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Abstract

In this work we elaborate a theory of a cumulative distribution function

on a Polish ultrametric space from a probability measure defined in this

space. With that purpose, the idea is to define an order in the space

from the collection of balls and show that the function defined plays a

similar role to that played by a cumulative distribution function in the

classical case.
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1. Introduction

This work collects some results on a theory of a cumulative distribution function

in a separable complete ultrametric space. It is a preview of [3].

With that purpose, the idea is to define an order in a space from the collection of

balls and show that the function defined from its order plays a similar role to that

played by a cumulative distribution function in the classical case.

Moreover, we define its pseudo-inverse and study its properties. Those properties

will allow us to generate samples of a distribution and give us the chance to

calculate integrals with respect to the related probability measure.

2. Ultrametric spaces

First of all, we recall that an ultrametric space (X, d) is a metric space for which

the metric d satisfies that d(x, z) ≤ max{d(x, y), d(y, z)}, for each x, y, z ∈ X .

Now, following [2, Def 18.1.1], we recall that

Definition 1. A Polish metric space is a complete metric space which has a

countable dense subset.

Given x ∈ X and n ∈ N, we will denote by Uxn = {y ∈ X : d(x, y) ≤ 1
2n } the closed

ball, with respect to the ultrametric d, centered at x with radius 1
2n . The collection

of these balls will be denoted by G =
⋃
n∈N

Gn where Gn = {Uxn : x ∈ X}, for

each n ∈ N.

Next we collect some properties of an ultrametric space according to the notation

we have just introduced and [1, Ex. 2.1.15]:

Proposition 2. Let (X, d) be an ultrametric space. Then:

(1) A ball, Uxn, has diameter at most 1
2n .

(2) Every point of a ball is a center: that is, if y ∈ Uxn, then Uxn = Uyn, for

each x ∈ X and n ∈ N. Consequently, Gn is a partition of X, that is, it

covers X and given x, y ∈ X it follows that Uxn = Uyn or Uxn ∩ Uyn = ∅.

(3) Uxn is open and closed in τ(d) for each x ∈ X and n ∈ N.
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Note that, according to the previous properties, Gn+1 is a refinement of Gn (that

is, each element of Gn+1 is contained in some element of Gn) for each n ∈ N.

In this work, we will assume that (X, d) is a Polish ultrametric space (that is, d is a

separable and complete ultrametric). Note that this implies that Gn is countable.

Moreover, we will denote by τ the topology induced by d.

3. Defining an order in X

We first define an order in X from the collection of balls Gn = {Uxn : x ∈ X} as

follows:

Definition 3. We can enumerate G1 = {g1, g2, . . .}. Since each element of G1

can be decomposed into a countable number of elements of G2 we can write gi =

gi1 ∪ gi2 ∪ · · · for each gi ∈ G1, and define the lexicographical order in G2. Hence,

we can enumerate G2 by considering, first, the elements which are contained in

g1, then those which are contained in g2, . . .. Recursively, we define an order in

Gn for each n ∈ N.

For each n ∈ N, this order induces an order in X given by x ≤n y if, and only if

Uxn ≤ Uyn. From that orders, we define an order in X given by x ≤ y if, and only

if x ≤n y for each n ∈ N.

It can be proven that (Gn,≤n) is a well ordered set (that is, ≤n is a total order

and each subset has a minimum). Indeed, (X,≤) is a totally ordered set with a

bottom. If Gn is finite for each n ∈ N (that is, d is totally bounded), then it also

has a top.

From the previous order we define the set ]a, b] = {x ∈ X : a < x ≤ b}. Analo-

gously, we define ]a, b[, [a, b] and [a, b[. Moreover, (≤ a) is given by (≤ a) = {x ∈

X : x ≤ a}. (< a), (≥ a) and (> a) are defined similarly.

The previous order also suggests the definition of a new topology in X , τo, which is

the topology in X given by the order ≤, that is, the topology given by the subbase

{(< a) : a ∈ X} ∪ {(> a) : a ∈ X}.

τo is related to the topology induced by the ultrametric, τ , in the next sense
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Proposition 4. τo ⊆ τ .

4. Defining the cumulative distribution function

The definition of the cumulative distribution function related to a probability

measure defined on X is the next one:

Definition 5. The cumulative distribution function (in short, cdf) of a probability

measure µ on a Polish ultrametric space X is a function F : X → [0, 1] defined by

F (x) = µ(≤ x).

Its properties are collected in the next

Proposition 6. Let F be a cdf. Then:

(1) F is monotically non-decreasing.

(2) F is right τo-continuous and, consequently, it is right τ-continuous.

(3) limx→∞ F (x) = 1 (this means that for each ε > 0 there exists y ∈ X with

x ≤ y such that 1− F (y) < ε).

The previous proposition makes us wonder the next question which will be an-

swered in [4] by using a fractal structure.

Question 7. Let F : X → [0, 1] be a function satisfying the properties collected in

the previous proposition, does there exist a probability measure µ on X such that

its cdf, Fµ, is F?

Moreover, given a probability measure on a Polish ultrametric space, we can define

F− : X → [0, 1], by F−(x) = µ(< x), for each x ∈ X .

Its properties are collected in the next proposition.

Proposition 8. Let µ be a probability measure on X and F its cdf, then:

(1) F− is monotically non-decreasing.

(2) F− is left τo-continuous. Consequently, F− is also left τ-continuous.

(3) F−(minX) = 0.
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From F and F− we can get the measure of some sets, as next results show:

Lemma 9. Let µ be a probability measure on X and F its cdf. Given x ∈ X, it

holds that F (x) = F−(x) + µ({x}).

Proposition 10. Let µ be a probability measure on X and F its cdf, then µ(]a, b]) =

F (b)− F (a) for each a, b ∈ X with a < b.

Corollary 11. Let µ be a probability measure on X and F its cdf, then:

(1) µ([a, b]) = F (b)− F−(a).

(2) µ(]a, b[) = F−(b)− F (a).

(3) µ([a, b[) = F−(b)− F−(a).

5. The pseudo-inverse of a cdf

Finally we see how to define the pseudo-inverse of a cdf F defined on X and we

gather some properties which relate this function to both F and F−. Moreover,

we prove that it is measurable.

Let F be a cdf. We define its pseudo-inverse (also called quantile function), G :

[0, 1]→ X , by G(x) = inf{y ∈ X : F (y) ≥ x} for each x ∈ [0, 1].

Its properties are collected in the next result.

Proposition 12. Let F be a cdf and let x ∈ X and r ∈ [0, 1]. Then:

(1) G is monotically non-decreasing.

(2) G(F (x)) ≤ x.

(3) F (G(r)) ≥ r.

(4) G(r) ≤ x if, and only if r ≤ F (x).

(5) F (x) < r if, and only if G(r) > x.

(6) If F−(x) < r, then x ≤ G(r).

(7) If F−(x) < r ≤ F (x), then G(r) = x.

(8) If r < F−(x), then G(r) < x.

(9) If r = F−(x), then G(r) ≤ x.

(10) F−(G(r)) ≤ r ≤ F (G(r)).
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(11) If F (G(r)) > r, then µ({G(r)}) > 0.

(12) If µ({G(r)}) = 0, then F (G(r)) = r.

(13) G−1(Uxn) ∈ σ([0, 1]), where σ([0, 1]) denotes de Borel σ-algebra with re-

spect to the Euclidean topology.

(14) G is measurable with respect to the Borel σ-algebras.

6. Generating samples

Proposition 13. Let µ be a probability measure, then µ(A) = l(G−1(A)) for each

A ∈ σ([0, 1]), where l is the Lebesgue measure.

Results in sections 5 and 6 allow us to generate samples with respect to the prob-

ability measure µ by following the classical procedure: generate a random uniform

sample on [0, 1] and then apply G to obtain a sample in (X,µ).

Remark 14. We can also calculate integrals with respect to µ, so, for g : X → R,

it holds

∫
g(x)dµ(x) =

∫
g(G(t))dt
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