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Abstract

One of the main problems to solve in a multi-robot systems is to select

the best robot to execute each task (task allocation). Several ways to

address this problem have been proposed in the literature. This paper

focuses on one of them, the so-called response threshold methods. In a

recent previous work, it was proved that the possibilistic Markov chains

outperform the classical probabilistic approaches when they are used

to implement response threshold methods. The aim of this paper is

to summarize the advances given by or research group toward a new

possibilistic swarm multi-robot task allocation framework.
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1. Introduction

A multi-agent (multi-robot) system is defined as a group of two or more robots

with a common mission. These systems provide several advantages compared to

the systems with only one robot, like for example, they can perform tasks that one

robot would be impossible to execute or could take a very long time. Furthermore,

such systems are more robust, scalable and flexible than those with only one robot.

A great number of complex problems must be addressed in order to take all these

advantages. This paper focuses on one of them, referenced as multi-robot task

allocation (MRTA for short), which consists of selecting the best robot or robots

to execute each of the tasks that must be performed. MRTA problem is still

an open issue in real environments where the robots have a limited number of

computational resources. A lot of work have been done in order to solve the

MRTA problem. The solution developed to solve it can be grouped in two main

strategies: swarm methods and auction methods. Concretely, we will only focus

on the swarm methods. The auction-like approaches are out of the scope of this

paper.

Swarm intelligence methods provide very simple solutions for the MRTA problem.

One of the most widely used swarm methods are the so-called Response Threshold

algorithms, where the behavior of the systems is modeled as a Markov chain and

the robots in each time step select the next task to execute according to a tran-

sition probability function. Among other factors, this probability depends on a

stimulus (for example the distance between the robot and the task). This classical

probabilistic approach presents a lot of disadvantages: the transition function must

meet the constraints of a probabilistic distribution, the system only convergences

to a stationary asymptotically, and so on. In order to overcome these problems,

we proposed a new theoretical framework based on fuzzy (possibilistic) Markov

chains in [6]. As was proved, the possibilistic Markov chains outperform the clas-

sical probabilistic when a Max-Min algebra is considered for matrix composition.

For example, fuzzy Markov chains convergence to a stable state in a finite num-

ber of steps 10 times faster than its probability counter part. More recent works

extents this first paper in order to analyze the behavior of the system when other

algebras are considered for matrix composition [4]. Moreover, in [5] we studied the
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impact of the possibility transition function on the system’s performance. Thus,

the propose of this paper is to summarize the aforementioned recent advances

given toward a new possibilistic swarm multi-robot task allocation framework and

propose some new future research lines in this field.

2. Probabilistic Response Threshold Task Allocation

This section introduces the main concepts on classical RTM approaches, where

the decision process is modeled as a probabilistic Markov chain.

The definition of the MRTA problem depends on the characteristics of the problem.

In our case, we assume that only one robot can be assigned to each task at the

same time. This kind of problem is defined as follows: Let N denote the set of

positive integer numbers and let n,m ∈ N. Denote by R the set of robots with

R = {r1, ..., rn} and by T the set of tasks to carry out with T = {t1, ..., tm}. A

task allocation is a function TA : T → R such that TA(ti)
⋂
TA(tj) = ∅ provided

that i 6= j.

The classical response threshold method (see [1]) defines for each robot ri and for

each task tj , a stimulus sri,tj ∈ R that represents how suitable tj is for ri, where

R stands for the set of real numbers. The task selection is usually modeled by a

probabilistic response function that depends on sri,tj and a given threshold value

θri (θri ∈ R). Thus, a robot ri will select a task tj to execute with a probability

P (ri, tj) according to a probabilistic Markov decision chain. There are different

kind of probabilities response functions that defines a transition, but one of the

most widely used (see [2]) is given by

(1) P (ri, tj) =
snri,tj

snri,tj + θnri
,

where n ∈ N, where N stands for the set of natural numbers. The preceding

response function has tested in our previous work [6]. Another transition function

that presents similar characteristics to the given in (1), which was tested in [5], is

given by:

(2) P (ri, tj) = e
−

θnri
sn
ri,tj
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It could be checked that both transition functions are are indistinguishably opera-

tors whenever sri,tj only depends on the distance between the robot following this

expression: sri,tj = 1
d(ri,tj)

.

In general none of these transition functions meet the equality
∑m

j=1 P (rk, tj) = 1

and, therefore the transition between states is not a probability distribution. In

order to solve this problem a normalization processes must be introduced. In

most cases, this implies a modification of the behavior of the system. Moreover,

the transition Prk is regular. According [7], under this condition the evolution

of the system to a stable state is, in general, only guaranteed asymptotically.

From the above-said probabilistic Markov chains problems, we can conclude that

the probability theoretical foundation may be inappropriate. As will be seen,

the possibilitic (or Fuzzy) Markov chains are able to solve the problems of their

probabilistic counterparts.

3. Possibilistic and Fuzzy MRTA

This section summarizes the contributions proposed toward the aforementioned

new possibilistic task allocation framework. This work has been developed by the

members of the research groups MOTIBO (Models for Information Processing.

Fuzzy Information) and SRV (Systems, robotics and Vision) at the University of

the Balearic Islands.

3.1. Possibility Theory and Markov Chains. A possibility Markov (mem-

oryless) process can be defined as follows [4]: let S = {s1, . . . , sm} (m ∈ N)

denote a finite set of states. If the system is in the state si at time τ (τ ∈ N),

then the system will move to the state sj with possibility pij at time τ + 1. Let

x(τ) = (x1(τ), ..., xm(τ)) be a fuzzy state set, where xi(τ) is defined as the possi-

bility that the state si will occur at time τ for all i = 1, . . . ,m. Thus, the evolution

of the Markov chain admits a matrix formulated as follows:

(3) x(τ) = x(τ − 1) ◦ P = x(0) ◦ P τ ,
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where P = {pij}mi,j=1 and ◦ denotes the matrix composition. A possibility distribu-

tion x(τ) of the system states at time τ is said to be stationary, or stable, whenever

x(τ) = x(τ) ◦ P = x(0) ◦ P τ . In [6] we used a Max-Min algebra to compose the

matrices and then in [4] the aforementioned composition was extended to a more

general algebras ([0, 1], SM , T ), where SM denotes the maximum t-conorm and T

any t-norm on [0, 1]. In this work the following t-norms are analyzed: Lukasiewicz

TL, Product TP (see [8]). Therefore, evolution of the possibilistic Markov chain in

time is given by

xi(τ) = SM
m
j=1 (T (pji, xj(τ − 1))) .

In [3], J. Duan gave the conditions that guarantee that a possibilistic Markov chain

converges to a stationary state in a finite number of steps in at most m− 1 steps.

It is not hard to check that the possibilistic response threshold method, that will

be introduced in Section 3.2, meets these conditions when a ([0, 1], SM , T ) algebra

is used to compose the matrices. This is one of the main advantages of possibilistic

Markov chains compared to its probabilistic counterparts which, according to [7],

the only convergence, in general, asymptotically.

3.2. Possibilistic Response Threshold. In this section we will see how to use

possibilistic (fuzzy) Markov chains for implementing a RTM method. The possi-

bility response function that will be explained here was tested and introduced in

[4] and [5].

The task that the robot must carried out is defined as follows: a set of randomly

placed robots in an environment must gather, or gets closer, to a set of tasks

randomly placed too. It will be assumed that the stimulus only depends on the

distance between the robot and the task. Consider the position space endowed

with a distance (metric) d and denote by d(ri, tj) the distance between the current

position of ri. It is also assumed that when a robot is assigned to a task, then the

distance between the task and the robot is 0. Following the RTM notation, define

the stimulus of the robot rk to carry out task tj as follows:
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(4) srk,tj =





Utj

d(rk,tj)
if d(rk, tj) 6= 0

∞ if d(rk, tj) = 0
.

When the stimulus srk,tj is used in Equation (1), we get following possibility

response function:

(5) prk,ij =
Untj

Untj + d(rk, tj)nθnrk
.

In the same way, the same stimulus is used in (2), then the following exponential

possibility response function is obtained:

(6) prk,ij = e
−

θnrk
d(rk,tj )n

Un
tj .

As was see in [5], both function (5) and (6) meets the conditions (column diagonally

dominant and power dominant) that guarantee the finite convergence (see [3]) in

at most m− 1 steps.

4. Experimental Results

In order to experimentally compute the number of steps to converge to stationary

state we executed a set of experiments with possibilistic Markov chains with sev-

eral t-norms. We consider that a possibilistic Markov chain converges in k steps

wherever P k = P k+1, where P is the possibility transition matrix. In order to

compare the results obtained with possibilistic Markov chains to its probabilistic

counter part, the transition matrix Prk must be converted into a probabilistic ma-

trix. To make this conversion each element of Prk is divided by the sum of all

the elements in its row. A more detailed descriptions of all the experiments and

results presented in this paper can be found in our previous works [4, 5, 6].

All the experiments have been executed using MATLAB with 500 different en-

vironments and with different number of randomly placed tasks: 50 and 100

(m = 50, 100). For the sake of simplicity, we have assumed that all tasks have

the same utility, i.e., Utj = 1 for all j = 1, . . . ,m. In order to analyze the impact
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of the threshold on the system’s performance, the θrk will depend on the maximum

distance between tasks as follows: θrk = nTH
dmax

, where dmax = 800 is the maximum

distance between two objects and nTH (nTH = 1, 4, 8, 12, 16) is a parameter of

the system.

Table 1 shows the average number of steps to converge with an algebra ([0, 1], SM , TM ).

In all cases the possibility transition function 4 has been used to compose the ma-

trices. As can be observed, the number of steps needed by the fuzzy Markov chains

to converge is about 10 times lower than the time needed by its probabilistic coun-

terpart (whenever they converge in a finite number of steps). The results do not

change whichever possibility function is used, 5 or 6, and therefore, we it can be

concluded that the number of steps required to converge with a Max-Min algebra

does not depends on the transition function applied to compose the matrices.

Tasks Possibilistic Probabilistic % Prob. Conv.

50 15.8 150.4 49.2%

100 23.4 256.8 51%

Table 1. Number of iterations needed to converge with the alge-

bra ([0, 1], SM , TM ) . Last column shows the percentage of prob-

abilistic experiments that do not converge.
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Figure 1. Number of iteration required to converge with 50 tasks.

Figure 1 shows the number of steps (iterations) needed to converge to a stationary

state with different vales of nTH (nTH = 1, 4, 8, 12, 16), 50 tasks (m = 50), the

power value n = 2 and when the t-norms TM , TL, TP are used. In all cases,

the possibility transition function 5 is used for the matrices composition. As can
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be seen, the iterations number when the t-norms TL and TP are used for matrix

composition depends on the nTH parameter values. In general, the number of

iterations decreases as the nTH increases. In contrast, the t-norm TM always

provides a system convergence in a same number of steps (15.85).

5. Conclusion and Future works

This paper has summarized the work developed by our research group towards a

new multi-robot task allocation possibilistic framework based on response thresh-

old algorithms. The classical RT algorithms, based on probabilistic Markov chains,

in general only converges to a stable state asymptotically. In contrast the fuzzy

Markov chain converges in at most m−1 of steps, where m is the number of tasks.

In addition, the results of the experiments carried out to validate our approach

also show that the possiblistic Markov chains converges 10 time faster than its

possibilistic counter part. Furthermore, several transition possibility function and

algebras for the composition the matrices has been considered. On the one hand,

the number of steps needed to converge to stationary state with TM does not de-

pend on the possibility transition function used in the Markov chain. On the other

hand, the results obtained for TL and TP are affected by the threshold value (θrk).

A lot of new challenges, problems and improvements must be addressed as future

work. For the time begin, we focus on provide a deeper analysis about how the

position of the tasks impacts on the convergence time. Moreover we are planning

to study the behavior of the system when the distance between task (d(ti, tj)) is

asymmetric.
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