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Abstract

Let C(K,E1) be the space of continuous functions defined between a

compact Hausdorff space K and the space of fuzzy numbers E1 endowed

with the supremum metric. We provide a sufficient set of conditions

on a subspace of C(K,E1) in order that it be dense. We also obtain a

similar result for interpolating families of C(K,E1).
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1. Introduction

Fuzzy numbers provide formalized tools to deal with non-precise quantities. They

are indeed fuzzy sets in the real line and were introduced in 1978 by Dubois and

Prade ([3]), who also defined their basic operations. Since then, Fuzzy Analysis
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has developed based on the notion of fuzzy number just as much as classical Real

Analysis did based on the concept of real number. Such development was eased by

a characterization of fuzzy numbers provided in 1986 by Goetschel and Voxman

([5]) leaning on their level sets.

As real-valued functions do in the classical setting, fuzzy-number-valued functions,

that is, functions defined on a topological space taking values in the space of

fuzzy numbers, play a central role in Fuzzy Analysis. Namely, fuzzy-number-

valued functions have become the main tool in several fuzzy contexts, such as

fuzzy differential equations ([1]), fuzzy integrals ([12]) or fuzzy optimization ([6]).

However the main difficulty of dealing with these functions is the fact that the

space they form is not a linear space; indeed it is not a group with respect to

addition.

In this paper we focus on the conditions under which continuous (with respect to

the supremum metric) fuzzy-number-valued functions defined on a compact Haus-

dorff space can be (uniformly) approximated to any degree of accuracy. More

precisely and based on ideas of R. I. Jewett ([8]) and J. B. Prolla ([11]), we pro-

vide a sufficient set of conditions on a subspace of the space of fuzzy-number-valued

functions in order that it be dense, which is to say a Stone-Weierstrass type result.

The celebrated Stone-Weierstrass theorem is one of the most important results in

classical Analysis, plays a key role in the development of General Approximation

Theory and, particularly, is in the essence of the approximation capabilities of neu-

ral networks. We also obtain a similar result for interpolating families of continuous

fuzzy-number-valued functions in the sense that the uniform approximation can

also demand exact agreement at any finite number of points.

2. Preliminaries

Let F (R) denote the family of all fuzzy subsets on the real numbers R. For

u ∈ F (R) and λ ∈ [0, 1], the λ-level set of u is defined by

[u]λ := { x ∈ R : u(x) ≥ λ } , λ ∈]0, 1],

[u]0 := cl R {x ∈ R : u(x) > 0 } .
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The fuzzy number space E1 is the set of elements u of F (R) satisfying the following

properties:

(1) u is normal, i.e., there exists an x0 ∈ R with u(x0) = 1;

(2) u is convex, i.e., u(λx+ (1 − λ)y) ≥ min {u(x), u(y)} for all x, y ∈ R, λ ∈

[0, 1];

(3) u is upper-semicontinuous;

(4) [u]0 is a compact set in R.

Notice that if u ∈ E1, then the λ-level set [u]λ of u is a compact interval for each

λ ∈ [0, 1]. We denote [u]λ = [u−(λ), u+(λ)]. Every real number r can be considered

a fuzzy number since r can be identified with the fuzzy number r̃ defined as

r̃(t) :=

{
1 if t = r,mean

0 if t 6= r.

We can now state the characterization of fuzzy numbers provided by Goetschel

and Voxman ([5]):

Theorem 1. Let u ∈ E1 and [u]λ = [u−(λ), u+(λ)], λ ∈ [0, 1]. Then the pair of

functions u−(λ) and u+(λ) has the following properties:

• u−(λ) is a bounded left continuous nondecreasing function on (0, 1];

• u+(λ) is a bounded left continuous nonincreasing function on (0, 1];

• u−(λ) and u+(λ) are right continuous at λ = 0;

• u−(1) ≤ u+(1).

Conversely, if a pair of functions α(λ) and β(λ) satisfy the above conditions (i)-

(iv), then there exists a unique u ∈ E1 such that [u]λ = [α(λ), β(λ)] for each

λ ∈ [0, 1].

Given u, v ∈ E1 and k ∈ R, we can define u+ v := [u−(λ), u+(λ)] + [v−(λ), v+(λ)]

and ku := k[u−(λ), u+(λ)]. It is well-known that E1 endowed with this two natural

operations is not a vector space. Indeed (E1,+) is not a group.

On the other hand, we can endow E1 with the following metric:

43



J. J. Font, D. Sanchis and M. Sanchis

Definition 2 ([5, 2]). For u, v ∈ E1, we can define

d∞(u, v) := sup
λ∈[0,1]

max
{
|u−(λ)− v−(λ)|, |u+(λ) − v+(λ)|

}
.

It is called the supremum metric on E1, and (E1, d∞) is well-known to be a

complete metric space. Notice that, by the definition of d∞, R endowed with

the euclidean topology can be topologically identified with the closed subspace

R̃ = { x̃ : x ∈ R } of (E1, d∞) where x̃+(λ) = x̃−(λ) = x for all λ ∈ [0, 1]. As a

metric space, we shall always consider E1 equipped with the metric d∞.

Proposition 3. The metric d∞ satisfies the following properties:

(1) d∞(
∑m

i=1 ui,
∑m

i=1 vi) ≤
∑m

i=1 d∞(ui, vi) where ui, vi ∈ E1 for i = 1, ...,m.

(2) d∞(ku, kv) = kd∞(u, v) where u, v ∈ E1 and k > 0.

(3) d∞(ku, µu) =| k − µ | d∞(u, 0), where u ∈ E1, k ≥ 0 and µ ≥ 0.

(4) d∞(ku, µv) ≤| k − µ | d∞(u, 0) + µd∞(u, v), where u, v ∈ E1, k ≥ 0 and

µ ≥ 0.

We shall denote by C(K,E1) the space of continuous functions defined between

the compact Hausdorff space K and the metric space (E1, d∞). In C(K,E1) we

shall consider the following metric:

D(f, g) = sup
t∈K

d∞(f(t), g(t)),

which induces the uniform convergence topology on C(K,E1).

Proposition 4. Let φ ∈ C(K,R+) and f ∈ C(K,E1). Then the function k 7→

φ(k)f(k), k ∈ K, belongs to C(K,E1).

3. A version of the Stone-Weierstrass theorem in Fuzzy Analysis.

Let us first introduce a basic tool to obtain our main theorem (Theorem 11).

Definition 5. Let W be a nonempty subset of C(K,E1). We define

Conv(W ) = {ϕ ∈ C(K, [0, 1]) : ϕf + (1− ϕ)g ∈W

for all f, g ∈W}.
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Proposition 6. Let W be a nonempty subset of C(K,E1). Then we have:

(1) φ ∈ Conv(W ) implies that 1− φ ∈ Conv(W ).

(2) If φ, ϕ ∈ Conv(W ), then φ · ϕ ∈ Conv(W ).

(3) If φ belongs to the uniform closure of Conv(W ), then so does 1− φ.

(4) If φ, ϕ belong to the uniform closure of Conv(W ), then so does φ · ϕ.

(5) Uniform closure

Definition 7. It is said that M ⊂ C(K, [0, 1]) separates the points of K if given

s, t ∈ K, there exists φ ∈M such that φ(s) 6= φ(t).

Next we state two technical lemmas which will used in the sequel:

Lemma 8 ([8, Lemma 2]). Let 0 < a < b < 1 and 0 < δ < 1
2 . There exists a

polynomial p(x) = (1− xm)n such that

(1) p(x) > 1− δ for all 0 ≤ x ≤ a,

(2) p(x) < δ for all b ≤ x ≤ 1.

Lemma 9 ([8, Theorem 1]). Let W ⊂ C(K,E1). The maximum of two elements

of Conv(W ) belongs to the uniform closure of Conv(W ).

Lemma 10. Let W ⊆ C(K,E1). If Conv(W ) separates the points of K, then,

given x0 ∈ K and a open neighborhood N of x0, there exists a neighborhood U of

x0 such that for all 0 < δ < 1
2 , there is ϕ ∈ Conv(W ) such that

(1) ϕ(t) > 1− δ, for all t ∈ U ;

(2) ϕ(t) < δ, for all t /∈ N .

Gathering the information obtained so far, we can now state and prove a version

of the Stone-Weierstrass theorem for fuzzy-number-valued continuous functions:

Theorem 11. LetW be a nonempty subset of C(K,E1) and assume that Conv(W )

separates points. If given f ∈ C(K,E1) and ε > 0, there exists, for each x ∈ K,

gx ∈W such that d∞(f(x), gx(x)) < ε, then W is dense in (C(K,E1), D).
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4. Conclusion

We have proved that, under certain natural assumptions, continuous (with re-

spect to the supremum metric) fuzzy-number-valued functions defined on a com-

pact Hausdorff space can be (uniformly) approximated to any degree of accuracy,

which yields a Stone-Weierstrass type result in this setting. A similar result for

interpolating families of continuous fuzzy-number-valued functions in the sense

that the uniform approximation can also demand exact agreement at any finite

number of points.
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