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Abstract 

This document presents a pseudocode routine to calculate the term  𝒞𝒞(𝑎𝑎, 𝑧𝑧)  described in 
the work by Giner-Bosch, Tran, Castagliola and Khoo [Qual. Reliab. Eng. Int. 35 (2019), 
pp. 1515–1541]. 

Introduction 

Aiming at obtaining a reliable, stable way to calculate the mean and the standard deviation 
of the sample multivariate coefficient of variation (MCV) squared,  𝛾𝛾�2,  Giner-Bosch et al. 
(2019) deduced that this was connected to the first and second raw moments of a doubly-
noncentral  𝐹𝐹  distribution, and they developed an effective way to compute these raw mo-
ments which involves the calculation of the continued fraction denoted by  𝒞𝒞(𝑎𝑎, 𝑧𝑧) (see sec-
tion 4.2.1 of the aforementioned paper for more details). This continued fraction is repro-
duced in equation (1). 

 

𝒞𝒞(𝑎𝑎, 𝑧𝑧)  =  
1

𝑎𝑎 + −𝑎𝑎𝑎𝑎
𝑎𝑎 + 1 + 𝑧𝑧

𝑎𝑎 + 2 + −(𝑎𝑎 + 1)𝑧𝑧
𝑎𝑎 + 3 + 2𝑧𝑧

𝑎𝑎 + 4 + −(𝑎𝑎 + 2)𝑧𝑧
𝑎𝑎 + 5 + 3𝑧𝑧

𝑎𝑎 + 6 + ⋯ 

  

(1) 

As mentioned by Giner-Bosch et al., this continued fraction is known to converge for any 
real value of  𝑎𝑎  and  𝑧𝑧  except for  𝑎𝑎 ∈ {−1,−2, … }. 

Keep in mind that, from a mathematical perspective, a continued fraction is an expression 
that involves an infinite number of calculations (nested fractions). Therefore, when using a 
continued fraction to calculate something, we are returning an approximation to the actual 
value that we want to calculate, since the number of steps must be finite. This approximation 
can be as accurate as needed, just by including enough nested fractions. 

It is worth to mention that continued fractions are often regarded as an efficient, powerful 
way to evaluate functions (Press et al., 2007). 
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The calculation 

Let us express the continued fraction  𝒞𝒞(𝑎𝑎, 𝑧𝑧)  in a more general way: 

 

𝒞𝒞(𝑎𝑎, 𝑧𝑧)  =  
𝑓𝑓0(𝑎𝑎, 𝑧𝑧)

𝑔𝑔0(𝑎𝑎, 𝑧𝑧) + 𝑓𝑓1(𝑎𝑎, 𝑧𝑧)

𝑔𝑔1(𝑎𝑎, 𝑧𝑧) + 𝑓𝑓2(𝑎𝑎, 𝑧𝑧)

𝑔𝑔2(𝑎𝑎, 𝑧𝑧) + 𝑓𝑓3(𝑎𝑎, 𝑧𝑧)

𝑔𝑔3(𝑎𝑎, 𝑧𝑧) + 𝑓𝑓4(𝑎𝑎, 𝑧𝑧)
𝑔𝑔4(𝑎𝑎, 𝑧𝑧) + ⋯ 

  . 

(2) 

In our case, we have: 

 𝑓𝑓𝑘𝑘(𝑎𝑎, 𝑧𝑧)  =  

⎩
⎪
⎨

⎪
⎧

 

1 , if 𝑘𝑘 = 0
𝑘𝑘
 2 
𝑧𝑧 , if 𝑘𝑘 is even,𝑘𝑘 ≠ 0

−�𝑎𝑎 +
 𝑘𝑘 − 1 

2
� 𝑧𝑧 , if 𝑘𝑘 is odd

 (3) 

and 

 𝑔𝑔𝑘𝑘(𝑎𝑎, 𝑧𝑧)  =  𝑎𝑎 + 𝑘𝑘 ,    for 𝑘𝑘 ≥ 0 (4) 

(see equations (A10) to (A12) of Giner-Bosch et al.). 

Imagine now that we are interested in calculating  𝒞𝒞(𝑎𝑎, 𝑧𝑧).  We will use equation (2) to ap-
proximate its value using  𝐾𝐾  nested fractions (with  𝐾𝐾 ≥ 1),  which means: 

 

𝒞𝒞(𝑎𝑎, 𝑧𝑧)  ≈  
𝑓𝑓0(𝑎𝑎, 𝑧𝑧)

𝑔𝑔0(𝑎𝑎, 𝑧𝑧) + 𝑓𝑓1(𝑎𝑎, 𝑧𝑧)

𝑔𝑔1(𝑎𝑎, 𝑧𝑧) + |⋯ |

 ⋯+ 𝑓𝑓𝐾𝐾−1(𝑎𝑎, 𝑧𝑧)

𝑔𝑔𝐾𝐾−1(𝑎𝑎, 𝑧𝑧) + 𝑓𝑓𝐾𝐾(𝑎𝑎, 𝑧𝑧)
𝑔𝑔𝐾𝐾(𝑎𝑎, 𝑧𝑧)  

  . 

(5) 

The value of  𝐾𝐾 can be customised by the researcher. The higher the value of  𝐾𝐾,  the more 
accurate the approximation will be. Giner-Bosch et al. reported that a value of  𝐾𝐾 = 300  
nested fractions was found to converge with sufficient accuracy. 
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The routine 

The following routine in pseudocode implements equation (5). 

Function  𝒞𝒞(𝑎𝑎, 𝑧𝑧,𝐾𝐾) 

Input: 

• Parameters  𝑎𝑎  and  𝑧𝑧.  𝑎𝑎 ∉ {−1,−2, … } 
• Number of nested fractions  𝐾𝐾. 𝐾𝐾 ∈ {2 , 4 , 6 , … } 

Output:  An approximation of  𝒞𝒞(𝑎𝑎, 𝑧𝑧) using  𝐾𝐾  nested fractions. 

//  Initialisation 

𝑠𝑠 = 0 

//  Calculation of  𝑓𝑓0, … ,𝑓𝑓𝐾𝐾 

𝑓𝑓0 = 1 

For  𝑘𝑘 = 2  to  𝐾𝐾  step  +2 

𝑓𝑓𝑘𝑘−1 = −�𝑎𝑎 +
𝑘𝑘
 2 
− 1� 𝑧𝑧 

𝑓𝑓𝑘𝑘 =
𝑘𝑘
 2 
𝑧𝑧 

End For 

//  Calculation of  𝑔𝑔0, … ,𝑔𝑔𝐾𝐾 

𝑔𝑔𝑘𝑘 = 𝑎𝑎 + 𝑘𝑘,    for  𝑘𝑘 = 0, … ,𝐾𝐾 

//  Calculation of the continued fraction from term  𝑘𝑘 = 𝐾𝐾  backwards to term  𝑘𝑘 = 0 

𝑠𝑠 =
𝑓𝑓𝐾𝐾

 𝑔𝑔𝐾𝐾 
 

For  𝑘𝑘 = 𝐾𝐾 − 1  to  0  step  −1 

𝑠𝑠 =
𝑓𝑓𝑘𝑘

 𝑔𝑔𝑘𝑘 + 𝑠𝑠 
 

End For 

Return  𝑠𝑠 

Discussion and concluding remarks 

This way of evaluating  𝒞𝒞(𝑎𝑎, 𝑧𝑧)  is quite obvious and simple. As a matter of fact, it is not 
recommended by Press et al. (2007), mainly because it requires to know how far we should 
go (i.e., how many nested fractions we must consider) to obtain a good approximation be-
fore starting. Other approaches and techniques to evaluate continued fractions are dis-
cussed by Press et al. The interested reader is encouraged to examine them. However, this 
way of calculating  𝒞𝒞(𝑎𝑎, 𝑧𝑧)  was found to be fast and accurate enough by Giner-Bosch et al., 
while some other strategies for calculating the moments of   𝛾𝛾�2  (based on either continued 
fractions or numerical series) showed problems of computational stability, due to the par-
ticular behaviour of the random variable involved (the doubly-noncentral  𝐹𝐹). 
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How to cite this technical note 

This pseudocode has been developed by VGB. When using this pseudocode in their research, 
the reader should make refence to it as: 

Giner-Bosch V (2020). Efficient evaluation of a continued fraction involved in the 
calculation of the moments of the sample multivariate coefficient of variation 
squared. Technical report DEIOAC-2020-01. Universitat Politècnica de València, Va-
lencia. [http://hdl.handle.net/10251/156814] 

Evidently, the paper by Giner-Bosch et al. (2019) should be also properly cited. 
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