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Microwave heating has found widespread use in the energy, construction, forestry, chemical 
and food industries, etc. There are a number of publications that discuss the main 
mechanisms that occur during microwave heating and microwave drying [1,2]. For a better 
understanding of these processes and the development of highly efficient microwave 
installations, mathematical modeling is needed. As a rule, nonlinear models that most 
adequately describe these phenomena use a numerical algorithm for calculations. The 
authors of this work are engaged in approximate analytical approaches for microwave 
heating and microwave drying of bodies, which, with controlled error, allow displaying the 
main processes and estimating such heating and drying parameters as: temperature and 
moisture distribution, heating time, drying rate, reaching maximum values and etc. 
In this paper, a model of microwave heating of a body in the form of a ball with uniform 
irradiation with microwave energy in the conditions of radiation-convective interaction of 
the product with the environment is considered. The absorption of the microwave inside the 
material is given by the law of the Bouguer. In this case, a number of simplifications were 
made: the electrophysical and thermophysical properties of the material are constant, the 
material is homogeneous in composition and properties. The equations defining this problem 
are as follows: 
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Using the conditions for the uniqueness of the problem, we represent this system in the 
following dimensionless variables. 
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As a result, the system (1-5) will go to the following form: 
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Apply the Laplace transform to this system: 
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We will find the solution of this system as the sum of the solution of a homogeneous problem 
and the solution with the inhomogeneous term taken into account: 
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inhomogeneous problem in the system (10-12), we find the constants: 
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As a result, after substituting the constant C: 
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Constants with corresponding exponent degrees can be combined: 
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From conditions (11, 12) we get: 
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As a result:  
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This solution has a rather complicated dependence on the parameter s and it is not possible 

to take the inverse Laplace transform. However, from the terms not containing  �√��, ��√�� 
the inverse transformation is possible to obtain: 
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In order to obtain the inverse Laplace transform from the rest of the solution, we find the 
asymptotic expansions for large and small values of the parameter s. This will make it 
possible to find approximate solutions for large and small values of the time parameter, 
which allows determining the temperature by layer with high accuracy and depending on 
time. 
 
Large values of s (small Fo) 
 
For large values of s: 
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Consider the terms containing �√��, ��√�� : 
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For large values of the s parameter: 
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Inverse transform through convolution from a given addend: 
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To obtain an explicit calculated expression, decompose Ki(y) near y = Fo into a Taylor 
series: 
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Restricting ourselves to the first member of the expansion, we have: 
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After taking the integral, we finally get: 
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Where D is the function obtained after integration. 
Next, we find the boundary temperature ��(1, ��) from the previous equation. 
A typical view of the dependence of temperature on the depth of the layer, as well as the 
temperature at the boundary, depending on the time is given below: 
 

Fig. 1. The dependence of the dimensionless temperature on the surface coordinates (ξ = 1 
corresponds to the edge of the ball) 

 
Fig. 2. The dependence of the dimensionless temperature on time at the boundary of the 

ball. 
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Small values of s (large Fo) 

 
For small values of s: 
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Consider the terms containing  �√��, ��√��  for small values of the parameter s: 
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Find the inverse Laplace transform from this part: 
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As a result, for final solution: 
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Fig. 3. The dependence of the dimensionless temperature on the surface coordinates (ξ = 1 

corresponds to the edge of the ball) 
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Comparing with the numerical solution of a similar problem, it was found that for 
the corresponding solutions for large and small Fo, they give an error of no more than 7% 
with Fo <0.1 and Fo> 0.3, respectively. These solutions allow you to qualitatively take into 
account the main processes occurring during the heating of a spherically symmetric particle. 

As a result, using asymptotic procedures, approximate solutions were obtained for 
the temperature field depending on the time and intensity of processing, the electrical and 
thermal properties of the material, which allow to find the warm-up time to a certain 
temperature, the start time of drying, the maximum temperature coordinate, etc. 
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