—Technical Report INCO2-2012-01—
Parallel Two-Stage Least Squares algorithms for Simultaneous Equations Models
on GPU

Carla Ramiro®!, Jose J. Lépez-Espin®, Domingo Giménez®, Antonio M. Vidal?

“Departamento de Sistemas Informdticos y Computacion, Universidad Politécnica de Valencia, 46022 Valencia, Spain
bCentro de Investigacion Operativa, Universidad Miguel Herndndez, 03202 Elche, Spain
¢Departamento de Informdtica y Sistemas, Universidad de Murcia, 30071 Murcia, Spain

Abstract

Today it is usual to have computational systems formed by a multicore together with one or more GPUs. These systems
are heterogeneous, due to the different types of memory in the GPUs and to the different speeds of computation of
the cores in the CPU and the GPU. To accelerate the solution of complex problems it is necessary to combine the two
basic components (CPU and GPU) in the heterogeneous system. This paper analyzes the use of a multicore4+multiGPU
system for solving Simultaneous Equations Models by the Two-Stage Least Squares method with QR decomposition.
The combination of CPU and GPU allows us to reduce the execution time in the solution of large SEM.

Keywords: Simultaneous Equations Models, Two-Stage Least Squares, QR decomposition, Parallel Computing,
Heterogeneous systems, GPU

1. Introduction

Simultaneous Equations Models (SEM) are often used in large scale problems. In that case, the use of parallel
computation is indispensable due to the large amount of runtime required. Heterogeneous systems formed by mul-
ticores and GPUs deliver high performance with low cost, but to achieve the highest acceletation in the solution of
problems it is necessary to exploit the heterogeneity of the multicore+multiGPU configuration. In this paper, parallel
algorithms for the SEM have been developed, with the focus on exploiting the characteristics of each element of the
heterogeneous system.

SEM are a statistical technique which has traditionally been used in the economic world [1] although nowadays
it is widely used in an increasing number of fields [2, 3]. SEM can be solved through a variety of methods such as
Indirect Least Squares (ILS), Two-Stage Least Squares (2SLS), Three-Stage Least Squares (3SLS), etc [1]. 2SLS
is one of the most used methods because it can be used in all identified equations [1] (ILS can be used only in
a particular case of equations) and is computationally less expensive than 3SLS [4]. Matrix decompositions and
parallel computing are useful in obtaining efficient versions [4]. The wide diffusion of multicore and GPU systems
allows efficient heterogeneous multicore+multiGPU algorithms of the 2SLS method with QR decomposition to be
developed so reducing the execution time of previous parallel implementations [4].

The rest of the paper is organized as follows. In section 2 the ideas on SEM and the 2SLS method with QR
decompositon are summarized. Section 3 describes the model of the considered computational system. In section
4 the algorithms developed are analyzed, and section 5 gives the experimental results. Finally, section 6 shows the
conclusions of the paper.

Email addresses: cramiro@dsic.upv.es (Carla Ramiro), jlopez@umh.es (Jose J. Lopez-Espin), domingo@um.es (Domingo Giménez),
avidal@dsic.upv.es (Antonio M. Vidal)
!Corresponding author

2. Algorithms for SEM

Consider N interdependent variables (endogenous variables) which depend on K independent variables (exoge-
nous variables). Suppose that each endogenous variable can be expressed as a linear combination of the other en-
dogenous variables, the exogenous variables, and white noise which represents stochastic interference. The relation
between the exogenous and endogenous variables can be expressed [1] through the following matrix equation:

Y=YBT' +XIT +u (D)

where Y € R™Y X € RK and u € RV are matrices with N endogenous variables, K exogenous variables and N
white noise variables respectively, d is the sample size, and elements B;; = 0.

Solving a SEM is equivalent to obtaining B and I in (1), from a representative sample of the model (a set of values
of the data variables X and Y) in order to explicitly ascertain a matrix equation which represents the relationship
between both sets of variables.

2.1. Two-Stage Least Squares

The endogenous variables are correlated with the random variables, making it impossible to solve a Least Squares
problem in each equation in (1). To solve this problem, 2SLS obtains a set of variables, called proxy variables),
which are close to the endogenous variables. The proxy variables are highly correlated with the exogenous variables
but uncorrelated with the error ones. An estimation of the proxy variables can be obtained by expressing them in
relation to the exogenous variables (equivalent to take the matrix B = 0 in (1)) and finding I'T in such a way that

IY - XI7)| = min [[Y - X

Thus, the proxy variables are given by the expression Y = XI'T, and (1) can be approximated by substituing endoge-
nous variables by proxy variables as

Y=XI7 +¥B" +u)

or by expressing (2) by columns:

+u;, i=1:N 3)

T

where [r

FT
BT] indicates the column i of []

BT
Consider the QR decomposition of the full column rank matrix X € R withK <d, X =QR = Q (l:)l) where

Q € R¥“ is orthogonal and Ry € R¥*K is an upper triangular matrix [5, chap.5]. If we denote Y = QTY = (gl)
2

with Yy € REY and Y, € RU5*N | can be computed by solving the upper triangular system R{I'T = Y; and proxy

variables can be expressed as Y =XIT = Q[l})l }RIIYI =Q ‘({)1 . Now, each equation in (3) can be expressed
as
R Y It R | Y rt
Yi:[Q[01]|Q[01}[BT .+ui:Q 01 01:||:BT .+ui (4)

For each equation in (3) a matrix [Ri,1|5~(i,1] can be constructed, bearing in mind that some components of B and I'

may be zero. Construction of [Ri,1|Yi,1] consists of eliminating those columns in matrix [Rll?l] which are multiplied
T

by null components of [ET] in (4). Thus, (3) becomes
vi = QRialYislmi+w;, i=1:N 5)

2

FT
BT
of non zero elements in (BT);, and k; the number of non zero elements in (I'T);. We assume adequate conditions for

the existence of solutions in (5) (n; + k; — 1 < K, order condition, see [1]).
Now, each n; can be estimated by solving the LS problem

with 7; € R%*%~1 being a vector formed by those non-null components of column i in matrix [] n; the number

IQIR; 1 Yia1fi — yill = rr}yin IR 11Yi 117 — Q"yill. (6)

QR decomposition of matrix [Ri,1|§?i,1] can be used to solve this pr~oblem. Thus, if [Ri,1|§?i,1] = Qifli,l, vector 7j;
can be obtained by solving the upper triangular linear system R;17j; = QiTS'i,l.

This procedure is summarized in Algorithm 1, which shows a scheme for the 2SLS method with the QR decom-
position.

Algorithm 1 25 LS yz algorithm

Input: X € R™K Y € RN and zero pattern of B and I’

Output: B € RV and T € RV
1: Obtain Q, R and Y such that X = QR (QR decomposition of X) and Y = QTY
2: for i=1...N do
3: if i-th equation is identified (i.e. it can be solved [1]) then

4 [Ri,1|3~(i,1] « Select columns from [Rll?l]

5 Obtain Qi, Ri,l and 3:7171 such that [Ri,ll?i,l] = Qiﬁi,l and §7i,1 = Q;r'yi’l
6: Solve Ri,lﬁi = §i,1

7 end if

8: end for

3. Heterogeneous computational models

One of the most decisive concepts for successfully programming a computer that uses GPU and multicore proces-
sors is the underlying model of the parallel computer. Traditionally, a GPU card has been considered as an isolated
parallel computer fitting a SIMD model, and connected to a sequential computer. From this point of view, the GPU
card can be seen as a set of up to 512 (depending on model) processors, running the same instruction simultaneously,
each on its own set of data. A realistic performance model should consider the host system and graphic card as a
whole, and the host computer as another parallel computer, at the same level as the GPU. This leads us to the hetero-
geneous parallel computer model. A similar model is used in [6], where the machine is a set of computing elements
with varying characteristics connected via independent links to a shared global memory.

Following this idea, a system with a GPU or an accelerator card (see Figure 1) consists of a set of two (or more)
parallel computers, with different speeds, each with access to different types of memory, which also implies different
memory access times for each processor.

Such a model would be characterized by the number and type of processors and different access time of each
processor to the different types of memory. For example, a system comprising a multicore CPU plus two GPUs is
considered in Figure 1. This system has a first-level cache and a main memory, shared by all cores, and two accelerator
manycore cards with different types of memory (global memory, constant memory, shared memory). In this case the
CPU can write on and read from global and constant memory of the GPU, and the GPU can write on and read from
their global memory; but can only read from constant memory.

Performance and programming of this model depend on the type of parallel computer (MIMD for the CPU, SIMD
for the GPU), the clock speed of CPU and GPU, the access time to each type of memory and the amount of memory
in each memory class. The performance of a GPU in a system of this kind is difficult to evaluate as an isolated
component. The best metric in this case may be to compare the speed of the system with and without the accelerator
card. A simultaneous use of the GPU and CPU should be allowed (and even encouraged), and the performance
obtained should be compared when they act together and when eliminating the use of the GPU to solve a concrete
problem. This approach is much more realistic and is used, for example, in numerical linear algebra libraries.

3

CPU Global Memory

A A A \

0000 | [oooo |[oooo | [oooo 0000 | [oooo |[oooo | [oooo

0000 (| 0000 (| 0000 || D000 0000 (| O0O0O0 || 0000 | | 0000

0000 || 0000 || 0000 || 0000 0000 || 0000 || 0000 || 0000

0000 || 0000 || 0000 || 0000 0000 || 0000 || 0000 || 0000

- L 0000 || 0000 || 0000 || 0000 0000 || 0000 || 0000 || 0000
Shared Memory b | Shared Memory 0000 || 000C || 0000 || 0000 0000 || 0000 || OO0O || 0000
CPU 1 CPU2 0000 || 0000 || 0000 || 0000 0000 || 0000 || Oo0O || 0000
0000 || 0000 || 0000 || 0000 0000 || 0000 || 0000 || 0000

% % % % QI g > GPU 1 Global Memory || Lo GPU 2 Global Memory |

0000 (| 0oo0 || 0000 || oo 000 || 0000 (| 0000 (| Doog

0000 ((0000 |(0000 || 0000 0000 |(OO00 || 0O00 || 0000

|:| CPU Core 0000 (| 0000 (| 0000 || 0000 0000 ((DO00 || 0000 || 0000

0000 ((OO00 |(0000 || 0000 0000 |(OO00 || 0000 || 0000

. 0000 (| 0000 (| 0000 || 0000 0ooa (| 0000 (| 0000 (| 0000

GPU Core 0000 (| 0000 || 0000 || 0000 0000 (| 0000 (| 0000 || DO00

0000 ((0O00 | (0000 || 0000 0000 |(DO00 || 0000 || 0000

_____ - . 0000 || 0000 |(0000 || 0000 0000 |(0000 || 0000 || 0000
. ___7 GPU Shared Memory

Figure 1: Heterogeneous parallel computer system

4. Parallel Algorithms for 2SLS

Now, we analyze different possibilities of parallelization of Algorithm 1 in a heterogeneous parallel computer.
The concrete model corresponding to our target machine consists of a multicore CPU unit with two GPU cards. It can
be seen that most of the computational cost of the algorithm relies on the calculation of one QR decomposition for
each equation. The parallelization of the problem can be addressed in two ways. The first is based on dividing the set
of equations to be solved among the various computational elements of the machine. The second idea is to parallelize
the computation of the QR decomposition, by using Givens rotations, and taking advantage of the structure of the
matrix [R; |17i,1]. Algorithms which combine both types of parallelization can be also devised.

4.1. Parallelism by equations

As it can be seen in Algorithm 1, to solve the SEM problem we need solve N equations. These equations are
independent, therefore we can parallelize their computation. We used the OpenMP API [7], which supports multi-
platform shared memory multiprocessing programming in C and which can be used with CUDA.

We can create several threads. Some of these threads (depending on the number of GPUs the platform has) can
work on the GPUs and are responsible for transferring data to the global memory graphic card and processing the data
back, while the other threads can work on the CPU cores in parallel.

4.2. Parallel QR decomposition on GPU

To calculate the QR decomposition on the GPU, we have not used kernels available in libraries, for example
MAGMA [8] or CULA [9], because these libraries do not take into account the structure of the matrix. Therefore we
have implemented a parallel algorithm in CUDA, based on the triangularization of the matrix [Ri,ll?i,l] by using a
parallel scheme proposed in [10], which simultaneously nullifies elements placed in several main diagonals. The only
necessary condition to calculate and apply a number of Givens rotations simultaneously is that the rows involved in its
computation are disjoint. Figure 2 shows an example of triangulation of a 8 X 4 matrix using Givens rotations. Note
that ten sequential stages (NS) are required for triangularizing the matrix in this case.

— N WA VO =
WA NN 0= =
N A 00O =% = =

o xR R o=

~ o0 O

Figure 2: Example of the triangularization by using a parallel scheme with 10 sequential stages

The explicit construction of the orthogonal matrix Q has been avoided. For computing §7i,1 = QiTyi,l, we create a
matrix of the form [Ri,1|‘~(i,1|§’i,1] and the calculated rotations are applied to the column §'i,1. Algorithm 2 computes the
QR decomposition of a matrix Z and applies Q" on another matrix W by using this method.

Algorithm 2 QR-SPAN

Input: [Z | YVJ
Output: R, W
1: fors=1,...,NS do
2: Compute index rotations, row i and column j, needed for triangulation matrix Z for stage s in CPU (see Figure 2).
3 Copy index rotations from CPU main memory to constant memory in GPU and [Z | W] to GPU global memory.
4: The threads of the GPU calculate in parallel the rotations for the stage s. (see Algorithm 3)
5 The threads of the GPU apply in parallel the rotations calculated in the previous step to the matrices Z and W. (see
Algorithm 4)
6: end for
7: Copy [R | W] from GPU global memory to CPU main memory

Before starting the QR decomposition, the matrices Z and W are copied into the GPU global memory. For each
stage, index rotations are copied into the GPU constant memory. In a first kernel, each thread block is in charge of
calculating a group of rotations. The rotations are stored in compact way [5, chap.5] at the bottom of the matrix to
minimize the memory requirements as shown in Algorithm 3.

Algorithm 3 Calculation of the one rotation by the qth thread

1: Get one of the index rotations (i, j) from constant memory
2: Compute Givens rotation cos and sin for Z;_y j and Z;

3: Zi—lj «— cos X Zi—l,j — sin X ZiJ

4: Store cos and sin in a compact way in Z;

After the calculation of the rotations for one stage is finished, a new kernel is launched. Now one thread by row
reconstructs the compact rotation in shared memory for faster access. Then the rest of threads apply this rotation in
the rest of elements in the row, as shown in Algorithm 4.

Algorithm 4 Application of the one rotation by the qth thread

: Get one of the index rotations (i,j) from constant memory
. if threadldx.x = 0 then
Reconstruct rotation Z;j and store cos and sin in shared memory
end if
Sync barriers
2 Zisyg — cos X Li1q — sin X ZLiq
Ly «— sinXZi_1q+cos X Liq

AN A A

4.3. Implemented algorithms

Following the two schemes previously seen, we have implemented several algorithms. The objective of this

study is to see which algorithm is best suited to the platform. In Algorithm 5 we can see the number of threads and
parallelization scheme depending on the algorithm used.

Algorithm 5 25 LS r algorithms parallelized

Input: X € R™K Y € RN and zero pattern of B and T’
Output: B € RV and I' € RV*K

1:

2:
3
4:
5
6

~

10:

11:
12:

Obtain Q, R and Y such that X = QR (QR decomposition of X) and Y = Q'Y using Algorithm 2 except the
1CPU s algorithm that computes this step in sequential.
switch (algorithm)
case (pCPUs)
Launch p threads: p threads calculate the step 15 with a sequential algorithm in the CPU.
case (pCPUs + nGPU(S))
Launch p + n threads: p threads calculate the step 15 with a sequential algorithm in CPU and n with a
sequential algorithm in GPU.
case (nGPU(P))
Launch » threads: n threads calculate the step 15 using Algorithm 2 in GPU.
case (pCPUs + nGPU(P))
Launch p + n: p threads calculate the step 15 with a sequential algorithm in CPU and n threads with parallel
Algorithm 2 in GPU.
end switch
IN PARALLEL: N equations are distributed among all threads using schedule dynamic. Once a particular thread
finishes its allocated iteration, it returns to get another one from the iterations that are left.

. if i-th equation is identified (i.e. it can be solved [1]) then

[Ri,1|‘?i,l] « Select columns from [R|Y])))
Obtain Q;, R;1 and ¥;; such that [R;1|Y;1] = Q;Ri; and ¥y = QiTS’i,l
Solve R 1} = ¥i1

. end if
: END PARALLEL

e In the algorithm pCPUs, N equations are distributed among the threads to be solved independently and these
threads are run exclusively on the CPU cores.

o The version denoted as pCPUs + nGPU(S) uses the cores available in the heterogeneous system and distributes
the solution of the equations among p cores of the CPU and of the n GPUs. Each GPU launches a kernel and
each thread computes a QR decomposition. The distribution (see Figure 3) is performed dynamically with
clause schedule dynamic and the parameter “chunk” is used to determine the number of contiguous iterations
that are allocated to a thread at one time.

! GPU

.- --- S [] crucore
- e

1 ! g '

\

Thread 1

- A
m
]
'
- e
hs
-
il

Thread 2

Thread 3

—.

Thread 4

Thread 5
Thread 6 | F% Eq. ‘l Eq. ‘l
21.24 °| 37.40 7] 61..64 ‘|

Figure 3: Example of load-balancing for an execution with 80 equations, 6 threads and chunk 4

e Two versions with the second parallelization scheme have been implemented. The calculation of the QR de-
composition is parallelized following Algorithm 2. Version IGPU(P) runs on one GPU. Version 2GPU(P)
distributes dynamically, with the OpenMP scheduling clause schedule dynamic, the equations between the two
GPUs, and each GPU applies Algorithm 2 on its set of equations.

e The pCPUs + nGPU(P) version distributes the solution of the equations among the computational elements of
the heterogeneous system, and the GPU applies QR-SPAN to solve the equations. The distribution is performed
dynamically. In this case, the threads are executed by all the elements of the machine, i.e. by all the cores
of the CPU and by one or both GPU cards. 1ICPUs + IGPU(P) uses a single GPU, 12CPUs + 2GPU(P)
and 10CPUs + 2GPU(P) uses two GPUs with dynamic load-balancing. The distribution (see Figure 4) is
performed dynamically with clause schedule dynamic. In this case, the threads are executed by all the elements
of the machine, i.e. by all the cores of the CPU and by the two GPU cards.

I o e | R
Thread 1 ' Eq.1 ¢ Eq.12 ' Eq. 18 i ., GPU
- - .- - T CPU Cor
mp
Thread2 ' Eq.2 ! v Eq9. 'Eq.17! }
' 1 ' ' Y_ _ _|
Thread 3 | Eq.3 Eq.7 -|uq.13 Eq.19 4
- !] T)
Thread 4 | Eq.4 ‘lvl Eq.8 ‘|v| Eq.15 :ll
Thread 5 | Eq.5 Eq.14 ~|-| Eq.20
Thread 6 | Eq.6 v|‘| Eq.10 |— v|‘| Eq.16 °||

Figure 4: Example of load-balancing for an execution with 20 equations and 6 threads

5. Experimental Results

The computer used in our experiments, has two Intel Xeon X5680 processors at 3.33 GHz and 96 GB of GDDR3
main memory. Each one is an hexacore processor with 12 MB of cache memory. It contains two Nvidia Tesla C2070
GPU with 14 stream multiprocessors (SM). Each Fermi SM includes 32 cores, 16 load/store units, four special-
function units, a 32K-word register file, 64K of configurable RAM, and thread control logic. Each core has both
floating-point and integer execution units. Floating-point operations follow the IEEE 754-2008 floating-point stan-
dard. Each core can perform one single-precision fused multiply-add operation in each clock period and one double-
precision FMA in two clock periods. The core frequency is 1.15 GHz and each GPU has 6 GB of GDDRS global

memory. The installed CUDA toolkit is 4.0 and it has also libraries like MKL 10.3.

Since this paper aims to obtain fast algorithms to solve SEM, the data used for evaluation have been randomly
generated, bearing in mind the temporal performance of algorithms.

Table 1: Execution time of ICPUs, 12CPUs, 12CPUs+2GPU(S), 10CPUs+2GPU(S), IGPU(P), 2GPU(P), 12CPUs+2GPU(P),
11CPUs+1GPU(P) and 10CPUs+2GPU(P). N, K and d variable.

N 400 400 400 400 800 800 800 800 1000 1000 1200 1200

K 400 400 600 600 800 800 1000 1000 1200 1200 1200 1200

d 1000 | 1500 | 1000 1500 | 2000 | 2500 2000 2500 2500 3000 2500 3000
ICPUs 6.08 | 6.20 | 13.56 | 13.59 | 87.77 | 89.84 | 132.78 | 13525 | 213.40 | 300.59 | 483.29 | 443.79
12CPUs 0.76 | 0.82 1.44 1.93 10.19 | 10.22 17.36 17.58 28.61 48.56 7543 76.01
12CPUs +2GPU(S) 0.99 1.29 2.23 2.24 12.47 | 12.49 | 20.89 21.23 41.38 57.72 90.98 90.91
10CPUs +2GPU(S) 0.93 1.43 2.13 2.46 12.60 | 12.66 | 20.85 21.36 33.84 56.90 87.62 88.85
1GPU(P) 570 | 5.72 | 1096 | 10.94 | 47.54 | 4791 70.67 71.00 100.97 | 142.66 | 189.77 | 187.77
2GPU(P) 374 | 3.82 8.36 839 | 3242 | 3393 | 48.86 49.53 68.30 96.21 130.53 | 124.70
12CPUs + 2GPU(P) 0.90 1.17 1.72 1.93 9.25 9.22 14.24 14.98 29.23 35.56 50.47 55.58
11CPUs + 1GPU(P) 0.69 1.21 1.54 2.21 11.01 | 10.95 17.54 17.14 25.30 40.57 61.60 60.17
10CPUs +2GPU(P) 0.74 1.30 1.60 1.96 9.04 9.32 13.66 13.81 20.84 3191 47.43 47.01

Table 1 also shows the execution time of the algorithms in double precision and 12 threads. Note that, the perfor-
mance of GPU in double precision is very poor in comparison to single precision, though the technique SEM requires
double data type. Figure 5 shows the speedup of the implemented algorithms with regard to the ICPUs algorithm.

e The results of the parallelization with 12CPUs are good, and programming is very simple, yet they are far from
achieving the theoretical speedup. As can be seen in Figure 5, the maximum speedup is 9; when the problem
size increases, the speedup drops to 6.

When we apply the same parallelization scheme 10CPUs+2GPU(S) without taking into account the specificities
of the GPU, we get negative effects on performance. Now, the algorithm makes a bad use of memory. It
performs an excessive number of memory accesses because there are many uncooperative threads that work
simultaneously. Furthermore, a higher CPU speed with regard to GPU also represents a problem if we try to
compare performances of the algorithms in CPU and GPU.

The use of the GPU as a standalone tool IGPU(P) and 2GPU(P) provides benefits but does not even reach the
performance obtained when using parallelism in the CPU. It can also be seen how the use of two GPUs does
not imply reducing the execution time by half. This is because the CPU also performs some support work,
for example, by sending data to the GPU. When data have to be sent to two GPU these transferences can not
overlap.

The best results are obtained when using all the CPU + GPU system as a single heterogeneous computer
11CPUs+1GPU(P) and 10CPUs+2GPU(P); the speedup increases as the problem size increases and approaches
the theoretical maximum of 12, achieving almost twice that obtained with the IZ2CPUs version. In this case,
the load is dynamically balanced. It was necessary to adapt the programming scheme to each type of ele-
ment in the computer, using a scheme similar to I2CPUs algorithm for the CPU and a scheme similar to the

1GPU(P)/2GPU(P) algorithm for the GPU. For small sizes, better performances are obtained with a single
graphics card 11CPUs+1GPU(P).

e Note that the use of the 12CPUs in 12CPUs+2GPU(P) and 12CPUs+2GPU(S) versions does not achieve
better speedup except for some small sizes. This is because two of this cores are busy managing the sending
and receiving of data from the GPU and therefore remain occupied for some time.

—6— 10CPUs+2GPU(P)
— 8 — 12CPUs+2GPU(P)
\\E —#— 11CPUs+1GPU(P) : .
5 9 —&— 12CPUs R
—&— 10CPUs+2GPU(S)
—V- 12CPUs+2GPU(S)
4r 2GPU(P) b
—p— 1GPU(P)

Speedup
(=)

I I I L L L L
(8820) (8825 (81020) (81025 (10,1225 (10,1230) (12,1225 (12,12,30)
Experiment (N.K,d) x 10 ~2

1 ' 1
(4,410) (4,415) (4,6,10) (4,6,15)

Figure 5: Speedup for 12CPUs, 12CPUs+2GPU(S), 10CPUs+2GPU(S), IGPU(P), 2GPU(P), 12CPUs+2GPU(P), 11CPUs+1GPU(P) and
10CPUs+2GPU(P) with regard to the ICPUs

6. Conclusions

Efficient algorithms for solving Simultaneous Equations Models have been developed. The use of computers
with multicore + GPU architecture allows for very competitive performances in large scale problems, with affordable
hardware, so the execution time obtained with precious 2SLS algorithms for SEM can be reduced with the combined
use of CPU and GPU.

The use of computers with multicore + GPU architecture can be useful when working with big models built from
a set of lower dimension models. For example, SEM for the economic variables in Europe can be obtained from
the models of the different countries by adding some union equations. So, the total model has a large number of
variables. The world model (managed by the LINK project at the University of Toronto [11]) includes the Spanish
model (managed by the CEPREDE [12] or Centro de Prediccién Econémica and by the Institute Laurence R. Klein
[13] at the University Auténoma de Madrid) and a set of equations to connect the Spanish variables with the global
ones.

We have shown that when we are working on a heterogeneous system it is necessary to design dynamic and hybrid
algorithms to exploit the full potential of the machine. In this way we can even approach the theoretical maximum
speedup, as seen in Figure 5.

Our contribution shows that we can efficiently exploit the resources of the machine even for dense linear algebra
problems of double data type where GPUs do not offer good performance, as occurs in some highly optimized libraries

9

that use the hybrid programming CPU with GPU, as CULA [14] or MAGMA [15], where the speed up achieved is far
from the theoretical one.

However, programming these systems must be performed carefully. Heterogeneity makes it difficult. To obtain
optimum performance, problems should be suitable. For example, in the problem studied, QR decomposition algo-
rithm consumes a lot of time and the algorithmic structure does not allow optimal parallelization, due to the lock-step
that occurs in each stage.

Although GPUs are a great tool, their benefits are not miraculous, especially in fields such as Numerical Linear
Algebra. Compared with the behaviour of multicore architectures, benefits are less scalable, i.e. a linear increase in
resources may not mean a linear increase in performance.

Acknowledgements

Supported by: Spanish Ministerio de Ciencia e Innovacién (Projects TIN2008-06570-C04-02, TEC2009-13741
and CAPAP-H3 TIN2010-12011-E), Universidad Politécnica de Valencia (PAID-05-10), Fundacién Séneca from
C.A Regién de Murcia (08763/PI1/08) and Generalitat Valenciana (project PROMETEQO/2009/013).

References

[1] W. Greene, Econometric Analysis, 3rd Edition, Prentice Hall, 1998.
[2] R. Henry, I. Lu, L. Beightol, D. Eckberg, Interactions between CO2 Chemoreflexes and Arterial Baroreflexes, Am. Journal of Physiology
274 (43) (1998) H2177-H2187.
[3] W.Ressler, M. Waters, Female earnings and the divorce rate: a simultaneous equation model, Applied Economics 32 (2000) 1889-1898.
[4] J.J.Lépez-Espin, A. M. Vidal, D. Giménez, Two-stage least squares and indirect least squares algorithms for simultaneous equations models,
Journal of Computational and Applied Mathematics (0) (2011) —. doi:10.1016/j.cam.2011.07.005.
URL http://wuw.sciencedirect.com/science/article/pii/S0377042711003918
[5] G. Golub, C. V. Loan, Matrix Computations, The John Hopkins University Press, 1996.
[6] G. Ballard, J. Demmel, A. Gearhart, Communication bounds for heterogeneous architectures., Tech. Rep. 239, LAPACK W.N (2011).
URL http://www.netlib.org/lapack/lawnspdf/lawn239.pdf
[71 OpenMP v3.0, http://www.openmp.org/mp-documents/spec30.pdf (May 2008).
[8] S.Tomov, R.Nath, P.Du, J.Dongarra, http://icl.cs.utk.edu/magma.
[9] C. tools, www.culatools.com.
[10] A. Sameh, D. Kuck, On stable parallel linear system solvers, Journal of the ACM 25 (1) (1978) 81-91.
[11] Project LINK Research Centre, www.chass.utoronto.ca/link.
[12] Centro de Prediccién Econdmica, www.ceprede. com.
[13] Instituto Universitario de Prediccion Econdémica “Lawrece R. Klein”, web.uam.es/otroscentros/klein.
[14] CULA GPU Accelerated Linear Algebra, www.culatools.com/features/performance.
[15] MAGMA Matrix Algebra on GPU and Multicore Architectures, www.icl.cs.utk.edu/magma/.

10

