X such that there is a constant

r ∈ [0, 1) satisfying d(Tx, T y) ≤ rd(y, x), for all x, y ∈ X .

A d−1-contraction on a subset C of (X, d) is a mapping T : C → C such that there

is a constant r ∈ [0, 1) satisfying d(Tx, T y) ≤ rd(y, x), for all x, y ∈ C.

If (X, d) is a metric space, the notions of d-contraction and d−1-contraction coin-

cide, and they coincide with the classical notion of (Banach) contraction for metric

spaces.

It is easy to see ([3, Proposition 3]) that if T is a d-contraction or a d−1-contraction

on (X, d), then T is a contraction on the metric space (X, ds), so for any x0 ∈ X ,

the sequence {T nx0}n∈N is a Cauchy sequence in the metric space (X, ds).
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In order to obtain a suitable quasi-metric extension of Hu’s theorem we shall con-

sider d−1-contractions but no d-contractions since there exist examples of T1 d-

sequentially complete quasi-metric spaces for which there are d-contractions with-

out fixed point. In any case, the following example shows that such an exten-

sion is very difficult in the realm of d-sequentially complete quasi-metric spaces

(and hence, in the realm of stronger forms of quasi-metric completeness, as left

K-sequential completeness, right K-sequential completeness, Smyth completeness,

etc.) and motivates the notion of completeness introduced in Definition 2 below.

Example 1. Let d be the quasi-metric on N given as d(n, n) = 0 for all n ∈ N

and d(n,m) = 1
n
if n 6= m. Then (N, d) is a Hausdorff non d-sequentially complete

quasi-metric space. Let C be any (nonempty) subset of N and T : C → C a

d−1contraction on C. It is easy to check that for each x ∈ C, Tx is a fixed point

of T.

Definition 2. A quasi-metric space (X, d) is called half sequentially complete if

every Cauchy sequence in the metric space (X, ds) converges with respect to the

topology τd or τd−1 .

Observe that the space of Example 1 is d−1-sequentially complete and hence half

sequentially complete.

Next we present an example of a half sequentially complete quasi-metric space

that is not d-sequentially complete and not d−1-sequentially complete.

Example 2. Let X = {0,∞} ∪ N ∪ { 1
n+1 : n ∈ N}. Define a function d on

X×X by d(0, 0) = d(∞,∞) = 0, d( 1
n+1 ,m) = d(m, 1

n+1 ) = 1, d(n,m) =
∣∣ 1
n
− 1

m

∣∣,
d( 1
n+1 ,

1
m+1 ) =

∣∣∣ 1
n+1 −

1
m+1

∣∣∣ if n,m ∈ N, d(n,∞) = 1/n, d(0, 1
n+1 ) = 1

n+1 , and

d(∞, n) = d( 1
n+1 ,∞) = d(∞, 1

n+1 ) = d( 1
n+1 , 0) = d(0, n) = d(n, 0) = 1, for all

n ∈ N. Then (X, d) is a Hausdorff quasi-metric space. Moreover, every non

eventually constant Cauchy sequence in (X, ds) is a subsequence of {n}n∈N or of

{ 1
n+1}n∈N. Since {n}n∈N converges with respect to τd−1 (but not with respect to

τd) and {
1

n+1}n∈N converges with respect to τd (but not with respect to τd−1), we

deduce that (X, d) is half sequentially complete but not d-sequentially complete

and not d−1-sequentially complete.
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3. The main result

Theorem 1. A T1 quasi-metric space (X, d) is half sequentially complete if and

only if every d−1-contraction on any doubly closed subset of (X, d) has a fixed

point.

Proof. Let (X, d) be a T1 half sequentially complete quasi-metric space, C a doubly

closed subset of (X, d) and T a d−1-contraction on C. Fix x0 ∈ C, then {T nx0}n∈N

is a Cauchy sequence in (X, ds) such that {T nx0 : n ∈ N} ⊂ C. Since (X, d) is half

sequentially complete then {T nx0}n∈N converges with respect to τd or with respect

to τd−1 . If {T nx0}n∈N converges with respect to τd there exists y ∈ X such that

d(y, T nx0)→ 0 as n→∞. Since C is doubly closed then y ∈ C. Since T is a d−1-

contraction, there exists r ∈ [0, 1) such that d(T n+1x0, T y) ≤ rd(y, T nx0) for all

n ∈ N. Consequently d(T n+1x0, T y)→ 0 as n→∞. From the triangle inequality

we deduce d(y, T y) = 0. Therefore y = Ty because (X, d) is a T1 quasi-metric

space. If {T nx0}n∈N converges with respect to τd−1 there exists y ∈ X such that

d(T nx0, y)→ 0 as n→∞. Since C is doubly closed then y ∈ C. Since T is a d−1

contraction, there exists r ∈ [0, 1) such that d(Ty, T n+1x0) ≤ rd(T nx0, y) for all

n ∈ N. Consequently d(Ty, T n+1x0)→ 0 as n→∞. From the triangle inequality

we deduce d(Ty, y) = 0. Therefore y = Ty because (X, d) is a T1 quasi-metric

space.

For the converse suppose that there exists a Cauchy sequence {xn}n∈N in (X, ds)

of distinct terms that is nonconvergent with respect to τd and nonconvergent with

respect to τd−1 . Then, the set C := {xn : n ∈ N} is a doubly closed subset of

(X, d). For each xn we define ln = d(xn, {xm : m > n}) ∧ d({xm : m > n}, xn).

Thus ln > 0. Since {xn}n∈N is a Cauchy sequence in (X, ds), given r ∈ (0, 1), for

each n ∈ N there exists k(n) > n such that ds(xn′ , xm′) < rln for all m′, n′ ≥ k(n).

(Obviously we can take k(m) > k(n) when m > n.)

Now we construct a d−1-contraction on C without fixed point. Indeed, define

T : C → C as Txn = xk(n) for all n ∈ N. Let n,m ∈ N, and suppose, without

loss of generality, that m > n. Then ds(Txn, T xm) = ds(xk(n), xk(m)) < rln ≤

r(d(xn, xm) ∧ d(xm, xn)). Hence d(Txn, T xm) ≤ rd(xm, xn) and d(Txm, T xn) ≤
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rd(xn, xm). We deduce that T is a d−1-contraction on the doubly closed subset C.

This concludes the proof.

Finally, we observe that the above theorem cannot be generalized to non T1 quasi-

metric spaces since there are examples of half sequentially complete non T1 quasi-

metric spaces for which there exist d−1-contractions without fixed point.
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