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Abstract
The solar radiation assessment is a key factor for this growth as it is the critical vari-
able for all solar energy generation systems. EKO instruments has developed a sensor
that integrates six photodiodes to measure solar irradiance upwards (global horizon-
tal), downwards (ground reflected) and irradiance in all four cardinal directions for
vertical surfaces. It is believed that the extra data would reduce uncertainty in pre-
diction of PV outputs during the design phase and performance verification during
the PV plant operation. This could therefore enhance the investment in vertical PV
systems such as BIPV or east-west BF plants.

In the first place, an investigation on the optimal transposition model for BIPV
facades with GHI as the only input was carried out. A decomposition model fitted for
the studied region was created. Two different study cases were conducted with the
intention of identifying the optimal transposition model among the five studied and
to account for the inaccuracies that the new decomposition model might introduced
to the process. The results validated the use of the new decomposition model for
south facing surfaces. Nevertheless, its use for non south-facing surfaces did not show
the same accuracy, which was increased when the uncertainties of the GHI sensor
were taken into account. None of the anisotropic studied models can be declared
as the best performing, nor does any particular model demonstrate clear advantages
over the others for the location and scenarios studied here.

The measurements from the vertical sensors in the MDPD within a five month
period were compared to the transposed irradiance from a PD installed nearby. The
inherent errors that project developers of vertical PV systems should account for in
the choice between the use of measured (MDPD) or transposed data (and the as-
sociated transposition model choice) were accurately quantified. For north facing
surfaces, the average error of each predicted irradiance value over the measured one
(RMSE) can be up to 11.2 W/m2, overestimating the solar irradiance by 6 W/m2

should they choose to not use measured data, or the optimal transposition model. In
the case of a south-facing surface those errors can be up to 45.5 W/m2 and 12.8 W/m2

respectively. The east and west facing surfaces could show RMSE of 26.5 W/m2 and
24.2 W/m2, and MBE of -4.5 W/m2 and 4.6 W/m2 respectively.
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CHAPTER1
Introduction

97% of the scientific community agree that climate change trends over the past cen-
tury are certainly a result of human activities [1]. Most of the worldwide scientific
organizations such as Intergovernmental Panel on Climate Change (IPCC) or the U.S.
Global Change Research Program, have endorsed this opinion [2].

Electricity generation is currently one of the main source of greenhouse gas emis-
sions, which are considered as the main cause of climate change. In fact, according to
the IPCC it represents 25% of global emissions [3]. Figure 1.1 shows the breakdown
of those gases emissions by economic sector.

Figure 1.1: Total anthropogenic greenhouse gas emissions (GtCO2eq/yr) by economic
sector in 2010. Source: [3]

Beginning in the late 1990s, several agreements and efforts at the international
level have been launched, namely the Kyoto protocol in 1997, the pact at the COP
21 summit in 2015 and the 2020 targets proposed by the European Commission.
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These agreements are leading a middle term transition to a full sustainable energy
generation system. Nonetheless, latest findings and studies already predict inevitable
catastrophic consequences from climate change should improvement continue at the
current, actual rate. The Paris agreement (2016) set the global mean temperature
increase limit to 2◦C above the pre-industrial baseline (1850-1900), and to pursue
efforts to limit the increase to 1.5 °C to avoid irreversible consequences. Neverthe-
less, in 2018 the global mean temperature was estimated to be 1◦C above this limit
already. The consequences of the impact of global warming of 1.5◦C have been re-
ported to highlight the need for strengthening the global response to the threat of
climate change, and the need of sustainable development and poverty eradication [4–
6].

In the solar photovoltaic (PV) energy field, innovation and incentive policies have
shaped the way PV energy is developing, seen to be constantly exceeding forecasts
(Figure 1.2a). Many factors have driven down PV cost dramatically. A combination
of economies of scale, R&D and lowered profit margins through increasing competi-
tion have made PV prices fall by about 99.5% from 1975 to 2016 (Figure 1.2b) [7]. At
the end of 2018, the combination of these innovation, cost reductions and supportive
policies led to a total PV power generation capacity of 486 GW, almost 20 times more
than it was in 2009 [8].

(a) Cumulative solar PV installations com-
pared to forecasts from various IEA World
Energy Outlooks (WEO)

(b) Historical price reductions and annual
installations, 1975–2017

Figure 1.2: UNEP information on PV development and price reductions. Source [7]
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These efforts have led to both the development of new, more efficient photovoltaic
cells, such as tandem cells which currently show a maximum efficiency around 40% [9];
alongside the design of new PV systems such as bifacial (BF) modules and building
integrated photovoltaic (BIPV) systems. BF modules produce solar power from both
sides of the panel and manufacturers claim up to a 30% increase in production can
be achieved just from the extra power generated from the rear. At the end of 2019,
the total installed BF capacity was equal to 8.2 GW and its share of the total annual
installed capacity is expected to be 17% by 2024, quadrupling its current share [10].
On the other side, BIPV are PV products that are fully integrated with building
materials. Despite the efforts and high stakeholder interest in building-integrated PV
(BIPV), the deployment of PV systems that are partially or fully integrated with
building materials is low compared with rack-mounted PV systems [11].

Other emerging designs are just entering the PV market such as floating solar
photovoltaic (FPV) systems. FPV is an emerging technology in which a PV system
is placed directly atop a body of water. FPV installations have grown rapidly from
an installed capacity of 90 MW in 2016 to 587 MW in 2018. Moreover, annual FPV
installations are expected to grow over 1.5 GW yearly until 2022 [12]. On the other
hand, companies such as Next2Sun are investigating the advantages of vertical BF
systems. This design generates energy peaks where conventional installations do not,
which would help balancing the sustainable energy production . Additionally, the
wider distance between rows will make it possible to keep use the land simultaneously
for agricultural purposes [13].

1.1 Motivation

According to the International Energy Agency (IEA), the capacity of renewable power
is set to expand by 50% before 2024. An increase of 1200 GW led by solar photo-
voltaic is expected. Solar PV accounts for the majority (60%) of the expected growth,
followed by onshore wind with approximately one-quarter (Figure 1.3). IEA reports
show a 26% higher forecast in the accelerate case where governments address the
following challenges: policy and regulatory uncertainty; high investment risks in de-
veloping countries; and system integration of wind and solar in some countries [14].

The solar radiation assessment is a key factor for this growth as it is the critical
variable for all solar energy generation systems. Measured solar irradiance provides
knowledge to make important decisions on future energy yield, efficiency, performance
and maintenance, which are crucial factors for investments.



4 1 Introduction

Figure 1.3: Renewable capacity growth between 2019 and 2024 by technology. Source:
[14]

Significantly smaller plane of array (POA) irradiances computed by the transpo-
sition models are observed when the PV panel deviates from the azimuthal direction
of the sun. Reducing uncertainty in the prediction and/or verification of PV plant
output can directly increase the expected return on investment for each party in a
contract, likely leading to more favorable terms for the contract, including a possible
reduction in interest rates [15, 16].

Therefore, in order to enhance the investment in BIPV, EKO instruments has de-
veloped a sensor that integrates six photodiodes to measure solar irradiance upwards
(global horizontal), downwards (ground reflected) and irradiance in all four cardinal
directions for vertical surfaces. With regards to BIPV applications, it is believed that
the extra data would reduce uncertainty in prediction of PV outputs during the design
phase and performance verification during the PV plant operation, hence contribute
to the expected PV growth. Additionally, the extra data measured by the MDPD is
expected to benefit not only BIPV applications, but other systems such as BF were
the ground reflected irradiance measurements could reduce uncertainties in the solar
irradiance assessment.

In order to validate the MDPD sensor, a study has been carried out where the
main purpose was to perform a quantitative analysis of the error that project devel-
opers risk if they do not use the correct transposition model or the extra information
provided by the sensor for their solar resource assessment. For this purpose, an inves-
tigation on the optimal transposition model for BIPV facades with GHI as the only
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input will be carried out.

1.2 Content
The following sections of the report provide an structured explanation of the pro-
cess followed to achieved the project’s objectives. In Chapter 2, the methodology
created to achieve the objectives of the present study are detailed: starting with
a description of how the data has been collected and analyzed; followed by a brief
explanation regarding solar irradiance assessment and modeling; completed with a
comment on how the MDPD benefits are evaluated. Results are divided in the fol-
lowing three chapters with their corresponding discussion enclosed. In the first of
them, Chapter 3, all the details regarding the decomposition model construction
are explained. In Chapter 4, two different scenarios with the available resources
are set up to identify the optimal transposition model for the studied location and to
validate the created decomposition model. Following this quantitative study on the
optimal transposition model, in Chapter 5 the MDPD benefits over commonly used
irradiance modeling tools. The numerical model created in Chapter 3 alongside the
aforementioned transposition models are tested against the MDPD measurements, as
well as an uncertainty evaluation on the MDPD measurements. Chapter 6 serves as
a summary of the work carried out, where the conclusions extracted are detailed and
future steps and propositions are presented to culminate the report. Additionally, the
appendixes contain extra plots, information, and calculations made in parallel such
as data filtering conditions or uncertainty in the measurements calculations.



6



CHAPTER2
Methodology - solar
radiation assessment

In this chapter, the methodology used through the project in order to assessing poten-
tial advantages of the MDPD sensor is described. In the first place, solar irradiance
measurements from different sensors were used to identify the optimal transposition
model for vertical surfaces in climate regions similar to Denmark. Finally, measured
irradiance from the MDPD was compared with transposed data from horizontal mea-
surements to show how PV yield predictions are affected by the use of one method
over the other, and the associated bias error.

To that end, the following steps were followed. In the first place, the sensors used
in the data collection process are described, as well as the location where the study
was conducted. Secondly, it is explained how the data was treated and the different
statistical error indicators used to assess the results. Then, the process to evaluate
solar irradiation on tilted planes is explained. In order to identify the optimal trans-
position model to use when only GHI measurements are available, decomposition
models and transposition models (the ones studied within the scope of this project)
are defined in Sections 2.4.1 and 2.4.2 respectively. Finally, Section 2.5 describes the
processes followed to answer the question: what is the bias error that BIPV project
developers risk by choosing one transposition model over others, or by not using
MDPD measurements?

2.1 Data collection - Measurements of solar irradiance
Three different types of pyranometers have been used to measure solar irradiance for
decades. These instruments can be grouped in two different technologies: thermopile
or silicon semiconductor, which have very different characteristics such as response
time or spectral response. Thermopile pyranometers are a ”pile” of thermocouples
that measure irradiance as a temperature difference between the junction exposed to
solar radiation (the hot junction) and the one that are protected from it (the cold
junction). On the other side, silicon semiconductors are photodiode-based pyranome-
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ters, which operate using the photoelectric principle. There are two different types
of silicon semiconductor sensors. The first type is the silicon pyranometer (referred
as PD in this report) which uses a photodiode and a diffuser or optical filters. The
second type is a photovoltaic pyranometer (most commonly referred as reference cells)
which is made of a small photovoltaic cell working at or near short-circuit conditions.

The main sensors used during this project are the MS-802F pyranometer and the
ML-02 fast-silicon photodiode both manufactured by EKO Instruments. The multi-
directional photodiode (MDPD) analyzed in this thesis integrates six of the ML-02
sensors into a 3D printed sphere (Figure 2.1). Other irradiance sensors were used
such as a pyrheliometer to measure direct normal irradiance (DNI) and another MS-
802F pyranometer with a shading ball to measure diffuse horizontal irradiance (DHI).
Both of these sensors were used to create a decomposition model. Two additional
thermopile pyranometers measuring solar irradiance in the plane of a 25◦static tilt
and a horizontal single axis tracker array were used for comparing to the transposition
modeling results. Nevertheless, only the MF-802F and the ML-02 will be described
in depth due to their relevance for the project.

Figure 2.1: MDPD manufactured by EKO Instruments
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2.1.1 MS-802F Pyranometer

The MS-802F pyranometer is a high-precision thermopile pyranometer (Figure 2.2).
It is designed to be used in outdoor environments for photovoltaic or meteorological
applications. The MS-802F is a ISO 9060:2018 Class A sensor able to measure global
broad-brand solar irradiance with high accuracy. This version of the MS-802 includes
a ventilation system to minimize the negative effect of frost, snow and dust. It was
last calibrated in September 2017. The most relevant characteristics of the MS-802F
pyranometer can be seen in Table 2.1 where they are compared with those of the
ML-02.

Figure 2.2: MS-802F thermopile pyranometer manufactured by EKO Instruments.
Source: [17]

2.1.2 Multi-directional photodiode (MDPD)

The MPDP sensor is the object of analysis in this project. It integrates six ML-02 sen-
sors fabricated by EKO Instruments. The ML-02 is a low-profile silicon-pyranometer
(PD) classified as ISO 9060:2019 Class C. It integrates a UV resistant diffuser that
gives a proper cosine response (even at low incident angles) and it is shaped to avoid
effects of soiling, lingering water and dust. EKO claims that compared to reference
cells, the ML-02 sensor is more compact and has an ideal cosine response. This
means that the sensor has equivalent behavior in terms of response time, spectral
and temperature response. These characteristics, combined with its compact dimen-
sions make it easy to integrate within any application e.g. the MDPD itself, BIPV
systems or East-West vertical bifacial PV installations.
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Figure 2.3: ML-02 photodiode pyranometer manufactured by EKO Instruments.
Source: [18]

Table 2.1 summarizes the most relevant differences between both described sen-
sors. These characteristics and their effects on the measurement’s uncertainty are
further detailed in Appendixes B and D.

Table 2.1: Comparison of characteristics between thermopile and photodiode pyra-
nometers used in this study

Parameter MS-802F ML-02
ISO 9060:2018 class Class A Class C

Sub-category ”Spectrally flat” Compliant Not compliant
Sub-category ”fast response” Not compliant Compliant

Output Analog (mV) Analog (mV)
Response time 95% < 5 sec < 1 ms

Zero off-set a) < 6 W/m2 0 W/m2

Zero off-set b) ± 2 W/m2 0 W/m2

Complete zero off-set c) - 0 W/m2

Non-stability change/1 year ± 0.5 % ± 2 %
Non-linearity at 1000 W/m2 ± 0.2 % < 0.2 %

Directional response at 1000 W/m2 ± 10 W/m2 < 10 W/m2

Spectral error ± 0.23 % ± 3.07 %
Temperature response -10°C + 40°C ± 1 % < 0.15 %/◦C
Temperature response -20°C + 50°C ± 1 % -

Tilt response ± 0.2 % 0 %
Operating temperature range [-40, 80] ◦C [-30, 70] ◦C

Irradiance range [0, 4000] W/m2 [0, 2000] W/m2

Wavelength range [285, 3000] nm [400, 1100] nm

2.1.3 Study location
All the above described sensors are located at DTU’s campus in Risø (55.693°N;
12.100°E; 12m above mean sea level). Risø campus is located in the eastern Sealand
region (Figure 2.4), which belongs to the fifth solar radiation zone defined by the
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Danish Meteorological Institute (DMI).

Figure 2.4: Annual solar radiation in six Danish regions as defined in the Design
Reference Year (DRY). The location of the Risø campus is circled in red. Source:
[19]

The DTU Fotonik facilities are divided in two locations that contain sensors for
the measurement of solar radiation: Building 130 (referred as main weather station),
and the testing field situated about 400 meters north from this building (bifacial PV
testing field).

The sensors at the main weather station were the most used during this project,
while the two pyranometers in the testing field were used only for comparisons to find
optimal transposition models and to validate the decomposition model. In Figure 2.5
different views of the main weather station and some of the installed sensors can be
seen. Figure 2.5c shows the MDPD (sphere in the top center area) already set up in
the main weather station as well as the MS-802F sensor you used for decomposition
and transposition (in the foreground).
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(a) Main weather station aerial view

(b) Main weather station sensors (c) Main weather station MDPD

Figure 2.5: Pictures from the main weather station at DTU campus in Risø

2.2 Data analysis - Python
All available meteorological data and irradiance measurements were analyzed with the
programming language Python 3.7 [20]. Python’s development environment Spyder
3.3.6 was used to code all calculations and plot results. Figure 2.6 shows a caption of
Spyder’s environment. Structured Query Language (SQL) was used to access all col-
lected and stored data in DTU’s database. SQL is a domain-specific language where
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the main advantage is the ability of accessing many records with one single command.

Figure 2.6: Python’s development environment used (Spyder 3.3.6)

Despite the zero precedent experience that the author had before starting this
project, Python language was chosen due to the advantages that open source coding
languages (specially Python) offer. Community and open source development leads
to extensive support libraries access, such as Numpy (used for numerical calculations)
or Pandas (data analysis and dataframes/matrices structuring). It is a high-level and
object-oriented language that allows easy ”date and time” structured data handling.
Hence, there is an increasing trend in the industry towards its use.

One such open source library, pvlib python, was used extensively and was ex-
tremely helpful in the development of the project. pvlib python module provides a
set of functions for simulating PV energy systems performance. It implements many
of the methods developed at Sandia National Laboratories [21][22]. Some of the func-
tions used in this study are described in this chapter.

2.3 Results analysis - Statistical error indicators
In this section, the statistical error indicators used to compare the results are de-
scribed. Four indicators were used in this project: mean square error (MSE), root
mean square error (RMSE), mean absolute percentage error (MAPE) and mean bias
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error (MBE). Their formulations are listed below, where Mn and Cn stands for mea-
sured and calculated data points respectively, and n represents the number of mea-
surements available.

1. MSE:
The mean square error measures the average of the squares of the errors, thus
it can only be positive. The closer to zero the MSE is, the better the model’s
correlation is. It is calculated as follows:

MSE = 1
n

n∑
1

(Mn − Cn)2 (2.1)

MSE tends to weight towards larger differences and it is not very intuitive since
its unit is the square of the measured variable. In this work the MSE is used
only for creating the decomposition model.

2. RMSE:
The root mean square error provides information on the short-term performance
of a correlation by comparing term by term the actual measured value and the
correlated one. It can only be positive and the smaller the value the better the
model’s performance. Its formulation can be seen in Equation (2.2).

RMSE =

√√√√ 1
n

n∑
1

(Mn − Cn)2 (2.2)

As it can be seen, it is basically the square root of the MSE. By doing this, the
error is obtained in the same units as the measured parameter which gives a
better sense of the differences between the measurements and the model. Similar
to MSE it also gives more weight to big differences.

3. MAPE:
The mean absolute percentage error is an indicator of accuracy expressed as a
percentage of the measured data. It is calculated as follows:

MAPE = 1
n

n∑
1

∣∣∣∣Mn − Cn

Mn

∣∣∣∣ · 100 (2.3)

Despite its very intuitive interpretation, this indicator has some drawbacks.
Outliers, especially for small values of the measured data, can cause very large
changes in the absolute percentage error. Moreover, registered values equal
to zero would create a singularity problem in the form of dividing by zero.
Nevertheless in this case, and as will be explained in the following sections,
data has been filtered for values greater than zero, which avoided this kind of
error.
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4. MBE:
The mean bias error provides information on the long-term performance of
the correlation, since positive errors can be canceled by negative ones. MBE
represents the systematic error of a model and is given by:

MBE = 1
n

n∑
1

(Mn − Cn) (2.4)

It indicates if the correlation tends to underestimate or overestimate the mo-
deled variable. Ideally it should be equal to zero. In this case, negative values
indicate overestimation while positive values indicate the opposite.

2.4 Solar irradiance modeling
Solar irradiance data is essential to properly design solar energy installations. In this
regard, many mathematical and empirical models have been developed to calculate
solar irradiance in planes with different orientations and inclinations. The process to
estimate available irradiance on a tilted surface from horizontal irradiance depends
on the solar radiation data available to the user. Figure 2.7 synthesizes this process.

Figure 2.7: Diagram of the process to estimate irradiance on tilted surfaces as a
function of the available data

Global horizontal irradiance is the minimum parameter needed as an input to
design and develop solar energy projects. If only GHI data is available, decomposi-
tion models are used to estimate the diffuse component which is subsequently needed
in the transposition models (decomposition models are further explained in Section
2.4.1). Otherwise, if measured diffuse or direct components are also available, the
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transposition models can be directly used to estimate global irradiance on the plane
of array (POA) (transposition models are further explained in Section 2.4.2).

Global radiation on a horizontal surface is composed of: a direct or beam compo-
nent (Ib) and a diffuse component (Id) as it can be seen in Figure 2.8. Beam radiation
is the component approaching the device or element in a straight collimated line from
the sun, while the diffuse radiation is scattered either by particles in the atmosphere or
by clouds, Rayleigh scattering (small particles) or Mie scattering (aerosols or dust)[23].
Ideally, when the sensor has no shadowing elements in its field of view, it receives
diffuse radiation distributed throughout the sky dome from all angles from -90◦to 90◦.

Figure 2.8: Components of the global horizontal irradiance. Source: [23].

2.4.1 Decomposition model creation
Decomposition models are empirical correlations derived from extensive databases of
irradiation measurements that are used to estimate the diffuse fraction of the global
horizontal irradiation. These spectrally independent methods are also known as dif-
fuse fraction correlations. They basically calculate the diffuse fraction (ratio of the
DHI component to the GHI) as a function of different variables such as clearness
index, sun elevation angle or other atmospheric parameters.

The most simple models calculate the diffuse fraction only as a function of the
clearness index (Kt). The clearness index or clear sky index is defined as the propor-
tion of extraterrestrial irradiance that reaches the earth’s surface for the given time
and location. Equation 2.5 shows its formulation.

Kt = GHI

E0
(2.5)

Where E0 refers to the extraterrestrial irradiance on a horizontal surface.
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Extraterrestrial irradiance on a surface normal to the sun (E0n) has to be esti-
mated before derivation of Kt is possible. Afterwards, its fraction onto a horizontal
surface (E0) is weighted by the cosine of the solar zenith angle as shown in Equation
(2.7). Extraterrestrial irradiance is not constant, but it can be estimated for every
day of the year (n) with the following equation [24]:

E0n = 1366.1 ·
(

1 + 0.033 · cos
360 · n

365

)
(2.6)

E0 = E0n · cos(θZ) (2.7)

where θZ is the zenith angle.

The first term in Equation (2.6) represents the solar constant (i.e. the irradi-
ance on the outer edge of the earth’s atmosphere). The introduced value 1366.1
W/m2 is the default value in the pvlib python module function used in this project
(pvlib.irradiance.get_extra_radiation). However, solar constant values ranging from
1360 W/m2 to 1377 W/m2 can be found in the literature [25]. Figure 2.9 shows
three of the most commonly used decomposition models: Erbs, Orgill & Hollands
and Reindl (model 1).

Figure 2.9: Comparison of three piecewise decomposition models. (Blue = Erbs, Red
= Orgill and Hollands, and Green= Reindl et al. Model 1). The blue data points are
hourly averaged measurements from Florida for September 2013. Source: [26]

Reindl created three different decomposition models: a version only including Kt

(shown as case 3 in Figure 2.10) and two others including more variables. Version 2
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(shown as case 2) adds solar elevation angle to the equation, while version 3 (shown
as case 1) includes also ambient temperature and relative humidity [27]. Those three
versions can be seen in Figure 2.10.

Figure 2.10: Reindl decomposition models compared to measured data. Source: [28]

Reindl realized the drawbacks with diffuse fraction correlations are the high stan-
dard error of estimating the diffuse fraction and the accuracy of the correlation being
potentially dependent on location. Therefore, in order to identify the best transpo-
sition model for vertical surfaces when only GHI data is available, a decomposition
model fitted to long term data measured at the Risø test site was created. Even
though a correlation model was already created for a nearby location (DTU’s Lyngby
campus) [29], due to the availability of measured data and differences in irradiance
levels according to the DMI (see Figure 2.4), a new decomposition model was created.
Its creation process and results are described in Chapter 3.

2.4.2 Optimal transposition model research
Transposition models are tools based on empirical observations and geometric equa-
tions that lift horizontal radiation onto a surface with a different inclination.

With regards to tilted surfaces, similarly to the horizontal described above, it re-
ceives both direct and diffuse radiation, as well as a portion of the diffuse and beam
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radiation which is reflected off the ground and commonly referred as ground reflected
irradiance (Ir) as it is shown in Figure 2.11. Therefore, total radiation on a tilted
surface (IP OA) is composed of three different components: beam, diffuse and ground
reflected radiation (Equation (2.8)). The proportion of irradiance reflected depends
on two factors: ground properties and surface inclination. The former influences the
amount of radiation reflected, while the latter only affects to the ratio of this radiation
”seen” by the surface (field of view). For instance, a grass ground surface is assumed
to reflect 25% of the incident radiation, while fresh snow can reflect more than 80%.
In general, if the ground is unknown values of 20% for albedo can be assumed [30].

Figure 2.11: Radiation components over a tilted surface. Source: [23]

IP OA = Ib + Id + Ir (2.8)

On one hand, direct and ground reflected components are a simple matter of
geometrical relations. Equations (2.9) and (2.10) show how to calculate beam and
ground reflected components respectively. The angle θ refers to the angle of incidence
(AOI) and β to the surface inclination of the solar collector. The ground albedo is
represented by the Greek letter ρg.

Ib = DNI · cos(θ) (2.9)

Ir = GHI · ρg ·
(

(1 − cosβ)
2

)
(2.10)

The angle of incidence is the angle between the beam radiation and the normal
vector to the solar collector surface. It is calculated as a function of the solar position
in the sky dome and the surface inclination as follows:

cos(θ) = cos(β) · cos(θZ) + sin(β) · sin(θZ) · cos(γS − γ) (2.11)

Where γS is the solar azimuth angle and γ is the surface azimuth.
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On the other hand, the diffuse component is not easily calculated due to the ad-
ditional sub-components of the diffuse radiation, which include the circumsolar and
horizon brightening components. The circumsolar diffuse part is received from for-
ward dispersion of solar radiation and is concentrated in the sky region around the
sun. The circumsolar component is brightest under clear sky conditions. The horizon
brightening component is concentrated near the horizon and it is most obvious during
clear sky conditions.

Transposition models of diffuse radiation use a combination of geometrical and em-
pirical relationships that allow one to calculate the amount of diffuse light impinging
on a tilted surface. There are different degrees of complexity from very simple model
where diffuse radiation is considered equally distributed over the sky dome (isotropic
models) to more complicated ones that assume different diffuse components to ac-
count on the different intensity of the diffuse radiation in different regions of the sky
(i.e. circumsolar and horizon brightening components). Furthermore, the amount of
diffuse radiation in the collector depends on the portion of the sky viewed by the
element, as well as other parameters such as: the amount of clouds or water content
in the atmosphere.

2.4.3 Analyzed transposition models
There are a lot of transposition models and studies analyzing the benefits of one over
the other and yet, none of them is universally know as the best one [31]. Their perfor-
mance has great influence on the earth location and local weather. For the scope of
this project five well-known models have been studied: isotropic, Klucher, Perez, Hay
& Davies and Reindl. These models have been chosen for different reasons: there is
extensive literature and studies about them and they are implemented in the python
library pvlib. In fact, many transposition models not studied here, are merely variants
with only small modifications to the transposition models studied in this work. The
studied transposition models are presented below.

2.4.3.1 Liu & Jordan model

In 1963 Benjamin YH Liu and Richard C. Jordan created an isotropic sky model
that described the irradiance on a tilted surface [32]. In their model it is assumed
that all diffuse irradiance is uniformly distributed over the sky dome. Therefore, as
a matter of fact, diffuse irradiance on the tilted surface was considered only as a
function of the field of view. It is the simplest of the presented transposition models
and is formulated as follows:

Id,iso = DHI · ( (1 + cosβ)
2

) (2.12)
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Liu and Jordan model has proven to have a good performance during cloudy and
overcast skies but loses its accuracy as the sky becomes clearer.

2.4.3.2 Klucher model

In 1979, Thomas M. Klucher did a validation on two existing models to predict irradi-
ation on tilted surfaces and in the process created his own model [33]. He compared
the performance of the isotropic model above described (Section 2.4.3.1) and the
Temps & Coulson anisotropic clear-sky model, by means of comparison to measured
irradiance. For the period between January and June 1977, pyranometers on tilted
surfaces at 37º and 60º (towards the equator) measured hourly average insolation in
Cleveland, Ohio.

The Temps & Coulson model combines the isotropic model with three correction
factors that account for the three regions of anisotropy in the radiation field. Klucher
didn’t take into consideration the factor accounting for surface reflection due to the
way the pyranometers were installed (and it won’t be considered in this project ei-
ther since albedo is calculated separately). Temps & Coulson model is described in
Equation (2.13).

Id,T &C = DHI · ( (1 + cosβ)
2

)[1 + sin3(β

2
)][1 + cos2(θ)sin3(θZ)] (2.13)

Where the last two factors shown in brackets account for the horizon brightening
and circumsolar components respectively.

Klucher realized that the isotropic model showed a good performance under over-
cast skies, while Temps & Coulson performed better for clear skies but overestimated
irradiation under overcast and cloudy conditions and therefore, he adjusted Term &
Coulson’s factors with a simple function containing the diffuse fraction. By adding
the diffuse fraction (F), the accuracy is improved because the horizon brightening and
circumsolar components are reduced as the diffuse fraction increases. The horizon
brightening and circumsolar components are both equal to zero during completely
overcast days. The Klucher model for irradiance on tilted surfaces can be seen in
Equation (2.14).

Id,Klu = DHI · ( (1 + cosβ)
2

)[1 + Fsin3(β

2
)][1 + Fcos2(θ)sin3(θZ)] (2.14)

F represents the function above mentioned and was tested by Klucher as F = 1 −
DHI/GHI and F = 1−(DHI/GHI)2. He concluded the quadratic version performs
better and therefore, this diffuse fraction will be used. Even though python pvliv de-
scription states it uses the linear version, in the source code of its pvlib.irradiance.klucher
function the quadratic version is used [34]. The needed inputs for this function are:
surface tilt and azimuth, DHI, GHI, solar zenith and solar azimuth.
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2.4.3.3 Perez model

Richard Perez et al. presented in 1990 two models for daylight availability and one
irradiance model [35]. The latter is the newest version of the previously published
models that predict diffuse irradiance received on tilted surfaces.

The three models were validated for both hourly and 15-minute data, and pa-
rameterize insolation conditions from four basic components derived from the inputs.
Only three of them are used in the diffuse irradiance model and are listed below.

1. Solar zenith angle (θZ)

2. Sky’s clearness (ϵ):

ϵ = [(DHI + DNI)/DNI] + κ(θZ)3

1 + κ(θZ)3 (2.15)

Where κ is a constant equal to 1.041 for zenith angle in radians.

3. Sky’s brightness (∆):

∆ = DHI · AM

E0n
(2.16)

Where AM is the relative optical airmass and E0n the extraterrestrial irradiance.

This new Perez model is based on the anisotropic diffuse model developed two
years earlier by himself and is shown in Equation (2.17).

Id,P er = DHI · [(1 − F1)( (1 + cosβ)
2

) + F1 · (a

b
) + F2 · sin(β)] (2.17)

F1 and F2 are coefficients expressing the degree of circumsolar and horizon/zenith
anisotropy respectively, which are functions of the sky (insolation) condition. The
surface tilt is represented by β, and the terms a and b are calculated as follows:

a = max[0, cos(θ)] and b = max[0.087, cos(θZ)]

Where θ is the angle of incidence, i.e. angle between the sun and the normal to
the considered surface.

In the same article, a set of recommended coefficients based on data from different
locations in the USA and three different cities in Europe is presented. It is argued
however, that the choice between which set of coefficients to use is far from criti-
cal. The ”all-site” set of coefficients achieved an asymptotic level of optimization[35].
Therefore, this set of coefficients has been used for this project. They are summarized
in Table 2.2 for different sky clearness bins and Equations (2.18) and (2.19) show how
they must be calculated.
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Table 2.2: Coefficients for the Perez diffuse irradiance model[35]

ϵ Bin f11 f12 f13 f21 f22 f33
1 -0.008 0.588 -0.062 -0.060 0.072 -0.022
2 0.130 0.683 -0.151 -0.019 0.066 -0.029
3 0.330 0.487 -0.221 0.055 -0.064 -0.026
4 0.568 0.187 -0.295 0.109 -0.152 -0.014
5 0.875 -0.392 -0.362 0.226 -0.462 0.001
6 1.132 -1.237 -0.412 0.288 -0.823 0.056
7 1.060 -1.600 -0.359 0.264 -1.127 0.131
8 0.678 -0.327 -0.250 0.156 -1.377 0.251

F1 = max[0, (f11 + f12 · ∆ + f13 · πθZ

180
)] (2.18)

F2 = (f21 + f22 · ∆ + f23 · πθZ

180
) (2.19)

The Perez model will be implemented in the python code with the build-in func-
tion of the pvlib module: pvlib.irradiance.perez [36]. This function takes as inputs:
surface tilt and azimuth, DHI, DNI, E0n, solar zenith and azimuth, AM and a last
parameter where the location-specific coefficient table is chosen. As explained before,
the ”all-site” table developed in 1990 has been the one used for this project.

2.4.3.4 Hay & Davies model

J. E. Hay and J. A. Davies created an anisotropic model that accounts for both
isotropic and circumsolar components of the diffuse irradiance [37]. They realized
that the effects of the circumsolar component become more pronounced under clear
sky conditions, thus defined an index to weight both components. It is referred as
anisotropy index (AI) and it is defined as the ratio between the direct normal irradi-
ance over the extraterrestrial normal irradiance (Equation (2.20)).

AI = DNI

E0n
(2.20)

This index is used to define the portion of diffuse irradiance to be considered cir-
cumsolar with the remaining portion being considered as isotropic. Equation (2.21)
shows Hay & Davies model.

Id,HD = DHI ·
[
(1 − AI) (1 + cosβ)

2
+ (AI · Rb)

]
(2.21)
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The geometric factor Rb - as defined by Duffie & Beckman [38] - represents the
ratio between the direct radiation on a tilted surface to the direct radiation on a
horizontal surface (Equation (2.22)). Since circumsolar radiation is originated in the
sky regions around the sun, is projected into the tilted surface in the same way as the
beam radiation.

Rb = Ib,P OA

DrHI
= Ib · cos(θ)

Ib · cos(θZ)
= cos(θ)

cos(θZ)
(2.22)

Hay & Davies model has potential weaknesses. It does not include horizon bright-
ening, hence the model can underestimate radiation under certain conditions. For
AOI (θ) greater than 90◦, the circumsolar radiation is set to zero because the sun is
not on the surface’s field of view. Additionally, if at the same time the AI is greater
than zero, the model will predict lower diffuse values than the isotropic model.

The Hay & Davies model was implemented in python with the its pvlib module
function: pvlib.irradiance.haydavies [39]. In this case, function’s inputs are: surface
tilt and azimuth, DHI, DNI, E0n, solar zenith and solar azimuth.

2.4.3.5 Reindl model

Reindl created a model as a modification of Hay & Davies to include the horizon
brightening component. Following a similar model creation process as the one used
by Klucher (explained in Section 2.4.3.2), Reindl added to the Hay & Davies model
the horizon brightening factor developed by Temps & Coulson and a similar modulat-
ing factor (f ) as the one included in Klucher model. Equation (2.23) shows Reindl’s
transposition model [27].

Id,Rei = DHI ·
[
(1 − AI) · (1 + cosβ)

2
· [1 + f · sin3(β

2
)] + (AI · Rb)

]
(2.23)

In other words, Reindl added to H&D model the horizon brightening used by
Klucher with a different modulating factor. He defined f as the square root of the
ratio between the beam irradiance in a horizontal surface to the global irradiance
(Equation (2.24)).

f =
√

DrHI

GHI
(2.24)

The idea is that, under cloudy skies the modulating factor and AI go to zero and
the model reverts to the isotropic model. The model will predict equal or greater
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values than the Hay & Davies model, and the aforementioned weaknesses are mit-
igated by the addition of the horizon brightening term. Nonetheless, on one side,
for completely overcast days f will be close to zero, which would mean unnoticeable
differences with the Hay & Davies model. While on the other side, for clear days
it would be closer to 1, as it will do the anisotropic index (AI) reducing the first
term of the product and thus leading to the same situation where no big differences
can be seen. The Reindl transposition model was implemented with pvlib’s function:
pvlib.irradiance.reindl [40]. Inputs used for this model are: surface tilt and azimuth,
DHI, DNI, GHI, E0n, solar zenith and solar azimuth.

2.5 Energy assessment
The initial idea was to run energy simulations with different inputs, in order to in-
vestigate the bias error that BIPV project developers might risk associated to the
transposition model choice or whether they used measured data or transposed. Un-
fortunately, as it is explained in Section 5.2 the chosen software to perform the simu-
lations (PVsyst 6.7.8) did not allow to use measured data in the POA and showed big
differences in the comparison of measured irradiance in the POA versus how PVsyst
processes this irradiance in the POA. Besides, less than five months of data was avail-
able. Therefore, only comparisons between measured and transposed data in vertical
surfaces and the measurement’s uncertainty were assessed. Chapter 5 details the re-
sults.
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CHAPTER3
Decomposition model

creation
In this section, the creation process for a decomposition model is detailed. The steps
followed were: data acquisition and filtering, analysis of the available data (or pre-
creation), curve fitting and model creation, and decomposition model validation.

3.1 Data acquisition and filtering
The DTU campus at Risø contains a range of different sensors deployed to measure
fundamental meteorological parameters. For the creation of the decomposition model
the focus is set at the two pyranometers used to measure Global Horizontal Irradiance
(GHI) and Diffuse Horizontal Irradiance (DHI) at their main weather station on top
of Building 130 (see Section 2.1). Data from these pyranometers and other sensors
placed at the mentioned weather station has been stored in DTU’s SQL database
since February 14th 2017 at different time steps, most sensors are sampled every 10
seconds. These measured or derived (calculated from measurements or date and time)
parameters include: Direct Normal Irradiance (DNI), solar geometry values and other
atmospheric conditions such as temperature, rainfall or relative humidity.

This data has been continuously recorded and stored in DTU’s database. All the
available data until November 15th 2019 was used for both creating and validating a
decomposition model for the studied location and other locations in Denmark with
similar irradiances (see Section 2.1.3, Figure 2.4). Data stored during this 33 months
period, have resulted in a total of 6,358,792 data points for each of the measured and
calculated parameters.

In the first filtering step, the data within this period has been studied in order to
find and remove unreliable data. The ”quality assurance and performance monitor-
ing log”, created by the department employees, gave a hint on which periods of time
must be removed or at least checked as is the case of: sensor calibration periods, un-
expected performance or failure events. This resulted in the elimination of more than
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300,000 timestamp rows containing compromised or unreliable data points (6,030,574
rows left).

Once this corrupted or non-valid data has been removed, a first Quality Control
(QC) has been carried out accordingly with the BSRN Global Network recommen-
dations [41]. The Baseline Surface Radiation Network (BSRN) is a project aimed
at detecting important changes in the Earth’s radiation field at the Earth’s surface
which may be related to climate changes. It is a project of the Global Energy and
Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Re-
search Programme (WCRP).

This QC measure is a three-step process where first any measurements exceeding
physical limits are removed. Next, data outside of what it are considered extremely
rare limits are removed. Finally, comparisons based on empirical relations between
the different measured parameters are used to delete smaller errors which may have
escaped the previous filters.

The limits mentioned in the document are set in order to accommodate all lat-
itudes and climate regimes in the BSRN Program, which covers a latitude range
from 80ºN to 90ºS. For detailed information about the QC recommendations made
by BSRN refer to Appendix A. All the equations listed in the appendix were im-
plemented in the model excluding filtering conditions applied to ground reflected
irradiance (albedo) and long wave measurements since these parameters are not cur-
rently measured. After these filters were applied to the dataset, the number of usable
rows (time stamps) was reduced to 3,827,771.

At this point, and after BSRN guidelines were applied, other assumptions were
made to discard more noise or unreliable data. The following list enumerates the
condition applied to the dataset. Data matching these criteria are considered reliable
and useful.

1. Elevation angle:

• Greater elevation angles than 3◦1

2. Negative irradiation values:

• GHI values greater than 0
• DHI values greater than 0
• DNI values greater than 0

1After the uncertainty assessment of the GHI measurements (see Appendix B), it was increased
to 5◦, which proved to reduce maximum uncertainty from 19.3% to 11.8%.
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3. Short wave sum:

• The sum of short wave radiation (DHI + DNI · cos(θZ)) deviation from
GHI within 5%

Conditions 1 & 2 have been applied to the measured data in order to avoid night-
time periods where only non-valuable irradiance is measured. These filters also ac-
count for early morning and late evening periods when the sun is above the horizon,
but irradiance can be measured as negative - due to clear sky radiation losses or re-
flection losses on the pyranometers dome.

Besides, and even though BSRN guidelines already contemplate rules on the ratio
of the GHI over the summed short wave radiation, a more strict filter was applied
on this empirical relation. Condition 3 was applied to account for the possible un-
certainty in the measurements, any data point with a summed short wave radiation
(DHI + DrHI) outside the range of a ±5 % of the GHI has also been discarded.2

3.2 Analysis of available data and pre-development
of the model

As described in Section 2.4, a decomposition model relates diffuse fraction to other
parameters such as clearness index or solar elevation angle. For the scope of the
project, the goal is to create a simple decomposition model for hourly averaged data
as a function of the clearness index only. Therefore, once the data was filtered, diffuse
fraction and clearness index (as described in Section 2.4 - Equations (2.5) to (2.7))
were calculated for each timestamp.

Once these parameters were calculated, the stored data was filtered again. Apart
from the BSRN QC procedure and other filtering assumptions explained in Section
3.1, new conditions regarding these two variables (and other parameters calculated
in intermediate steps) were applied to the dataset.

4. Diffuse fraction:

• Within the range from 0 to 1.05

5. Direct normal irradiance:

• DNI values must be smaller than the extraterrestrial irradiation
2Uncertainty evaluation over the measurements of the GHI has been assessed and is further

discussed in Appendix B
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6. Clearness index:

• Within the range from 0 to 1.1

It is physically impossible to get greater diffuse fraction values than 1 yet, part
of the measured data (less than 1%) showed to be above this value. Filter condition
4 has been applied to remove corrupted data and still leave margin for the inherent
uncertainties in the measured data.

Conditions 5 and 6 are applied to remove data outside physical limits. Even
though it can seem that the ratio between GHI and extraterrestrial irradiance in a
plane normal to the earth surface (where the sensor is installed) can not be greater
than one, it can be for short periods with partly cloudy conditions due to reflected
radiation off of the clouds [27], this is a phenomenon sometimes referred to as cloud
enhancement. That is why the limit of condition 6 has been set at 1.1.

After the filtering process, the total usable data accounts for almost 3,4 million
rows with measurement for each parameter. Figure 3.1 plots diffuse fraction as a
function of clearness index with the aforementioned filters applied over the 33 month
period studied.

Figure 3.1: Measured data from February 14th 2017 to November 15th 2019 after
filters have been applied

As it can be seen, the shape of the represented data differs from the idealized case
(as the one shown in Figure 2.9). It is wider in the direction of the x-axis, which is
fully related with the measurement frequency. Often, atmospheric variations occur



3.2 Analysis of available data and pre-development of the model 31

on short timescales. When the sky is not fully overcast but has some drifting clouds,
irradiance values can have big variations in a matter of seconds. Therefore, a 10-
second measurement frequency could capture short term atmospheric effects that are
not representative of the long-term radiation. By resampling and averaging at smaller
frequencies, these ’short-lived’ atmospheric events are smoothed out to obtain more
relevant irradiance results to the final application of the model. Figure 3.2 shows
the effects of resampling the measured data in smaller frequencies. The resampling
method used was the average of the measured variables within the resample period.
The less frequently the data is sampled, the fewer outliers. The data that is difficult
to physically explain, such as the instances with low clearness index and low diffuse
fraction or the opposite case, where clearness index is greater than 0.5 and yet diffuse
fraction shows big values, are transformed into more reasonable values showing an
expected trend as the one mentioned above.

Figure 3.2: Raw data measured every 10 seconds and resampled at different frequen-
cies

Once the data was filtered and the necessary parameters calculated, the dataset
was split into two subsets: the first one is used to create a decomposition model
(training dataset) and the second subset is used to validate the model (withhold
dataset). In the first case, data from February 14th 2017 to August 14th 2018, in
which averaging the data on an hourly basis results in 5,950 hours. On the other
side, remaining data from August 15th 2018 until November 15th 2019 was used for
the second case (validation) and it corresponds to 5,222 rows of hourly averaged data.

In order to transform this ”cloud of dots” into a functional curve that can be used
to develop the model, diffuse fraction values were averaged for small intervals of clear-
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ness index (Kt). Figure 3.3 shows the results of this process. The grey dots show the
raw 10-second measured data, while red dots represent the average diffuse fraction
for small clearness index binning intervals (in this case 0.001 Kt bins were used). A
similar process was followed with the dataset resampled at different frequencies (5
minutes, 30 minutes and 1 hour), and afterwards averaged in a similar manner as the
previous case but this time using Kt steps equal to 0.01. The results of these three
different resampled datasets are also displayed in Figure 3.3.

Figure 3.3: Measured and averaged raw data versus averaged data at different resam-
ple frequencies

Since the objective is to create a tool accessible for users working in the solar
energy field within the Sealand region, the model should be created using sampling
frequencies similar to those that will be used in practice (mostly hourly or daily val-
ues). In this sense, and with consideration to the above mentioned issues associated
with high frequency measurements, and the positive results observed when resam-
pling at smaller frequencies similar to the ones commonly used in the industry of
solar energy applications, hourly resampled and averaged data was chosen to create
the decomposition model.

3.3 Curve fitting and model creation
At this point, after analyzing and filtering the available data measured at DTU Risø
campus, the dataset used for the decomposition model creation is plotted in Figure
3.4 as diffuse fraction versus clearness index.
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Figure 3.4: Hourly averaged data and weighted curve used to create the decomposition
model

As it can be seen in Figure 3.4 and Figure 3.3, the shape of the averaged curves
differs from the usual decomposition models explained at Section 2.4.1, mostly in the
region with clearness index values greater than 0.8, where other decomposition models
consider it as constant. This is due to the fact that diffuse fraction has been modeled
only as a function of clearness index when in reality, there are other atmospheric
parameters such as relative humidity that contribute to the value of the diffuse ratio.
For instance, Douglas T. Reindl developed in 1988 as part of his thesis a decomposi-
tion model as a function of: clearness index, solar altitude, ambient temperature, and
relative humidity; and a ”reduced” version which considers only the diffuse fraction
as a function of clearness index and solar altitude. In fact, Reindl’s model shows a
similar trend in the region where clearness index is greater than 0.8. He concluded
that compared with Lui & Jordan correlation model (which only takes into consider-
ation clearness index), the advance model shows a diffuse fraction reduction in the
residual sum of squares by 14%, while the ”reduced” version shows a 9% reduction
[27].

Research has been done on what could create this unexpected increase in diffuse
fraction for the above mentioned region of the plot (Figures 3.3 and 3.4). As a first
step, different parameters were plotted in the clear sky index range from 0.8 to 1.1.
This was done to analyze if any particular parameter could explain the behavior in
that region (Figure 3.5). Parameters such as solar elevation angle, extraterrestrial
irradiance, relative humidity, azimuth or precipitation were investigated.
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Figure 3.5: Subplot of different parameters behavior for great clearness index values

Apart from the parameters that directly influence diffuse fraction or clear sky
index (as GHI, DHI or DNI), it can be seen that relative humidity has a positive
correlation within the investigated clear sky index interval.

In order to confirm any possible correlation between the diffuse fraction and other
parameters a correlation matrix was calculated with python tools for all the hourly av-
eraged available data. Figure 3.6 shows the results after using the correlation function
(.corr()) from python’s library pandas. This function calculates Pearson’s standard
correlation coefficient for linear correlation. Even though it shows the relative humid-
ity has a mid-strong correlation (showing the highest of the non-irradiance related
parameters), when it is calculated only for the above mentioned region its correlation
is reduced to 0.2. Diffuse fraction, clearness index and relative humidity are also plot
with color maps (Figure 3.7) which have not revealed a clear correlation. It was also
checked if data measured for large clearness index values are seasonally-dependent
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i.e. concentrated in any specific period of time or time of the year, but no further
correlations were found.

Figure 3.7: Relative humidity relation with diffuse fraction and clearness index

Despite these results, and due to the objective of developing a simple model, any
possible correlation with clear sky index (e.g. relative humidity) hasn’t been further
investigated. End users do not always have access to meteorological parameters other
than global horizontal irradiance measurements, and therefore the model has been
kept as a simple correlation between diffuse fraction and clearness index. Therefore,
data for large values of clear sky index (Kt) have been fitted to a horizontal line. Data
in this region only accounts for 1% of the whole dataset, so this assumption won’t
have great influence on the results. In fact, if one were to dig into the pvlib function
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irradiance.clearness_index you would discover that the National Renewable Energy
Laboratory (NREL) fortran code and the photovoltaic software widely used by the
industry PVsyst, limit the clearness index value for hourly averaged measurements
to 0.82 as a default value found in ”preferences”.

At this point fitting the diffuse fraction piecewise to the clearness index is reason-
able. Similarly to other decomposition models a three interval piecewise function was
created using the dataset shown in Figure 3.4. Piecewise regression functions were
used to create a model that fits the hourly averaged data. In order to achieve the best
possible fit, regression goodness of fit metrics were used. A function that iterates the
borders of the three different regions for different clearness index values in order to
minimize the mean square error (MSE) indicator (Equation (2.1)) was implemented
in python to find the curve that fits the best the model. The built in function gave
as the best model the one shown in Figure 3.8.

Figure 3.8: Piecewise curve fitting with three different linear functions for the creation
of the decomposition model

The final decomposition model created shows a minimum MSE of 0.0015 and can
be described as follows:

DF (Kt) =


1.019275 − 0.152132 · Kt Kt <= 0.331
1.533974 − 1.707113 · Kt 0.331 < Kt <= 0.78
0.20 0.78 < Kt <= 1.1

(3.1)
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3.4 Decomposition model validation
In order to validate the decomposition model, the MSE of the withheld dataset was
calculated. Surprisingly, when applied to the hourly averaged dataset from August
15th 2018 until November 15th 2019, this indicator was reduced by half, showing a
MSE of 0.0008. Thus it is concluded that the decomposition model is not overfit
and is generalizeable to other solar radiation measurements. However, future work
should include cross-validating the decomposition model to solar radiation measured
elsewhere in the Sealand region. Figure 3.9 displays both datasets over the created de-
composition model. In addition, as a double check, the created decomposition model
will be tested when comparing transposition models in the following chapter.

Figure 3.9: Piecewise curve fitting with three different linear functions for both the
creation and validation datasets



CHAPTER4
Transposition models

In this chapter, the description of the analyzed transposition models (described in
Section 2.4.2) and the process to identify the optimal model for vertical surfaces in
the Northern Sealand region is explained.

4.1 Optimal transposition model research

As a first step to analyze the accuracy of the different transposition models, radiation
measured by two tilted pyranometers at the testing field were compared with radi-
ation transposed to the plane of array from the horizontal plane. This constitutes
two different scenarios with two different goals. A first scenario where data from a
pyranometer installed on a south facing 25◦fixed tilt array was compared with the hor-
izontal irradiance data transposed using different transposition models and a second
scenario where measured data from a pyranometer mounted on a horizontal single
axis tracker (HSAT) was compared to data transposed using different transposition
models. Each scenario was analyzed using two different input data sets for the trans-
position: firstly using all broadband measurements (GHI, DHI, DNI) from the main
weather station, and secondly with the same GHI but with DHI and DNI calculated
by means of the decomposition model described in Chapter 3. Figure 4.1 shows an
aerial view of the testing field. The pyranometer on the fixed tilt array is circled in red
and the one installed on the HSAT is circled in blue. Figure 4.2 shows the diagram
of this process. In this way, the influence of using measured GHI, DHI and DNI data
against the use of a decomposition model fitted for a certain location can be discussed.

The previously explained transposition models were used only to calculate the
diffuse component in the plane of array. The beam radiation and ground reflected
components in the collector plane of array are calculated using the same approach
for all transposition calculations as explained in Equations (2.9) and (2.10).
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Figure 4.1: Aerial view of the testing field at Risø

Figure 4.2: Diagram of the process followed to identify the optimal transposition
model and validate the decomposition model

4.1.1 Scenario 1 - Fixed tilt pyranometer
In a first case, measurements from a pyranometer located at the bottom end of a
fixed array (Figure 4.3) - south facing with 25◦inclination - are compared with the
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transposed irradiance from the horizontal one measured in the main weather station.
This comparison is intended to find which transposition models perform better at
this location and to have a better understanding of the differences between them.

Figure 4.3: Pyranometer on fixed tilt array.

4.1.1.1 Data acquisition and filtering

In this case, available measurements from the fixed tilt pyranometer start on January
28th 2019 and therefore, comparisons could not been made before that date. The com-
parison period was from January 28th 2019 to December 3rd 2019. Unfortunately,
measurements from the fixed pyranometers are stored in a different database and with
different time format than the sensors at the main weather station. On one hand,
all timestamps in the main weather station’s database are naive, which means they
hold no timezone information. While on the other hand, the fixed tilt pyranometers
database is timezone aware and changes for Daylight Saving Time (DST) are recorded.
This means that, in order to be able to compare both databases, timestamps had to
be transformed into the same time format and timezone. It was known that the main
weather station database was using constant timezone equal to UTC +1, even though
this information is not included in the database. Therefore, python tools were used
to adjust both databases to Denmark’s time i.e Central European Time (CET) as
well as to change for DST.

The same BSRN QC limits and similar filters to the ones explained in Section
3.1 were applied to the measurements of the tilted pyranometer. Table 4.1 sums up
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the filtering conditions applied apart from the BSRN ones. The fixed pyranometer
measurements were also filtered to account only in positive values of global irradiance
in the plane of array (POA).

Table 4.1: Filtering conditions applied to the dataset for scenario 1

Parameter lower limit upper limit
Solar elevation angle [◦] 16 -

GHI [W/m2] 0 -
DHI [W/m2] 0 -
DNI [W/m2] 0 E0N

Short wave sum [W/m2] GHI -5% GHI +5%
IP OA

1 [W/m2] 0 -
Diffuse fraction (DHI/GHI) [-] 0 1.05

Clearness index (Kt) [-] 0 1.1
1 Where IP OA refers to the irradiance measured by the pyranometer

When analyzing possible shadowing it was discovered that, due to the distribution
of the arrays in the field, the sensor gets shadowing from the previous array for profile
angles lower than 16◦. Therefore, all the data collected when the sensor was shaded
was removed. Unfortunately, at this latitude, sun angles do not reach that elevation
during most of the winter period which limited the available data until beginning of
November only.

Once both datasets were filtered and the timestamp formats were unified, the
dataframes were resampled such that only hourly timestamps remained. Afterwards,
a new dataframe was created that joined rows with a common timestamp from both
datasets. The purpose was to have a fair comparison between both databases since
they might have different maintenance or calibration periods, then in this way those
won’t be considered. Table 4.2 shows the available data after each of those steps.
After the filtering, averaging and cross matching process, a total of 2,828 hours were
available for the comparison within the nearly 11 month period studied here.

Table 4.2: Available data rows for scenario 1 after each of the data processing steps

Dataset Initial Filtering Resampling Final
Main weather station data 2,489,831 151,166 2,877 -

Pyranometer measurements (gantner) 182,963 124,894 5,878 -
Scenario 1.1 - - - 2,827
Scenario 1.2 - - - 2,827
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4.1.1.2 Transposition models comparison

After the data was filtered and cross-matched between both databases, the angle
of incidence between the sun and the normal to the pyranometer was calculated by
means of the pvlib function pvlib.irradiance.aoi which calculates AOI as explained
in Equation (2.11). Once the AOI was defined, beam radiation and ground reflected
radiation were calculated for each timestamp with Equations (2.9) and (2.10) respec-
tively. Furthermore, DHI and DNI for Scenario 1.2 were also calculated with the
diffuse correlation model created in Chapter 3

The diffuse component in the plane of array was calculated with the 5 different
transposition models previously described and added afterwards to the calculated
POA beam and ground reflected radiation. Figure 4.4 shows the measured irradiance
by the pyranometer versus the transposed irradiance to that same plane for the 5
different models.

(a) Isotropic (Liu & Jordan) model (b) Klucher model

(c) Perez model (d) Hay & Davies model
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(e) Reindl model

Figure 4.4: Comparison between measured and transposed irradiance on a 25◦tilted
surface

As it can be seen in Figure 4.4, all of them show a similar shape around the black
line, which shows the unity line (what would be a perfect fit). At this point, none of
them clearly show better performance over the other. Furthermore, it seems that the
choice of using measured DHI and DNI versus decomposed DHI and DNI does not
have significant influence on the results.

In order to better quantify the performance of the different transposition models,
the ”goodness of fit” metrics described in Section 2.3 were used. Root mean square
error (RMSE), mean absolute percentage error (MAPE) and mean bias error (MBE)
were calculated for each model and both variant of scenario 1. Results are displayed
in Figure 4.5. The error bars account for the uncertainty of the GHI sensor. They
show how different the statistical results would have been after varying the GHI mea-
surements to their uncertainty limits.

Two straight-forward observations can be seen in Figure 4.5: all different trans-
position models show similar results (same order of magnitude) and there are no big
differences between using measured or decomposed data. Nonetheless, the case where
decomposed data was used shows a high variability when uncertainties in the GHI
were introduced.
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Figure 4.5: Scenario 1 metrics comparison for the different transposition models

Several unexpected results were obtained. The isotropic model (Liu & Jordan),
which does not consider circumsolar and horizon brightening diffuse components. Sur-
prisingly, MBE values for the isotropic model show overestimation on average for sce-
nario 1.1 (measured DHI and DNI) and an almost imperceptible underestimation for
scenario 1.2 (decomposed DHI and DNI), which is the most surprising result. More-
over, Klucher model is supposed to be an improvement of the isotropic model but
shows a worse performance. Namely, the Klucher model introduces two factors to
account on the other regions of anisotropy in the diffuse radiation field, what should
show an improvement in the performance compared with the isotropic model, but is
not the case for the dataset studied here.

Furthermore, Hay & Davies and Reindl models show similar results. The only
difference between both models is that Reindl incorporates Temps & Coulson’s hori-
zontal brightening factor to the isotropic term in Hay & Davies formula.

In addition, for this specific scenario, since the pyranometer is tilted 25◦(β) the
sinusoidal term equals to 0.01, meaning the horizontal brightening component won’t
have much influence in any case.

In order to see if there is any relationship between the sky conditions and the error
on the transposition model, daily RMSE was plotted over daily averages of the clear-
ness index. Figure 4.6 shows the results. It can be seen how the error between the
measurements and the modeled irradiance increases as the clearness index increases.
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Figure 4.6: Daily RMSE over the daily averages of clearness index for scenario 1 and
different transposition models

In view of the results, none of the transposition models can be declared as the
best performing nor does any particular model demonstrate clear advantages over the
others for the location and scenario studied here. Hence, all of them were considered
in the next scenario.

4.1.2 Scenario 2 - Single axis tracker pyranometer
A second scenario was analyzed where measurements from a pyranometer mounted
on a horizontal single-axis tracker system were compared with the different transpo-
sition models. Figure 4.7 shows the pyranometer experiencing dome frost. Besides, it
can also be seen in Figure 4.7 that the back tracking is not optimal, since the last row
of the following tracker is shadowed. The tracker axis is mounted on the north-south
direction and goes from 60◦tilt facing east to the same inclination pointing to the
west. In other words, the azimuth angle is 90◦before solar noon and 270◦after solar
noon. It is equipped with a back-tracking system that avoids shadowing between
arrays at low elevation angles.
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Figure 4.7: Pyranometer on the horizontal single axis tracker system

The main objective of this comparison was to see which transposition models per-
form better for steep non-south facing surfaces. Therefore, special attention was paid
to morning and evening hours when the tracker angle was between 50◦and 60◦. In
addition, it was taken as a double-check test to see if results in scenario 2 support
those exposed in scenario 1.

4.1.2.1 Data acquisition and filtering

The same databases as in scenario 1 were used thus, a similar data acquisition and fil-
tering process was followed. Measurements on the pyranometer mounted on the single
axis tracker are stored in the ”gantner” database (same as the fixed tilt pyranometer),
but data on the surface angle is stored in a different one that records all tracker’s data.
Similarly to Section 4.1.1 the first step was to unify date-time format for the three
different datasets used in this case. Both BSRN QC limits and own defined filters
were applied to the data. Table 4.3 shows the filter conditions defined for this scenario.
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Table 4.3: Filtering conditions applied to the dataset for scenario 2

Parameter lower limit upper limit
Solar elevation angle [◦] 5 -

GHI [W/m2] 0 -
DHI [W/m2] 0 -
DNI [W/m2] 0 E0N

Short wave sum [W/m2] GHI -5% GHI +5%
IP OA

1 [W/m2] 0 -
Diffuse fraction (DHI/GHI) [-] 0 1.05

Clearness index (Kt) [-] 0 1.1
1 Where IP OA refers to the irradiance measured by the pyranometer

After the acquisition, filtering and resampling steps, all the relevant data was
concatenated into two different dataframes (one for each sub-scenario). The pyra-
nometer on the single axis tracker was installed at the same time as the one on the
fix tilted array (January 28th 2019). The comparison period was from that date until
December the 3rd 2019 (approximately 9 months). Table 4.4 summarizes the number
of timestamps available after each of the mentioned steps for the different datasets.
The final column shows the number of common timestamps (hours) available for each
scenario after cross-matching the three databases indexes.

Table 4.4: Available data rows for scenario 2 after each of the data processing steps

Dataset Initial Filtering Resampling Final
Main weather station data 2,489,831 208,347 3,860 -

Pyranometer measurements (gantner) 182,963 130,104 5,917 -
Tracker position 429,815 429,634 7,187 -
Scenario 2.1 - - - 3,699
Scenario 2.2 - - - 3,689

4.1.2.2 Transposition models comparison

For this scenario, the angle of incidence (AOI) is not a simple mater of the sun po-
sition in the sky dome since the pyranometer is constantly moving as well. In the
tracker position dataset, only the array’s slope is stored. Figure 4.8, shows the slope
value throughout one day. It is calculated for each day of the year and it is defined
as follows: negative inclination values means that the array is pointing to the east,
while for positives values it is pointing towards the west.
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Figure 4.8: Evolution of the single axis tracker inclination throughout a day.

In order to be able to calculate the real AOI and thus, the three irradiance com-
ponents, stored tilt data had to be redefined as shown in Figure 4.9.

Figure 4.9: Evolution of the single axis tracker inclination throughout a day.

Basically, a new column with azimuth information has been add to the dataframe.
It was set to 90◦for negative values of the tracker slope and to 270◦otherwise. When
the tracker is 0◦the surface azimuth can technically be any angle because the tracker
is horizontal[42]. Afterwards, the tracker slope was changed to its absolute value.

After the surface position was redefined the AOI could be calculated and subse-
quently, the three irradiance components were calculated in the same manner with
scenario 1. Figure 4.10 show the results for each transposition model compared with
the measured irradiance in the plane of array.
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(a) Isotropic (Liu & Jordan) model (b) Klucher model

(c) Perez model (d) Hay & Davies model

(e) Reindl model

Figure 4.10: Comparison between measured and transposed irradiance on the surface
of the single axis tracker
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These plots show similar results as the one obtained for scenario 1. Regardless the
Isotropic model, which - specially for scenario 2.2 - seems to underestimate measure-
ments more than the previous scenario (its shape looks a bit wider under the black
unity line). In order to better analyze the accuracy of the different models, the same
statistical error indicators as in scenario 1 are shown in Figure 4.11.

Figure 4.11: Scenario 2 metrics comparison for the different transposition models

As a first observation, it can be seen that the differences in the RMSE between
both scenarios (2.1 and 2.2) are greater than in scenario 1. They show differences
between 5-11 W/m2, aside from the isotropic model which RMSE has peaked up to
20 W/m2, whereas these differences for the fixed tilt comparison were lower than 2
W/m2. The created decomposition model in Chapter 3 seems to perform a bit worst
for non-fixed and non south-facing surfaces.

The anisotropic models show better results in terms of RMSE and MBE. Never-
theless, their MAPE results show an increase close to 10% in comparison to the same
errors for scenario 1. As it has been explained in Section 2.3, this indicator is highly
influenced by outliers.

One hypothesis was that the pyranometer could have been shadowed in the early
morning or early afternoon by the nearby installations e.g. by the fixed tilt rows to
the east (see Figure 4.1), or the small hill and trees to the north (see Figure 4.3).
If so RMSE and MBE would have not show big increases but such outliers due to
shadowing from nearby obstacles could have increased the MAPE values. In order to
confirm this theory, measured versus Reindl transposed irradiance was plotted as a
function of the azimuth angle. Figure 4.12 shows the results.
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Figure 4.12: Polar plot comparing measured irradiance versus calculated with the
Reindl transposition model

As it can be seen, transposed irradiance shows higher values for the solar azimuth
regions approximately between 45-75◦, during this time the sun is North-East of the
pyranometer. In this region of the studied single axis tracker there is a row of threes
(see Figure 4.3) which could be creating some shadowing in the morning for those
azimuth angles (45-75◦). Nonetheless, since the objective of this comparison was to
analyze models performance for surfaces close to vertical, this possible shadowing
effect was not investigated further and proposed as future work. However, a more
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thorough analysis was carried only for tracker tilts between 50-60◦, which is the max-
imum inclination reached fy the tracker surface.

Figure 4.13 shows the statistical error indicators for the comparison only for in-
stances where the inclination of the tracker was between 50-60◦.

Figure 4.13: Scenario 2 metrics comparison for the different transposition models only
for surface inclinations between 50 and 60◦

With regard to sloped surfaces with steep inclinations, the differences between
scenario 2.1 and 2.2 increased. Even though the MAPE indicator overall has been
reduced approximately by half (with the exception of the isotropic model for scenario
2.2), the other indicators have drastically worsened, but only when decomposed data
is used. For the anisotropic models, a similar pattern of results was found in the
RMSE (which remained almost the same) and MAPE (reduced by half) despite the
fact that the MBE indicator varied differently. While Perez MBE remained the same,
Reindl was reduced by half and both Klucher and Hay & Davies MBE was reduced
to almost zero.

In the view of the results, it is concluded that all the anisotropic transposition
models studied have comparable performance. Nevertheless it has been shown that,
the use of decomposed DHI and DNI increases model’s inaccuracies for steep non
south-facing surfaces. Besides, as the surface’s slope increases, so too do those in-
accuracies introduced by the use of decomposed DHI and DNI data. Therefore, the
use of the created decomposition model in Chapter 3 is not recommended for similar
installations.
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CHAPTER5
MDPD assessment

After the first investigations on transposition models, results do not show one par-
ticular prevailing model over the others. No final conclusions on better performance
for this location can be taken. Therefore, all of them were compared to the multi-
directional photodiode (MDPD) measurements. In this chapter, results on the novel
MDPD sensor tests are presented. Firstly, the MDPD measurements were compared
to transposed irradiance to vertical surfaces as a starting point for the second step,
an energy yield comparison. A simple BIPV design was created to see the variations
in energy production depending on whether measured or transposed data is used.
Finally, the MDPD uncertainty was calculated in order to arrive at definitive conclu-
sions.

5.1 MDPD measurements vs transposed irradiance
In order to evaluate what would be the difference or bias error associated with the
choice of one transposition model over the others or using measured data by the
MDPD, both scenarios were studied. The GHI irradiance measured by a fast silicon
photodiode (EKO ML-01) installed in the main weather station will be decomposed
and transposed to vertical surfaces (i.e. to the same orientations as the vertical sen-
sors in the MDPD). Then, these results will be compared with actual measured data
from the MDPD. It has to be pointed out that the ML-01 PD is an older version of
the ML-02 used in the MDPD but they share the same characteristics listed in Table
2.1.

5.1.1 Data acquisition and filtering
The MDPD was installed in September 20th 2019 in the main weather station and its
data has been stored in a new database since then. Solar position data was extracted
from the main weather database, and GHI measured by a fast silicon sensor (also
installed at the main weather station) from another database was used as well. All
these data until January 20th 2020 were used for the study.
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A similar process to the ones described for the acquisition and filtering steps afore-
mentioned in this document was followed. In the first place, the timestamp format
of the different databases was unified. Afterwards, the extraterrestrial irradiance and
clearness index were calculated for each timestamp in order to apply the BSRN filters
to the measured parameters. The specific filters that were applied in this case are
summarized in Table 5.1.

Table 5.1: Filtering conditions applied to the data used for the MDPD assessment

Parameter lower limit upper limit
Solar elevation angle [◦] 5 -

PD sensor [W/m2] 0 -
MDPD sensors1 [W/m2] 0 -

1 Represent each of the 6 sensors in the MDPD

At the beginning there were some problems with the set up of the sensor. Ex-
tremely high values were registered in the nighttime periods. The code was modified
to set irradiance to zero during the night, which was done with an elevation angle con-
strain. Additionally, in the period between October 2nd 2019 and October 16th 2019,
all sensors in the MDPD got frozen at different values (Figure 5.1). The reason for
this error was never found but data within this period was removed from the analysis.

Figure 5.1: MDPD measured data in October 2019

Figure 5.2 shows the evolution in the irradiance measured by the MDPD through-
out the day. Four different images are shown in order to appreciate seasonal variations
as well as variations due to atmospheric conditions. A sunny day and a cloudy day
are shown from September and from January. It can be seen how for overcast days,
the four vertical sensors measure similar irradiances. On the contrary, for sunny days,
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all sensor measurements throughout the day vary as expected. Nonetheless, it has
to be pointed out that the west facing sensor shows peak irradiances much higher
than that of the east facing for clear days. Besides, Figure 5.2d shows slightly higher
measurements for the west facing sensor.

(a) Measured irradiance for a sunny day in
September

(b) Measured irradiance for a overcast day
in September

(c) Measured irradiance for a sunny day in
January

(d) Measured irradiance for a overcast day
in January

Figure 5.2: MDPD measurements for different sky conditions and year season

All the data was concatenated into one dataframe and then the filtering steps
were applied. Table 5.2 summarizes the number of timestamps available after each
of the mentioned steps for the final dataframe and the total available hours for the
study within the mentioned period (809 hours).
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Table 5.2: Available data rows for scenario 2 after each of the data processing steps

Dataset Initial Filtering Resampling Final
MDPD comparisons 71,896 39,345 809 809

5.1.2 Transposition model comparison

In order to calculate the AOI to each sensor, first the tilt of each of the vertical sensors
had to be defined. The MDPD has an inclinometer that stores tilt in two axis: N-S
and E-W. These measurements show some fluctuation due to small movements caused
by the wind. Figure 5.3 shows the raw inclination data in both axes.

Figure 5.3: Inclinometers raw data for both axis of the MDPD

The MDPD sensor tilt measurements shows frozen values as well. Those points
were set to zero first and then, equal to the average tilt measured during ”non-frozen”
or operational periods. From October 12th a variation of the mean tilt for the N-
S axis was introduced in an attempt to better position the sensor. In the absence
of the right tools for a perfect fit and knowing that the wind would continue to
cause movement, and since ± 4◦was considered acceptable alignment, no further
adjustments were made. Finally, the inclination values were averaged for those two
periods independently (Figure 5.4).
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Figure 5.4: Inclinometers data for both axis of the MDPD after adjustments

Each of the four vertical sensors’ tilt was adjusted according to the inclinometer
measurements. Once, all the vertical sensors surface orientations were defined the
AOI, beam and ground reflected irradiances were calculated. A new dataframe for
each vertical sensor was created as a copy of the main one and transposed irradiances
were calculated for each of them. Figure 5.5 shows the RMSE and MBE calculated
for each transposition model grouped by sensors. Additional plots and graphs for
each of the sensor can be seen in Appendix C.

Figure 5.5: Metrics comparison for each transposition model grouped by sensor

Results show, as a general conclusion that, the less time under direct irradiance,
the lower irradiances recorded and therefore, the lower errors registered. Based on
the RMSE results, it can be seen how the north sensor (only one without direct ir-
radiance during the period studied) shows the lowest error. As the time exposed
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to direct beam irradiance increases (higher irradiation measured), so too does the
RMSE in approximately the same proportion. The north sensor shows around 10
W/m2 RMSE, the east and west sensors (which have the sun on their field of view
for approximately half a day) show RMSE between 15-25 W/m2. Finally, the south
sensor which is facing the sun the whole day during the period studied shows RMSE
around 39-45 W/m2. Figure C highlights also an unexpected difference between west
and east RMSE values. East sensor shows higher RMSE values when both were ex-
pected to have similar results. As it has been mentioned above, east and west facing
sensors show different peak irradiances under similar conditions (see Figures 5.2a and
5.2c). One hypothesis is that the small deviations from the perfect vertical installa-
tion (around 4◦on average) might have effects over the measured irradiance.

The same difference between the east and west facing sensors can be seen for the
MAPE of the different sensor orientations are compared. All orientations show simi-
lar results (around 15-25%) with the exception of the west sensor, which surprisingly
shows values around 10%. As previously mentioned, the problem with the MAPE
indicator is that big outliers can create high differences, which can be the case here.
Figure 5.6 shows a comparison between measured irradiance versus transposed with
Perez model for the east and west sensors. In order to make more evident the pres-
ence of outliers, only the data points with higher difference between measured and
transposed irradiance than the RMSE of each sensor are plotted. It can be seen how,
east sensor has a few more outliers. Nonetheless, more than 809 data points during
the winter period are needed for more definitive conclusions.

Figure 5.6: Comparison of outliers for east and west facing sensors for the Perez
transposition model
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The results in this section and in the previous chapter, suggest that Hay & Davies
and Reindl models perform equally. RMSE and MAPE results in both scenario 1
and 2 from the previous chapter, as well as both of them in this chapter show exactly
the same errors for equal conditions. Regarding the MBE, both models present unno-
ticeable differences. This result indicates that the horizontal brightening factor that
Reindl added to H&D equations has small or no influence in the final result. This
could mean that either it must be readjusted for this specific location or horizontal
brightening has no influence in the Danish context. Unfortunately, in this case there
is only MDPD data available for a few months corresponding to the months of the
year with the lowest irradiance values for the studied location and therefore, no final
conclusions can be made.

With regard to the north sensor, none of the transposition models consider cir-
cumsolar diffuse irradiance. Pvlib functions’ code is properly developed to set this
component to zero when the sun is not in the field of view of the surface. Nevertheless
they differ in the way the other two diffuse components are calculated.

The Perez model uses empirically developed factors chosen from Table 2.2 which
influence in the results is difficult to track just by looking at the model. Nevertheless,
pvlib function for this model gives the opportunity to get the results separately for
the three diffuse components (isotropic, circumsolar and horizon brightening). As
expected, circumsolar component is set to zero for all the analyzed hours. Regarding
the horizon component, its average value is 1.35 W/m2 which represents on average
the 3% of the total diffuse. This means the horizontal component does not have great
influence in the results.

In relation to Klucher model, once the circumsolar component has been set to zero,
only the horizon brightening differentiates it from the isotropic model. Results shown
by MBE indicate that the Klucher model tends to overestimate irradiance more than
isotropic, which results in a higher RMSE. Klucher works better in the other three
scenarios. Results show that for surfaces not facing the sun, Klucher does not im-
prove the isotropic model. Nevertheless, the addition of circumsolar and horizontal
components together compared with the simple isotropic model improve results for
sun-facing or partially sun-facing surfaces.

The MBE indicator results, which show the average deviation in the long-term,
are not shown to be greatly influenced by the transposition model chosen for all the
sensor orientations (disregarding the south facing sensor). The north and east sen-
sors seem to overestimate solar irradiance on the plane of array by 2 W/m2 and 2.9
W/m2 respectively, while the west sensor seems to underestimate solar irradiance by 2
W/m2. On the other hand, the south facing sensor presents greater differences based
on the choice of one transposition model over the other. The Iso and Klucher models
underestimate solar irradiance by 12.8 W/m2 and 3.8 W/m2 respectively, while the
Perez, Hay & Davies and Reindl overestimates it by 11.1 W/m2 3.7 W/m2 and 2.7
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W/m2 respectively.

Even though the results show small, long-term variations for each sensor, inde-
pendent of the transposition model used, further investigations must be made. These
should investigate the influence of the RMSE indicator on the final energy production
estimation. This RMSE indicator shows the average variation of the transposition
model predicted irradiance from each measured value.

5.2 Energy yield
In order to evaluate the difference in energy output by using either transposed data or
measured by the MDPD in vertical surfaces PVsyst 6.7.8 software was used. PVsyst
is a designing tool for photovoltaic (PV) systems widely used in the industry. Steps
followed to reach this goal were: create a simple BIPV system design, irradiance data
input and energy output comparison.

A simple square-shaped building with 10kW systems installed in each facade was
defined. Figure 5.7 shows the designed building. The black lines define the build-
ing facades (all pointing to the 4 different cardinal directions), while the blue lines
represent the BIPV system defined in the south facade. Effort was not focused on
designing the best possible performing system but just creating a functional one able
to serve as a base point for comparison. Therefore, widely used PV panels and in-
verters were chosen for the simulation.

Figure 5.7: BIVP system defined in PVsyst to make energy comparisons
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GHI and measured data by each of the vertical sensors of the MDPD were stored
in Excel files to be imported in PVsyst. The software has different ways of creating
”PVsyst meteo file” and input your own irradiance data, either by using horizontal
irradiance (GHI, DHI or DNI) or plane of array irradiance. No problems appeared
when importing GHI and running simulations (PVsyst uses Perez or Hay & Davies
transposition models). Nevertheless, when plane of array data was imported (MDPD
measurements) it was noticed that the software was still using Perez model to trans-
pose data. PVsyst support team was contacted and it was explained the process
followed by the software when facing plane of array irradiance. Apparently, PVsyst
”retrotansposes” irradiance to a horizontal plane to get all irradiance components
and then transposes the irradiance again to the POA. Even though they claim that
the possible calculation error associated with this process does not exceed some few
per mille, different results were obtained. Measured data by the MDPD sensors was
compared to the one retrotansposed and transposed back by PVsyst showing a MBE
of -3.15 W/m2 and a RMSE of 22.40 W/m2. Figure 5.8 show the difference for each
of the hours, reaching mismatches of more than 300 W/m2 in some occasions.

Figure 5.8: Error from Pvsysts ”retransposition” method

Even though the MBE is relatively low, as it can be seen in Figure 5.8 hourly
differences are noticeable and it would lead to non-comparable results. Therefore, in
the view of the results PVsyst was not used to compare energy production predictions.

Other possibilities were investigated such as the System Advisor Model (SAM)
developed by the National Renewable Energy Laboratory (NREL) or use of pvlib
libraries to design and simulate BIPV systems with python. SAM has already been
used to analyze the use of POA measured data [43] validating its use for this type of
study. Unfortunately, due to the lack of time, this comparison is proposed as future
work.
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5.3 MDPD uncertainty assessment

One of the possible advantages of storing irradiance data at different planes is the ex-
pected improvement in the measurement’s uncertainty. This is due to the additional
error introduced by the decomposition-transposition models in addition to the hori-
zontal measurement’s uncertainty. This is compared to MDPD sensor where there is
only measurement uncertainty as irradiance is already measured in the POA. Uncer-
tainty of irradiance measurements is mostly influenced by the directional response i.e.
the inaccuracies associated with oblique sun angles. Therefore, the use of one sensor’s
measurements over the other at different times of the day is expected to drastically
reduce uncertainties according to whichever sensor has the lowest AOI to the sun.

On a similar approach as the one described in Appendix B, the measurement’s
uncertainties were calculated for each of the MDPD silicon sensors (ML-02) as well as
the fast-silicon photodiode used to measured GHI (ML-01). The calculation process
is the same for both sensors since they have the same characteristics and is described
in Appendix D.

A function was created in python to calculate the uncertainty of each measure-
ment as a function of the sensors’ temperature and AOI between the direct irradiance
and the sensor. These components change dynamically in the model, while the other
sources of uncertainty remain static. MDPD sensor stores the temperature of the
printed circuit board inside the sensor, which was assumed to be the same tem-
perature as the sensor. For the ML-01 sensor installed to measure GHI the same
temperature has been assumed.

Figure 5.9 shows the probability density distribution of the expanded uncertain-
ties for the six sensors embedded in the MDPD. The python function used calculates
Kernel density estimations, which do not represent probability itself but gives a good
point for comparison of the uncertainty of one sensor to the others.

As it was expected, the sensors with no direct irradiance (north and ground re-
flected) present lower average uncertainties as indicated by the peak value of their
expanded uncertainty distributions. East and west show almost equal uncertainties.
Since they ideally experience same AOI throughout the day with a symmetry around
solar noon, these results were to be expected. The GHI and south-facing sensors
show similar shapes. For the south sensor, the density distribution is more flat which
could be explained by the low sun elevation angles, which result in lower AOIs to the
south facing surface within the studied location and time period. Nevertheless, the
uncertainties are expected to change in the summer time when elevation angles are
higher.
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Figure 5.9: Kernel density estimation of the expanded uncertainty for all the MDPD
sensors

Figure 5.10 shows the evolution of the expanded uncertainty throughout the day
for the six sensor on two different days (September 24th and December 24th). As it
can be seen, uncertainty is highly influenced by the angle of incidence.

As it can be seen, due to the influence of the AOI the expanded uncertainty of
the sensors varies not only in a seasonal scale but also in a daily and hourly scale.
The use of one sensor over the other at different times of the day could decrease
the systematic error introduced in the processes used to assess solar resources from
POA irradiance that include retrotransposition and transposition of this data. The
assessment of the potential advantages of this methodology is proposed as future work.
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(a) Expanded uncertainty for a sunny day in September

(b) Expanded uncertainty for a sunny day in December

Figure 5.10: Expanded uncertainty of the different MDPD sensors for two different
days as function of time of day

In order to have a general view of the uncertainty differences between each verti-
cal sensor and the horizontal one used to transpose horizontal irradiance into their
surfaces, histograms of this difference were plotted. Figure 5.11 shows this difference
which has been calculated as expanded uncertainty of the vertical sensor minus the
expanded uncertainty of the horizontal sensor. Therefore, negative densities represent
periods of time with higher uncertainty in the GHI measurement than in the vertical
sensor, while positive densities represent the opposite.
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Figure 5.11: Density distributions of the difference between the uncertainty of MDPD
vertical sensors measurements and the GHI measurements uncertainty

As it can be seen, they all show small differences overall. All of them have an
evenly distribution showing on average no difference with the exception of the north
sensor which only shows greater GHI uncertainties or zero difference between the
both of them. The explanation can be seen in Figure 5.10. Even though all sensors
register lower uncertainties than the GHI sensor in the summer time, thowards the
winter time as maximum solar elevation angles decrease, so too do the uncertainty in
the GHI sensor which do not get almost beam radiation.

Therefore, in order to have more definitive conclusions, four different cases were
studied for the south sensor. Uncertainty in the measurements were added and sub-
tracted from the GHI measurements and the south-facing sensor measurements re-
spectively. In the first case, uncertainties were added to both sensors’ measurements
while in the second case both were subtracted. In the other two cases, one sensor’s
uncertainty was added to its measurements while the other sensor’s uncertainty was
subtracted to the its measurements. Figure 5.12 shows the maximum variations on
the RMSE, MAPE and MBE calculated for the comparison between measured and
transposed irradiance into the south sensor.
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Figure 5.12: Metrics comparison for the south sensor accounting on the GHI PD and
the MDPD uncertainties

The error bars show the minimum and maximum errors obtained in the four dif-
ferent cases. Results show that in any of these cases the RMSE of the different
anisotropic model is reduced. On the other side, MAPE and MBE show similiar
fluctuations for the studied transposition models.

In view of the results, as it has been discuss in Chapter 4, none of the transpo-
sition models can be declared as the best performing nor does any particular model
demonstrate clear advantages over the others for the location and vertical surfaces
studied here. Nonetheless, despite the fact that none energy prediction comparisons
were able to be made, these results prove the inherent errors that project develop-
ers risk associated to the transposition model choice or whether they used measured
data or transposed. It has also been proved the increase in the error by the use of
decomposed DHI and DNI over the use of only measured data.
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Conclusion

The main objective of the present study was to validate the MDPD sensor manufac-
tured by EKO Instruments and show the benefits of its use for solar PV applications,
more specifically for use as vertical solar collectors, such as BIPV or east-west ver-
tical BF plants. In consequence, the advantages of using measured data over the
commonly used method to estimated solar irradiance on tilted surfaces were studied.
This method involves the use of two mathematical and empirical models to lift hori-
zontal irradiance measurements onto the studied surfaces. In order to carry out this
study, the optimal transposition model for vertical surfaces and locations within the
Sealand region (Denmark) had to be identified.

To that end, a decomposition model fitted for this region was created. Available
measured data at DTU’s campus in Risø within a 33 month period for this purpose.
The data, measured every 10-seconds was averaged hourly to obtain more relevant
irradiance information for the final application of the model. The available measure-
ments were divided into a training dataset to create the decomposition model, and a
withhold dataset to validate it.

After creating the decomposition model, available resources at Risø campus were
used to conduct two different study cases with the intention of identifying the optimal
transposition model among the five studied (Liu & Jordan, Klucher, Perez, Hay &
Davies and Reindl). Both study cases were divided into two sub-scenarios depending
on the input data: one only used measured GHI, DHI and DNI; the second used
measured GHI and decomposed DHI and DNI from the created decomposition model.
The purpose of this subdivision was, not only to find the optimal transposition model,
but to account for the inaccuracies that the decomposition model might introduce to
the process.

The results from the optimal transposition model study led to some interesting
results. Regarding the solar resource assessment for south-facing tilted surfaces, none
of the studied transposition models were shown to be superior. Furthermore, the
results did not show noticeable differences due to the choice of only measured irradi-
ance data over the use of measured and decomposed irradiances. These differences
between both sub-scenarios for the RMSE, MAPE and MBE indicators were on aver-
age 1.34 W/m2, 0.45% and 0.62 W/m2 respectively, validating the use of the created
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decomposition model for these surface conditions (25◦tilt and south orientation). For
the same comparison in the second case (the HSAT comparisons), these ”goodness of
fit” indicators showed on average differences of 10.19 W/m2 for the RMSE, -1.17%
for the MAPE and 12.66 W/m2 for the MBE. Furthermore, when the uncertainty of
the GHI measurements were included in the analysis, the use of decomposed irradi-
ances could introduce uncertainties within the range of [-1.10, 1.11] W/m2 for the
RMSE, [-3.46, 4.57] % for the MAPE and [-12.95, 12.89] W/m2 for the MBE. These
results highlight the inaccuracies introduced in the solar irradiance assessment for
non south-facing and step surfaces, when the use of measured GHI and decomposed
DHI and DNI is chosen over the use of only measured irradiances.

With regards to the identification of an optimal transposition model, none of the
anisotropic studied models can be declared as the best performing, nor does any
particular model demonstrate clear advantages over the others for the location and
scenarios studied here. The results relative to scenario 2 when only step inclinations of
the HSAT surface were considered (inclinations between 50◦and 60◦), all anisotropic
models underestimate solar irradiance. In this case, the transposition model with
the lowest MBE (the Perez model) shows an average underestimation of 7.1 (W/m2),
while the model with the highest results for the same indicator (the Hay & Davies
model) underestimates irradiance by 19.9 (W/m2). Those differences have not been
considered sufficient to state a definitive conclusion on an optimal transposition model
over the others since they all showed similar RMSE and MAPE results.

After the research on an optimal transposition model for vertical surfaces analysis
of the MDPD was carried out. Since non definitive conclusions were made on that
matter, the same five transposition models were investigated here. The measurements
from the vertical sensors in the MDPD were compared to the transposed irradiance
from another PD installed nearby. The results show as a general conclusion that,
the less time under direct irradiance, the lower irradiances recorded and therefore,
the lower errors registered between each measurement and the predicted irradiance
for that instance (RMSE). The RMSE results increases from 10 W/m2 for the north
facing sensor, to 15-25 W/m2 for the east and west sensors, and around 39-45 W/m2

for the south facing sensor.

Disregarding the south facing vertical sensor, results show equal performances for
all the studied transposition models. They all show RMSE values within a range of
approximately 4.5 W/m2 the north facing sensor. Similar differences were obtained
for the other two indicators, within a range of 4.5% for the MAPE and less than 6
W/m2 for the MBE. The east and west sensor showed similar results. The difference
between the different indicators for both sensors are within the ranges of: 4 W/m2

and 9 W/m2 for the RMSE, 2% and 3% for the MAPE for east and west sensor
respectively, and 4 W/m2 for the MBE results of both sensors.

The MBE results, which show the average deviation in the long-term, are not
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shown to be greatly influenced by the transposition model chosen for all sensor ori-
entations (disregarding the south facing sensor). The north and east sensors overes-
timate solar irradiance on the plane of array by 2 W/m2 and 2.9 W/m2 respectively,
while the west sensor underestimates solar irradiance by 2 W/m2. On the other hand,
the south facing sensor presents greater differences based on the choice of transpo-
sition model. The isotropic and Klucher models underestimate solar irradiance by
12.8 W/m2 and 3.8 W/m2 respectively, while the Perez, Hay & Davies and Reindl
overestimate it by 11.1 W/m2 3.7 W/m2 and 2.7 W/m2 respectively.

Even though the results show small variations in the long-term for each sensor,
with independence of the transposition model used, further investigation must be
made to see the influence of the RMSE on the final energy production estimation.
Unfortunately, it was not possible to run energy simulations for a simple BIPV sys-
tem. Additionally, in this case there is only MDPD data available for a few months
corresponding to the winter period and therefore, no final conclusions can be made.

Throughout the project, it has been observed that, both Hay & Davies and Reindl
transposition models show negligible differences in their ”goodness of fit” indicators
results. These unexpected results point out the small (almost nonexistent) influence
that the horizon brightening component might have on the diffuse irradiance estima-
tion in the Sealand region (Denmark).

In the final phase of the project, the uncertainty of the MDPD measurements was
assessed. As expected, and due to the great influence that the directional response,
the uncertainty in the measurements of each sensor show substantial variations not
only in a seasonal scale but also in a daily and hourly scale. With the exception of
the north facing sensor - which did not receive direct radiation within the studied
period, but will in the summer season - and the ground reflectance, which does not
receive beam radiation. Therefore, the use of one sensor’s measurements over the
other at different times of the day is expected to drastically reduce uncertainties ac-
cording to whichever sensor has the lowest AOI to the sun. This could reduce the
systematic error introduced in the assessment of solar resources from POA irradiance,
this includes retrotransposition and transposition of this data. The assessment of the
potential advantages of this methodology is proposed as future work.

Finally, each of the vertical sensors’ uncertainty were compared to the horizontal
sensor uncertainty. Even though the expanded uncertainty of all these sensor show
hourly variation, those differences on average are around 0.1%. Nonetheless, the
process of decomposing GHI data and transpose it to tilted surfaces increased the
inaccuracies of the predicted irradiance. These effects combined with the uncertainty
of the PD were compared to the uncertainty range of south facing sensor measure-
ments. Results show an increase on the RMSE of 9.22 W/m2 and variations in the
range of [-3.16, 5.21] % for the MAPE and [-8.37, 4.3] W/m2 for the MBE.
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Through this investigation, the inherent errors that project developers of vertical
PV systems (such as BIPV or east-west BF plants) should account for in the choice
between the use of measured (MDPD) or transposed data (and the associated trans-
position model choice) has been accurately quantified. For north facing surfaces, the
average error of each predicted irradiance value over the measured one (RMSE) can
be up to 11.2 W/m2, overestimating the solar irradiance by 6 W/m2 should they
choose to not use measured data, or the optimal transposition model. In the case of
a south-facing surface those errors can be up to 45.5 W/m2 and 12.8 W/m2 respec-
tively. The east and west facing surfaces could show RMSE of 26.5 W/m2 and 24.2
W/m2, and MBE of -4.5 W/m2 and 4.6 W/m2 respectively.

6.1 Future work
A list of possible modifications and improvements to the investigation is presented
below:

- An unexpected difference on the peak irradiances measurements and on the
”goodness of fit” indicators between east and west sensors was obtained. Therefore,
its is recommended to try to adjust the MDPD inclination as close as possible to the
horizontal plane to see if this was the cause of such results.

- Additionally, during the course of this project there was only MDPD data avail-
able for a few months corresponding to the winter period and energy simulation for
a simple BIPV system was not able to be done therefore, no final conclusions can be
made. The repetition of the calculations for a full year of data and its use as input for
an energy simulation is recommended in order to achieve more definitive conclusions.

- Results show small influence of the horizon brightening component of the diffuse
irradiance on this project. Therefore, further research on its influence in the Danish
context is suggested.

- Furthermore, the assessment of the potential advantages of the use of one sen-
sor over the other at different times of the day is proposed. It is believed that the
systematic error introduced in the processes used to assess solar resources from POA
irradiance that include retrotransposition and transposition of this data could be
drastically reduced by the by the use of one sensor’s measurements over the other at
different times of the day according to whichever sensor has the lowest AOI to the sun.

- On a parallel improvement, not related with the purpose of this project, the used
pyranometers located at the testing field showed some shadowing issues. Therefore
their installed position must be relocated. The pyranometer on the fixed tilt array
has already been reinstalled in order to avoid shadowing from the previous array.
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In the case of the scenario 2, the pyranometer must be relocated to avoid shadow-
ing from the hill and trees located in its north-west region. Besides, the backtracking
system must be readjusted, since it has been seen that shadowing between rows exists.
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APPENDIXA
BSRN

recommendations for
QC tests, V2.0

This appendix outlines the recommended filters per the BSRN. For further informa-
tion about the BSRN guidelines and recommendations refer to BSRN main webpage:
https://bsrn.awi.de/.



 

 

BSRN Global Network recommended QC tests, V2.0 
 
C. N. Long and E. G. Dutton 
 
Define: 
 SZA = solar zenith angle 
 µµµµ0 = Cos(SZA) 
  NOTE: In the formulas below, if SZA > 90O, µµµµ0 is set to 0.0 in the formula 
 S0 = solar constant at mean Earth-Sun distance 
 AU = Earth – Sun distance in Astronomical Units, 1 AU = mean E-S distance 
 Sa = S0/AU2 = solar constant adjusted for Earth – Sun distance 
 Sum SW = [Diffuse SW + (Direct Normal SW) X µµµµ0] 
 σσσσ = Stephan-Boltzman constant = 5.67 x 10-8 Wm-2 K-4 
 Ta = air temperature in Kelvin [must be in range 170K < Ta < 350K] 
 Global SWdn: SW measured by unshaded pyranometer 
 Diffuse SW: SW measured by shaded pyranometer 
 Direct Normal SW: direct normal component of SW  
 Direct SW: direct normal SW times the cosine of SZA; [(Direct Normal SW) x µµµµ0] 
 LWdn: downwelling LW measured by a pyrgeometer 
 LWup: upwelling LW measured by a pyrgeometer 
 
Physically Possible Limits 
 
Global SWdn  
 Min: -4 Wm-2 
 Max: Sa x 1.5 x µµµµ0

1.2 + 100 Wm-2 
 
Diffuse SW 
 Min: -4 Wm-2 
 Max: Sa x 0.95 x µµµµ0

1.2 + 50 Wm-2 
 
Direct Normal SW 
 Min: -4 Wm-2 
 Max: Sa  
 [for Direct SW, Max: Sa x µµµµ0] 
 
SWup 
 Min: -4 Wm-2 
 Max: Sa x 1.2 x µµµµ0

1.2 + 50 Wm-2 
 
LWdn 
 Min: 40 Wm-2 
 Max: 700 Wm-2 
 
LWup 
 Min: 40 Wm-2 
 Max: 900 Wm-2 



 

 

Extremely Rare Limits 
 
Global SWdn  
 Min: -2 Wm-2 
 Max: Sa x 1.2 x µµµµ0

1.2 + 50 Wm-2 
 
Diffuse SW 
 Min: -2 Wm-2 
 Max: Sa x 0.75 x µµµµ0

1.2 + 30 Wm-2 
 
Direct Normal SW 
 Min: -2 Wm-2 
 Max: Sa x 0.95 x µµµµ0

0.2 + 10 Wm-2 
 [for Direct SW, Max: Sa x 0.95 x µµµµ0

1.2 + 10 Wm-2] 
 
SWup 
 Min: -2 Wm-2 
 Max: Sa x µµµµ0

1.2 + 50 Wm-2 
 
LWdn 
 Min: 60 Wm-2 
 Max: 500 Wm-2 
 
LWup 
 Min: 60 Wm-2 
 Max: 700 Wm-2 
 
 



 

 

Comparisons  
 
Ratio of Global over Sum SW: 
(Global)/(Sum SW) should be within +/- 8% of 1.0 for SZA < 75O, Sum > 50 Wm-2 
(Global)/(Sum SW) should be within +/- 15% of 1.0 for 93O > SZA > 75O, Sum > 50 Wm-2 

 For Sum SW < 50 Wm-2, test not possible 
 
 
Diffuse Ratio: 
(Dif SW)/(Global SW) < 1.05 for SZA < 75O, GSW > 50 Wm-2 
(Dif SW)/(Global SW) < 1.10 for 93O > SZA > 75O, GSW > 50 Wm-2 

 For Global SW < 50 Wm-2, test not possible 
 
 
Swup comparison 
Swup < (Sum SW)    [or Global SW if Sum SW missing or “bad”] 
 For Sum SW [or Global SW] > 50 Wm-2 
 For Sum SW [or Global SW] < 50 Wm-2, test not possible 
 
 
LWdn to Air Temperature comparison 
0.4 x σσσσTa

4 < LWdn < σσσσTa
4 + 25  

 
 
LWup to Air Temperature comparison 
σσσσ(Ta – 15 K)4 < LWup < σσσσ(Ta + 25 K)4  
 
 
LWdn to Lwup comparison 
LWdn < Lwup + 25 Wm-2 
LWdn > Lwup - 300 Wm-2 
 
 
 
The limits listed for these tests are set in order to accommodate all latitudes and climate 
regimes in the BSRN Program. Naturally, these limits could be further refined for specific 
latitude/climate and achieve better results.  
 
It is recommended that these tests be performed in the order listed above to achieve maximum 
benefit and minimum impact for “missing” or “bad” cases of some values. 
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assessment. Process
and results.

In this appendix the process followed to calculate the uncertainty in the measurements
of the MS-802F pyranometer (SN: F14513FR) is detailed.
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B.1 Measurement equation

The above mention thermo-piled based pyranometer uses the following equation to
calculate irradiance (I) measurements:

I(W/m2) = E(µV )
S(µV/(W/m2))

(B.1)

Where E represents the output voltage of the thermopile and S the pyranometer sen-
sitivity which is determined by calibration. Both have been considered independent
with no correlation since different methods are used to measure or calculate them.

B.2 Standard uncertainties

In the GUM report [44] it is introduced the translation to English of the Recommen-
dation INC-1 (1980) from the original text by the Bureau International des Poids et
Mesures (BIPM) [45], which is originally written in French. This recommendation
groups the components of the uncertainty into two categories according to the way
their numerical value is calculated. A first group (Category A) which is evaluated
by statistical methods, and characterized by the estimated variances (or standard
deviations) and number of degrees of freedom. The second group (Category B) is
evaluated by other means, and should be characterized by quantities, which may be
considered as approximations to the corresponding variances, the existence of which
is assumed.

The GUM approach requires stating the type of statistical distribution used for
the uncertainty calculations, which is either normal, rectangular or triangular. The
NREL summarizes in their report how to calculate the standard uncertainty from
the expanded uncertainty for the most common distributions. The above mentioned
distributions can be seen in Table B.1. The commonly used terminology is used
to calculate uncertainties, where u will represent standard uncertainties, while U is
used for extended uncertainties. When extended uncertainty comes accompanied by
a subscript, it represents its level of confidence.
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Table B.1: Standard uncertainty estimation for common distributions. Source: NREL
[46]

Distribution Source Standard uncertainty
Normal:

Standard deviation = σ
number of reading = n

or
Expanded uncertainty = U

and coverage factor = k

Statistical (Type A) u = σ√
n

OR u = U
k

Rectangular Non-statistical (Type B) u = U√
3

Triangular Non-statistical (Type B) u = U√
6

Normal
k=2 (or t) Non-statistical (Type B) u = U

2 OR u = U
t

However, irradiance is never constant; the 60 readings within a minute are not
truly repeated observations. The variation within the minute can be caused by in-
strumental variation, but just as well by atmospheric variations on short timescales.
Therefore, we argue that the standard deviation associated to the averaging of these
values should not be taken into account when calculating the measurement uncertainty
of a pyranometer or pyrheliometer measurement.[47]

Both parameters introduced in the measurement equation (Equation (B.1)) are
considered uncertainty contributors from category B, which means that they are not
calculated by statistical means.

1. Uncertainty in the output voltage (E) measurement. Campbell Scien-
tific’s data logger model CR6 is used for the output voltage measurement, and
it’s expanded uncertainty calculated for the voltage range used after calibration
is equal to 0.08 %.

2. Uncertainty in the pyranometer’s sensitivity (S). After the last calibra-
tion of the MS-802F, the sensitivity of the pyranometer has been listed as 7.109
(µV/(W/m2)).

In the case of the pyranometers’s sensitivity, defining it as a function of the zenith
angle has proved to reduce the uncertainty in the measurement in 38 % for the same
kind of pyranometer and clear-sky conditions[46]. If any of the proposed NREL
methods or similar would have been used to fit sensitivity, as a zenith angle function,
that fit would have to be treated as type A uncertainty. Nonetheless, it has not been
necessary since, for the extend of this project, S have been considered constant.

Yet, and since measurements are not taken in the same conditions that the cali-
bration was performed under, calibration uncertainty is not enough to quantify the
pyranometer sensitivity’s uncertainty. Other parameters influence in the pyranome-
ter’s sensitivity, and therefore, these sources of uncertainties must be also included in



86B Uncertainty calculations I: GHI pyranometer uncertainty in measurement assessment. Process and results.

the evaluation of the sensitivity’s uncertainty. The most common set of characteristics
influencing S uncertainty is listed in the ISO 9060 [48]. In this norm, the pyranometer
and pyrheliometer characteristics are defined, as well as the requirements for different
classifications. Table B.2 shows the main uncertainty-influencing characteristics of the
MS-802F compared with the ISO 9060 secondary-standard requirements (defined as
Class A in the newest version - ISO 9060:2018).

Table B.2: EKO MS-802F pyranometer specifications.

Characteristics MS-802F Secondary-Standard
(class A) requirements

Zero Off-set A <6 W/m2 <7 W/m2

Zero Off-set B <2 W/m2 <2 W/m2

Long-term Stability <0.5 % <0.8 %
Non-linearity <0.2 % <0.5 %

Directional Response <10 W/m2 <10 W/m2

Spectral Sensitivity <1 % <3 %
Temperature Response <1 % <2 %

Tilt Response <0.2 % <0.5 %

After the uncertainty contributors have been identified, their distribution form and
degrees of freedom must be categorized. The following list enumerates and explains
how each of these contributors have been considered to influence the measurements
uncertainty. For unknown distributions of the expanded uncertainty, it is common
to assume rectangular distribution with infinite degrees of freedom [49].

Parameters affecting output voltage (E):

• Data logger accuracy: the tolerance stated in the calibration sheet of the
CR6, equal to 0.08%, has been assumed to be a symmetric limit specification.

Parameters affecting pyranometer’s sensitivity (S):

• Calibration uncertainty: last calibration sheet (June 2017) states a sensi-
tivity value of 7.109 µV/(W/m2) with a 95% confidence interval of ± 1.1%.
Nevertheless, as a conservative assumption due to the need of re-calibration, it
has been doubled to ± 2.2%.

• Long-term stability: This value is relevant if the sensor has not been recal-
ibrated recently. Nevertheless, manufacturer specification has been used. The
most common source of non-stability in this kind of pyranometers is degradation
of the pyranometers black coating that absorbs solar radiation. Even though
ISO 9060 lists non-stability as a symmetric source, since this degradation pro-
duces a a reduction in sensitivity over time, a one side distribution has been
assumed.
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• Non-linearity: expresses the change in S for irradiance conditions other than
the reference ones. The manufacturer’s specification has been applied to the
full measurement range.

• Directional response: is the error caused by assuming the sensitivity to beam
radiation is the same regardless its direction. It can be assumed constant and
equal to the maximum limit of 10 W/m2 or, on a similar approach to the one
used by Konings et al. [47], calculated as a function of beam radiation and
solar zenith angle. For a beam radiation source of 1000 W/m2 applied normal
(θZ=0º) to the sensor, the limit of 10 W/m2 would represent a deviation of 1
% from the real value. Nevertheless, if the same source was applied at bigger
angles, and the 10 W/m2 deviation was constant for all the different incidence
angles, the expanded uncertainty for the directional response would vary for
instance from 1 % to 2 % for θZ=60º, and would be greater than 5 % for
θZ=80º (Figure B.1). It has therefore been assumed equal to (Lambert’s cosine
law): 10

1000·cos(θz)

• Temperature response: specifies the maximum change in S for different
temperatures than the reference one (25ºC) within an interval of 50ºC. Manu-
facturer’s specification of 1% has been applied.

• Tilt response: Even though the manufacturer has specified it as 0.2 %, it
represents the change in S for mounting positions other than reference position
(horizontal), and since in this application is horizontally set up, its contribution
to the uncertainty assessment is not considered.

• Maintenance: ISO 9060 outlines that other effects can be considered. An
uncertainty related to maintenance has also be considered. Sensors are cleaned
weekly preventing them from fouling, and therefore, an extra expanded uncer-
tainty of only 0.5 % has been included in the calculations.

Parameters affecting irradiance measurement (I):

• Zero off-set a: is the response to net thermal radiation. The pyranometer’s
dome exchanges radiation with the surroundings. This means that the dome
may heat up and transfer some extra long-wave radiation to the thermopile,
which would increase solar radiation measured. To apply it pyrgeometer data is
needed to know the net heat exchange. Since this data was not available during
the test period and the manufacture estimates it as just 6 W/m2 it has been
considered negligible.

• Zero off-set b: is the response to temperature gradients. The manufacturer
has set its value at 2 W/m2. In order to simplify the calculation, it was also
considered negligible.
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Figure B.1: Directional response uncertainty as a function of the zenith angle.

Once all the sources of uncertainty were characterized, they have been summa-
rized in Table B.3 as well as the assumptions taken on their uncertainty category,
distribution and shape.

Table B.3: Summary of uncertainty contributions for the MS-802F pyranometer

Uncertainty source Parameter Specification limit Type Distribution Shape
Data logger accuracy E 0.08 % B Rectangular Symmetric

Calibration uncertainty S 2.2 % B normal (k=2) Symmetric
Long-term stability S 0.5 % B Rectangular One-sided (negative)

Non-linearity S 0.2 % B Rectangular Symmetric
Directional Response S 10

1000·cos(θz) B Rectangular Symmetric
Spectral response S 1 % B Rectangular Symmetric

Temperature response S 1 % B Rectangular Symmetric
Maintenance S 0.5 % B Rectangular Symmetric

Zero Off-set A1 I 6 W/m2 B Rectangular One-sided (negative)
Zero Off-set B1 I 2 W/m2 B Rectangular Symmetric

1 Zero off-sets were not considered for the uncertainty calculations

Even though the shape of some sources of uncertainty have been defined as one-
sided, they have been doubled and treated as symmetric to simplify the uncertainty
assessment. All the different sources have been considered uncorrelated for the same
reason. To calculate the expanded uncertainty of the sensitivity, root-sum-of-squares
(RSS), also known as the law of propagation of uncertainty, has been applied to
all sensitivity related parameters[49]. Table B.4 summarizes how to calculate the
standard uncertainty for both variables in the measurement equation.
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Table B.4: Standard uncertainties for the measurement equation parameters of the
MS-802F.

Variable Distribution Coverage Factor %U95 U95 u
Output voltage (E) Rectangular

√
3 0.08 % (e1 · 0.0008) (e · 0.0008)/

√
3

Sensor’s sensitivity (S) Normal 1.96 RSSS
2 % (S· RSSS) (S· RSSS)/1.96

1 Where e represents the measured output voltage (E) 2 Where RSSS represents the
root-sum-of-squares of the uncertainty sources related with the sensor’s sensitivity. It includes

directional responses and therefore it varies as a function of the zenith angle

B.3 Combined standard uncertainty
In order to get combined standard uncertainty, sensitivity factors (c) must be calcu-
lated. It is calculated for each variable of the measurement equation as the partial
derivative of the global solar irradiance (I) with respect to the variable as follows
[46][49]:

cE = ∂I

∂E
= 1

S
(B.2)

cS = ∂I

∂S
= − E

S2 (B.3)

The combined standard uncertainty for type B uncertainties (uB) is:

uB =

√√√√ n∑
j=1

(cj · uj)2 (B.4)

Where j is the variable and n the number of variables.

After applying the standard uncertainties to Equation B.4, and since there are
no type A uncertainties and the sensitivity is assumed constant, the combined uncer-
tainty (uC) can be expressed as:

uC =

√
���*0
(uA)2 + (uB)2 =

√
(cE · uE)2 + (cS · uS)2 (B.5)

uC =
√

(0.141 · 0.0008√
3 · e)2 + (−0.141 · RSSS

1.96 · e)2

As it can be seen, the combined uncertainty is a function of the voltage mea-
sured (e) and the RSS of the sensitivity’s standard uncertainty contributors, since
the sensitivity itself is a constant value.
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B.4 Expanded uncertainty
For a confidence level of 95%, expanded uncertainty can be calculated as follows:

U95 = k · uC (B.6)

In order to get the coverage factor (k), the effective degrees of freedom has to be
calculated first. It is calculated with the following equation:

DFB,eff = (uB)4∑n
j=1

(cj ·uj)4

dfj

(B.7)

Since E has infinite degrees of freedom and the S has more than 500 data points,
the effective degrees of freedom is considered equal to infinite, and therefore, from
the student ”t” tables a coverage factor equal to 1.96 has been obtained. Therefore,
the final expanded uncertainty (in W/m2) can be expressed as follows:

U95 = 1.96 · uC (B.8)

B.5 Application of the uncertainty measurement
Uncertainty has been assessed for two different cases: one sunny day in the summer
time, and one sunny day in the winter time. In Figure B.2 it can be seen how the
uncertainty evolves during a sunny summer day (B.2a) with a minimum uncertainty
of 2.82% at noon, while this value is equal to 4.37% for same condition on a sunny
winter day (B.2b).

(a) Summer day - 3rd July 2018 (b) Winter day - 29th January 2019

Figure B.2: Evolution of the uncertainty in the GHI measurement for two sunny days



APPENDIXC
MDPD plots and

graphs.
In this appendix extra graphs and plots regarding the MDPD study described in
Chapter 5 are presented.
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C.1 MDPD north sensor additional plots

(a) Isotropic (Liu & Jordan) model (b) Klucher model

(c) Perez model (d) Hay & Davies model

(e) Reindl model

Figure C.1: Comparison between the MDPD north sensor measured irradiance and
transposed to that surface
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C.2 MDPD south sensor additional plots

(a) Isotropic (Liu & Jordan) model (b) Klucher model

(c) Perez model (d) Hay & Davies model

(e) Reindl model

Figure C.2: Comparison between the MDPD south sensor measured irradiance and
transposed to that surface
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C.3 MDPD east sensor additional plots

(a) Isotropic (Liu & Jordan) model (b) Klucher model

(c) Perez model (d) Hay & Davies model

(e) Reindl model

Figure C.3: Comparison between the MDPD east sensor measured irradiance and
transposed to that surface



C.4 MDPD west sensor additional plots 95

C.4 MDPD west sensor additional plots

(a) Isotropic (Liu & Jordan) model (b) Klucher model

(c) Perez model (d) Hay & Davies model

(e) Reindl model

Figure C.4: Comparison between the MDPD west sensor measured irradiance and
transposed to that surface
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APPENDIXD
Uncertainty

calculations II: MDPD
uncertainty in
measurement

assessment. Process
and results.

In this appendix the process followed to calculate the uncertainty in the measure-
ments of the MDPD sensors and the GHI fast-silicon sensor (both are ML-02 Si-
Pyranometer) is detailed.



98 D Uncertainty calculations II: MDPD uncertainty in measurement assessment. Process and results.

D.1 Measurement equation
The MDPD device manufactured by EKO Instruments is composed of six silicon
pyranometers (ML-02) also manufactured by them. Same sensor is used to measure
GHI at the main weather station. These low-profile pyranometer uses the same
equation as the previous studied pyranometer(MS-802F):

I(W/m2) = E(µV )
S(µV/(W/m2))

(D.1)

Where E represents the output voltage and S the pyranometer sensitivity which is de-
termined by calibration. Both have been considered independent with no correlation
since different methods are used to measure or calculate them.

D.2 Standard uncertainties
Theoretical explanations and terminology has been described in Appendix B there-
fore, only the most important steps of the process and results will be presented.

As considered for the MS-802F pyranometer, both parameters in the measurement
equation have been assumed category B uncertainty contributors (non-statistical).

1. Uncertainty in the output voltage (E) measurement. Same data logger
(Campbell Scientific’s CR6 model) as the one described for MS-802F pyranome-
ter is used, which expanded uncertainty calculated for the voltage range used
is equal to 0.08 %.

2. Uncertainty in the pyranometer’s sensitivity (S). The MDPD was re-
cently manufactured. Therefore, a sensitivity of 50 (µV/(W/m2)) listed in the
manufacturer’s datasheet has been used.

Uncertainty contributors for the sensitivity have been assumed in the same way as
in Appendix B, excluding the directional response. Directional response as a function
of incident angle has been given by the manufacturer and can be seen represented in
Figure D.1.
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Figure D.1: Laboratory measurements of the directional response error as a function
of the angle of incidence.

The E-W curve is more representative of the typical behavior of the sensors, hence
its values were used. Since it is symmetric, it was averaged for the absolute values
of the AOI and an interpolation function was made to be able to fit any AOI within
the interval 0-80◦(Figure D.2). These values were used to calculate the contribution
of the directional response to the sensitivity’s standard uncertainty. For greater AOI
than 80◦it was considered that no direct irradiance is measured and therefore, no
directional response involved.

Figure D.2: Directional response contribution to the sensitivity’s uncertainty as a
function of the angle of incidence.

Considered sources of uncertainty are summarized in Table D.1.
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Table D.1: Summary of uncertainty contributions

Uncertainty source Parameter Specification limit Type Distribution Shape
Data logger accuracy E 0.08 % B Rectangular Symmetric

Calibration uncertainty S 1.71 % B normal (k=2) Symmetric
Long-term stability S 2 % B Rectangular One-sided (negative)

Non-linearity S 0.2 % B Rectangular Symmetric
Directional Response S f(AOI)1 B Rectangular Symmetric

Spectral response S 3.07 % B Rectangular Symmetric
Temperature response S 0.15 %/◦C B Rectangular Symmetric

Maintenance S 0.5 % B Rectangular Symmetric
Zero Off-set A I 0 W/m2 B Rectangular One-sided (negative)
Zero Off-set B I 0 W/m2 B Rectangular Symmetric

1 Given by external supervisor

Similarly to Appendix B all sources were considered symmetric and uncorrelated.
The expanded uncertainty of the sensitivity was calculated as the RSS of its uncer-
tainty contributors as well. Table D.2 shows how to calculate standard uncertainty
for the output voltage and the sensitivity.

Table D.2: Standard uncertainties for the measurement equation parameters.

Variable Distribution Coverage Factor %U95 U95 u
Output voltage (E) Rectangular

√
3 0.08 % (e1 · 0.0008) (e · 0.0008)/

√
3

Sensor’s sensitivity (S) Normal 1.96 RSSS
2 % (S· RSSS) (S· RSSS)/1.96

1 Where e represents the measured output voltage (E) 2 Where RSSS represents the
root-sum-of-squares of the uncertainty sources related with the sensor’s sensitivity. It includes

directional responses and therefore it varies as a function of the zenith angle

D.3 Combined standard uncertainty
Sensitivity factors (c) as described in Appendix B.3 were calculated for both equation
parameters in order to be able to calculate the combined standard uncertainty (uC).
It can be expressed as follows:

uC =
√

(cE · uE)2 + (cS · uS)2 (D.2)

uC =
√

( 1
S · 0.0008√

3 · e)2 + ( −e
S2 · S·RSSS

1.96 · e)2

uC =
√

(0.02 · 0.0008√
3 · e)2 + (−0.02 · RSSS

1.96 · e)2

As it can be seen, the combined uncertainty is a shown as a function of the out
voltage measured (e) and the RSS of the sensitivity’s standard uncertainty contribu-
tors, since the sensitivity itself is a constant value. The RSS is calculated as a function
of the AOI and the sensor’s temperature difference with the calibration temperature
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(assumed to be equal to 25◦C).

D.4 Expanded uncertainty
Expanded uncertainty with a confidence level of 95% can be calculated as follows:

U95 = k · uC (D.3)

Same conditions regarding the degrees of freedom were applied in this case, there-
fore same coverage factor used (equal to 1.96). Obtaining a final expanded uncertainty
equal to:

U95 = 1.96 · uC (D.4)

Expanded uncertainty as a function of the AOI and sensor temperature was cal-
culated for each sensor of the MDPD and the ML-02 used for GHI.
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