This README.txt file 20210913 was generated by Eduardo Guzman ------------------- GENERAL INFORMATION ------------------- Title: Synthetic input data generator for a A MILP model for lot-sizing and scheduling of automotive plastic components with availability of raw materials and packaging Author Information: Principal Investigator: Eduardo Guzman, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell 2 Alcoy (Spain), bandres@cigip.upv.es, ORCID: 0000-0003-4475-6371. Associate or Co-investigator: Beatriz Andres, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell 2 Alcoy (Spain), eguzman@cigip.upv.es, ORCID: 0000-0002-7920-7711. Associate or Co-investigator: Raul Poler, Universitat Politècnica de València, Plaza Ferrandiz y Carbonell 2 Alcoy (Spain), rpoler@cigip.upv.es, ORCID: 0000-0003-4475-6371. Date of software: 20210913 Geographic location of data collection: Valencia, Comunidad Valenciana, Spain. 39.46975 -0.37739. Information about funding sources or sponsorship that supported the software programming: Universitat Politècnica de València General description: The Python code generates synthetic input data. The dataset contains the input data for the mathematical model to develop the experiments. Launch MILP_LSSP_with_availability_materials_Generator_EXEC for generating synthetic input data by using the MILP_LSSP_with_availability_materials_Generator. The sizes of the indices (machines, moulds, parts, setup operators, materials, periods) for the small, medium and large datasets are the ones used in the experiments. Keywords: input data generator; lot-sizing; mixed integer linear programming; raw materials; packaging; scheduling. -------------------------- SHARING/ACCESS INFORMATION -------------------------- Programming language: Python 3.7 Software license: Apache-2.0 Citation for and links to publications that cite or use the code: Links/relationships to previous software: -. Links to other publicly accessible locations of the software: -------------------------- NOMENCLATURE -------------------------- Python code nomenclature Index: i Index of machines i ∈{ 1, …, I} j Index of moulds j ∈{1, …, J} k Index of parts k ∈{1, …, K} l Index setup operators ∈{1, …, L} r Index of material (raw materials / packaging) r ∈{1, …, R} t Index of time periods t ∈{1, …, T} Parameters: a Total amount of moulds j available for production ca consumption of material r required to produce each unit of part k cb Backorder cost of part k ci Inventory cost of part k cov Stock coverage defined as number of time periods for the stock minimum coverage of part k during time period t cs Setup cost of preparing mould j cs Coverage stockout cost of part k d Demand of part k during time period t INVINI Initial inventory of part k and material r INVMAX Maximum inventory units for part k, material r during time period t INVMIN Minimum inventory units for part k, material r during time period t nc Number of mould changes allowed during time period t p Number of parts k produced when mould j is set up ro 1 if mould j can be set up on machine i, 0 otherwise rc Assignation cost of mould j on machine i rp Quantity received of material r in each period t sla Amount of setup operators l required to setup the mould j on machine i scl Cost of setup operator l to setup the mould j on machine i sls Number of available workers l available in each period t