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Abstract 

This paper presents one element of a larger project that probes for systematic 

and predictable patterns of variability/volatility in baseball's descriptive 

statistics. The larger project standardizes many baseball indices along an 

event metric and provides relative estimates of each index’s point of inflection 

toward an empirical asymptote. Specifically these estimates reflect deviations 

in sensitivity to “sample size” (e.g., which descriptive statistics are more or 

less robust across events). The end purpose of this broader investigation is a 

qualifier to be associated with such statistics: sample size sensitivity (Triple 

S). Not because it's needed, but because, colloquially, discussions of baseball 

statistics are commonly qualified by the cautionary statement, "well, it's a 

small sample size". The current presentation highlights the process and results 

of estimating the logarithmic event function of one statistic, batting average, 

and we will provide real-time projections of accuracy (our estimated function 

versus in-coming baseball data that occurs during the CARMA conference). 

Results have implications for the integration of BigData applications into 

digestable summary statistics that appeal to a broad-reaching audience with 

practical implications and meaning.   
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1. Introduction 

Job performance is dynamic – e.g., it changes over time and context (see, for example, 

Sturman, 2003). Although the dynamic nature of performance has been acknowledged for a 

very long time, Kane (1996) was perhaps the first to propose that researchers should 

conceptualize job performance as a distribution of outcomes. Within the social sciences, this 

perspective was originally cited as impactful, but as of February 2020, this unique 

conceptualization of worker performance had only realized 76 academic citations. Recently, 

however, the potential of BigData to inform all aspects of work (including performance) has 

been met with a proliferation of interest and investigations (e.g., Campion, Campion, & 

Campion, 2018; Gunasekaran, Papadopoulos, Dubey, Wamba, Childe, Hazen, & Akter, 

2017; Tonidandel, King, & Cortina, 2016), including the potential to revisit Kane’s (1996) 

proposal of defining job performance via dynamic functional distribution.  

Parallel to the emergent interest of BigData applications to organizational phenomena, in 

October of 2017 the Journal of Business and Psychology published a special issue dedicated 

to the interdisciplinary relevance of athletics and organizations. In their initial call for paper 

and subsequent introduction, the special issue editors noted “how studies of sports can readily 

be compared to and applied to the study and practice of work in organizations” (Gentry, 

Hoffman, & Lyons, 2017, p. 509). The current CARMA presentation integrates these two 

relative “newcomers” into the organizational sciences: athletics and BigData. Specifically, 

we resurrect Kane’s (1996) perspective on performance distributions, leveraging baseball 

data to inform the modeling of performance over time.  

Dalal, Nolan, and Gannon (2017) posed similar questions, tracking performance (goals, 

assists, and positive/negative differential) based on the occurrence or absence of previous 

shared experience with teammates (their sample was Olympic hockey players, permitting an 

estimate of players who had and hadn’t previously been “teammates”). They noted the 

particular relevance of their sample to the construction and utilization of temporary teams 

used by traditional corporate organizations.   

Similarly oriented, Heazlewood (2006) attempted to predict performance of Olympic 

swimming athletes. He found that nonlinear models were better predictors of performance 

than linear models. Results were also more accurate for races that were shorter distances. The 

predictions were made using mathematical models that predicted performance in 1996 and 

1998 and were evaluated based on how closely they predicted performance in events that had 

not happened yet at the time of the analysis. These nonlinear models were again noted as 

patterns also likely to occur within more traditional worker contexts – perhaps having 

implications on the duration of work tasks and suggesting qualitatively different approaches 

toward modeling performance across different task periods.  
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Hofmann, Jacobs, and Gerras (1992) applied a historical equivalent to our current pursuit: 

“mapping” performance across time in two samples of baseball players.  Their interest was 

in relative rank orderings scross time and the stability of such orderings. Due to data capturing 

limitations of the age, these authors were reliant on annual summary data from 204 

professional baseball players presented within The Baseball Encyclopedia (1990). Their 

findings suggest a common nonlinear inverted-U shaped trajectory for offensive performance 

(batting average), with pitching data (earned run averages) exhibiting more linearity over 

time (e.g., ERAs deteriorated fairly consistently across years played). They note possible 

implications regarding patterns of performance for traditional workers across seniority and 

tenure.  

The current CARMA presentation utilizes similar information as Hofmann et al. (1992), but 

does so with the advantage of contemporary data-capturing capabilities. Specifically, we 

capture event-level data (e.g., each pitch of a baseball) in an attempt to model differences 

across descriptive statistic stability. For the current presentation, we focus on one index of 

offensive performance: batting average. Across players and years, we model the functional 

degradation and eventual stability of this statistic, and use this empirical function to predict 

player performance during the July 8-9 conference period. 

2. Methods 

Play-by-play data from all regular season major league baseball games played from April 

2008 to October 2015 was retrieved from baseballsavant via Bill Petti’s database building 

script (https://billpetti.github.io/2018-02-19-build-statcast-database-rstats/). Each datafile 

contains approximately 700,000 individual plays – the most common form of play is a pitch 

(that is, the pitcher throws the baseball to his catcher, while a batter either attempts to swing 

or not). For the purposes of batting average, we collapsed these individual pitching plays into 

offensive player at bats. An at bat is a plate appearance that results in our focal event – the 

presence (1) or absence (0) of a “hit”.  

Each year, every offensive player begins with a simple batting average of zero. After one at 

bat the player’s batting average either stays at zero (he did not record a hit) or rises to 1.0 (he 

did record a hit of some sort – a single, double, triple, or home run). Upon subsequent at bats, 

the player’s batting average reflects the cumulative number of hits divided by the cumulative 

number of opportunities (at-bats). Eventually, most batting averages tend to stabalize due to 

the sheer number of opportunities accumulated throughout the baseball season (the 

denominator of the batting average statistic becomes quite large, effectively neurtering the 

influence of the binary numerator event [hit (1) or miss (0)].  

After computing sequential cumulative batting averages for each player across the course of 

his full season, we next calculated absolute batting average difference between each player’s 
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at bat. Figure 1 illustrates this information with a small subset of 2008 data - these are 

American League (AL) first basemen. The x-axis reflects the number of at-bats and is 

truncated at 160 for simplicity of visual presentation (e.g., our goal was to make the Figure 

1 presentation as easily interpretable as possible). Here, the x-axis origin reflects the 

progression from a player’s first at bat to their second (because each player’s first at bat was 

the first meaningful recording of the possible hit event). The y-axis reflects the absolute 

deviation from the first to second event – as can be seen in Figure 1, the largest absolute 

deviation from the first to second at bat is .5 – this happens when the hitter alternates event 

outcomes across the two at bats (e.g., misses the first and hits the second or vice versa). This 

left-most event also represents the greatest opportunity for a large index due to the small 

denominator (2).  

 
Figure 1. Small subset example of raw cumulative (absolute) average discrepancy. 

3. Results 

For purposes of function estimation, we were interested in the variance within vertical arrays. 

Figure 1 reflects this systematic pattern of heteroskedasticity, with greater variability in 

estimates near the origin (and less variability as plate appearances increase; e.g., to the “right” 

of Figure 1).  The pattern is a bit more visually evident with the standard deviation of average 

absolute discrepancies, and these are presented for the first 100 at bats across all offensive 

players for the 2008 baseball season (see Figure 2).  
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Figure 2. Predicted standard deviation as a function of event (in this case, “at bat” aka plate appearance). 

Fitting a logarithmic regression to these standard deviations yields a reasonably predictive 

function: the predicted standard deviation (within vertical array) approximates 
1

𝑒∗𝐸𝑣𝑒𝑛𝑡
.  Via 

application of 8 years of baseball data, however, we were able to specify very slight 

modifyers to this general pattern: our empirical regression equation has slightly modified 

intercept and slope. For example, the 2008 data function was: log (
1

𝑠𝑑
)

̂
=  .97 + 1.13 ∗

log(𝑒𝑣𝑒𝑛𝑡). These functions explained the patterns of heteroskedasticity very well (R2 = 

.9975, F = 39,690, p < .05 [again, only 2008 data]), and is presented visually via the blue 

function in Figure 2. Algebraically, our predictive model (solving for standard deviation in 

plate appearance batting averages instead of a logarithmic transformation of these) simplifies 

to: 𝑠𝑑̂ =  
1

𝑒 .97∗𝑒𝑣𝑒𝑛𝑡1.13. We also estimated similar functions for the other seven years of 

retrieved data. The CARMA presentation is dynamic, updating MLB player events and 

presenting as residual values to our aggregated (across 8 years) predictive function for batting 

average stability.  

4. Discussion 

For the purposes of this presentation, we focused on modeling the heteroskedasticity of a 

descriptive baseball statistic via standard deviation specification – by computing a simple 

standard deviation within each “array” (arrays are performance events – in Figure 1 the x-

axis represents these events [e.g., an MLB “plate appearance”]). In broader applications, an 

“event” can be a “widget” (e.g., production), a work period (e.g., hour, shift, week, month), 
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or service event (e.g., customer/consumer rating). Our ultimate interest, therefore, is twofold: 

1) we intend to model similar functions across different baseball statistics, taking note of 

functional asymptotes and points of inflection, and 2) we hope to apply the general procedure 

of functional estimation across events to more common occurences of performance. Sturman 

(2003) notes in his meta-analysis that performance trends across time do tend to be different 

for different types of job, and so the estimate of functions across different baseball indicies 

may very well parallel different functions estimated across different jobs. Similar to the 

perspectives of both Kane (1996) and Hofmann, Jacobs, and Gerras (1992), our ultimate goal 

is to leverage insights taken from athletic performance in an attempt to conceptualize job 

performance in a new manner (here being operationalized as a predictive function across 

events).  
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