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Abstract  

Scaffolds based on poly(ethyl acrylate) having interwoven channels were coated with a 

hyaluronan (HA) hydrogel to be used in tissue engineering applications. Controlled typologies 

of coatings evolving from isolated aggregates to continuous layers, which eventually clog the 

channels, were obtained by using hyaluronan solutions of different concentrations. The 

efficiency of the HA loading was determined using gravimetric and thermogravimetric 

methods, and the hydrogel loss during the subsequent crosslinking process was quantified, 

seeming to depend on the mass fraction of hyaluronan initially incorporated to the pores. The 

effect of the topologically different coatings on the scaffolds, in terms of mechanical 

properties and swelling at equilibrium under different conditions was evaluated and correlated 

with the hyaluronan mass fraction. The potential of these hydrogel coatings as vehicle for 

controlled drug release from the scaffolds was validated using a protein model. 

 

Keywords: hyaluronan; poly(ethyl acrylate); scaffold; hydrogel coating; controlled release  
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1. Introduction 

Polymer-based materials have been widely investigated for tissue engineering applications for 

their versatility in terms of chemical, physical and mechanical properties and ease of handling 

to obtain microporous structures. Among them, poly(ethyl acrylate) (PEA) is a biostable 

polymer with good biocompatibility with cells such as chondrocytes [1], osteoblasts [2], 

endothelial cells [3], keratinocytes [4], neural cells [5-8] or dental pulp stem cells [9], and has 

been proposed as a feeder-free platform for the maintenance and growth of embryonic stem 

cells [10]. Its scaffolds have been implanted in several tissues with regenerative purposes 

[5,11-13]. They can be manufactured in a variety of pore architectures including aligned [14] 

and interwoven [15] microchannels and interconnected microspheres [16] by using porogen 

leaching techniques. These scaffolds can be further combined with others of dissimilar nature: 

for example, in [15, 16] the authors combined them with a self-assembling peptide gel as 

filling in their pores. The inclusion of a hydrogel improves cell colonization and maintenance 

in the pores. 

PEA undergoes its vitreous transition around -10ºC, so it shows a rubbery behavior at 

physiological temperatures [17], characterized by being softer and more elastic than other 

similar polymers. As grid-like scaffolds with pores diameter of 150 microns and porosity of 

76.4 ± 6.1%, its Young’s modulus decreases from 0.84±0.08 MPa for bulk PEA to 0.04±0.02 

MPa [13]. It’s density is 1.13 gcm-3 [18]. Additionally, PEA is a hydrophobic polymer and the 

amorphous networks thereof result in low water uptake (equilibrium water content in PBS of 

1.14±0.16% [13]), thus maintaining their size and shape stable in aqueous environments. PEA 

has been shown to favor the adhesion of proteins such as fibronectin [2, 19] and to induce its 

spontaneous fibrillogenesis, due to the particular mobility and polarity of its side chain, 

together with its low wettability. These peculiarities encourage its use for soft tissue 

engineering purposes.  
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Hyaluronic acid, usually referred to as its sodium salt form, hyaluronan (HA), is a natural 

polymer of the glycosaminoglycans family that forms part of the extracellular matrix of 

several tissues. HA contains binding sites for extracellular, intracellular and transmembrane 

proteins, known as hyaladherins [20]. Additionally, HA molecules possess physical properties 

and regulate cell signaling pathways in a size-dependent manner [21]: high molecular weight 

HA at physiological conditions behaves as a viscoelastic material, increases hydration and 

displays anti-inflammatory properties, whereas low molecular weight HA up-regulates 

important cell functions implied in the regenerative process including proliferation, migration, 

angiogenesis and the immune response. 

In spite of its biological interest and degradation by-products, HA has an important drawback: 

it shows a short residence time in physiological conditions (because of its high solubility) and 

a fast degradation rate, as well as an excessively low structural stability to be shaped as 

scaffold for cell support and ingrowth. For these reasons, HA is usually crosslinked [22,23] or 

modified [24]. Several HA-based hydrogels have indeed been proposed in the tissue 

engineering field and, in particular, HA crosslinked with divinyl sulfone (HA-DVS) 

constitutes one of the most studied, with clinical applications such as intra-cutaneous 

injections as dermal fillers [25] and intra-articular injections for osteoarthritis [26]. HA-based 

hydrogels give rise to stable and more easy handling structures with large hydration, 

exhibiting great diffusion of substances implied in cell survival. They have thus been used 

alone to develop scaffolds [27] and drug and cell carriers [28-31]. 

Herein, the HA-DVS crosslinking reaction was performed inside the interwoven channels of 

hydrophobic PEA scaffolds, resulting in a combined material of peculiar properties and 

potential applications: the hydrogel as coating provides an artificial and more cell-friendly 

nanoenvironment, and the good biocompatibility and better mechanical stability of PEA joins 

the biological benefits and high hydration rates of HA-DVS hydrogel. This work ensues from 
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a previous one [32], which addressed the problems faced to produce different HA coating 

typologies and to characterize their physical state in the scaffold-coating construct. Firstly, the 

efficiency of the coating procedure using solutions with different HA concentrations has been 

assessed, as well as the efficiency of the crosslinking reaction within the microchannels with 

DVS. Next, the morphology of the coating in the dry and swollen state, its water uptake under 

diverse conditions and its effect on the mechanical properties of the ensemble have been 

studied and correlated with the initial HA solution used to produce the coating. Finally, the 

ability of the HA-DVS hydrogels to absorb and release molecules from the micropores of the 

hydrophobic scaffolds has been followed with bovine serum protein (BSA) used as protein 

model. 

 

2. Materials and methods 

2.1. Scaffolds preparation  

Scaffolds were prepared as described in [33]. Briefly, a solution of ethyl acrylate monomer 

(99%, Aldrich), 0.1 wt.% azobisbutyronitrile (99%, Fluka), and 2 wt.% ethylene glycol 

dimethacrylate (98%, Aldrich) was injected in a nylon fabrics template. The monomeric 

mixture was allowed to polymerize for 24h at 60ºC and post-polymerize for 24h at 90ºC. The 

materials were next washed to eliminate the porogen template. The resulting 1.6 mm thick 

scaffolds were thoroughly dried and punched into 1cm-diameter discs.  

 

2.2. Preparation of HA solutions and coating procedure  

Aqueous solutions of hyaluronic acid sodium salt (99%, Sigma, 1.63 MDa) in 0.2M sodium 

hydroxide (NaOH, extrapure, Scharlau) were prepared at 0.5, 1, 2 and 5 wt.% and stirred for 

24h. These solutions were forced into the scaffolds pores by applying vacuum with a syringe 

and next thoroughly dried as described in [32]. After preparation, the hybrids were stored 
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under vacuum until use. Coated scaffolds will be designed as yHAx, where y is the 

concentration of the coating solution, and an x is added to the series of homologous 

crosslinked samples. 

 

2.3. Crosslinking of HA coating 

The HA coating of PEA scaffolds was crosslinked with divinyl sulfone (97%, Aldrich, 118.15 

Da) in a series of samples. Firstly, 6 replicates of coated samples were immersed during 20 

min in 5 mL of a 80/20 vol. mixture of acetone (synthesis grade, Scharlau)/0.2M (aq) NaOH 

with a pH of 11-12 adjusted with HCl (≥99.8%, Sigma-Aldrich). DVS was next added in a 

1:0.9 molar ratio of DVS to HA monomeric units, dissolved in 1 mL of the acetone/NaOH 

solution. Samples were left in the solution for 24 h to ensure that the crosslinking reaction 

was completed. Next, samples were rinsed in a 20/80 vol. acetone/distilled water mixture for 

30 min, followed by a washing with distilled water for 30 min, and dried as described. 

 

2.4. Preparation of HA discs  

In order to obtain HA discs to be used as control, hyaluronic acid sodium salt was dissolved in 

a NaOH (aq) 0.2 M solution to a concentration of 5 wt.% by gently shaking for 24 h and 

stirring at 200 rpm for 2 extra hours. Next, DVS was added and stirred at 300 rpm for 1 

minute. 10 mL of the DVS/HA solution were poured into a 8.5 cm diameter Petri dish and the 

crosslinking reaction was let to occur for 24 h. The obtained gel was punched into 5 mm-

diameter discs. The discs were washed 5 times for 24 h in a 50/50 vol. acetone/distilled water 

mixture, and dried in an oven at 40ºC for 5 h followed by 24 h under vacuum at room 

temperature. Samples were kept under vacuum and darkness until use. 

 

2.5. Determination of the amount of HA entrapped in the scaffolds 



 7 

The amount of HA entrapped in the scaffolds was quantified before and after its crosslinking 

by comparing the weight of bare samples with that after coating and after crosslinking, in all 

cases followed by drying. A Mettler AE 240 balance (Mettler-Toledo Inc., Columbus, OH, 

USA) was used for this purpose. These data allowed the estimation of the filling efficiency 

and the mass loss on account of crosslinking. 

 

The amount of HA adsorbed on the scaffolds surface during the coating process and the HA 

remaining after crosslinking was quantified by the HA mass fraction in the scaffold, ωHA, 

defined as: 𝜔𝜔𝐻𝐻𝐻𝐻 = 𝑚𝑚𝐻𝐻𝐻𝐻 (𝑚𝑚𝐻𝐻𝐻𝐻 + 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)⁄ , where mbare is the mass of bare scaffold and mHA is 

the mass of dry HA coating. The relative loss during the crosslinking (HAloss(%)) was 

determined as: 𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑚𝑚𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝐻𝐻𝐻𝐻 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑚𝑚𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
· 100, where 𝑚𝑚𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the mass of HA 

incorporated during the coating process and 𝑚𝑚𝐻𝐻𝐻𝐻 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the mass of HA remaining after the 

crosslinking step. Measurements were performed 3 times for each HA concentration. 

 

2.6. Morphological observation  

A JSM-5410 scanning electron microscope (SEM; JEOL Ltd., Tokyo, Japan) was used to 

characterize the obtained materials. Surfaces and inner sections of the samples (exposed by 

fracturing the samples previously frozen by immersion in liquid nitrogen) were observed after 

a sputter-coating with gold. The working distance was fixed at 15 mm and the acceleration 

voltage at 15 kV. 

Samples swollen for 4 days (by immersion in phosphate buffer saline (PBS), by immersion in 

distilled water, or maintained in an atmosphere of PBS, PBS(RH)), were mounted on a 

specimen holder and immersed in nitrogen slush. Once frozen, these samples were transferred 

to a JSM 6300 microscope (JEOL Ltd., Tokyo, Japan) in the cryoSEM device. An inner 

section was then exposed by fracturing the sample, and ice sublimation started at -80ºC. After 
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40 min, samples were sputter-coated with gold and examined at 20 kV of acceleration 

voltage. 

 

2.7. Samples lyophilization 

Coated samples, previously swollen for four days in PBS, were frozen by immersion in liquid 

nitrogen for 10 minutes, and then lyophilized at -80ºC in a LyoQuest-85 (Telstar) during 24 h 

in order to preserve the morphology of the coating upon drying. 

 

2.8. Composition determination by TGA 

Thermogravimetric analyses (TGA) were performed in a TA SDT Q600 thermobalance (TA 

Instruments, New Castle, DE, USA) in order to determine the thermal degradation of the 

samples and estimate their composition. Three sets of samples were scanned: bare scaffolds, 

HA films and 5HAx constructs. Each set of samples was immersed in water or in PBS for 3 

days, followed by a thorough drying. Specimens weighing around 11 mg were scanned from 

25ºC to 1000ºC at 10ºC/min under a nitrogen flux of 50 mL/min. The determination of solid 

residues left by each of the components (HA xerogel and PEA scaffold, respectively) at 700ºC 

allowed, assuming additivity, to quantify the mass fraction of HA in the coated scaffolds. 
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2.9. Determination of water sorption 

The water sorption capacity of the samples was evaluated by immersion in PBS, in triplicate 

for each composition. Samples were weighed vacuum-dried before the immersion and 

swollen at selected time points. The water content (WC) was determined as: 𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑡𝑡−𝑊𝑊0
𝑊𝑊0

; 

where 𝑊𝑊𝑡𝑡 is the weight of each sample swollen at time t and 𝑊𝑊0 is its weight as dry. The 

equilibrium water content (𝐸𝐸𝐸𝐸𝐸𝐸) was considered as the final WC obtained, when no further 

weight variation was observed.  

 

2.10. Compression tests 

Mechanical compression tests were performed in an EXSTAR TMA/ss6000 device (Seiko 

Instruments Inc., Chiba, Japan). HA discs, bare scaffolds and those coated with HA were 

measured, 5 replicates per composition. Experiments were carried out in a chamber filled with 

PBS, with the samples previously swollen in PBS for 3 days. A preload of 1 g was applied 

followed by a loading rate uniformly distributed over the surface of 20 g·min-1 up to 450 g at 

room temperature. The compressive elastic modulus was obtained as the initial slope of the 

stress (𝜎𝜎 = 𝐹𝐹
𝐴𝐴
) vs. strain (𝜀𝜀 = ∆𝑙𝑙

𝑙𝑙0
 ) curve in the linear deformation region. E1 was defined as the 

slope of the stress-strain curve at a strain of 20%; a second modulus, E2, was determined in 

the stress range between 0.1 and 0.12 kPa, and the unitary limit deformation, εl, was defined 

as the deformation at the intersection of this slope with the strain axis. 

 

2.11. Protein loading and controlled release study  

Bovine serum albumin (BSA) was used as a protein model to evaluate the potential of PEA 

scaffolds coated with HA as a controlled release system. Each sample (previously swollen in 

PBS) was loaded overnight at 37ºC in 1.2 mL of a 1 mg/mL BSA (Thermo Scientific) 
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solution in PBS. After absorption, samples were transferred to 1.2 mL of fresh PBS each to 

follow the protein release. The supernatants were collected at selected time points (up to 240 

h) and replaced with fresh PBS tempered at 37ºC. Three replicates per time, material and 

treatment were measured. 

 

The BSA concentration in each supernatant was determined with a Micro BCA Protein assay 

kit (Thermo Scientific) following the manufacturer’s instructions, and its absorbance was read 

with a Victor Multilabel Counter 1420 spectrophotometer (Perkin Elmer, Waltham, MA; 

USA) at 570 nm.  

 

2.12. Statistics 

All the experimental data are given as mean ± standard deviation. Statistical assessment of 

significant variance was performed through a one-way ANOVA with the Statgraphics plus 

software (Statistical Graphics Corp., version 5.1, Princeton, NJ). Statistical tests were 

performed at 95% significance level (p-value<0.05). 

 
3. Results 

3.1. Efficiency of the coating process  

The molecular weight between crosslinks within the PEA matrix of the scaffolds here 

prepared, MPEA, can be theoretically determined as MPEA = ν·MEA, where ν is the number of 

monomeric units per chain, i.e., ν = nEA/nchains = nEA/(nEGDMA·ϕEGDMA/2). Herein nEA and 

nEGDMA are the moles of EA and EGDMA, respectively, MEA is the molecular weight of EA 

(100.12 g/mol) and ϕEGDMA is the functionality of the crosslinker, 4. Thus, the theoretically 

MPEA results in a value of 5057.0 g/mol or, equivalently, around 50 EA monomeric units 

between crosslinks.  
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The efficiency of the crosslinking procedure was characterized by determining the amount of 

HA incorporated before and after its crosslinking, in the dry state (Figure 1). In contrast to 

other acrylates [34], PEA permits the free diffusion of hyaluronan into the pores, because of 

the free water contained in the large pores and the lack of bound water on the hydrophobic 

surface of the PEA scaffolds. The amount of HA before crosslinking was found to increase 

linearly with the concentration of the starting HA solution used, its mass fraction ranging 

from 0.12 for the 0.5 wt.% solution to 0.40 for the 5 wt.% one. The crosslinking step, which 

involves the soaking of samples in a water/acetone solution, resulted in the undesired non-

negligible release of a certain amount of HA from the scaffold. The relative loss of HA during 

crosslinking was though increasingly lower as the HA amount in the scaffold increased. For 

instance, the scaffolds coated with the 0.5 wt.% solution lost nearly 61% of the initially 

adsorbed HA during the crosslinking, whereas in those coated with the 5 wt.% HA solution 

only 19% of the initial HA mass was able to diffuse. 

 

3.2. Morphology of the composites 

SEM images of the cross section of dry PEA scaffolds coated with different HA starting 

solutions are shown to present the coating typologies obtained, Figure 2. For the lowest 

concentration (0.5 wt %), only scattered small aggregates of HA seem to adhere to the pores 

surfaces and the structure of the bare scaffold is still easily observable. The average diameter 

of the pores is kept, 117±29 microns, and no significant differences between the pores 

analyzed in the inner cross sections and those at the surface can be found.  

When coated with the 1 wt.% HA solution, the deposition of a thin uniform layer can be 

already detected in some regions of the scaffolds. Using the 2 wt.% solution, partially clogged 

pores can be seen. Following the same trend, with the 5 wt.% HA solutions, many pores 

exhibit a uniform thick layer coating the channels, some of them being completely clogged. 



 12 

The HA surfaces, like those of PEA, are smooth in their dry state, showing no microporosity 

(image not shown). 

The cryoSEM images of samples swollen by immersion in PBS show that as the HA mass 

fraction increases, the number of hollow pores decreases. This could be due to an 

improvement in the water diffusion towards the inner pores of the scaffold because of the 

presence of hydrophilic HA. However, the trace left by PBS when sublimated in the cryoSEM 

device disguises the HA gel structure, which cannot be distinguished from the residue left by 

water sublimation. In order to better observe the HA coating in its swollen state avoiding the 

PBS artifacts, samples were swollen in PBS(RH). As these are milder swelling conditions, the 

changes were more moderate. Samples coated with 05HAx, as well as when dry, only exhibit 

few aggregates of HA, whereas in the 1HAx ones, some pores with a uniform coating layer 

start to be detected. For higher concentrations, the effects are more evident: 2HAx samples 

exhibit some pores partially clogged, and entirely clogged pores are numerous in the 5HAx 

samples. In sum, no great differences in the morphology of the coatings were detected when 

the composites are dry or swollen in PBS(RH). Thus, the change in the volumetric swelling of 

samples under humid atmosphere is moderate, and hence this treatment could be useful to 

compare the EWC of non-crosslinked and crosslinked samples without any risk of coating 

dissolution; it is, though, limited to characterize the morphology of the HA hydrogel under the 

conditions that the hybrids will face upon implantation, because hydrogels display a much 

greater volume when immersed in liquid aqueous media.  

To characterize the coatings swollen by immersion in PBS, avoiding the appearance of 

residues left by PBS during sublimation in the cryoSEM device, yet maintaining the swollen 

volume, specimens were lyophilized after three days of immersion, and then observed in 

conventional SEM. For the lowest concentrations of HA solutions, small unconnected regions 

are shown (05HAx) and only thin layers were found in 1HAx. As for the highest 
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concentrations, 5HAx, many pores are entirely clogged, whereas slightly less for the 

intermediate concentration, 2HAx.  

 

3.3. Thermogravimetric analysis 

The thermogravimetric analyses allowed the study of the thermal degradation profile of the 

combined system, but also an additional determination of the mass fraction of HA effectively 

incorporated to the scaffolds (Figure 3). HA exhibits the lowest onset temperature, and a 

broad main degradation step between 205ºC and 400ºC; the main degradation of the bare 

scaffold occurs between 340ºC and 410ºC. The thermogram of the composite lies between 

those of its components, and exhibits a very particular profile: the first part of its main 

degradation stage follows a trend similar to HA although shifted towards higher temperatures 

(it has its onset at 235ºC), and the second part matches accurately that of PEA scaffolds 

although leaving a different percentage of solid residues. Apropos of this, at 700ºC HA left 

28.8% of its initial mass as solid residue, PEA scaffolds left 8% and the coated scaffold (PEA 

5HAx) had a residue of 20.6%. The residues left by sets of materials thermodegraded after 

immersion in PBS were compared with the residues left by samples immersed in water (data 

not shown) and no significant differences were observed. 

 

3.4. Swelling of hyaluronic acid as coating in the scaffolds 

The equilibrium water content (EWC) of scaffolds coated with a set of HA solutions was 

compared to determine the effect of the coating topology on their swelling degree. Coating 

the scaffolds surface with HA has an impact on their swelling behaviour. When bare 

hydrophobic scaffolds are merely placed in PBS, only a small fraction of the liquid is capable 

to penetrate into the pores (1.17). A significant increase of the EWC occurs when the 

scaffolds are coated with HA solutions; even when the lowest concentration is used, the water 
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content triples that of the bare scaffold. The EWC resulted to be independent of the starting 

solution used, suggesting that the mere presence of small amounts of HA improves water 

diffusion and the wettability of the scaffold; however, a plausible limitation of water uptake 

due to the confinement of the swollen hydrogel in the channels [32] seems to affect the 5HAx 

EWC in the sense of slightly decreasing it. 

 

3.5. Mechanical properties 

The influence of the hydrated coating on the mechanical performance of PEA scaffolds was 

followed by compressive tests. Swollen HA bulk discs and bare scaffolds were used as 

control, and their stress-strain profiles are represented along with those of coated scaffolds, 

Figure 5. 

All curves show a similar convex trend with stiffness increasing progressively as the sample 

is deformed, ending with a densification regime. As expected, the swollen HA discs have the 

lowest compressive stiffness and the greatest deformability. The hybrids coated with the least 

concentrated solutions (0.5 and 1 wt.%), show slightly greater initial compressive moduli than 

the bare scaffold (18.2 and 20.1 kPa, respectively, vs. 17.7 kPa for the latter). A greater 

increase is observed for scaffolds coated with more concentrated solutions (2HAx and 5HAx), 

reaching moduli that nearly double that of the bare scaffold (32.26 and 33.4 kPa, 

respectively). This increase is proportional to the amount of HA incorporated, although the 

modulus of the HA gel (11.5 kPa) is lower than that of the hydrophobic scaffold.  

The change in the tendency observed in the curves occurs at a strain of approximately 75% 

for the bare scaffolds, which is close to its porosity, and at lower strains for the coated ones: 

up to 50% for those coated with the more concentrated HA solution. As for the final modulus, 

the scaffolds coated with high HA concentrations (2 and 5 HA wt.% solutions) show lower 

moduli than the rest (909.4 and 835.4 kPa), as well as more gradual change of slope. The 
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hybrids coated with 0.5 and 1 wt.% solutions exhibit moduli close to that of the bare PEA 

scaffold (1.169 and 1.293 MPa, respectively, vs. 1.286 MPa for the latter). The HA discs 

show again the lowest value in this zone, 380 kPa.  

The greater values of unitary limit deformation are those obtained for the controls: non-

porous HA gel discs and bare PEA scaffolds (having the highest porosity). For the hybrids, a 

clear trend is observed: the higher the HA mass fraction (i.e. scaffolds coated with more 

concentrated HA solutions), the lower the extreme strain value. 

 

3.6. Controlled release 

Great differences were found among the amounts of BSA loaded in scaffolds, and HA discs: 

the latter were capable to adsorb almost three times more protein per mg of sample. As Figure 

6 shows, no significant differences were found between bare and coated scaffolds in respect 

of the amount of BSA effectively loaded.  

 

Figure 7 shows the curves of accumulated percentage of BSA released, Mt/M0, for the loaded 

composite, PEA scaffolds and HA controls, where M0 is the initial (loaded) mass of BSA in 

each material and Mt is the mass released from it at each time t. All materials present a similar 

trend, where two release regimes can be identified. A burst takes place at the beginning, 

lasting 8 hours, where a significant fraction of protein is released: up to 24% from HA discs, 

52% from coated scaffolds, and 68% from bare ones. Next, a more sustained release follows 

up to the end time of the study, covering 47% from HA gel, 85% from PEA scaffolds and 

65% from 5HAx coated PEA scaffolds after 12 days. In no case the total amount of BSA 

incorporated could be released. 

Despite the similarities with respect to the shape of the curves, the single and hybrid materials 

exhibit indeed different behavior. Bare PEA provides a fast release of the loaded protein, 
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whereas HA gel provides a much more moderate rate of release, although also presents an 

initial burst, and the hybrids exhibit an intermediate behavior between its components, 

reaching much higher values in the initial burst than HA, but a slower rate in the second 

regime. 

 
 

4. Discussion 

The combination of PEA scaffolds with HA aqueous solutions was not trivial given the 

hydrophobicity of the former and the viscosity of the latter. A procedure allowing the 

production of different coating typologies was previously presented in [32]. It consisted in the 

use of HA aqueous solutions containing NaOH to reduce its viscosity [35] together with 

assisting the filling by applying vacuum. Scaffolds made of hydrophobic materials of 

different nature such as PLLA [36] and PCL [37] have also been coated with HA, but the 

effect of the concentration of the starting solution on the typology of the coating had not been 

followed systematically. Further, the procedure to obtain different coating typologies in 

thicker scaffolds in only one coating step by varying HA concentrations has been developed 

in this work.  

The coating efficiency experiments showed that the higher the concentration of the HA 

solution used, the greater the amount of HA incorporated within the pores, as expected. 

However, as these coatings are soluble in water, a crosslinking step with DVS (which 

includes a swelling in an acetone/NaOH(aq) solution) was followed. During this step, the 

greater the HA mass fraction in the sample the lower the HA loss. A plausible explanation 

could be found in the HA ability to swell in water. Those samples coated with the lowest HA 

concentration only exhibit small aggregates inside the pores; thus, HA can swell with no 

restrictions but those imposed by the polymeric network. This great volume increase could 

lead to the detachment of the aggregates from the surface. If there is no impediment blocking 
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the pores, the detached piece of HA can easily circulate through the microchannels and 

eventually come out. Oppositely, in samples coated with more concentrated solutions, a 

greater amount of HA was adsorbed within the pores and because of the constrained swelling 

already described for this system in [32], HA exhibits a more restricted swelling limiting its 

detachment. Even more, if HA is swollen, as increases its volume, it could act as a top 

blocking the channels and avoiding the detached HA to come out from the pores. Thus, HA 

hydrogels remain constrained against the pores surfaces; nonetheless, such swelling does not 

provide a better interaction with the scaffold, due to the different chemical nature of both 

components. This fact can be observed on the SEM and cryoSEM images of 5HAx samples 

(Figure 2), where HA shows detached from PEA. 

The use of thicker scaffolds than those used in [32] intended the fine augment of ωHA without 

increasing the number of applied cycles, ensuring more uniform coatings throughout the 

thickness of the scaffolds in one step. Another consequence of using thicker scaffolds was the 

reduction on the amount of HA lost during crosslinking, because of a labyrinthine effect of 

the porosity. Indeed, the scaffolds used herein (produced from 16 layers of nylon meshes as 

porogen instead of 8) coated with a 5 wt.% HA solution reached, with a single cycle, an ωHA 

equivalent to that reached by the 8-layered scaffolds after 5 loading-drying cycles with a 5 

wt.% HA solution (those used in [32]). For HA solutions of 1 and 2 wt.%, the ωHA attained 

with 16-layered scaffolds (0.071 and 0.143, respectively) is close to that of the 8 layers 

scaffolds after 1 cycle with 5% HA (0.148). Thus, for thinner scaffolds, the HA fraction 

remaining in the pores after the crosslinking step is thickness-dependent.  

The thermogravimetric analyses provided values of solid residue that allowed to quantify the 

HA mass fraction in the coated scaffolds in an alternative way. A ωHA of 0.36±0.05 was 

obtained for the PEA scaffold coated with 5HAx. This value is in good agreement with that 

obtained by weighing the samples before and after the coating (Figure 1), being 0.36±0.01. 
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The shift on HA’s main thermodegradation stage towards higher temperatures of the hybrids 

can be attributed to an increased difficulty for the diffusion of the HA volatiles in the presence 

of the polymer matrix. 

In order to modulate the thickness of the coating layer, the concentration of the HA solution 

was varied. As a result, HA coatings with topologies ranging from scattered aggregates up to 

completely clogged channels, with a uniform coating for the intermediate situations, were 

obtained. However, SEM micrographies gave limited information of the hybrids, as samples 

are observed in their dry state whilst their intended use is under aqueous (physiological) 

conditions. Observing the samples in their swollen state was not though exempt of 

difficulties: the cryoSEM technique hid the results (because of a PBS excess) of porous 

samples previously immersed in PBS (Figure 2) and prevented to differentiate the PBS traces 

from the swollen HA in the pores. To overcome this artifact, micrographies of a set of 

samples swollen in PBS(RH) were taken; in this case there is no surrounding water that could 

be mistaken for the swollen HA structure. However, since these swelling conditions are 

milder, the degree of swelling is lower than in samples immersed in aqueous media and these 

results are not extensive to physiological conditions. When samples swollen in PBS were 

observed with conventional SEM after lyophilization, the scaffolds coated with 2 and 5% HA 

solutions exhibited pores practically clogged by the swollen HA. For the lowest 

concentrations, either only limited areas are coated (05HAx), or at most some pores start to be 

clogged (1HAx). The similarities between the 2HAx and 5HAx could be attributed to the 

constrained swelling experienced by HA for the highest fractions, revealed upon swelling 

(Figure 4). This phenomenon was reported for samples swollen in 66% RH in [32].  

The elastic modulus increases with the HA fraction (Figure 5). This effect can be attributed to 

the greater difficulty in extruding water from the HA gels than from the void scaffolds pores. 

Constrained swelling aside, for the scaffolds coated with the most concentrated solutions, a 
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greater amount of HA lodging water within the network occupies the scaffold pores and thus 

lesser water can flow freely through them, i.e., the gelled state of HA impedes such flow. This 

phenomenon, known as poroelasticity, occurs when porous materials filled with liquids are 

compressed, because of the incompressibility of the latter [38]. As a result, even if the HA 

modulus is lower, it increases the elastic modulus nearly two-fold that of the bare scaffold as 

it hinders the flow of water entrapped in the hydrogel. A similar reinforcing role has been 

described in other combined systems [39,40]. The presence of increasing fractions of HA 

within the pores increases the stresses needed to reach a certain strain. As can be observed in 

the second linear region in the stress-strain plot (E2 has been determined in the stress interval 

between 100 and 120 kPa, except for HA, for which it has been determined at lower stress 

levels), the scaffolds coated with concentrated HA solutions are less deformed given the same 

value of stress. This is an indicator that the smaller lumen of the filled pores are subsequently 

sooner collapsed. This second modulus, obtained after pores collapse, decreases as PEA is 

combined with HA, because here both materials are simultaneously compressed and the HA 

modulus is lower when it is swollen. For the scaffolds coated with 05HAx and 1HAx, values 

similar to those reached by the bare scaffolds were obtained, in agreement with this rationale. 

The feasibility of using the combined system composed of a PEA scaffold and HA filling as a 

protein (or other molecule) delivery platform was assessed in the controlled release study. The 

loaded BSA molecules might be lodged in different locations depending on the considered 

material. In HA discs, the protein could be either adsorbed on the surface or embedded in the 

polymeric network. In bare scaffolds, BSA can be either adsorbed on the surface, or in the 

liquid filling the pores. The BSA present in the hybrid scaffold would be lodged in a 

combination of the aforementioned locations. 

The BSA release was found to exhibit two regimes (Figure 7): the initial burst that occurs 

within 8 hours, and a more sustained release up to 12 days. The initial solute release regime 
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from HA discs and 5HAx coated PEA scaffolds can be fitted to the simple exponential 

relation according to [41] and [42]; 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 𝑘𝑘 ∙ 𝑡𝑡𝑛𝑛, where 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄  is the fractional solute 

release, t is the release time in hours, 𝑘𝑘 is a constant characteristic of the macromolecular 

network system, and n is the diffusional exponent characteristic of the release mechanism 

[41]. The model was not applied to bare scaffolds because of their high initial release 

suggesting that the HA component is the vehicle for a sustained release. For HA the equation 

gives  𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 0.1194 ∙ 𝑡𝑡0.33 (R2=0.9944) and for 5HAx it is 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 0.2269 ∙ 𝑡𝑡0.33 

(R2=0.9784). The fact that the best fit is obtained for an n=0.33 in both cases, below the limit 

of 0.43 that is attributed to pure Fickian diffusion, indicates that the diffusion mechanism 

taking place is not Fickian, i.e., other factors besides pure diffusion are taking part in this 

process. These mathematical models are widely used to describe solvent release from 

hydrogels, where k is interpreted as a structural/geometric factor to account for the different 

tortuosities of the transport path [42]. This could explain why the value obtained for the 

hybrids is higher than that of HA discs. 

Given the highly hydrophilic and swellable nature of HA discs, changing from a loaded 

solution to a non-loaded one could lead to not only a release of the model protein but also a 

non-negligible swelling of the polymeric network because of the greater water activity in the 

medium. Thus, the model developed by Ritger and Peppas specifically for swellable devices 

might be used [42]. In such case, 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 𝑘𝑘1 ∙ 𝑡𝑡𝑛𝑛 + 𝑘𝑘 ∙ 𝑡𝑡 applies, which when generalized 

for alternative geometries implies 𝑘𝑘 = 1 − (1 − 𝑘𝑘2 ∙ 𝑡𝑡)𝑛𝑛. The following equation is 

achieved: 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 0.112602 ∙ 𝑡𝑡0.33 + (1 − (1 − 0.003741 ∙ 𝑡𝑡)0.33). With this approach the 

𝑘𝑘1 value is very close to the one obtained with the simple exponential relation; hence the 

resulting model is like the one obtained for the simple exponential diffusion, plus an extra 

term associated to the material swelling.  
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The second release regime exhibits an almost linear profile, which can be fittted to the linear 

equation 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 𝑘𝑘 ∙ 𝑡𝑡 + 𝑎𝑎, where 𝑎𝑎 accounts for the initial release and k for the linear 

growth of the amount released with time. For HA the fitting is 𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 0.0006 ∙ 𝑡𝑡 +

 0.2935, for 5HAx it is  𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 0.0004 ∙ 𝑡𝑡 +  0.5469 and in this case also the data of bare 

scaffold could be fitted:  𝑀𝑀𝑡𝑡 𝑀𝑀0⁄ = 0.0005 ∙ 𝑡𝑡 +  0.7101. The greater 𝑎𝑎 value is obtained for 

the scaffold, which is indicative of its more pronounced initial release. The fastest second 

regime release was observed for HA, which precisely had the highest 𝑘𝑘 value in the fitted 

equation. 

Previous works reported that negatively charged proteins are sustainably released from HA 

hydrogels after an initial burst; meanwhile, the release of positively charged proteins is 

interrupted after the initial rapid release due to electrostatic interactions with HA functional 

groups [43]. At the pH of this experiment, 7.4, BSA was above its isoelectric point (4.7) [44], 

and negatively charged. The results obtained for HA and 5HAx constructs, exhibiting an 

initial burst followed by a sustained release are in good agreement. However, other factors 

besides interaction of BSA with HA need to be taken into account, for instance the porosity; 

in the case of bare scaffolds and 5HAx coated ones, the BSA lodged in the free PBS filling 

the pores could contribute to the fast release, as it can diffuse easily to the surrounding 

medium. 

 

5. Conclusions 

PEA grid-like scaffolds coated with HA gels were prepared with the aim of developing hybrid 

systems composed of materials of very different nature: on the one hand, the hydrophobic 

acrylic polymer and on the other the highly hydrophilic and water-soluble (if not crosslinked) 

HA. The typology of the pore coatings can be accurately tailored by varying the HA 

concentration of the solution, ranging from scattered aggregates up to totally clogging the 
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pores. After injection, the solution can be effectively crosslinked with DVS in situ to increase 

its stability in aqueous environments. The efficiency of this step is highly dependent on the 

hybrid composition, in the sense of increasing with the HA fraction, since it gives rise to an 

impaired diffusion of chains out the pores during the crosslinking. 

The incorporation of crosslinked HA in the microchannels enhances the mechanical 

performance of the scaffolds and increases their water uptake, which might favor the diffusion 

of substances along the channels. All in all, these hybrid systems combine the interesting 

biological properties of the antagonist polymers HA and PEA and allow the controlled release 

of substances by diffusion through the gel coating from an otherwise hydrophobic scaffold; in 

this sense, these materials might find further applications in the tissue engineering field. 
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Figure captions 

 

Figure 1: HA mass fraction, ωHA, after the coating (left ordinate) and percentage of HA loss, 

HAloss, after the crosslinking and purification processes (right ordinate). 

Figure 2: SEM and cryoSEM micrographies of PEA scaffolds coated with HA solutions of 

different concentrations, in their dry state, swollen by immersion in PBS, swollen under PBS 

vapor atmosphere and swollen by immersion in PBS followed by a lyophilization step. Scale 

bar: 300 µm. 

Figure 3: Thermogravimetric profiles of HA discs, bare PEA scaffolds and PEA scaffolds 

coated with 5HAx. 

Figure 4: Equilibrium water content of bare and coated scaffolds immersed in PBS.  

Figure 5: (A) Stress-strain curves of PEA scaffolds, HA gels and scaffolds coated with 

differently concentrated HA solutions and crosslinked. (B) Initial compressive modulus, E1, 

(C) final compressive modulus, E2, and (D) unitary limit deformation (defined as the 

deformation at the intersection of the fitting to the second linear region with the strain axis), 

εL. (*) differences are statistically significant; (#) differences are not statistically significant. 

Figure 6: Mass of BSA incorporated in bare and HA coated scaffolds, and HA discs, per mass 

unit of sample. 

Figure 7: BSA release curve in PBS from bare and 5HAx scaffolds, and HA discs: 

accumulated percentage of BSA released at time t vs. time. Inset: detail of the initial release. 
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Figure 3 
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Figure 5 

  

 

Figure 6 
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Figure 7 
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