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Abstract

Matrices are introduced in mathematical subjects in connection with vector spaces and linear algebra,
being disconnected from their applications in other fields of science and engineering studies. The trans-
mission of this knowledge is done, in many occasions, in a purely theoretical manner and posing problems
to students that are disconnected from applications. In this paper we present an application of matriz
formalism in acoustics: the transfer matriz method. It is a simple method widely used in transmission
and reflection problems. For a system composed of a wavequide and an aluminum clamped plate subjected
to the pressure of an acoustic wave, we can establish a simple connection between the matriz formalism,
the use of vectors and the physical magnitudes.

Las matrices se introducen en asignaturas de Matemdticas relacionadas fundamentalmente con los conte-
nidos relativos a los espacios vectoriales y el dlgebra lineal en donde las matrices aparecen desconectadas
de sus aplicaciones en otros campos de la ciencia y la ingenieria. La transmision de estos conocimientos
se realiza, en muchas ocasiones, de una manera puramente teorica y planteando problemas a los alumnos
que a veces son abstractos y carentes de aplicacion. En este trabajo presentamos una aplicacion del forma-
lismo matricial en Acistica: el método de la matriz de transferencia. Es un método simple, ampliamente
utilizado en problemas de transmision y reflexion. Para un sistema compuesto por una guia de ondas y
una placa encastrada de aluminio sometida a la presion de una onda acustica, podemos establecer una
conexion simple entre el formalismo matricial, el uso de vectores y las magnitudes fisicas.

Palabras clave: Acustica, formulacién matricial, método de la matriz de transferencia.
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1. Introduction

Matrix formalism is part of the basic mathematical education of scientists and technolo-
gists The term “matrix”was introduce by Sylvester but was a collaborator of him, Calley
(1821 — 1895), who used a form of matrices in the work “On the Theory of Linear Transfor-
mations”using the term “matrix”in its modern mathematical sense (Keiner, 2007). Usually,
matrices are introduced in mathematical subjects related to vector spaces and linear algebra,
being disconnected form their applications in other fields of science. Of course, matrices are
used in the classroom in many subjects but sometimes students are not able to establish the
correct connection between certain mathematical objects and its application. In many cases,
classical applications such as those relating to mechanics, especially those relating to diagona-
lization and its relationship with the determination of principal moments and axes of inertia of
a body are the only ones treated in the math classroom. The other typical example is related
to the matrix formulation of quantum mechanics, but its interpretation is much more complex
for students.

Acoustics, one of the disciplines of classical physics, is often absent in the general physics
syllabus. However, it is a discipline that provides facts of physics that in many occasions can be
checked by the student in a simple way, using very simple setups. The theoretical description of
acoustics can be complex involving the resolution of Navier-Stokes equations, but in many cases
acoustic phenomena can be described using a simple mathematical setting. This is the case of
the Transfer Matrix Method (TMM). This method is a matrix formalism used in many field of
physics (optics, acoustics, quantum mechanics) to analyze wave propagation in a 1-D setting (see
for example Markos and P., Soukoulis, C.M., 2008). This method gives teachers the possibility
to pose simple problems to students in the field of physics, where diagonalization, eigenvectors
and eigenvalues have a simple interpretation. The example proposed in this article starts with a
simple problem, easily understandable for students with basic knowledge in physics, and follows
with building up of the mathematical formalism based on matrices. After that, the resolution
of the problem is connected with finding eigenvalues and eigenvectors of a matrix, giving a
physical meaning to them. Under the perspective of didactics, the activity proposed can be
considered a modeling eliciting activity (Lesh, R. and Doerr, H. M. ,2003).

First, we introduce the TMM, that has a transversal character from a teaching perspective,
as the same formalism can be applied at different levels in science and technology, covering from
a basic course on Physics to a more specialized one. The system under analysis is a transmission
line (a waveguide) with an obstacle (a clamped plate). TMM relates the acoustic pressure and
the particle velocity in the left side of the obstacle to those on the right side. Transmission
and reflection coefficients will be defined from the transfer matrix formalism. Next, we will
introduce the scattering matrix, which describes the outgoing waves form the obstacle in terms
of the ingoing waves and is directly related to the transfer matrix. Eigenvalues and eigenvectors
of this scattering matrix will be calculated and interpreted in terms of the physical behavior
of the system. Finally, an experimental activity in acoustics will be proposed in order to bring
mathematics to the laboratory. All the concepts of matrix algebra that appear in this paper
can be found in several textbooks (see for example, Lay, D. C.; 1997 or Strang, G., 2016).

2. Transfer matrix method

We start considering a square aluminum clamped plate placed into a tube (see Figure 1), in
other words, a resonant inhomogeneity in a waveguide. We consider that the thickness of the
plate, h, is much smaller than the wavelength of the incoming waves, . Imagine we want to

ISSN 1988-3145 @MSEL


http://polipapers.upv.es/index.php/MSEL

Volume 12(2), pDo1: 10.4995/msel.2019.12148. 155

transmit a wave through it, for example an acoustic wave. We place a sound source (loudspeaker)
at the beginning of the tube that emits a signal containing several frequencies that will be our
range of study, always with frequencies lower than the cutoff frequency of the waveguide, which
correspond to the range of frequencies where only plane waves can propagate. Thus, the system
can be considered one dimensional. The incident plane wave impinges the plate, inducing the
vibration of it. As a result of this interaction, one part of the energy is reflected back and other
part is transmitted through the plate. If no losses are considered, by energy conservation, all
the energy that is not reflected is transmitted. If losses are considered, part of the incident
energy is reflected, part absorbed by heating the plate, and part is transmitted.

Plate
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D];'l]l{ ‘y

.

Rl‘.ﬂ(‘.('[’(‘.(l

wave

Transmitred
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Figura 1: 3-D scheme of the problem in transmission. Dark blue represents the incident plane wave generated
by the source, medium blue represents the sound wave that is reflected by the plate and soft blue represents
the transmitted wave. The plate is represented in grey.

The acoustic process can be characterized by the state vector § constructed from the sound
pressure, p, that is related with the force applied to the medium and the normal particle velocity,
U = ve,, with €, the unitary vector along the z-direction. The particle velocity is related with
the reaction of the medium to the application of this force, i.e., related with the opposition
of the medium to be perturbed or acoustic impedance. This state vector is in R?, and can be

represented as,
>_ (P
(7). 1

The TMM relates the sound pressure, p, and normal acoustic particle velocity, v, between
the two faces of a system extending from x = 0 to the thickness x = h by means of the transfer

matrix T, defined as follows
p _ p
(U>gv=0_r:[“(v>a::h7 <2)

In other words, in the math language at classroom, the matrix T is a linear mapping.

We consider waves having a wavelength much longer than the diameter of the tube. In this
case only plane waves are excited in the tube and this can be considered as a 1-D (x-axis)
problem (see Figure 2(a)) where the reflected and transmitted waves can be easily related to
the incident wave through the reflection and transmission coefficients. Under this conditions,
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we are only interested in the first resonant mode of the clamped plate, i.e., the “piston mode” as
can be seen in Figure 2(b) (see for example Hazell, C. R. and Mitchelll, A. K., 1986),

Clamped plate

h<<A
LN
TD;
—>
RD,;
<
=0 ’m

(a) (b)

Figura 2: (a) 1-D scheme of the problem in transmission. (b) First mode (piston mode) of the plate.

The acoustic behavior of the clamped plate can be characterized by its acoustic impedance,
Z,, which is a classical resonant function expressed as follows,

7 ilw - (3)
Po\wd —w?tiow/)

where I' and o are the admittance parameter and the dissipation term, respectively. wy is
the frequency of the first resonant mode of the clamped plate that can be obtained from the
following approximated equations,

3.73 107445 2.06ph
=5 - M=a @)

[ 1
Wy = m7 (5)

where p the density of the plate, and D = Fh3/12(1 — v?), the bending rigidity, with E the
Young’s modulus and v the Poison’s ratio; a represents the side of the square clamped plate.
In this work we will use @ = 0.1 m, £ = 60 GPa, p = 2700 kg/m?, v = 0.3 and h = 0.5 mm,
I' = 0.5 m/Pa s 2 and o (s7') will vary depending on the analyzed case (0 = 0 represents
the lossless case and ¢ # 0 the lossy case). Notice that in this work we will use the temporal
dependence ™.

On the other hand, we can consider that the clamped plate is a locally resonant elements
in series in a main waveguide. As h << A, we consider the plate as punctual resonator in
the x direction. Defining the pressure at both sides, p,—o, p.—n, and the corresponding particle
velocity v,—q, vz—p, the effect of the plate on the acoustic field is twofold: (i) the velocity is the
same on both sides due to continuity boundary conditions, i.e., vy = v,; (77) there is a pressure
drop between each side due to the presence of the plate, and we can relate it at both sides of
the punctual resonator using the impedance of the resonator as

v Vg—h

Z.

p
Then, the equations relating pressure and velocity at both sides are

Pz=0 = px:h+vax=ha (7)
Vg = Ugeh- (8)
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Relating the state vectors (py—o, Vz—0) and (pr—n, Vz—p), the transfer matrix, can be obtained as

-y 7] )

where Z, is the acoustic impedance of the clamped plate given by Equation 3.

This matrix represents the transfer matrix of the clamped plate. But, at the beginning
of the section we talk about the scattering coefficients. Hence, which are the reflection and
transmission coefficients of our system?

2.1. Reflection and Transmission coefficients

We consider here the general case of a scattering problem by an slab of material of thickness
L and represented by a transfer matrix 7. Then, applying Equation 2 we obtain:

p(0) = Thip(h) + Trov(h), (10)
U(O) = Tglp(h) + TQQU(h).

Due to the geometry of the considered system, the scattering is symmetrical, meaning that
the reflection coefficients obtained from both sides are identical. This condition implies that
the elements of the transfer matrix must fulfill this equation T7; = T5,. Moreover, we are in
the linear regime and the scattering process should be reciprocal, meaning that transmission
is identical in both senses. This implies that the determinant of the transfer matrix is unity,
T11Ts — T15T51 = 1. Notice that Equation 9 fulfills both conditions because a clamped plate in
the linear regime creates a reciprocal and symmetric 1D scattering problem. For more details,
we refer to reference (Song, B.H and Bolton, J.S., (1999)).

Under these conditions, for a wave of amplitude one traveling from left to the right, the
pressure in the left-hand side of the plate will be the result of the incident pressure plus the
reflected one, that is:

p(0) =1+ R,

and for the velocity we have to subtract the part corresponding to the reflected wave that
travels in the opposite sense than the incident wave and divide by the impedance of the air in

the tube, that is:
1-R
0) = .
o(0) = —

In the same manner, the wave in the right part will be the transmitted one:

p(h) = Te*",

where we have taken into account the phase e**” corresponding to the plane wave traveling to

the right part e*** evaluated at # = h. For the velocity

Tezkh
v(h) = Z

Combining these equations with Equation 10 we obtain:
1+ R =Te* (T + ), (11)
1-R= Telkh(Z()TQl + TQQ),
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and then adding both equations and solving for 7

2671kh

7= Ty + TZ_102 + ZgTor + Toa 2
Dividing equations in Equation 11, we obtain
1+R _ Tu+
1-R  ZyTo + Ty’
from which we can solve T Ta g7 T
1+ 7z 0d21 22 (13)

T+ TZ—102 + ZoTo + Tao
Now, we can particularize Equations 12 and 13 with the transfer matrix of the clamped plate,

given by Equation 9, then simple equations for the reflection and transmission coefficients can
be obtained:

SN (14)
- (2+2/20) T 2+ 24,/ %)
Zy/ %
= —2 - 1
R 2+ 2,/7Z (15)

We notice that in the lossless case |R| + |T| = 1. In the lossy case, |R| + |T| # 1, and an
absorption coefficient should be defined as o =1 — |R|? — | T|*.

2.2. Scattering of waves by a clamped plate

Figure 3 represents the acoustic impedance and the scattering coefficients of both the lossless
and the lossy cases. In the lossless case, we can observe that at the resonant frequency w/wy = 1,
the condition Im(Z,)=0 with Re(Z,) = 0 is fulfilled (see Figure 3(a)), which represents the
resonant condition. In fact, if we look at the scattering coefficients, Figure 3(b), we can see
that at this particular frequency, the transmission is enhanced producing perfect transmission
of waves through the plate with R = 0. However as soon as the losses are introduced in the
plate, at the resonant frequency, the real part of the impedance is no longer zero (see Figure
3(c)). This dramatically impacts the reflection and transmission coefficients. Figure 3(d) shows
the enhancement of the absorption at the resonant frequency as a consequence of the presence
of losses in the plate.

3. Scattering matrix: eigenvalues and eigenvectors

As we have mentioned above, when the acoustic wave is transmitted along the tube, it arrives
to the plate, makes it to vibrate and some part of the wave is transmitted and some part is
reflected. This process is intimately related with the fact that the plate scatters the wave: is
the scattering problem. This interaction is in general too complex to be easily described, but
in many cases it is sufficient to know the wave function in the left and the right part of the
resonant inhomogeneity.

The waves in the left and the right-hand side of the plate can be defined in terms of plane
waves, which in mathematical terms are simple complex exponentials (see Figure 4):

pi(z) = Ae ph(x) = Ce M, (16)
pr(x) = Be't® pp(z) = De=. (17)
(18)
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Figura 3: Analysis of the acoustic impedance of the clamped plate and the scattering coefficients. (a) and (b)
represent the case without losses (0 = 0) and (c) and (d) represent the case with losses (o = 416 s71). (a) and (b)
represent the imaginary (blue continuous line) and the real (red dashed line) part of the normalized impedance
of the clamped plate. (b) and (c) represent the absolute value of the scattering coefficients, i.e., reflection (blue
continuous line), transmission (red dashed line) and absorption (black dash-dotted line). In all the cases the
dependence is shown with respect to the normalized frequency with respect to the resonant frequency of the
plate, wq.

Then the total pressures at both sides of the structure are given by:

p(z) = Ae™™ + Bet™ for x <z, (19)
p(z) = Ce ™ 4+ Det™ for x> x,+ h, (20)

being z,, the position of the plate.
In general, the relationship between incoming and outgoing amplitudes remains:

() =s() - (52 (%) -

where T and R are the transmission and reflection coefficients calculated above.

As it has been mentioned above, this system is symmetric and reciprocal, and the resulting
scattering matrix is symmetric and diagonalizable (moreover it is unitary SST = I where 1 is
the conjugated transposed operation and [ is the identity matrix, and det(S) = 1).

By using the matrix diagonalization, it is possible to obtain the eigenvalues and eigenvectors,
which as we will see have relevance from a physical point of view.
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Figura 4: Forward and backward waves in the scattering process.

3.1. Eigenvalues

A scalar A is called an eigenvalue of A if there is a non-trivial solution ¥ of AZ¥ = A\Z; where 7
is called eigenvector corresponding to A (Lay, D.C. 1997 or Strang, G. 2016). In order to obtain
the eigenvalues of a matrix, it is necessary to solve the following equation

(S —A)Z=0,

or calculate the Kernel of the mapping, Ker (S — AI).
Obtaining a solution implies that the determinant should be equal to zero, that is:

1S — M| =0, (22)

where S is the scattering matrix, A is the eigenvalue that we want to determine and [ is the
identity matrix.

Equation 22 results in a second-degree polynomial which solutions are the two eigenvalues
of the system (a problem in R?)

(T —-XN*—R?*=0, (23)
M2=TFR. (24)

Figure 5 shows the dependence of the eigenvalues of the scattering matrix with frequency.
Two cases are represented: the first one without losses (o = 0) (Figures 5(a)) and the second
one with losses (¢ = 416) s~! (Figures 5(b)). In the lossless case the eigenvalues take the
same value at the resonance frequency of the system \; o = 1 as a consequence of the energy
conservation, i.e., |[R|> 4+ |T|*> = 1. In fact, at the resonant frequency, |R| = 0 and |T| = 1, then
A1 = Ay = 1. In the lossy case, the situation is a little bit more complicated, as losses induce
absorption of energy. In this case, we can observe that for the chosen case, R =T = 0.5 (see
Figure 3(d)). As a consequence, we have one of the eigenvalues that has a zero value at the
resonant frequency and the other one that is 1.

We can evaluate the dependence of the scattering coefficients and the eigenvalues of the
scattering matrix on the losses of the system, o. Figure 6(a) represents the absorption of the
system at the resonance frequency as the losses increase. We can observe that the absorption
cannot pass the threshold of a(wg) = 0.5. In fact, this particular point correspond to the
analyzed case in Figure 5(b). This particular situation is due to the fact that only one of the
two eigenvalues of the scattering matrix is zero at the resonant frequency, meaning that only
half of the energy can be efficiently absorbed. In such kind of problems, with single resonators,
only one mode can be excited in the plate, and only one of the two eigenvalues can be used
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Figura 5: Analysis of the eigenvalues of the system. (a) represents the case without losses (¢ = 0) and (b)
represents the case with losses (o0 = 416 s71). (a) [(b)] represents the absolute value of the both eigenvalues of
the system, |T + R| (blue continuous line) and |T' — R| (blue dashed line) for the lossless [lossy] case. In all the
cases the dependence is shown with respect to the normalized frequency with respect to the resonant frequency
of the plate, wg.

to dissipate the energy; the other one remains almost invariable. In this work, this situation
corresponds to the case with ¢ = 416 s™! (see Figure 6(c)). If we have smaller or bigger values
of losses than this value, the efficiency in absorption is reduced, as shown in Figures 6(b) and
(d) respectively.

3.2. Eigenvectors

As in any other mathematical problem of diagonalization of a symmetric matrix, we are
interested also in calculating the eigenvectors. Both, eigenvalues and eigenvectors are identified
with resonances of the system. The eigenvector v7 corresponding to the eigenvalue A\; must
satisfy the equation Av; = A\jv7 for v7 unknown (Lay, D.C. 1997 or Strang, G. 2016). In fact
we are dealing with obtaining a base element of the corresponding subspace associated to the
eigenvalue A\;. The equation of this subspace is given by:

(S — M)y =0, (25)
where S is the scattering matrix, A; is one of the two eigenvalues calculated above and v7 is
the eigenvector to be determined.

Solving the previous equation for \; and \s,i.e., the two previous eigenvalues calculated, one
gets the two eigenvectors of the system (one corresponding to each eigenvalue).

7 =[R,—R|, ©=[RR). (26)

At this point, due to the fact that we are dealing with a symmetric matrix, we can show for
example that, if A\; # Ay eigenvectors corresponding to different eigenvalues are ortogonal. This
can be easily checked using the standard euclidean inner product:

v1 -5 = [R,—R][R,R]' = R* — R =0, (27)
where the symbol ¢ represent the matrix operation transpose.
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Figura 6: Analysis of the scattering parameters on the losses of the system. (a) represents the absorption of the
system at the resonance frequency of the system as the losses increases. Dots in (a) represents the analyzed
cases in (b), (c) and (d). (b), (c) and (d) show the scattering coefficients for three particular values of the losses:
oc=100s""! 0 =416 s71, 0 = 750 s~! respectively.

4. Proposal of action: How to connect with maths in the acoustics

lab

Considering the information given along this work, it is possible to present a proposal of a
practical lesson to be applied in the first course of engineering and science degrees. This lecture
consists of solving the proposed problem by using the analytical tools and comparing the results
obtained with experimental measurements.

The students, having a previous background in mathematics, especially regarding to matrix
diagonalization, complex exponentials and calculation of eigenvalues and eigenvectors, can check
and compare the results of the model with experimental measurements. Also a basic knowledge
on acoustics is necessary at a level of basic physics syllabus. The fundamentals of acoustics and
TMM can be given to the students in a previous session. Once this step has been completed,
the practical case that has been previously developed in this article will be explained and the
students will have to obtain its analytical solution by using the given tools. The activity will
be completed with a lab session in which students will perform experimental measurements
with the device shown in Figure 7. These measurements are performed by using the transfer-
function method, detailed in the standard ISO 10534-2:2002. Figure 7 shows a picture with
some elements necessary for the experimental measurement.
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Figura 7: Experimental set up for measurements.

5. Conclusions

In this article we present the development of the formalism corresponding to the Transfer
Matrix Method. This method gives the opportunity to use elements of matrix algebra that ap-
pear in math subjects in the first course of practically all degrees in science and technology in
a real problem. The activity in the math classroom can be translated to the laboratory where,
without the need of a sophisticated experimental setup, students can compare the predictions
of a mathematical model with experimental results, and increase their understanding of the
involved physical phenomena. This gives the opportunity not only to put mathematics in con-
text, but also organize a multi-disciplinary activity where mathematical and physical concepts
go together. In summary, the activity should contribute not only to a better understanding of
the physical phenomena and their interpretation in terms of the analytical results, but also it
should also anchor the mathematic knowledge via its relation with real problems.
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