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Abstract: Let R be a unital ring with involution. We first show that the EP elements
in R can be characterized by three equations. Namely, let a ∈ R, then a is EP if and only
if there exists x ∈ R such that (xa)∗ = xa, xa2 = a and ax2 = x. Any EP element in R
is core invertible and Moore-Penrose invertible. We give more equivalent conditions for a
core (Moore-Penrose) invertible element to be an EP element. Finally, any EP element
is characterized in terms of the n-EP property, which is a generalization of the bi-EP
property.
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1 Introduction

Throughout this paper, R will denote a unital ring with involution, i.e., a ring with a
mapping a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a+ b)∗ = a∗ + b∗. The notion of
core inverse for a complex matrix was introduced by Baksalary and Trenkler [3]. In [17],
Rakić et al. generalized the core inverse of a complex matrix to the case of an element in
R. More precisely, let a, x ∈ R, if

axa = a, xR = aR and Rx = Ra∗,

then x is called a core inverse of a. If such an element x exists, then it is unique and
denoted by a#©. The set of all core invertible elements in R will be denoted by R#©. Also,
in [17] the authors defined a related pseudo-inverse in a ring with an involution. If a ∈ R,
then a#© ∈ R is called a core dual inverse of a if

aa#©a = a, a#©R = a∗R and Ra#© = Ra.

Rakić et al. proved that if a has a core dual inverse (we say that a is core dual invertible),
then is unique. We denote by R#© the subset of R composed of core dual invertible
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elements. It is elemental to prove that a ∈ R#© if an only if a∗ ∈ R#©, and in this case,
one has (a#©)∗ = (a∗)#©. This last observation permits to get results concerning dual core
inverses from the corresponding results on dual inverses.

Let a, x ∈ R. If

axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa,

then x is called a Moore-Penrose inverse of a. If such an element x exists, then it is unique
and denoted by a†. The set of all Moore-Penrose invertible elements will be denoted by
R†.

Let a ∈ R. It can be easily proved that the set of elements x ∈ R such that:

axa = a, xax = x and ax = xa

is empty or a singleton. If the set is a singleton, its unique element is called the group
inverse of a and denoted by a#. The set of all group invertible elements will be denoted
by R#. The subset of R composed of invertible elements will be denote by R−1.

A matrix A ∈ Cn×n is called an EP (range-Hermitian) matrix if the range equality
R(A) = R(A∗), where Cn×n denotes the set of all n×n matrices over the field of complex
numbers and R(A) stands for the range (column space) of A ∈ Cn×n. This concept was
first introduced by Schwerdtfeger in [18]. An element a ∈ R is said to be an EP element
if a ∈ R† ∩ R# and a† = a# [8]. The set of all EP elements will be denoted by REP.
Mosić et al. in [12, Theorem 2.1] gave several equivalent conditions such that an element
in R to be an EP element. Patŕıcio and Puystjens in [16, Proposition 2] proved that for
a Moore-Penrose invertible element a ∈ R, a ∈ REP if and only if aR = a∗R. As for a
Moore-Penrose invertible element a ∈ R, a ∈ REP if and only if aa† = a†a, thus we deduce
that aa† = a†a if and only if aR = a∗R. In [17, Theorem 3.1], Rakić et al. investigated
some equivalent conditions such that a (dual) core invertible element in R to be an EP
element. Also, they showed that R† ∩ coreR = R† ∩ R#. Motivated by [6, 12, 16, 17], in
this paper, we will give new equivalent characterizations such that an element in R to be
an EP element.

We first show that the EP elements in R can be characterized by three equations.
That is, let a ∈ R, then a ∈ REP if and only if there exists x ∈ R such that (xa)∗ = xa,
xa2 = a and ax2 = x. In [17], Rakić et al. proved that a ∈ R† if and only if there exists
x ∈ R such that axa = a, xR = a∗R and Rx = Ra∗. Inspired by this result, we show that
a ∈ REP if and only if there exists x ∈ R such that

axa = a, xR = aR and Rx∗ = Ra.

In [6, Theorem 16], for an operator T ∈ L(X), where X is a Banach space, Boasso proved
that for a Moore-Penrose invertible operator T , T is an EP operator if and only there
exists an invertible operator P ∈ L(X) such that T † = PT . We generalize this result to
the ring case. Moreover, for a ∈ R†, we show that a ∈ REP if and only if there exists a
(left) invertible element v such that a† = va. Similarly, for a ∈ R#©, then a ∈ REP if and
only if there exists a (left) invertible element s such that a#© = sa.

In [17], Rakić et al. proved that a ∈ REP if and only if a ∈ R† ∩ R# with a† = a#©.
Also, it is proved that a ∈ REP if and only if a ∈ R#© with a# = a#©. In [14, Theorem 2.1],
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Mosić and Djordjević proved that a ∈ REP if and only if a ∈ R#∩R† with ana† = a†an for
all choices n > 1. This result also can be found in [7, Theorem 2.4] by Chen. Motivated by
[14, 17], we will give more new equivalent conditions under which a core invertible element
is an EP element. And we define the concept of n-EP as a generalization of bi-EP. As a
application, we will use n-EP property to give an equivalent characterization of the EP
elements in R.

2 New characterizations of EP elements by equations

In this section, we first show that any EP element in R can be characterized by three
equations. Let us begin with an auxiliary lemma.

Lemma 2.1. [11, Theorem 7.3] Let a ∈ R. Then a ∈ REP if and only if a ∈ R# with
(aa#)∗ = aa#.

It is well known that the group inverse of an element in a ring can be characterized by
three equations and the Moore-Penrose inverse of an element in a ring can be characterized
by four equations. In the following theorem, we show that an EP element in a ring can
be described by three equations.

Theorem 2.2. Let a ∈ R. Then a ∈ REP if and only if there exists x ∈ R such that

(xa)∗ = xa, xa2 = a and ax2 = x. (2.1)

Proof. Suppose a ∈ REP. Let x = a† = a#, then (xa)∗ = (a†a)∗ = a†a = xa, xa2 =
a#a2 = a and ax2 = a(a#)2 = a# = x. Conversely, if there exists x ∈ R such that
(xa)∗ = xa, xa2 = a and ax2 = x, then a(x2a) = (ax2)a = xa = x(xa2) = (x2a)a,
a(x2a)a = (xa)a = xa2 = a, and (x2a)a(x2a) = (xa)(x2a) = x(ax2)a = x2a. These
three equalities prove that a ∈ R#, a# = x2a, and aa# = xa. By Lemma 2.1, we get
a ∈ REP.

For an idempotent p in a ring R, every a ∈ R can be written as

a = pap+ pa(1− p) + (1− p)ap+ (1− p)a(1− p)

or in the matrix form

a =

[
a11 a12
a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap and a22 = (1− p)a(1− p).
Let us observe that pRp and (1 − p)R(1 − p) are subrings whose unities are p and

1 − p, respectively. Also, we notice that if p = p∗, then the above matrix representation
preserves the involution. The term projection will be reserved for a Hermitian idempotent.

Suppose in this paragraph that a ∈ R is an EP element. If we denote p = aa† = a†a,
since ap = pa = a and a†p = pa† = a†, then the matrix representations of a and a† with
respect to the Hermitian idempotent p are

a =

[
a 0
0 0

]
and a† =

[ † 0
0 0

]
, (2.2)
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respectively.
Recall that a ring R is prime if for any two elements a and b of R, arb = 0 for all r in

R implies that either a = 0 or b = 0.
In next theorem, the set of elements x ∈ REP satisfying (2.1) is described.

Theorem 2.3. Let a ∈ R. If a is EP, then {x ∈ R : (xa)∗ = xa, xa2 = a, ax2 = x} =
{a† + aa†y(1 − aa†) : y ∈ R}. Moreover, if R is a prime ring, then {x ∈ R : (xa)∗ =
xa, xa2 = a, ax2 = x} = {a†} if and only if a = 0 or a is invertible.

Proof. Suppose a is an EP element. We use the matrix representations of a and a† with
respect to the projection p = aa† given in (2.2). Let x = [ u v

w z ] be the representation of
any x ∈ R with respect to p. From xa2 = a, we get[

a 0
0 0

]
=

[
u v
w z

] [
a2 0
0 0

]
=

[
ua2 0
wa2 0

]
.

Since a is EP and aa† = p = a†a, then a is invertible in pRp and its inverse is a†. Hence
from a = ua2 and 0 = wa2, we obtain u = a† and 0 = w, respectively. Now, from x = ax2

we have [
a† v
0 z

]
=

[
a 0
0 0

] [
a† v
0 z

]
x =

[
p av
0 0

] [
a† v
0 z

]
=

[
a† v + avz
0 0

]
,

which implies z = 0. Therefore,

x =

[
a† v
0 0

]
= a† + v,

that is {x ∈ R : (xa)∗ = xa, xa2 = a, ax2 = x} ⊆ {a† + aa†y(1− aa†) : y ∈ R}.
Let us prove the opposite inclusion. We have that aa† = a†a since a is EP. Then

[a† + aa†y(1− aa†)]a = a†a is Hermitian,

[a† + aa†y(1− aa†)]a2 = a†a2 = a,

a[a† + aa†y(1− aa†)]2 = [aa† + ay(1− aa†)][a† + aa†y(1− aa†)] = a† + aa†y(1− aa†).

Suppose that R is prime ring. If a = 0, then {x ∈ R : (xa)∗ = xa, xa2 = a, ax2 =
x} = {0}. If a is invertible, then {x ∈ R : (xa)∗ = xa, xa2 = a, ax2 = x} = {a−1}. If
{x ∈ R : (xa)∗ = xa, xa2 = a, ax2 = x} is a singleton, then aa†y(1 − aa†) = 0 for all
y ∈ R, by using that R is prime, then aa† = 0 or 1 − aa† = 0. The first of the previous
alternatives is equivalent to a = 0 and the second one (since a is EP) is equivalent to the
invertibility of a.

We will also use the following notations: aR = {ax : x ∈ R}, Ra = {xa : x ∈ R},
◦a = {x ∈ R : xa = 0}, a◦ = {x ∈ R : ax = 0} and [a, b] = ab− ba. The following lemma
will be useful in the sequel.

Lemma 2.4. [19] Let a, b ∈ R. Then:

(1) aR ⊆ bR implies ◦b ⊆ ◦a and the converse is valid whenever b is regular;
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(2) Ra ⊆ Rb implies b◦ ⊆ a◦ and the converse is valid whenever b is regular.

Theorem 2.5. Let a ∈ R. Then the following are equivalent:

(1) a ∈ REP;

(2) there exists x ∈ R such that axa = a, xR = aR and Rx∗ = Ra;

(3) there exists x ∈ R such that axa = a, xR = aR and Rx∗ ⊆ Ra;

(4) there exists x ∈ R such that xax = x, xR = aR and Rx∗ = Ra;

(5) there exists x ∈ R such that xax = x, xR = aR and Ra ⊆ Rx∗;

(6) there exists x ∈ R such that axa = a, ◦x = ◦a and (x∗)◦ = a◦;

(7) there exists x ∈ R such that axa = a, ◦x = ◦a and a◦ ⊆ (x∗)◦;

(8) there exists x ∈ R such that xax = x, ◦x = ◦a and (x∗)◦ = a◦;

(9) there exists x ∈ R such that xax = x, ◦x = ◦a and (x∗)◦ ⊆ a◦.

Proof. (1) ⇒ (2): Let x = a† = a#, then axa = a, x = a(a#)2, x∗ = (a†)∗ = (a†aa†)∗ =
(a†)∗a†a, and xa2 = a#a2 = a = aa†a = aa∗(a†)∗ = aa∗x∗. Thus xR = aR and Rx∗ = Ra.

(2)⇒ (3) and (6)⇒ (7) are clear.

(2)⇒ (6) and (3)⇒ (7) are obvious by Lemma 2.4.

(7) ⇒ (1): Suppose there exists x ∈ R such that axa = a, ◦x =◦a and a◦ ⊆ (x∗)◦.
Since (1−ax)a = 0, then 1−ax ∈ ◦a = ◦x, hence (1−ax)x = 0. Since a(1−xa) = 0, then
1− xa ∈ a◦ ⊆ (x∗)◦, hence x∗(1− xa) = 0, i.e., x = (xa)∗x. We get xa = (xa)∗xa, hence
xa is Hermitian. Finally, x = xax implies 1 − xa ∈ ◦x = ◦a, whence xa2 = a Therefore
a ∈ REP by Theorem 2.2.

The implications (1) ⇔ (4) ⇔ (5) ⇔ (8) ⇒ (9) are similar to (1) ⇔ (2) ⇔ (3) ⇔
(6)⇒ (7).

(9)⇒ (1): There exists x ∈ R such that xax = x, ◦x = ◦a and (x∗)◦ ⊆ a◦. It is obvious
that (x∗)◦ ⊆ a◦ is equivalent to ◦x ⊆ ◦(a∗). We have a = xa2 since (1− xa)x = 0 implies
(1−xa)a = 0. Similarly, we have a∗ = xaa∗ since (1−xa)x = 0 implies (1−xa)a∗ = 0. Thus
(xa)∗ = a∗x∗ = xaa∗x∗ = xa(xa)∗, that is (xa)∗ = xa. By a∗ = xaa∗ and (xa)∗ = xa,
we have a∗ = xaa∗ = (xa)∗a∗ = (axa)∗, that is a = axa. Hence by ◦x = ◦a, we have
(1 − ax)a = 0 implies (1 − ax)x = 0, which gives x = ax2. Therefore a ∈ REP by
Theorem 2.2.

Theorem 2.6. Let a ∈ REP and denote p = aa†. Then

(1) {x ∈ R : axa = a, x ∈ aR} = {a† + py(1− p) : y ∈ R};

(2) {x ∈ R : xax = x, xR = aR} = {a† + pz(1− p) : z ∈ R};

(3) {x ∈ R : axa = a, ◦a ⊆ ◦x} = {a† + py′(1− p) : y′ ∈ R};

(4) {x ∈ R : xax = x, ◦a = ◦x} = {a† + pz′(1− p) : z′ ∈ R}.
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Furthermore, if R is prime, then any of the above subsets is a singleton if and only if a = 0
or a is invertible.

Proof. We use the matrix representations of a and a† with respect to the projection p = aa†

given in (2.2). Let x = [ u v
w z ] be the representation of any x with respect to p.

(1) Let x satisfy axa = a and x ∈ aR. From axa = a, we have[
a 0
0 0

]
=

[
a 0
0 0

] [
u v
w z

] [
a 0
0 0

]
=

[
au av
0 0

] [
a 0
0 0

]
=

[
aua 0

0 0

]
.

Since a ∈ REP, we have that a is invertible in pRp and its inverse is a†. Hence a = aua
gives u = a†. Since x ∈ aR, we can write[

u v
w z

]
=

[
a 0
0 0

] [
ξ1 ξ2
ξ3 ξ4

]
=

[
aξ1 aξ2
0 0

]
.

Therefore, w = z = 0. Hence

x =

[
a† v
0 0

]
= a† + px(1− p) ∈ {a† + py(1− p) : y ∈ R}.

The opposite inclusion is trivial.

(2) Let x ∈ R satisfy xax = x and xR = aR. Since x ∈ aR, by the proof of (1), we
have w = z = 0. Now, since a ∈ xR, we can write[

a 0
0 0

]
=

[
u v
0 0

] [
δ1 δ2
δ3 δ4

]
,

which implies

a = uδ1 + vδ3, 0 = uδ2 + vδ4. (2.3)

Now, we use xax = x:[
u v
0 0

]
=

[
u v
0 0

] [
a 0
0 0

] [
u v
0 0

]
=

[
ua 0
0 0

] [
u v
0 0

]
=

[
uau uav

0 0

]
.

Therefore

u = uau, v = uav. (2.4)

Post-multiply the first equality of (2.4) by δ1 and the second equality of (2.4) by δ3 to
obtain

uδ1 = uauδ1, vδ3 = uavδ3.

From (2.3),

a = uδ1 + vδ3 = uauδ1 + uavδ3 = ua(uδ1 + vδ3) = ua2.

We get u = a† because a is invertible in pRp and its inverse is a†. Therefore

x =

[
a† v
0 0

]
= a† + v = a† + px(1− p) ∈ {a† + pz(1− p) : z ∈ R}.
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For the opposite inclusion, it is easy to check that [a† + pz(1 − p)]a[a† + pz(1 − p)] =
a† + pz(1− p) and a† + pz(1− p) ∈ aR in view of a ∈ REP. From a = [a† + pz(1− p)]a2,
we deduce that a ∈ [a† + pz(1− p)]R.

The proof of statements (3) and (4) follows from (1) and (2), respectively, since by
Lemma 2.4, we obtain that x ∈ aR is equivalent to ◦a ⊆ ◦x and xR = aR is equivalent to
◦a = ◦x, respectively.

The proof of the last affirmation of this theorem has the same proof as the correspond-
ing part of Theorem 2.3.

By considering that a is EP if and only if a∗ is EP and having in mind Theorem 2.2,
Theorem 2.3, Theorem 2.5 and Theorem 2.6, we get the following four theorems.

Theorem 2.7. Let a ∈ R. Then a ∈ REP if and only if there exists y ∈ R such that

(ay)∗ = ay, a2y = a and y2a = y.

Theorem 2.8. Let a ∈ R. If a is EP, then {y ∈ R : (ay)∗ = ay, a2y = a, y2a = y} =
{a† + (1 − aa†)xaa† : x ∈ R}. Moreover, if R is a prime ring, then {y ∈ R : (ay)∗ =
ay, a2y = a, y2a = y} = {a†} if and only if a = 0 or a is invertible.

Theorem 2.9. Let a ∈ R. Then the following are equivalent:

(1) a ∈ REP;

(2) there exists y ∈ R such that aya = a, Ry = Ra and y∗R = aR;

(3) there exists y ∈ R such that aya = a, Ry = Ra and y∗R ⊆ aR;

(4) there exists y ∈ R such that yay = y, Ry = Ra and y∗R = aR;

(5) there exists y ∈ R such that yay = y, Ry = Ra and aR ⊆ y∗R;

(6) there exists y ∈ R such that aya = a, y◦ = a◦ and ◦(y∗) = ◦a;

(7) there exists y ∈ R such that aya = a, y◦ = a◦ and ◦a ⊆ ◦(y∗);

(8) there exists y ∈ R such that yay = y, y◦ = a◦ and ◦(y∗) = ◦a;

(9) there exists y ∈ R such that yay = y, y◦ = a◦ and ◦(y∗) ⊆ ◦a.

Theorem 2.10. Let a ∈ REP and denote p = aa†. Then

(1) {y ∈ R : aya = a, y ∈ Ra} = {a† + (1− p)xp : x ∈ R};

(2) (2) {y ∈ R : yay = y,Ry = Ra} = {a† + (1− p)zp : z ∈ R};

(3) {y ∈ R : aya = a, a◦ ⊆ y◦} = {a† + (1− p)x′p : x′ ∈ R};

(4) {y ∈ R : yay = y, a◦ = y◦} = {a† + (1− p)z′p : z′ ∈ R}.

Furthermore, if R is prime, then any of the above subsets is a singleton if and only if a = 0
or a is invertible.
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We will characterize when a ∈ R is EP by another subset of three equations.

Theorem 2.11. Let a ∈ R. Then a ∈ REP if and only if there exists x ∈ R such that

a2x = a, ax = xa and (ax)∗ = ax. (2.5)

Proof. If a is EP, by taking x = a† = a#, we get (2.5). Conversely, assume that exists
x ∈ R such that (2.5) is satisfied. We shall show that a ∈ REP and a# = ax2. Since
ax = xa, we get a(ax2) = (ax2)a, but in addition, a(ax2) = (a2x)x = ax, which leads to
a(ax2)a = a2x = a and (ax2)a(ax2) = (ax2)ax = (a2x)x2 = ax2. Since aa# = a2x2 = ax
is Hermitian, the conclusion follows from Lemma 2.1.

We have seen that if a ∈ R is EP, then {x ∈ R : a2x = a, ax = xa, (ax)∗ = ax} is not
empty. In next theorem we describe this last set.

Theorem 2.12. Let a ∈ R. If a is EP, then {x ∈ R : a2x = a, ax = xa, (ax)∗ = ax} =
{a† + (1 − aa†)y(1 − aa†) : y ∈ R}. Moreover, if R is a prime ring, then {x ∈ R : a2x =
a, ax = xa, (ax)∗ = ax} = {a†} if and only if a is invertible.

Proof. Suppose that a is an EP element. We use the matrix representations of a and a†

with respect to the projection p = aa† given in (2.2). Let x = [ u v
w z ] be the representation

of any x ∈ R with respect to p.
Let x ∈ R satisfy a2x = a, ax = xa and (ax)∗ = ax. From a2x = a, we get[

a 0
0 0

]2 [
u v
w z

]
=

[
a 0
0 0

]
,

which leads to a2u = a and a2v = 0. Since a is EP and aa† = p = a†a, then a is invertible
in pRp and its inverse is a†. Hence from a = a2u and 0 = a2v, we obtain u = a† and
0 = v, respectively. Now, from ax = xa we have[

a 0
0 0

] [
a† 0
w z

]
=

[
a† 0
w z

] [
a 0
0 z

]
,

which implies 0 = wa, and taking into account that a is invertible in pRp, we have 0 = w.
Therefore,

x =

[
a† 0
0 z

]
= a† + z,

that is {x ∈ R : a2x = a, ax = xa, (ax)∗ = ax} ⊆ {a† + (1− aa†)y(1− aa†) : y ∈ R}.
Let us prove the opposite inclusion. We have aa† = a†a since a is EP. Now,

a[a† + (1− aa†)y(1− aa†)] = aa† is Hermitian,

a2[a† + (1− aa†)y(1− aa†)] = a2a† = a,

a[a† + (1− aa†)y(1− aa†)] = aa† = a†a = [a† + (1− aa†)y(1− aa†)]a.

Suppose that R is a prime ring. If a is invertible, then {x ∈ R : a2x = a, ax =
xa, (ax)∗ = ax} = {a−1}. If {x ∈ R : a2x = a, ax = xa, (ax)∗ = ax} is a singleton, then
(1− aa†)y(1− aa†) = 0 for all y ∈ R. By using that R is prime, we get 1− aa† = 0, which
(since a is EP) is equivalent to the invertibility of a.
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Theorem 2.13. Let a ∈ R. Then the following are equivalent:

(1) a ∈ REP;

(2) ◦(a2) ⊆ ◦a and there exists x ∈ R such that xa2 = a and (xa)∗ = xa;

(3) (a2)◦ ⊆ a◦ and there exists x ∈ R such that a2x = a and (ax)∗ = ax.

Furthermore, under these equivalences one has that the set of elements x satisfying (2) is
{a†+y(1−aa†) : y ∈ R} and the set of elements x satisfying (3) is {a†+(1−aa†)z : z ∈ R}.
If R is prime and a is EP, then the sets of x satisfying (2) or (3) is {a†}.

Proof. (1) ⇒ (2): The inclusion ◦(a2) ⊆ ◦a is evident from a ∈ R#. For the remaining, it
is sufficient to take x = a† = a#.

(2) ⇒ (1): Since (ax− 1)a2 = a(xa2)− a2 = a2 − a2 = 0, we get ax− 1 ∈ ◦(a2) ⊆ ◦a,
hence axa = a. From

ax2a2 = ax(xa2) = axa = a = xa2

we get ax2 − x ∈ ◦(a2) ⊆ ◦a, hence ax2a = xa. Now, we prove a# = x2a by the definition
of the group inverse,

a(x2a) = ax2a = xa, (x2a)a = x(xa2) = xa;

a(x2a)a = xa2 = a; (x2a)a(x2a) = x(xa2)x2a = xax2a = x(ax2a) = x2a.

Now, a# = x2a and aa# = ax2a = xa is Hermitian. Hence (1) follows from Lemma 2.1.

The proof of (1)⇔ (3) is similar to the proof of (1)⇔ (2).

Now, let us prove the last part of the theorem. Recall that a is EP. If x ∈ R satisfies
xa2 = a, then (x − a†)aa† = xaa† − a† = xa2(a†)2 − a† = a(a†)2 − a† = 0. Hence
x − a† = (x − a†)(1 − aa†), which yields x ∈ {a† + y(1 − aa†) : y ∈ R}. Reciprocally, it
is evident that for any y ∈ R one has that [a† + y(1− aa†)]a2 = a and [a† + y(1− aa†)]a
is Hermitian. The affirmation concerning the primality of R has the same proof as the
corresponding in previous Theorem 2.12.

3 When a core invertible element is an EP element

Any EP element is core invertible, but when a core invertible element is EP? In this section
we answer this question. Let us start this section with a lemma.

Lemma 3.1. [17, Theorem 2.14] An element a ∈ R is core invertible if and only if there
exists x ∈ R such that

axa = a, xax = x, (ax)∗ = ax, xa2 = a and ax2 = x.

Under this equivalence, one has that x = a#©.

Let us recall the following result.

Theorem 3.2. Let a ∈ R.
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(1) [5, Proposition 8.24] a is group invertible if and only if exists an idempotent p ∈ R
such that ap = pa = 0 and a + p is invertible. Under this equivalence, we have
p = 1− aa# and a# = (a+ p)−1 − p.

(2) [4, Theorem 2.1] a is EP if and only if exists a projection p ∈ R such that ap =
pa = 0 and a + p is invertible. Under this equivalence, we have p = 1 − aa† and
a† = (a+ p)−1 − p.

In fact, the second item of previous result was stated for unital C∗-algebras, but as
one can easily check, its proof remains valid for unital rings with an involution. We give
a similar characterization of the core invertibility.

Theorem 3.3. Let a ∈ R. The following affirmations are equivalent:

(1) a is core invertible.

(2) Exists a projection p such that pa = 0 and a(1 − p) is invertible in the subring
(1− p)R(1− p).

(3) Exists a projection p such that pa = 0 and a(1− p) + p is invertible.

(4) Exists a projection p such that pa = 0 and a+ p is invertible.

Under this equivalence, one has this projection p is unique and p = 1− aa#©. In addition,

(a(1− p))−1(1−p)R(1−p) = a#©, (a(1− p) + p)−1 = p+ a#©, (a+ p)−1 = p− a#©ap+ a#©.

Proof. (1) ⇒ (2): Let us represent a with respect to the projection p = 1− aa#©. We use
the notation p = 1−p = aa#©. Observe that from Lemma 3.1 we have pa = (1−aa#©)a = 0
and a#©p = a#©(1− aa#©) = 0. Therefore,

a =

[
pap pap
pap pap

]
=

[
0 0
ap ap

]
and a#© =

[
pa#©p pa#©p
pa#©p pa#©p

]
=

[
0 pa#©

0 pa#©

]
. (3.1)

Now, a(a#©)2 = a#© leads to pa#© = a#© and pa#© = 0. Hence

a#© =

[
0 0
0 a#©

]
∈ pRp.

From a#©a2 = a we have a#©a2aa#© = aa#©, i.e., a#©ap = p. Furthermore, apa#© = aa#© = p.
Therefore, ap ∈ pRp is invertible in the subring pRp and its inverse is a#©.

(2) ⇔ (3) ⇔ (4): Let p ∈ R be a projection such that pa = 0. The representation of
a with respect to p is the same as in (3.1). Now we have

a(1− p) =

[
0 0
0 a(1− p)

]
, a(1− p) + p =

[
p 0
0 a(1− p)

]
, a+ p =

[
p 0
ap a(1− p)

]
.

Taking into account that p is invertible in the subring pRp (in fact, p is the unity), evidently
we have that a(1− p) ∈ ((1− p)R(1− p))−1 ⇔ a(1− p) + p ∈ R−1 ⇔ a+ p ∈ R−1.
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(2) ⇒ (1): Let x ∈ (1− p)R(1− p) be the inverse of a(1− p) in (1− p)R(1− p). This
means that a(1 − p)x = xa(1 − p) = 1 − p. Observe that x ∈ (1 − p)R(1 − p) implies
(1−p)x = x(1−p) = x, and therefore, ax = xa(1−p) = 1−p. We will prove that x = a#©

by using Lemma 3.1. Let us recall that we can use pa = 0 and (1−p)a = a by hypothesis.

axa = (ax)a = (1− p)a = a.

xax = x(ax) = x(1− p) = x.

ax = 1− p is Hermitian.

xa2 = xa(1− p)a = (1− p)a = a.

ax2 = (ax)x = (1− p)x = x.

Now, we shall prove the uniqueness. Assume that q is another projection such that
qa = 0 and a(1− q) is invertible in (1− q)R(1− q). By the proof of (2) ⇒ (1) we get that
the inverse of a(1 − q) in (1 − q)R(1 − q) is a#©, in particular a#© ∈ (1 − q)R(1 − q) and
a(1− q)a#© = 1− q. By using also Lemma 3.1 we get

(1− q)aa#© = a(1− q)a#©aa#© = a(1− q)a#© = 1− q. (3.2)

Since a#© ∈ (1− q)R(1− q), exists u ∈ R such that a#© = u(1− q). Now,

aa#©(1− q) = au(1− q)2 = au(1− q) = aa#©.

Apply involution and use Lemma 3.1 in this last equality to get (1− q)aa#© = aa#©. From
this last equality and (3.2) we obtain aa#© = 1 − q. In other words, we have proved the
uniqueness of such q.

The expresion of ()

Lemma 3.4. [17, Theorem 3.1] Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R† and [a, a†] = 0;
(3) a ∈ R#© and [a, a#©] = 0;
(4) a ∈ R#© and a# = a#©;
(5) a ∈ R† ∩R# and a† = a#©.

Lemma 3.5. [17, Theorem 2.18] Let a ∈ R#©. Then a#© ∈ REP and (a#©)#© = (a#©)† =
(a#©)# = a2a#©. Moreover, if a ∈ R†, then (a†)#© = (a#©a)∗a.

Lemma 3.6. [16] Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R# and aR = a∗R;
(3) a ∈ R# and Ra = Ra∗.

In the following theorem, we show that the equality aR = a∗R in Lemma 3.6 can be
replaced by weaker inclusions aR ⊆ a∗R or a∗R ⊆ aR.
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Theorem 3.7. Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R# and aR ⊆ a∗R;
(3) a ∈ R# and Ra ⊆ Ra∗;
(4) a ∈ R# and a∗R ⊆ aR;
(5) a ∈ R# and Ra∗ ⊆ Ra.

Proof. (1)⇒ (2)-(5) is obvious by Lemma 3.6.
(2) ⇒ (1): By aR ⊆ a∗R, we have a = a∗r for some r ∈ R, then a = (aa#a)∗r =

(a#a)∗a∗r = (a#a)∗a. Thus a#a = aa# = (a#a)∗aa# = (a#a)∗a#a, which gives (a#a)∗ =
a#a. Therefore a ∈ REP by the definition of EP element.

(3)-(5)⇒ (1) is similar to (2)⇒ (1).

Theorem 3.8. Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R#© and (a#©a)∗ = a#©a;
(3) a ∈ R#© and (a#©)#© = a;
(4) a ∈ R#© and (a#©)† = a;
(5) a ∈ R#© and (a#©)# = a;
(6) a ∈ R† ∩R# and (a†)#© = a;
(7) a ∈ R† ∩R# and (a†)#© = (a#©)†;
(8) a ∈ R#© and ap = 0, where p = 1− aa#©.

Proof. (1) ⇔ (2): Suppose a ∈ REP. Then by Lemma 3.4, we have a† = a#©. Thus
(a†a)∗ = a†a implies (a#©a)∗ = a#©a. Conversely, suppose a ∈ R#© and (a#©a)∗ = a#©a. By
Lemma 3.1, we have aa#©a = a, a#©aa#© = a#© and (aa#©)∗ = aa#©. Thus by the definition
of Moore-Penrose inverse, we have a† = a#©. Hence by Lemma 3.4, we have a ∈ REP.

(1)⇔ (3): Suppose a ∈ REP. Then by Lemma 3.4, we have [a, a#©] = 0. By Lemma 3.5,
we have (a#©)#© = a2a#©. Thus (a#©)#© = a2a#© = a(aa#©) = a(a#©a) = a. Conversely,
suppose (a#©)#© = a. By Lemma 3.5, we have (a#©)#© = a2a#©. Then a = a2a#©. Thus

a#©a = a#©a2a#© = aa#©.

Therefore a ∈ REP by Lemma 3.4.
(3)⇔ (4)⇔ (5) is clear by Lemma 3.5.
(1) ⇒ (6): By Lemma 3.4 and Lemma 3.5, we have (a†)#© = (a#©a)∗a = (a†a)∗a =

a†a2 = a#a2 = a.
(6) ⇒ (7): Suppose that a ∈ R#© and (a†)#© = a. Then by Lemma 3.1, we have

a†a2 = a and a(a†)2 = a†. Thus a†a = a(a†)2a = a†a2a† = aa†. By Lemma 3.4, we have
a ∈ REP. Then a#© = a#. By Lemma 3.5, we have (a#©)† = a2a#© = a2a# = a. Thus by
(a†)#© = a, we have (a†)#© = (a#©)†.

(7) ⇒ (1): Suppose that a ∈ R#© and (a†)#© = (a#©)†. Then by Lemma 3.5, we have
(a#©)† = a2a#© and (a†)#© = (a#©a)∗a. Thus by (a†)#© = (a#©)†, we have

a2a#© = (a#©a)∗a. (3.3)

Taking involution on (3.3), we have a∗a#©a = (aa#©)∗a∗ = aa#©a∗. Thus a#©a = (a#©)∗a∗a#©a =
(a#©)∗aa#©a∗ = aa#©. That is [a, a#©] = 0, therefore a ∈ REP by Lemma 3.4.
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(8) ⇔ (1): If a is an EP element, then ap = 0 is clear by aa#© = a#©a. Conversely,
assume that (8) holds. Then a = a2a#© = a(aa#©)∗ = a(a#©)∗a∗ ∈ Ra∗. As a core invertible
element is group invertible, thus a ∈ REP by Theorem 3.7.

Example 3.9. If a ∈ R is core invertible element and there exists a projection p ∈ R such
that ap = 0, we could not get that a ∈ REP. Considering the following counterexample.
Let R be the ring of all 2 × 2 matrices over in field F with transpose as involution.

Let A =

[
0 1
0 1

]
, P =

[
1 0
0 0

]
. Then A# =

[
0 1
0 1

]
, A#© =

[
1
2

1
2

1
2

1
2

]
, AP =

[
0 0
0 0

]
and

P 2 = P = P ∗. But A# 6= A#©, therefore A is not EP.

Theorem 3.10. Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R#© and aR ⊆ a∗R;
(3) a ∈ R#© and [a#©, (a#©a)∗a] = 0.

Proof. (1)⇔ (2) is easy to see that by Lemma 3.1 and Theorem 3.7.
(1) ⇒ (3): Suppose a is EP, then a ∈ R#© and a# = a† = a#©. Thus [a#©, (a#©a)∗a] =

[a#, (a†a)∗a] = [a#, a†a2] = [a#, a#a2] = [a#, a] = 0.
(3)⇒ (2): Suppose [a#©, (a#©a)∗a] = 0, then

a#©(a#©a)∗a = (a#©a)∗aa#©. (3.4)

Taking involution ∗ on (3.4), we can get a∗a#©a(a#©)∗ = (a#©)∗a∗a#©a, which gives

a∗a#©a(a#©)∗ = (a#©)∗a∗a#©a = (aa#©)∗a#©a = a(a#©)2a = a#©a.

Therefore a∗a#©a(a#©)∗a = a#©a2 = a. That is aR ⊆ a∗R. Therefore the condition (2) is
satisfied.

In [6, Theorem 16], for an operator T ∈ L(X), where X is a Banach space, Boasso
proved that for a Moore-Penrose invertible operator T , T is an EP operator if and only if
there exists an invertible operator P ∈ L(X) such that T † = PT. Inspired by this result,
we get the following theorem.

Theorem 3.11. Let a ∈ R#©. Then the following are equivalent:
(1) a ∈ REP;
(2) there exists a unit u ∈ R such that a#© = ua;
(3) there exists a left invertible element v ∈ R such that a#© = va;
(4) there exists an element b ∈ R such that a#© = ba.

Proof. (1)⇒ (2): Suppose a ∈ REP, then a ∈ R#© and a#© = a#. Let u = (a#)2 + 1− aa#.
Since u(a2+1−aa#) = (a2+1−aa#)u = 1, thus u is a unit. And ua = ((a#)2+1−aa#)a =
a# = a#©.

(2)⇒ (3) and (3)⇒ (4) are clear.
(4) ⇒ (1) We know that Ra#© = Ra∗ by the definition of the core inverse. From

a#© = ba we get Ra#© ⊆ Ra. Thus Ra∗ = Ra#© ⊆ Ra. As a core invertible element is group
invertible, we deduce that a ∈ REP by Theorem 3.7.
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4 When a Moore-Penrose invertible element is an EP ele-
ment

Since any EP element is Moore-Penrose invertible, it is natural to ask when a Moore-
Penrose invertible element is an EP element. The concept of bi-EP was introduced by
Hartwig and Spindelböck in [18] for complex matrices. They proved that for a complex
A ∈ Cn×n , if A is group invertible, then A is an EP matrix if and only if A is bi-EP.
We give a generalization of the above result in Theorem 4.3. In this section, we give the
definition of n-EP, which is a generalization of bi-EP. We show that any n-EP element is
an EP element whenever this element is group invertible.

Definition 4.1. [18] An element a ∈ R is called bi-EP if a ∈ R† and [aa†, a†a] = 0.

Definition 4.2. Let n be a positive integer. An element a ∈ R is called n-EP if a ∈ R†
and [ana†, a†an] = 0.

Note that 1-EP is coincide with bi-EP.
In [14, Theorem 2.1], Mosić and Djordjević proved that a ∈ REP if and only if a ∈

R#∩R† and ana† = a†an for some n > 1. This result also can be found in [7, Theorem 2.4]
by Chen. In the following theorem, we give a generalization of this result.

Theorem 4.3. Let a ∈ R and n be a positive integer. Then a ∈ REP if and only if
a ∈ R† ∩R# and a is n-EP.

Proof. Suppose a ∈ REP. Then [a, a†] = 0, which gives [ana†, a†an] = 0. That is a is n-EP.
Conversely, suppose that a ∈ R† ∩R# and a is n-EP. Then we have

a†a2na† = an(a†)2an. (4.1)

Pre-multiplication and post-multiplication of (4.1) by a respectively now yields a2na† =
an+1(a†)2an, and a†a2n = an(a†)2an+1. Thus

a2n−1a† = a#a2na† = a#an+1(a†)2an = an(a†)2an. (4.2)

a†a2n−1 = a†a2na# = an(a†)2an+1a# = an(a†)2an. (4.3)

By (4.2) and (4.3), we have a2n−1a† = a†a2n−1. Hence by [14, Theorem 2.1], we have
a ∈ REP.

Theorem 4.4. Let a ∈ R†. Then the following are equivalent:
(1) a ∈ REP;
(2) there exists a unit u ∈ R such that a† = ua;
(3) there exists a left invertible element v ∈ R such that a† = va.

Proof. (1)⇒ (2): Suppose a ∈ REP, then a ∈ R† and a† = a#. Let u = (a#)2 + 1− aa#.
Since u(a2+1−aa#) = (a2+1−aa#)u = 1, thus u is a unit. And ua = ((a#)2+1−aa#)a =
a# = a†.

(2)⇒ (3) is clear.
(3)⇒ (1) Suppose there exists a left invertible element v ∈ R such that a† = va. Then

1 = tv for some t ∈ R and ta† = tva = a. Thus Ra† ⊆ Ra and Ra ⊆ Ra†. Since Ra† = Ra∗

and Ra∗ = Ra†, we deduce that Ra∗ ⊆ Ra and Ra ⊆ Ra∗. Therefore Ra = Ra∗, that is
a is an EP element.
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Remark 4.5. In Theorem 3.11 (4), we proved that for a core invertible element a ∈ R,
a ∈ REP if and only if there exists an element b ∈ R such that a#© = ba. The following
example shows that this affirmation can not be obtained for a Moore-Penrose invertible
element.

Recall that An infinite matrix M is said to be bi-finite if it is both row-finite and
column-finite.

Example 4.6. Let R be the ring of all bi-finite matrices over in field F with transpose
as involution and ei,j be the matrix in R with 1 in the (i, j) position and 0 elsewhere. Let

A =
∞∑
i=1

ei+1,i and B = A∗ , then AB =
∞∑
i=2

ei,i, BA = I. So A† = B and A† = A†BA =

B2A. It is easy to check that B2 is not left invertible and A is not EP ( since AB 6= BA).

Proposition 4.7. Let a ∈ R†. Then the following are equivalent:
(1) a ∈ REP;
(2) [a†a, a] = [a†, aa†] = 0;
(3) [a†a, a] = [a, aa†] = 0;
(4) [a†a, a†] = [a†, aa†] = 0;
(5) [a†a, a†] = [a, aa†] = 0.

Proof. (1)⇒ (2)-(3): If a ∈ REP, then aa† = a†a. Thus (2) and (3) are obvious.
(2) ⇒ (1) Assume that (2) holds. Observe that [a†a, a] implies that a = a†a2 ∈ a∗R

and [a†, aa†] implies that a† = a(a†)2 ∈ aR, that is a∗R ⊆ aR since a†R = a∗R. Thus,
aR = a∗R, i.e., a is EP.

(3) ⇒ (1): Assume that (2) holds. Observe that [a†a, a] implies that a = a†a2 ∈ a∗R
and [a, aa†] implies that a = a2a† ∈ Ra†, that is Ra ⊆ Ra† since Ra† = Ra∗. We deduce
that Ra ⊆ Ra∗, which is equivalent to a∗R ⊆ aR. Thus, aR = a∗R, i.e., a is EP.

The equivalence between (1) ⇔ (4) ⇔ (5) is similar to the proof of the equivalence
between (1) ⇔ (2) ⇔ (3).

Example 4.8. The condition [a†a, a†] = 0 in Proposition 4.7 does not imply that a is

an EP element in general. Let R, A and B be same as Example 4.6 , then AB =
∞∑
i=2

ei,i,

BA = I. So A† = B and [A†A,A†] = 0. But A is not EP by AB 6= BA.

Lemma 4.9. [16] Let a ∈ R. Then the following are equivalent:
(1) a ∈ REP;
(2) a ∈ R† and aR = a∗R;
(3) a ∈ R† and Ra = Ra∗.

Example 4.8 also shows that the equality aR = a∗R in Lemma 4.9 cannot be replaced
by inclusions aR ⊆ a∗R or a∗R ⊆ aR.

Theorem 4.10. Let a ∈ R†. Then the following are equivalent:
(1) a ∈ REP;
(2) aR = a2R and [a†a, a†] = 0;
(3) aR = a2R and [a†a, a] = 0;
(4) aR = a2R and aR ⊆ a†R;
(5) aR = a2R and aR ⊆ a∗R.
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Proof. (1)⇒ (2)-(5): For a Moore-Penrose invertible element a ∈ R, a ∈ REP if and only
if aa† = a†a. Then (2)-(5) hold.

(2) ⇒ (1): Assume that (2) holds. Observe that [a†a, a†] = 0 implies a† = (a†)2a.
Thus Ra∗ ⊆ Ra (Since Ra† = Ra∗). That is a∗ = ra for some r ∈ R. We deduce that
a∗ = ra = raa†a = a∗a†a, applying involution on that last equality we obtain a = a†a2.
Therefore a ∈ REP by Theorem 3.7.

(3)⇒ (1): It is clear that [a†a, a] = 0 implies a = a†a2. Thus a ∈ REP by Theorem 3.7
and the proof of (2)⇒ (1).

(5) ⇒ (1): As aR ⊆ a∗R is equivalent to Ra∗ ⊆ Ra, we get a ∈ REP by the proof of
(2)⇒ (1).

(4)⇔ (5): It is clear by a∗R = a†R.

Similarly, we have the following theorem.

Theorem 4.11. Let a ∈ R†. Then the following are equivalent:
(1) a ∈ REP;
(2) Ra = Ra2 and [aa†, a†] = 0;
(3) Ra = Ra2 and [aa†, a] = 0;
(4) Ra = Ra2 and Ra ⊆ Ra†;
(5) Ra = Ra2 and Ra ⊆ Ra∗.
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