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Abstract

In this work we show how to define a probability measure with the

help of a fractal structure. One of the keys of this approach is to use

the completion of the fractal structure. Then we use the theory of a

cumulative distribution function on a Polish ultrametric space and de-

scribe it in this context. Finally, with the help of fractal structures, we

prove that a function satisfying the properties of a cumulative distribu-

tion function on a Polish ultrametric space is a cumulative distribution

function with respect to some probability measure on the space.
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1. Introduction

This work collects and advances some results on a research line on the construction

of a probability measure with the help of a fractal structure, which is in current

development ([2], [3], [4], [5]).

First, we show how to define a probability measure on the completion of a fractal

structure. Second, we show a theory of the cumulative distribution function on

Polish ultrametric spaces. Finally, we use fractal structures to prove that a proba-

bility measure on a Polish ultrametric space can be fully described by a cumulative

distribution function.

2. Fractal structures and non archimedean quasi metrics

Fractal structures were introduced in [1] to study non archimedean quasi metriza-

tion, but they have a wide range of applications (see for example [6]).

Let X be a set and Γ1 and Γ2 be coverings of X . Γ2 is said to be a strong

refinement of Γ1 if it is a refinement (that is, each element of Γ2 is contained in

some element of Γ1) and for each A ∈ Γ1 we have that A = ∪{B ∈ Γ2 : B ⊆ A}.

Definition 1. A fractal structure Γ on a set X is a countable family of coverings

Γ = {Γn : n ∈ N} such that each cover Γn+1 is a strong refinement of Γn for each

n ∈ N. Cover Γn is called level n of the fractal structure.

A quasi pseudo metric on a set X is a function d : X ×X → [0,∞[ such that:

(1) d(x, x) = 0, for each x ∈ X .

(2) d(x, z) ≤ d(x, y) + d(y, z) for each x, y, z ∈ X .

d is called a pseudo metric if it also satisfies that d(x, y) = d(y, x) for each x, y ∈ X .

A quasi pseudo metric (resp. a pseudo metric) is said to be a T0 quasi metric (resp.

a metric) if d(x, y) = d(y, x) = 0 implies that x = y, for each x, y ∈ X .

If d is a quasi (pseudo) metric, the function defined by d−1(x, y) = d(y, x) is also a

quasi (pseudo) metric, called conjugate quasi (pseudo) metric of d. Furthermore,

the function d∗(x, y) = max{d(x, y), d−1(x, y)} is a (pseudo) metric.
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A quasi pseudo metric is said to be non archimedean if d(x, z) ≤ max{d(x, y), d(y, z)}

for each x, y, z ∈ X .

If d is a non archimedean quasi (pseudo) metric, then d−1 is also a non archimedean

quasi (pseudo) metric and d∗ is a non archimedean (pseudo) metric. A non-

archimedean metric is also called an ultrametric.

A fractal structure Γ induces a non archimedean quasi pseudo metric dΓ given by:

dΓ(x, y) =





1
2n if y ∈ Uxn\Ux,n+1

1 if y /∈ Ux1

where Uxn = X \
⋃
{A ∈ Γn : x 6∈ A} for each x ∈ X and n ∈ N.

In this work, we will assume that the induced topology is T0, and hence dΓ is a

non archimedean T0-quasi metric. It follows that d∗Γ is an ultrametric.

Given x ∈ X and n ∈ N, we will denote by U∗
xn = {y ∈ X : d∗(x, y) ≤ 1

2n } the

closed ball, with respect to the ultrametric d∗, centered at x with radius 1
2n . The

collection of these balls will be denoted by G = {U∗
xn : x ∈ X ;n ∈ N}.

2.1. Completion of a fractal structure. The completion of a fractal structure

is constructed from the following extension of X introduced in [1].

Let Gn = {U∗
xn : x ∈ X}. Note that Gn is a partition of X . Then we can

define the projection ρn : X → Gn by ρn(x) = U∗
xn, and the bonding maps

φn : Gn+1 → Gn given by φn(ρn+1(x)) = ρn(x). We will denote by X̃ = lim←−Gn =

{(g1, g2, ...) ∈
∏∞

n=1Gn : φ(gn+1) = gn, ∀n ∈ N}. Now, the map ρ : X → X̃

defined as ρ(x) = (ρn(x))n∈N is an embedding of X into X̃.

Using the previous extension, we can introduce the bicompletion of a fractal struc-

ture following [2]. Given Γ a fractal structure, we define level n of the extended

fractal structure Γ̃ as Γ̃n = {Ã : A ∈ Γn}, where Ã = {(ρk(xk))k∈N ∈ X̃ : xn ∈ A}

for each A ∈ Γn and n ∈ N.
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We will denote by Ũ∗
xn = {y ∈ X̃ : d̃∗(x, y) ≤ 1

2n }, where d̃
∗ is the ultrametric

induced by Γ̃ on X̃. Following a similar notation, we will denote the collection of

these balls by G̃ = {Ũ∗
xn : x ∈ X ;n ∈ N} = {Ũ∗

xn : x ∈ X̃;n ∈ N}.

Note that (X̃, d̃∗) is a complete ultrametric space.

3. Defining a probability measure on X̃

In this section we show how to define a probability measure on X̃ by defining it

on G or G̃ (this section is further developed in [3]). From now on, we will assume

that τ(d∗) is separable, and hence (X̃, d̃∗) is a Polish ultrametric space.

Let ω be a pre-measure ω : G → [0, 1]. We will say that ω satisfies the mass

distribution conditions if:

(1)
∑
{ω(U∗

x1) : U
∗
x1 ∈ G1} = 1.

(2) ω(U∗
xn) =

∑
{ω(U∗

y,n+1) : U
∗
y,n+1 ∈ Gn+1; y ∈ U∗

xn} for each U
∗
xn ∈ Gn and

each n ∈ N.

Note that ω can be extended to G̃ by letting ω̃(Ũ∗
xn) = ω(U∗

xn), for each x ∈ X

and n ∈ N. It follows that ω̃ also satisfies the mass distribution conditions.

It is proved in [3] that ω̃ can be extended to a probability measure µ on the Borel

sigma-algebra of (X̃, d̃∗).

There is an alternative way of defining the pre-measure ω using Γn instead of Gn.

We refer the interested reader to [3].

4. Cumulative distribution function on a Polish ultrametric space

In this section we elaborate a theory of a cumulative distribution function on a

Polish ultrametric space (this section is further developed in [4]). In this section we

assume that (X, d) is a Polish ultrametric space (that is, d is a separable complete

ultrametric).
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First, we define an order in X from the collection of balls Gn = {Bxn : x ∈ X},

where Bxn = {y ∈ X : d(x, y) ≤ 2−n} is the closed ball of radius 2−n. Note that

Gn is countable since d is separable.

We can enumerate G1 = {g1, g2, . . .}. Now we enumerate G2 such that gi = gi1 ∪

gi2 ∪ · · · for each gi ∈ G1, and define the lexicographical order in G2. Recursively,

we define an order in Gn for each n ∈ N.

This order induces an order in X given by x ≤n y if and only if Bxn ≤ Byn in Gn.

Finally we can define a new order in X given by x ≤ y if and only if x ≤n y for

each n ∈ N.

Definition 2. The cumulative distribution function (in short, cdf) of a probability

measure µ on a Polish ultrametric space X is a function F : X → [0, 1] defined by

F (x) = µ(≤ x), where (≤ x) = {y ∈ X : y ≤ x}.

Proposition 3. Let F be the cdf of a probability measure µ on a Polish ultrametric

space X. Then:

(1) F is non-decreasing.

(2) F is right τd-continuous.

(3) limx→∞ F (x) = 1 (this means that for each ε > 0 and x ∈ X there exists

y ∈ X with x ≤ y and such that 1− F (y) < ε).

5. Distribution function of a probability measure constructed from

a fractal structure

In this section we show how to use the theory of a cdf on a Polish ultrametric space

in the completion of a space with a fractal structure (this section is further de-

veloped in [5]). By using the probability measure constructed from a pre-measure

satisfying the mass distribution conditions, we will be able to prove some results

of the theory of a cdf on a Polish ultrametric space.

First, we show that the cdf of a probability measure constructed from a pre-

measure ω satisfying the mass distribution conditions can be described by just

using the pre-measure.
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Theorem 4. Let Γ be a fractal structure on a set X, ω a pre-measure on G (or

G̃) satisfying the mass distribution conditions, µ the extension of ω to a probability

measure on the Borel σ-algebra of (X̃, d̃∗) and F be the cdf of µ. Then F (x) =

limh+n (x), for each x ∈ X̃, where h+n (x) =
∑
{ω̃(g) : g ∈ G̃n; g ≤n Ũ∗

xn}, for each

x ∈ X̃ and n ∈ N.

Next, we prove that any function on X̃ satisfying the properties of Proposition 3 is

in fact the cumulative distribution function of a probability measure on X̃ defined

with the help of a fractal structure.

Theorem 5. Let F : X̃ → [0, 1] be a non-decreasing, right τ
d̃∗
-continuous function

such that limx→∞ F (x) = 1. Then there exists a pre-measure ω : G → [0, 1],

satisfying the mass distribution conditions, such that F is the cdf of µ, where µ is

the extension of ω̃ to the Borel σ-algebra of (X̃, d̃∗).

As a consequence of the previous result, we can prove a similar one in the general

context of Polish ultrametric spaces.

Theorem 6. Let X be a Polish ultrametric space and let F : X → [0, 1] be a

non-decreasing, right τd-continuous function such that limx→∞ F (x) = 1. Then F

is the cdf of a probability measure µ on X.

By using the previous result, we can give a decomposition theorem for a cdf.

Given a cdf F of a probability measure µ on a Polish ultrametric space, we can

define F−(x) = µ(< x), where (< x) = {y ∈ X : y < x}.

Lemma 7. Let F be the cdf of a probability measure µ on a Polish ultrametric

space. F = F− is equivalent to µ({x}) = 0 for each x ∈ X. Moreover, if F = F−

then F is continuous.

In the decomposition theorem, we will use the condition F = F− instead of the

continuity of F in order to get the uniqueness of the decomposition.

Theorem 8. Let X be a Polish ultrametric space and let F : X → [0, 1] be a cdf.

Then F can be decomposed as a convex sum F = αG+ (1− α)H with 0 ≤ α ≤ 1,

where G is a step cdf, and H is a cdf satisfying that H− = H. Moreover, the

decomposition is unique.
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[2] J. F. Gálvez-Rodŕıguez, M. A. Sánchez-Granero, Completion of a fractal structure, Quaes-

tiones Mathematicae 40 (5) (2017), 679–695.
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