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Summary

In this paper, we construct two linearly independent response processes to the ran-
domLegendre differential equation on (−1, 1)∪(1, 3), consisting ofLp(Ω) convergent
random power series around the regular-singular point 1. A theorem on the exis-
tence and uniqueness of Lp(Ω) solution to the random Legendre differential equation
on the intervals (−1, 1) and (1, 3) is obtained. The hypotheses assumed are simple:
initial conditions in Lp(Ω) and random input A in L∞(Ω) (this is equivalent to A
having absolute moments that grow at most exponentially). Thus, this paper extends
the deterministic theory to a random framework. Uncertainty quantification for the
solution stochastic process is performed by truncating the random series and taking
limits in Lp(Ω). In the numerical experiments, we approximate its expectation and
variance for certain forms of the differential equation. The reliability of our approach
is compared with Monte Carlo simulations and gPC expansions.
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1 INTRODUCTION

The random Legendre differential equation (1),

⎧

⎪

⎨

⎪

⎩

(1 − t2)Ẍ(t) − 2tẊ(t) + A(A + 1)X(t) = 0,
X(t0) = Y0,
Ẋ(t0) = Y1,

(1)

whereA, Y0 and Y1 are random variables in a common underlying complete probability space (Ω, ,ℙ), has been already studied
at the regular point t = 0 with initial condition at t0 = 0. In1, a mean square power series solution to (1) was constructed
on (−1∕e, 1∕e), being e the Euler constant. This result was extended in our recent contribution2, where the solution has been
constructed on the whole domain (−1, 1) with weaker assumptions on the random input coefficients. A common hypotheses in
both works1,2 was that the random variable A has statistical absolute moments that increase at most exponentially, equivalently,
that A is a bounded random variable, see2, Lemma 2.2. This assumption of boundedness for A will be essential in our subsequent
development.
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The aim of this paper is to continue extending the classical deterministic results for the Legendre differential equation to
the random setting by taking advantage of the so-called Lp(Ω), 1 ≤ p ≤ ∞, random calculus. For the sake of clarity, we
recall that if (H,, �) is a measure space, Lp(H) (1 ≤ p < ∞) is the set of real valued measurable functions f ∶ H → ℝ
such that ‖f‖Lp(H) = (∫H |f |p d�)1∕p < ∞. While, as usual, L∞(H) is the set of measurable functions such that ‖f‖L∞(H) =
inf{sup{|f (x)| ∶ x ∈ H∖N} ∶ �(N) = 0} < ∞. As in our particular context we are interested in dealing with random
variables and stochastic processes, we take H = Ω and � = ℙ. The reader can check, for example, the references3,4,5, Ch. IV,6
for further details. It is worth pointing out that the Lp(Ω) random calculus has been widely used to study both theoretical and
numerically random differential equations7,8,9,10,11.
Our goal in this paper is to construct a fundamental set around the regular-singular point t = 1, as well as to quantify reliable

approximations to the main statistical functions of the solution stochastic process to the initial value problem (1). To the best
of our knowledge, this is the first contribution in the extant literature where the regular-singular point case is addressed for a
random second-order differential equation. In this sense, we want to point out that the subsequent approach may be useful to
study other important random second-order linear differential equations around regular-singular points. This kind of differential
equations are met in many physical and engineering problems12,13,14. In particular, the Legendre differential equation is very
useful for treating the boundary value problems exhibiting spherical symmetry.
The organization of the present paper is as follows. In Section 2, the main results regarding the random initial value problem

(1) are stated and proved. In Section 3, we show how to approximate the moments of the solution stochastic process by truncating
the corresponding random power series. Section 4 is devoted to illustrating our theoretical findings via different examples of the
random initial value problem (1), where approximations of the expectation and the variance functions of the solution stochastic
process are computed and compared with Monte Carlo simulations and gPC expansions. Finally, conclusions are drawn in
Section 5.

2 RANDOM LEGENDRE DIFFERENTIAL EQUATION AT THE REGULAR SINGULAR
POINT 1

As it has been previously indicated, our goal in this section is to provide an analogous analysis to1,2 for the regular-singular
point t = 1.
By the deterministic theory on the Legendre differential equation, if A is constant, then a deterministic fundamental set

{�1(t), �2(t)} is given by

�1(t) =
∞
∑

n=0
cn(t − 1)n, |t − 1| < 2,

where {cn}∞n=0 is defined by the recursive relation

c0 = 1, cn+1 =
(n + 1 − A)(A − n)

2(n + 1)2
cn, n = 0, 1, 2,… ,

and

�2(t) = �1(t) log |t − 1| +
∞
∑

n=1
dn(t − 1)n, |t − 1| < 2,

where {dn}∞n=1 is defined as follows:

d1 =
−c0 − 4c1

2
, dn+1 = −

(n + 1 + A)(n − A)dn + 4(n + 1)cn+1 + (2n + 1)cn
2(n + 1)2

.

To construct rigorously this fundamental set of independent solutions, {�1(t), �2(t)}, we can apply the so-called Fröbenius
method15, Th. 7.
In our setting, we first randomize this fundamental set of solutions. Therefore, we consider the following two stochastic

processes

X1(t) =
∞
∑

n=0
Cn(t − 1)n, X2(t) = X1(t) log |t − 1| +

∞
∑

n=1
Dn(t − 1)n, (2)

where the coefficients {Cn}∞n=0 and {Dn}∞n=1 are random variables defined in our complete probability space (Ω, ,ℙ) recursively
as follows:

C0 = 1, Cn+1 =
(n + 1 − A)(A − n)

2(n + 1)2
Cn, n = 0, 1, 2,… , (3)
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and
D1 =

−C0 − 4C1
2

, Dn+1 = −
(n + 1 + A)(n − A)Dn + 4(n + 1)Cn+1 + (2n + 1)Cn

2(n + 1)2
. (4)

Notice that, as usual in the notation, we have distinguished deterministic and randommagnitudes by using lower and upper case,
respectively.
In the following Proposition 1, we will see that both series (2) converge in L∞(Ω) on (−1, 1)∪(1, 3) (i.e., radius of convergence

2, so retaining their deterministic counterpart), in particular, pointwise on! ∈ Ω for t ∈ (−1, 1)∪(1, 3). ThisL∞(Ω) convergence
will imply that the stochastic processesX1(t) andX2(t) are solutions to the random Legendre differential equation on the domain
(−1, 1) ∪ (1, 3) in the L∞(Ω) sense, since the random power series can be differentiated in the L∞(Ω) sense term by term.

Proposition 1. IfA ∈ L∞(Ω), then both series defined by (2)–(4) converge in L∞(Ω) on the interval (−1, 1)∪(1, 3). In particular,
the stochastic processes X1(t) and X2(t), given by (2)–(4), are solutions to the random Legendre differential equation on the
domain (−1, 1) ∪ (1, 3) in the L∞(Ω) sense.

Proof. First, let us prove that the random power series defining X1(t) converges in L∞(Ω), for every t ∈ (−1, 1) ∪ (1, 3). From
(3), we have

‖Cn‖L∞(Ω) ≤
(n + ‖A‖L∞(Ω))(n + ‖A‖L∞(Ω) + 1)

2n2
‖Cn−1‖L∞(Ω),

that is,
‖Cn‖L∞(Ω)
‖Cn−1‖L∞(Ω)

≤
(n + ‖A‖L∞(Ω))(n + ‖A‖L∞(Ω) + 1)

2n2
.

Now if we multiply both sides of this last inequality by r, being 0 < r < 2, and afterwards we take limits as n → ∞, then we
obtain that

lim sup
n→∞

‖Cn‖L∞(Ω)rn

‖Cn−1‖L∞(Ω)rn−1
≤ lim

n→∞
r
(n + ‖A‖L∞(Ω))(n + ‖A‖L∞(Ω) + 1)

2n2
= r
2
< 1.

By applying the d’Alembert’s ratio test for numerical series, we derive that the series with general term ‖Cn‖L∞(Ω)rn is convergent,
i.e.,

∞
∑

n=0
‖Cn‖L∞(Ω)r

n <∞,

for 0 < r < 2. This implies that the random power series X1(t), given by (2), has radius of convergence 2 in the Banach space
(L∞(Ω), ‖ ⋅ ‖L∞(Ω)).
Now let us check that ∞

∑

n=1
‖Dn‖L∞(Ω)r

n <∞,

for 0 < r < 2. Since
∑∞
n=0 ‖Cn‖L∞(Ω)r

n < ∞, the sequence {‖Cn‖L∞(Ω)rn}∞n=0 is bounded by a number M > 0. That is,
‖Cn‖L∞(Ω) ≤M∕rn, n ≥ 0. Using this inequality in (4), we obtain

‖Dn+1‖L∞(Ω) ≤
(n + ‖A‖L∞(Ω))(n + ‖A‖L∞(Ω) + 1)‖Dn‖L∞(Ω) + (2n + 1)

M
rn
+ 4(n + 1) M

rn+1

2(n + 1)2

≤
(n + ‖A‖L∞(Ω) + 1)2‖Dn‖L∞(Ω) + (2n + 1)

M
rn
+ 4(n + 1) M

rn+1

2(n + 1)2
. (5)

Let us define the following sequence of positive numbers {Hn ∶ n ≥ 1}:

H1 = ‖D1‖L∞(Ω),

Hn+1 =
(n + ‖A‖L∞(Ω) + 1)2Hn + (2n + 1)

M
rn
+ 4(n + 1) M

rn+1

2(n + 1)2
, n = 1, 2,… .

From inequality (5), it is evident that the sequence {Hn ∶ n ≥ 1} majorizes {‖Dn‖L∞(Ω) ∶ n ≥ 1} , that is,

‖Dn‖L∞(Ω) ≤ Hn, n ≥ 1.

Now, let us define
Kn = max

1≤k≤n
Hkr

k.
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We obtain

Hn+1r
n+1 ≤

r(n + ‖A‖L∞(Ω) + 1)2

2(n + 1)2
Hnr

n +
r(2n + 1)M + 4(n + 1)M

2(n + 1)2

≤
r(n + ‖A‖L∞(Ω) + 1)2

2(n + 1)2
Kn +

r(2n + 1)M + 4(n + 1)M
2(n + 1)2

.

Observe

lim
n→∞

r(n + ‖A‖L∞(Ω) + 1)2

2(n + 1)2
= r
2
< 1, lim

n→∞

r(2n + 1)M + 4(n + 1)M
2(n + 1)2

= 0. (6)

Then, for 0 < � < 1 − r∕2 arbitrary but fixed, using the limits in (6), we can choose n0 = n0(r, ‖A‖L∞(Ω),M) such that, for all
n ≥ n0,

r(n + ‖A‖L∞(Ω) + 1)2

2(n + 1)2
< 1 − �,

r(2n + 1)M + 4(n + 1)M
2(n + 1)2

< 1.

Thus, for n ≥ n0,
Hn+1r

n+1 ≤ (1 − �)Kn + 1.
Suppose that (1 − �)Kn + 1 ≤ Kn, for all n ≥ n0. This implies

Hn+1r
n+1 ≤ Kn,

so that Kn+1 = Kn for n ≥ n0. Let K = Kn, n ≥ n0. Then

Hn ≤ K∕rn, n ≥ n0,

therefore ∞
∑

n=n0

Hnr
n
0 ≤ K

∞
∑

n=n0

Hn(r0∕r)n <∞,

for each 0 < r0 < r. As 0 < r < 2 is arbitrary, we conclude that
∞
∑

n=n0

‖Dn‖L∞(Ω)r
n ≤

∞
∑

n=n0

Hnr
n <∞,

as wanted.
Otherwise, if there is a strictly increasing sequence of natural numbers {nl}∞l=1 such that (1 − �)Knl + 1 > Knl , for all l ≥ 1,

we arrive at Knl < 1∕�, l ≥ 1. Since the sequence {Kn}∞n=1 is increasing, we deduce that Kn < 1∕�, for all n ≥ 1. Let K = 1∕�,
so that

Hn ≤ K∕rn, n ≥ 1.
The same reasoning as in the previous paragraph applies in this case, and we are done.

Theorem 1. Let 1 ≤ p ≤ ∞ and t0 ∈ I , where I is either (−1, 1) or (1, 3). Given two initial conditions X(t0) = Y0 and
Ẋ(t0) = Y1 that belong to Lp(Ω) and if A ∈ L∞(Ω), then there exists a unique response process X(t) in the Lp(Ω) sense to (1)
on I . This solution process X(t) has the form

X(t) = A1X1(t) + A2X2(t), (7)

where
A1 =

Y0Ẋ2(t0) − Y1X2(t0)
W (X1, X2)(t0)

, A2 =
Y1X1(t0) − Y0Ẋ1(t0)
W (X1, X2)(t0)

, (8)

andW (X1, X2)(t0) is the Wronskian of the pair {X1(t0), X2(t0)}, where

W (X1, X2)(t0) = X1(t0)Ẋ2(t0) −X2(t0)Ẋ1(t0)

=

{ −2
|1−t2|

, t ∈ (−1, 1),
2

|1−t2|
, t ∈ (1, 3).

(9)
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Proof. At each outcome ! ∈ Ω, the pair {X1(t)(!), X2(t)(!)} is a fundamental set in the sample path sense (becauseX1(t) and
X2(t) are linearly independent L∞(Ω) solutions), so we can compute the Wronskian pointwise on ! by using the deterministic
Liouville’s formula16, Prop. 2.15: if t ∈ I , then

W (X1, X2)(t)(!) = CI (!)e
∫ 2t

1−t2
dt =

CI (!)
|1 − t2|

,

for a certain random variable CI (!) that depends on I . To obtain CI at each ! ∈ Ω, notice that

CI = |1 − t2|W (X1, X2)(t)

= |1 − t2|

{

X1(t)

(

Ẋ1(t) log |t − 1| +
X1(t)
t − 1

+
∞
∑

n=1
nDn(t − 1)n−1

)

−X2(t)Ẋ1(t)

}

→

{

−2, if t→ 1−,
2, if t→ 1+.

This proves (9).
Note also that the random variablesA1 andA2 defined by (8) belong to Lp(Ω), becauseX1(t0), Ẋ1(t0), X2(t0), Ẋ2(t0) ∈ L∞(Ω)

and Y0, Y1 ∈ Lp(Ω). Since X1(t) and X2(t) are L∞ solutions on (−1, 1) ∪ (1, 3) by Proposition 1, and A1, A2 ∈ Lp(Ω), from (7)
we derive that X(t) is an Lp solution to (1) on I .
To demonstrate the uniqueness, we use3, Th. 5.1.2. Rewrite (1) as a first-order linear differential equation

Ż(t) = B(t)Z(t),

where

Z(t) =
(

X(t)
Ẋ(t)

)

, B(t) =

(

0 1
A(A+1)
1−t2

−2t
1−t2

)

.

We say that Z = (Z1, Z2) belongs to L
p
2(Ω) if

‖Z‖Lp2(Ω)
∶= max{‖Z1‖Lp(Ω), ‖Z2‖Lp(Ω)} <∞.

Consider the random matrix norm
|||B||| ∶= max

i

∑

j
‖bij‖L∞(Ω).

If Z,Z′ ∈ Lp2(Ω), then
‖B(t)Z − B(t)Z′

‖Lp2(Ω)
≤ |||B(t)||| ⋅ ‖Z −Z′

‖Lp2(Ω)
,

where
b

∫
a

|||B(t)||| dt =

b

∫
a

‖A‖L∞(Ω)(‖A‖L∞(Ω) + 1) + 2|t|
1 − t2

dt <∞

for each a < b that belong to I . Then the assumptions of3, Th. 5.1.2 hold.

To finish this section, we would like to comment that the hypothesisA ∈ L∞(Ω) is not restrictive in practice, as any unbounded
random variable can be truncated in a support as large as we want17.

3 APPROXIMATION OF THEMOMENTS OF THE RESPONSE PROCESS: EXPECTATION
AND VARIANCE

Apart from determining the solution stochastic process X(t) to the Legendre random differential equation (1), a main goal is
also to construct reliable approximations regarding its statistical behaviour. This latter information is mainly summarized by the
mean and the variance functions. The mean or expectation function, E[X(t)], provides a measure of the average behaviour of
the process at each time instant t, while the variance, V [X(t)], quantifies the dispersion or variability of the process around the
mean E[X(t)].
As the solution stochastic process X(t) has been constructed via an infinite series, it is natural to approximate both its mean

and its variance by considering truncations of that series to keep the computational burden affordable.
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Now, we will show how under the conditions of Theorem 1, the moments of X(t) can be approximated up to order p. We
consider the truncation

XN (t) = AN1 X
N
1 (t) + A

N
2 X

N
2 (t), (10)

forN ≥ 1, where

XN
1 (t) =

N
∑

n=0
Cn(t − 1)n, XN

2 (t) = X
N
1 (t) log |t − 1| +

N
∑

n=1
Dn(t − 1)n, (11)

and

AN1 =
Y0ẊN

2 (t0) − Y1X
N
2 (t0)

W (X1, X2)(t0)
, AN2 =

Y1XN
1 (t0) − Y0Ẋ

N
1 (t0)

W (X1, X2)(t0)
, (12)

being W (X1, X2)(t0) the Wronskian computed in expression (9). As a consequence of Proposition 1, XN
1 (t) → X1(t) and

XN
2 (t) → X2(t) in L∞(Ω) as N → ∞. Since Y0, Y1 ∈ Lp(Ω), one has that AN1 → A1 and AN2 → A2 in Lp(Ω) as N → ∞. This

implies that XN (t) → X(t) in Lp(Ω) as N → ∞ too. In particular, the statistical moments up to order p of XN (t) tend to those
of X(t).
For p ≥ 2 arbitrary but fixed, then we can approximate the average of X(t), E[X(t)], and the variance of X(t), V [X(t)], by

using
E[X(t)] = lim

N→∞
E[XN (t)], V [X(t)] = lim

N→∞
V [XN (t)],

see3, Th. 4.2.1, Th. 4.3.1.

4 NUMERICAL EXPERIMENTS

In this section we illustrate our theoretical findings by means of several numerical examples performed in the software
Mathematica R©. We will choose specific probability distributions for the input random variables A, Y0 and Y1 and then we will
approximate the expectation and the variance of the response stochastic process X(t) by using different orders of truncationN
in expressions (10)–(12). The reliability of the obtained results will be shown by comparing them with the results provided by
the following two techniques for uncertainty quantification:

• Monte Carlo simulations18, which consist in obtaining a number m of realizations for the random input parameters, say

A(1),… , A(m),

Y (1)0 ,… , Y (m)0 ,

Y (1)1 ,… , Y (m)1 ,
and then solving each one of the corresponding deterministic Legendre differential equations,

⎧

⎪

⎨

⎪

⎩

(1 − t2)Ẍ(i)(t) − 2tẊ(i)(t) + A(i)(A(i) + 1)X(i)(t) = 0,
X(i)(t0) = Y

(i)
0 ,

Ẋ(i)(t0) = Y
(i)
1 ,

which gives a realization X(i)(t) (a sample path) of X(t), for 1 ≤ i ≤ m. The expectation and variance of X(t) can be
approximated as follows:

E[X(t)] ≈ �m(t) =
1
m

m
∑

i=1
X(i)(t)

and

V [X(t)] ≈ 1
m − 1

m
∑

i=1

(

X(i)(t) − �m(t)
)2 .

Monte Carlo simulations require many realizations or simulations ofX(t) to get accurately its statistics (the error conver-
gence rate is inversely proportional to the square root of the number m of realizations), therefore the computational cost
of Monte Carlo simulations is higher than our method based on random series.
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• A variation of generalized Polynomial Chaos (gPC) expansions for continuous stochastic systems with dependent and
jointly absolutely continuous random inputs, which is a method described in19 and applied in20. We consider the canonical
bases

m1 = {1, A, A
2,… , Am},

m2 = {1, Y0, Y
2
0 ,… , Y m0 },

m3 = {1, Y1, Y
2
1 ,… , Y m1 },

and the vector of random input coefficients, � = (A, Y0, Y1). We consider a simple tensor product to construct a basis of
monomials of degree less than or equal to m:

Ξp = {�0(� ), �1(� ),… , �p(� )},

where
�0 = 1, p =

(

m + 3
3

)

, �i(� ) = Ai1Y
i2
0 Y

i3
1 ,

where i1 + i2 + i3 ≤ m and i↔ (i1, i2, i3) in a bijective manner.
We impose a solution to the random initial value problem (1) of the form

Xp(t) =
p
∑

i=0
X̃p
i (t)�i(� ),

where X̃p
i (t), 0 ≤ i ≤ p, are deterministic functions to be found. The deterministic differential equation satisfied by the

coefficients is the following:
R d

2

dt2
X̃p(t) − 2t

1 − t2
R d
dt
X̃p(t) +NX̃p(t) = 0,

with initial conditions
RX̃p(t0) = v,

R d
dt
X̃p(t0) = w,

where
X̃p(t) =

(

X̃p
0 (t),… , X̃p

p (t)
)T
,

v =
(

E[Y0�0(� )],… ,E[Y0�p(� )]
)T

and
w =

(

E[Y1�0(� )],… ,E[Y1�p(� )]
)T ,

and R andN are the following matrices of size (p + 1) × (p + 1):

R =
⎛

⎜

⎜

⎝

E[(�0(� ))2] ⋯ E[�0(� )�p(� )]
⋮ ⋱ ⋮

E[�p(� )�0(� )] ⋯ E[(�p(� ))2]

⎞

⎟

⎟

⎠

and

N = 1
1 − t2

⎛

⎜

⎜

⎝

E[A(A + 1)(�0(� ))2] ⋯ E[A(A + 1)�0(� )�p(� )]
⋮ ⋱ ⋮

E[A(A + 1)�p(� )�0(� )] ⋯ E[A(A + 1)(�p(� ))2]

⎞

⎟

⎟

⎠

,

respectively.
This system of differential equations can be solved via standard numerical techniques, such as the Runge-Kutta algorithm.
This method provides mean square approximations toX(t) with spectral convergence rate in general, although numerical
errors may arise for large orders m of bases, due to ill-conditioning of the matrix R for large p.
It can be shown that the expectation and the variance of solution stochastic process X(t) can be approximated using the
following finite sums:

E[X(t)] ≈ E[Xp(t)] =
p
∑

i=0
X̃p
i (t)ei,

V [X(t)] ≈ V [Xp(t)] =
p
∑

i,j=0
X̃p
i (t)X̃

p
j (t)(Rij − eiej),

where ei = E[�i(� )].
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Now, we show two examples. We want to highlight that in the first example we assume that the input random data of the
Legendre differential equation are assumed to be statistically dependent (with a joint probability distribution), while in the
second example the corresponding random data are independent. In this manner we show that our theoretical results are able to
consider both situations in practice.

Example 1. We assume the following joint probability distribution for the random input data:

(A, Y0, Y1) ∼ Dirichlet(5, 1, 2, 3),

with initial conditions at t0 = 0. Since A, Y0 and Y1 are bounded random variables, Theorem 1 ensures that X(t) is an L∞(Ω)
solution to random initial value problem (1) on the interval (−1, 1).
In Table 1 and Table 2, approximations of E[X(t)] and V [X(t)], respectively, are performed with order of truncationsN = 25

and N = 26. The results are compared with Monte Carlo simulations and gPC expansions. Observe that there is stabilization
of the results for t ≥ 0, while for t < 0, specially for t near −1, larger truncation orders may be required. This is because the
initial conditions are located at 0 and the power series are centered around 1, so better approximations are expected around
those points. The results obtained agree with Monte Carlo simulations and gPC expansions. Notice that more simulations are
required in the Monte Carlo method due to its slowness of convergence. On the other hand, gPC expansions converge quickly
due to spectral convergence.

t E[X25(t)] E[X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
−0.9 −0.174008 −0.174833 −0.184978 −0.184818 −0.184818
−0.5 −0.0140125 −0.0140143 −0.0140897 −0.0140191 −0.0140191
0 0.0909091 0.0909091 0.090896 0.0909091 0.0909091
0.5 0.180172 0.180172 0.180222 0.180172 0.180172
0.9 0.281694 0.281694 0.281855 0.281694 0.281694

TABLE 1 Approximation of the expectation of the solution stochastic process. Example 1.

t V [X25(t)] V [X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
−0.9 0.0241268 0.0242201 0.0253679 0.0253799 0.0253799
−0.5 0.0107702 0.0107703 0.0107672 0.0107704 0.0107704
0 0.00688705 0.00688705 0.00689240 0.00688705 0.00688705
0.5 0.00844482 0.00844482 0.00845436 0.00844483 0.00844483
0.9 0.0262702 0.0262702 0.0262890 0.0262703 0.0262703

TABLE 2 Approximation of the variance of the solution stochastic process. Example 1.

Example 2. In this example, we assume that A, Y0 and Y1 are independent random variables with the following probability
distributions:

A ∼ Beta(2, 1), Y0 ∼ Normal(1, 1), Y1 ∼ Exponential(2).
The initial conditions are set at the time instant t0 = 1.2. Since Y0 and Y1 have absolute moments of any order 1 ≤ p < ∞ and
A is a bounded random variable, Theorem 1 tells us that X(t) is an Lp solution to (1) for each 1 ≤ p <∞ on (1, 3).
Table 3 and Table 4 show approximations for the mean and variance of X(t) at orders of truncation N = 25 and N = 26.

The results obtained are compared with Monte Carlo simulations and gPC expansions. We observe that stabilization of the
approximations occur for t ≤ 2.5. For t = 2.9, a larger order of truncationN is needed, because the initial time t0 = 1.2 and the
center point 1 are far from t = 2.9. The approximations for the expectation and variance agree with Monte Carlo simulations
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and gPC expansions. The estimates performed by the gPC method are accurate due to spectral convergence, whereas more
realizations for the Monte Carlo method are needed to achieve higher accuracy.

t E[X25(t)] E[X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
1.2 1 1 0.996418 1 1
1.5 1.14660 1.14660 1.14286 1.14660 1.14660
2 1.37833 1.37833 1.37402 1.37833 1.37833
2.5 1.59841 1.59841 1.59347 1.59841 1.59841
2.9 1.76891 1.76723 1.76260 1.76803 1.76803

TABLE 3 Approximation of the expectation of the solution stochastic process. Example 2.

t V [X25(t)] V [X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
−0.9 1 1 1.00313 1 1
−0.5 1.12843 1.12843 1.13185 1.12843 1.12843
0 1.53899 1.53899 1.54307 1.53899 1.53899
0.5 2.06676 2.06676 2.07152 2.06676 2.06676
0.9 2.55896 2.55733 2.56339 2.55810 2.55810

TABLE 4 Approximation of the variance of the solution stochastic process. Example 2.

5 CONCLUSIONS

In this paper, we have constructed a fundamental set {X1(t), X2(t)} of Lp(Ω) solutions (1 ≤ p ≤∞) to the Legendre differential
equation with uncertainties on the domain (−1, 1) ∪ (1, 3) via random power series centered at the regular-singular point t = 1.
It has been assumed that the initial conditions at the point t0 ∈ (−1, 1) ∪ (1, 3), Y0 and Y1, belong to Lp(Ω), and that the random
input A is a bounded random variable (which is equivalent to A having absolute moments that grow at most exponentially).
Under these hypotheses, a theorem on existence and uniqueness of Lp(Ω) solution X(t) to the random Legendre differential
equation on (−1, 1) and (1, 3) has been proved. This result is an extension of already published contributions, which constructed
an Lp(Ω) power series solution to the random Legendre differential equation on (−1, 1) around the regular point 0. In order to
perform uncertainty quantification for X(t), we have proposed a truncation method to approximate X(t) by simpler processes
XN (t) in the Lp(Ω) sense, so that the moments of X(t) up to order p can be approximated by those of XN (t). In particular, if
p ≥ 2, the expectation and variance of X(t) can be approximated.
The numerical experiments have shown examples in which we have approximated both statistics ofX(t). These examples have

been devised to consider two important situations from a practical standpoint, namely, when the input random data are assumed
to be dependent and independent random variables. The results obtained have been compared with Monte Carlo simulations and
gPC expansions, showing full agreement.
Finally, we would like to point out that our method could be extended to other important second-order random differential

equations with a regular-singular point.
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