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Abstract

During the last decades, the availability of great amounts of biomedical informa-
tion has fostered the development of tools to allow the extraction and inference
of knowledge. The increase of biomedical technologies to assist the clinical ex-
perts in their decisions has contributed to the incorporation of an evidence-based
medicine paradigm centered in the patient.

The contributions of this Thesis are focused in the development of tools to assist
in the clinician’s workflow decision process in the diagnosis of brain tumours
(BTs) using Magnetic Resonance Spectroscopy (MRS).

This Thesis contributes with the development of Pattern Recognition (PR)-
based classifiers trained with MRS data and devoted to child and adult patients
for tumour type and aggressiveness level assessment. These classifiers take ad-
vantage of the biochemical differences found in BT in children and adults in
order to provide discrimination.

The development of classification models aimed at the discrimination of the
three most prevalent pediatric brain tumour types is one of the major contri-
butions of this Thesis. A common location of these tumours is the cerebellum,
where it is difficult to distinguish the tumour type with Magnetic Resonance
Imaging alone. Hence, obtaining high accuracy in the discrimination from MRS
data of pilocytic astrocytomas, ependymomas and medulloblastomas is crucial
to stablish a surgical strategy for tumour resection, since each tumour type
requires different actions to be taken to obtain good prognosis.

In addition, it is concluded that the combination of single voxel MRS at 1.5T
at two different Echo Time (TE), Short-TE and Long-TE, improves the classi-
fication of pediatric brain tumours over the use of one TE alone. This finding
extends and corroborates similar results achieved with MRS data from adults.



Abstract

A novel on-line method to audit predictive models using a Bayesian perspective
for Decision Support Systems (DSSs) devoted to clinical environment is also
presented in this Thesis. This audit method positively affects and improves the
clinician’s decision workflow in a clinical environment by deciding which is the
classifier that best suits each particular case being evaluated and by allowing
the detection of possible misbehaviours due to population differences or data
shifts in the clinical site. The efficacy of such a method is shown for the problem
of diagnosis with a multi-centre database of MRS data of BTs.

This Thesis complements the audit method by contributing with a methodol-
ogy for prior probability assessment to a set of classifiers. The similarity model,
inspired also in the Bayesian approach, allows the DSS to select the most ade-
quate classifier for each test case attending to contextual information, which is
information not used in the design of the classifiers but related to the case or
its environment.

The results of this Thesis have directly contributed to the eTUMOUR (Web
accessible MR decision support system for brain tumour diagnosis and prognosis,
incorporating in vivo and ex vivo genomic and metabolomic data, 2004-2009),
and HEALTHAGENTS (Agent-based Distributed Decision Support System for
Brain Tumour Diagnosis and Prognosis, 2006-2008) European Union projects
of the 6th Framework Programme. As a result to the scientific contributions
studied in the Thesis, two traslational applications can be emphasized. They
consist in the incorporation of practical solutions to improve the clinical decision
workflow supplied by CURIAM BT, a clinical DSS for BT diagnosis support:
the incorporation of the pediatric classifiers as an effective non-invasive pre-
operative tool to define the tumour resection strategy; and the incorporation
of the audit method and of the similarity model as tools to select the adequate
classifier for each case.
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Resumen

A lo largo de las ultimas décadas, la disponibilidad cada vez mayor de grandes
cantidades de informacion biomédica ha potenciado el desarrollo de herramien-
tas que permiten extraer e inferir conocimiento. EIl aumento de tecnologias
biomédicas que asisten a los expertos médicos en sus decisiones ha contribuido
a la incorporacién de un paradigma de medicina basada en la evidencia centrada
en el paciente.

Las contribuciones de esta Tesis se centran en el desarrollo de herramientas
que asisten al médico en su proceso de toma de decisiones en el diagnoéstico de
tumores cerebrales (TC) mediante Espectros de Resonancia Magnética (ERM).

En esta Tesis se contribuye con el desarrollo de clasificadores basados en Re-
conocimiento de Patrones (RP) entrenados con ERM de pacientes pediatricos
y adultos para establecer el tipo y nivel de agresividad del tumor. Estos clasi-
ficadores especializados son capaces de aprovechar las diferencias bioquimicas
existentes entre los TC infantiles y de adultos para llevar a cabo la discrimi-
nacion.

Una de las principales contribuciones de esta Tesis consiste en el desarrollo
de modelos de clasificacién enfocados a discriminar los tres tipos de tumores
cerebrales pediatricos mas prevalentes. El cerebelo suele ser una localizacion
habitual de estos tumores, resultando muy dificil distinguir el tipo mediante el
uso de Imagen de Resonancia Magnética. Por lo tanto, obtener un alto acierto en
la discriminacién de astrocitomas pilociticos, ependimomas y meduloblastomas
mediante ERM resulta crucial para establecer una estrategia de cirugfa, ya que
cada tipo de tumor requiere de unas acciones diferentes si se quiere obtener un
buen pronéstico del paciente.

Asimismo, se concluye que la combinacion de senales de ERM adquiridas en dos
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Resumen

tiempos de eco, tiempo de eco corto y tiempo de eco largo, mejora la clasificacion
de tumores cerebrales pediatricos frente al hecho de usar inicamente los ERM de
un tnico tiempo de eco. Esta evidencia amplia y corrobora resultados similares
publicados para datos ERM de adultos.

También se presenta en esta Tesis un nuevo método ‘on-line’ para auditar mo-
delos predictivos para Sistemas de Ayuda a la Decision (SADs) médica para
entornos clinicos empleando una aproximacion Bayesiana. Este método de au-
ditoria interviene positivamente en el proceso de toma de decisiones del médico
en un entorno clinico porque decide cuél es el clasificador que mejor se adecua al
caso particular que el médico esta evaluando y detecta posibles comportamien-
tos no deseados debido a diferencias poblacionales o cambios en los datos del
centro. La eficacia de dicho método queda demostrada para el problema de
diagnostico de TC con una base de datos multicéntrica de ERM.

Ademas se ha desarrollado un modelo de similitud que complementa el ante-
rior método de auditoria contribuyendo con una metodologia para establecer la
probabilidad a priori en un conjunto de clasificadores. Dicho modelo de simi-
litud, también inspirado en una aproximacion Bayesiana, permite que el SAD
seleccione el clasificador mas adecuado a cada caso a evaluar atendiendo a in-
formacion contextual, que es informaciéon que no se ha usado en el diseno de los
clasificadores pero que esta relacionada con el caso o su entorno.

Los resultados de esta tesis han contribuido directamente a los proyectos eTU-
MOUR (Web accessible MR decision support system for brain tumour diagno-
sts and prognosis, incorporating in vivo and ex vivo genomic and metabolomic
data, 2004-2009), y HEALTHAGENTS (Agent-based Distributed Decision Sup-
port System for Brain Tumour Diagnosis and Prognosis, 2006-2008), del 6°
Programa Marco de la Uniéon Europea. Como resultados traslacionales a par-
tir de las contribuciones de esta Tesis, cabe destacar la incorporaciéon de dos
soluciones practicas para mejorar el proceso de toma de decisiones que ofrece
CURIAM BT, un SAD meédica para apoyo al diagnéstico de TC: La incorpo-
racion de clasificadores pedidtricos como una herramienta no invasiva y efectiva
para definir la estrategia de reseccion del tumor en el preoperatorio; y la incor-
poraciéon del método de auditoria y el modelo de similitud como herramientas
para seleccionar el clasificador mas adecuado para cada caso.
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Resum

Al llarg de les ultimes décades, la disponibilitat cada vegada major de grans
quantitats d’informaci6 biomédica ha potenciat el desenvolupament d’eines que
permeten extraure i inferir coneixement. L’augment de tecnologies biomédiques
que assisteixen als experts meédics en les seues decisions ha contribuit a la in-
corporaci6 d’un paradigma de medicina basada en I'evidéncia centrada en el
pacient.

Les contribucions d’aquesta Tesi se centren en el desenvolupament d’eines que
assisteixen al metge en el seu procés de presa de decisions en el diagnostic de
tumors cerebrals (T'C) mitjangant Espectres de Ressonancia Magnética (ERM).

En aquesta Tesi es contribueix amb el desenvolupament de classificadors basats
en Reconeixement de Patrons (RP) entrenats amb ERM de pacients pediatrics
i adults per establir el tipus i nivell d’agressivitat del tumor. Aquests classifi-
cadors especialitzats son capagos d’aprofitar les diferéncies bioquimiques exis-
tents entre els TC infantils i d’adults per dur a terme la discriminacio.

Una de les principals contribucions d’aquesta Tesi consisteix en el desenvolupa-
ment de models de classificacié enfocats a discriminar els tres tipus de tumors
cerebrals pediatrics més prevalents. El cerebel es la localitzacié habitual d’estos
tumours, el que fa dificil distingir el tipus del tumor emprant inicament Imatge
de Ressonancia Magnética. Per tant, obtenir un alt encert en la discriminaci6
d’astrocitomes pilocitics, ependimomes i meduloblastomes mitjancant ERM re-
sulta crucial per establir una estratégia de cirurgia, ja que cada tipus de tumor
requereix unes accions diferents si es vol obtenir un bon pronostic del pacient.

Tanmateix, es conclou que la combinacié de senyals de ERM adquirides en dos
temps d’eco, temps d’eco curt i temps d’eco llarg, millora la classificacié de
tumors cerebrals pediatrics enfront del fet d’usar tnicament els ERM de un
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Resum

temps d’eco. Aquesta evidéncia amplia i corrobora resultats similars publicats
per a dades ERM d’adults.

També es presenta en aquesta Tesi un nou métode ‘on-line’ per auditar models
predictius per a Sistemes d’Ajuda a la Decisi6 (SADs) meédica per a entorns
clinics emprant una aproximacié Bayesiana. Aquest métode d’auditoria intervé
positivament en el procés de presa de decisions del metge en un entorn clinic
perqué decideix quin és el classificador que millor s’adequa al cas particular que
el metge esta avaluant i detecta possibles comportaments no desitjats a causa
de diferéncies poblacionals o canvis en les dades del centre. L’eficacia d’aquest
métode queda demostrada per al problema de diagnostic de TC amb una base
de dades multicéntrica de ERM.

Amés, s’ha desenvolupat un model de similitud que complementa el métode
d’auditoria, contribuint amb una metodologia per establir la probabilitat a pri-
ori en un conjunt de classificadors. El model de similitud, inspirat també en
una aproximacio Bayesiana, permet que el SAD seleccioni el classificador més
adequat a cada cas a avaluar atenent a informaci6 contextual, que és informacio
que no s’ha usat en el disseny dels classificadors perd que esta relacionada amb
el cas o el seu entorn.

Els resultats d’aquesta Tesi han contribuit directament als projectes e TUMOUR,
(Web accessible MR decision support system for brain tumour diagnosis and
prognosis, incorporating in vivo and ex vivo gemomic and metabolomic data,
2004-2009), i HEALTHAGENTS (Agent-based Distributed Decision Support
System for Brain Tumour Diagnosis and Prognosis, 2006-2008), del 6¢ Pro-
grama Marc de la Uni6 Europea. Cal destacar com a resultats traslacionals a
partir de les contribucions d’esta Tesis, la incorporaci6é de dues solucions prac-
tiques per millorar el procés de presa de decisions que ofereix CURIAM BT, un
SAD meédic per a suport al diagnostic de TC: La incorporacié de classificadors
pediatrics com una eina no invasiva i efectiva per definir I'estratégia de reseccid
del tumor en el preoperatori; i la incorporacié del métode d’auditoria i el model
de similitud com a eines per a seleccionar el classificador més adequat per a
cada cas.



Glossary

Mathematical Notation

The notation used generally follows the standard conventions of mathematics
and statistics. If X is a random variable then = denotes its value. Bold letters
denote vectors, so x = (z;) is a vector with components z;, ¢ = 1,...,m with
m being deduced from the context.

X;
tj
k;j

L DS N & 3

N N
L7 8

e

I

data vector describing the j*"* sample

label associated to the j'* sample

set of values describing the contextual information of
the j** sample

number of samples in Z

number of free parameters in model M;

set of N data {(kj,x;,t;)}. k; can be null.
vector of parameters

set of possible values of 6;

a model

set of samples a model M; has been trained with
set of samples not used in M;

set of labels of Z;

a sample expressed as a tuple (k,x,t)
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{£(0:),6; € 2}
P(6;|M;)
P(Z|6;, M;)

Vv

P(Z|6;, M)
logP(Z|M,)

P(zN+D|Z, M;)
cT
msl(t)

L(Z,T;,CT)

xii

functional form of model M;
‘priori’ distribution of model M;
likelihood of model M; (information about 6; and M,
derived from the observation of Z)
‘subjective’ prior distribution over the model space
model likelihood or evidence for Z
unconditional distribution of Z
posterior distribution of a model M;
distribution of 6; of a model
in the light of the data Z
mode of the posterior density.
Maximum likelihood estimate
inverse of the Hessian of the —logP(6;|Z) A~*,
where A = —VViogP(0|Z)|;,
best fit likelihood
Bayesian Information Criterion (BIC)
multiplied by —%
predictive distribution for the unknown sample z(V+1)
Correspondence Table
function that makes reference to the
‘most specific label’ of ¢
sample z labeled with its
most specific label (x, msl(t))
set of common labels obtained by intersection of
all the msi(t) gathered in each Z;
function which transforms the labels of Z
into one of the labels specified in T; according to

the correspondence table CT



Z"

Zpss

result of applying £(Z,T;,CT)

dataset introduced in a Decision Support System (DSS)
after deployment in a clinical site and composed by
a set of samples different to any sample in Z = U Z;

current test sample

contextual information of the current test sample

set of parameters modeling the contextual information

similarity of a test sample to the training set of

the model M;
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Acronyms and Abbreviations

ACC
Ala
AMARES

ANN
AQSES
Asp
ATRT
AUC
BAR
BF
BIC
BT
BTloc
CADS
CF
Cho
CNS

CSF

CcT
CURIAM
cv

xiv

Accuracy
Alanine

Advanced Method for Accurate, Robust and Efficient Spectral
fitting of MRS data with use of prior knowledge

Artificial Neural Networks

Automated Quantitation of Short Echo time MRS Spectra
Aspartate

Atypical teratoid Rhabdoid Tumour

Area Under the Curve

Balanced Accuracy Rate

Bayes Factor

Bayesian Information Criterion

Brain Tumours

Brain Tumour location

Computer Aided Diagnosis System

Classification Framework

Choline

Central Nervous System

Creatine

cerebrospinal fluid

Computed Tomography

CURIAM Decision Support System for Clinical Environment
K-fold Cross Validation



DASTRO Diffuse Astrocytoma

dDSS distributed Decision Support System

DSS Decision Support System

EPEN Ependymoma grade II

eTUMOUR EC project, contract no. FP6-2002-LIFESCIHEALTH 503094
FID Free induction decay

FP False Positive

GABA 7y Aminobutyric acid

GE General Electric

Glc Glucose

Gln Glutamine

Glu Glutamate

Glx Glutamate + Glutamine
Gly Glycine

GUI Graphical User Interface
GPC glycerophosphocholine
Gua Guanidinoacetate

HEALTHAGENTS EC project, contract no. FP6-2005-IST 027213

HG High grade

HLSVD Hankel-Lanczos Singular Value Decomposition

HR-MAS High Resolution Magic Angle Spinning Nuclear Magnetic Resonance
IBIME  Informaética Biomédica

ICA Independent Component Analysis

ICT Information and Communication Technology
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i.i.d.

independent and identically distributed

INTERPRET EC project, contract no. FP5-1999-IST-10310

ITACA

JMRUI
KNN
kRSTT
Lac

LDA

LG

LOO
LS-SVM
Long-TE
MED
MEN
MET

ml

ML

MLP
MMLip09
MMLip13
MMLip20
MR

MRI

xvi

Instituto de Aplicaciones de las Tecnologias de la Informacion y de
las Comunicaciones Avanzadas

Java magnetic resonance user interface

K-Nearest neighbors

k-Random Sampling Train-Test

Lactate

Linear Discriminant Analysis

Low grade

Leave-one-out

Least-Squares Support Vector Machines

Long Time Echo

Medulloblastoma

Low-grade meningioma

Metastases

myo-Inositol

Mobile lipids

Multilayer Perceptron

Macromolecules and lipids components at 0.9 ppm
Macromolecules and lipids components at 1.3 ppm
Macromolecules and lipids components at 2.0 ppm
(Nuclear) Magnetic Resonance

Magnetic Resonance Imaging



MRS
MRSI
NAA
NMF
NMR
NOR
OTH
PCA
PCh
PCs
PF

P
PILOA
PINEOB
PNS
PNET
ppm
PR
PRESS
PROBE
QDA
QUEST

ROC

Magnetic Resonance Spectroscopy
Magnetic Resonance Spectroscopic Imaging
N-Acetyl Aspartate

Non-Negative Matrix Factorization
Nuclear Magnetic Resonance
Normal brain spectra

other less frequent tumour types
Principal Components Analysis
Phosphocholine

principal components

Posterior Fossa

Peak integration

Pilocytic Astrocytoma
Pineoblastoma

Peripheral Nervous System
primitive neuroectodermal tumour
parts per million

Pattern Recognition
Point-Resolved Spectroscopy
Proton Brain Exam

Quadratic Discriminant Analysis

Quantitation based on semi-parametric quantum estimation

algorithm

Receiver operating characteristic curve
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SASTRO Subependymal giant cell astrocytoma
Scyllo scyllo-inositol

Short-TE Short Time Echo

SNR signal-to-noise ratio

STEAM STimulated Echo Acquisition Mode
SV Single voxel

SVM Support Vector Machines

TARQUIN Totally Automatic Robust Quantitation in NMR

Tau Taurine

TE Echo time

TP True Positive

TR Recycling time

ULN Unit length normalization
VOl Volume of interest

WHO World Health Organization
XML Extensible Markup Language
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Chapter 1

Introduction

“A goal is a dream with a deadline.”

Napoleon Hill

1.1 Motivation

A trend towards a patient-focused medicine based on the evidence paradigm
is becoming a reality. During the last decades, the increase of the biomedi-
cal information has fostered the development of tools able to extract and infere
knowledge from this information. Brain Tumours (BT) diagnosis with Magnetic
Resonance Spectroscopy (MRS) demands such necessities since it is considered
a task of high complexity both in volume of information and difficulty of anal-
ysis. Complexity in BT diagnosis becomes a major concern when differences in
type of tumour and location in the brain are associated to the patient’s age.
Pattern Recognition (PR) techniques can assist to clinical experts to interpret
and analyse the data in the decision workflow of diagnosis. In a clinical De-
cision Support System (DSS) counting with a varied set of predictive models,
the need of a tool that objectively evaluates the behaviour and performance of
the predictive models in the clinical environment arises. Furthermore, when the
predictive models are specialized according to a patient profile (i.e. age or local-
ization of the lesion), a tool able to select the predictive model/s more suitable
to the patient’s characteristics it is also desirable.



Chapter 1

This Thesis is aimed on two main focuses: the development of predictive models
for pediatric brain tumour diagnosis and its incorporation into a clinical DSS;
and the development of a tool for PR-based DSS that allows the evaluation
of the performance of the predictive models and the selection of the suitable
predictive model attending to the patient profile.

The people to whom this Thesis is directed may be interested in the applica-
tion of Information and Communication Technology (ICT) to support Health
Systems and Biomedical Research.

1.2 Hypothesis

The line of argument of this Thesis is based on two hypotheses:

e Primary hypothesis: The use of automatic PR techniques applied to MRS
data can aid in the diagnosis of the most common pediatric brain tumours.

e Secondary hypothesis: The proposed audit method can provide a frame-
work to determine the most suitable classification model for each test case
in the context of a clinical Decision Support System (DSS) with a set of
PR-based classifiers for brain tumour classification with MRS data.

1.3 Goals

In order to verify these hypothesis, the main goal of this Thesis is the develop-
ment of computer-assisted support based on the PR discipline for brain tumour
diagnosis and suited to clinical environment.

This goal can be subdivided into several goals:

The first goal is to develop predictive models with high accuracy in classification
aiming at the diagnosis of pediatric brain tumours with MRS data.

The second goal is to contribute with an evaluation methodology to measure
the prediction skills of the classifiers working in a clinical DSS. This goal will
be achieved by means of a tool to audit the prediction skills of the classifiers
capable to select the most suitable predicting models in a clinical DSS attending
to the patient profile.
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Finally, the third goal is the implementation and integration of the predictive
models and the proposed audit methodology to assess the proper classifier to a
patient into a DSS for clinical environment.

1.4 Contributions

The scientific results of this Thesis concern the application of Pattern Recog-
nition to brain tumour research. The contributions of this Thesis have been
published in scientific journals and proceedings of congresses in the fields of
Pattern Recognition, Applied Artificial Intelligence, Medicine, Magnetic Reso-
nance, and Molecular Biology.

The research related to the inference of predictive models for brain tumour
diagnosis to stablish the aggressiveness in children and adults (Chapter 3) was
presented in [1].

Chapter 4 describes the development of classifiers for the three most prevalent
tumour types in children. This work has been recently accepted as a journal
paper [2] and presented in [3].

The design of an audit model of brain tumour classifiers using a Bayesian ap-
proach is described in Chapter 5 and has been pressented in [4] and in [5]. These
works also described the main aspects regarding the model to establish the more
adequate classifier to a given patient profile (Chapter 6).

The implementation of the audit method and the model to assess prior probabil-
ities to the classifiers deployed into a clinical DSS is described in Chapter 7. This
Chapter also describes the incorporation of the pediatric classifiers developed
in Chapters 3 and 4. Partial sections of Chapter 7 have appeared as scientific
contributions in [6, 7, 8, 9, 10, 11].

This Thesis continues the research initiated by Dr. Juan Miguel Garcia-Goémez
[12] and follows with the exploration of PR techniques applied to brain tumour
diagnosis. Contributions have been made with the preparation of the datasets
and the development of PR-based models for a multiproject-multicenter evalu-
ation of brain tumour classifiers based on MRS [13].

Additional contributions of these Thesis have been made to two other lines of
research on brain tumour diagnosis led by Elies Fuster-Garcia and Salvador
Tortajada regarding the study of compatibility of PR models trained with 1.5T
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MRS with samples of 3T MRS and the design of incremental learning algorithms
and strategies for brain tumour diagnosis with MRS, respectively. The results
of these studies were accepted in journal papers [14, 15]. Collaboration on the
preparation of the datasets, the writing and experimental design were carried
out in these works.

1.5 Research Projects and Partners

Part of this Thesis stem from the research developed related to the EC project,
contract no. FP6-2002-LIFESCIHEALTH 503094 (eTUMOUR) and the EC
project, contract no. FP6-2005-IST 027213 (HEALTHAGENTS), which took
place between 2004 and 2009.

e ¢eTUMOUR (2004-2009) Web accessible MR decision-support system for
brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo
genomic and metabolomic data is a European Union Integrated Project of
the 6th Framework Programme in the Molecular imaging for early detec-
tion of tumours and monitoring of treatment. The contributions of work
package 3 (Pattern Recognition) of the eTUMOUR project, which was
led by the IBIME-ITACA group at the Universitat Politécnica de Valén-
cia, were focused on the development of PR-based engines that offered an
objective solution to specific tumour discrimination problems using (Nu-
clear) Magnetic Resonance (MR) in vivo data. The classification engines
reported in Chapters 3 and 4 are developed from the multi-centre MRS
database acquired in the project. A strong collaboration with pediatric
oncologist Dr. Andrew C. Peet and neuropathologist Dr. Pieter Wesseling
was established in these studies for the definition of the set of questions
to be addressed, for the compilation and validation of the datasets, and
for the interpretation of the results under a clinical point of view.

e HEALTHAGENTS (2006-2008) Agent-based Distributed Decision Support
System for Brain Tumour Diagnosis and Prognosis is another European
Union Specific Targeted Research Project of the 6th Framework Pro-
gramme in the Information Society of Technologies. The objective of
this project is to create a multi-agent DSS to assist in the early diag-
nosis of brain tumours and to create a distributed Data Warehouse with
the world’s largest network of interconnected databases of clinical, his-
tological, and molecular phenotype data of brain tumours. The ranking
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model for brain tumour classifiers, a preliminary development of the audit
method and prior model assessment described in Chapters 5 and 6 was in-
corporated in the distributed Decision Support System (dDSS) developed
for the classification framework for the HEALTHAGENTS agent-based
distributed network. In these studies, Dr. Srinandan Dasmahapatra and
Dr. Madalina Croitoru actively contributed to the definition of the math-
ematical model. A strong collaboration among the clinical partners of
the e TUMOUR consortium was established: Neuropathologist Dr. Pieter
Wesseling was the clinician in charge of the quality control validation of
the dataset used for training the brain tumour classifiers evaluated with
the audit model.

1.6 Outline of the Thesis

The technical aspects covered in the Thesis include the processing, feature ex-
traction and modeling of MRS brain tumour data; the inference and evaluation
of predictive models; the integration of the predicting models into DSSs for the
clinical environment; and the follow-up of predictive models whithin a DSS by
means of an audit method which measures and reports their performance. Fig-
ure 1.1 illustrates the chapters of the Dissertation and establishes the relations
between them.

Chapter 2 introduces several concepts from the fields involved in this Disserta-
tion, e.g., Brain Tumours, Pattern Recognition and Decision Support Systems.
It gives an introduction on the biochemical composition observed in in wvivo
Magnetic Resonance Spectroscopy (MRS) data in the brain; it offers a survey of
previous research carried out in automatic classification and diagnosis of brain
tumour with in vivo MR spectroscopy;

Chapter 3 presents some initial results on discrimination and classification of
pediatric and adult brain tumours using MRS from a multicenter European
database of patients. Biochemical differences in the nature of child and adult
BT are analyzed, and classifiers devoted to assess the aggressiveness of BT are
developed for children an adults. The incompatibility of using classifiers trained
with adults to assess the aggressiveness in children and vice-versa is analyzed.
This incompatibility is easily solved with a double-fold predictive model which,
according to the age of the patient, decides what predicting model (one trained
from pediatric MRS data and other from adult MR spectra) will give a better
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performance in the task of assessing BT.

The results obtained in Chapter 3 are used to further investigate in two main
branches: pediatric BT discrimination (Chapter 4), and the development of an
audit method to decide which classifier fits best the answer given to a case under
evaluation (Chapters 5 and 6).

Chapter 4 pursues the aim of evaluating the automatic classification of the
three most common brain tumour types in children with a large multi-center
MRS data collection. The study presented in this chapter contributes also to
investigate whether the combination of single voxel 'H MRS at 1.5T at two
different Echo time (TE), Short Time Echo (Short-TE) and Long Time Echo
(Long-TE) improves the classification of pediatric brain tumours over the use of
either TE alone. The results obtained with these classifiers are directly applied
to the predictive engines of the Clinical DSS for brain tumours (see Chapter 7
for details).

The next two chapters present a novel on-line method to audit predictive mo-
dels using a Bayesian perspective. This auditing method has been specifically
designed for DSSs devoted to clinical or research environments. In Chapter 5 we
describe the mathematical aspects of the audit method and focus on how it suits
and improves the decision workflow of a clinical environment. The evaluation
of the audit model involved a DSS for clinical purpose offering support through
several classifiers. The efficacy of such a method is shown for the problem of
diagnosis with a multi-centre database of MRS data of brain tumours.

Chapter 6 complements the previous chapter by presenting a methodology for
prior probability assessment to a set of classifiers based on a similarity model.
The evaluation of this model for proper prior assessment is performed with a
multi-center database of MRS brain tumour data.

Chapter 7 describes the process of gathering the results obtained in the previ-
ous chapters into CURIAM Decision Support System for Clinical Environment
(CURIAM), a DSS for BT diagnosis support. We describe the incorporation of
the classifiers developed in Chapters 3 and 4 into CURIAM. This Chapter also
shows the incorporation of the audit method and the similarity model presented
in Chapters 5 and 6 to the CURIAM DSS in order to be applied in a clinical
environment.

Finally, Chapter 8 summarizes the conclusions of the dissertation.
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Chapter 2

Theoretical foundations

“A jug fills drop by drop.”

Buddha

The first part of this chapter (Sections 2.1, 2.2 and 2.3) describes the problem
of brain tumour diagnosis with the use of in vivo MRS and gives a description
of the biochemical composition observed in in vivo MRS data in the brain. In
Section 2.4 a description of the PR methods used in this Thesis is given. A
survey of previous research carried out in automatic classification and diagnosis
of brain tumour with in vivo MR spectroscopy will be exposed in Section 2.5.
Section 2.6 reviews the design of clinical DSSs in BT Research.

2.1 Brain Tumours

A brain tumour is an abnormal mass of tissue in which some cells grow and
multiply uncontrollably, apparently unregulated by the mechanisms that control
normal cells?.

INational Brain Tumor Society. http://www.braintumor.org/ (Online. Accessed 23-04-
2012)
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There are more than 120 types of brain tumours. They can be divided into
primary and secondary brain tumours, attending to the type and location of
the cells that originate from the tumour. Primary brain tumours are these orig-
inated in the brain itself (neurons, glial cells, lymphatic tissue, blood vessels,
...), in the cranial nerves, in the brain envelopes (meninges), in the skull, pitu-
itary, or pineal gland. Secondary brain tumours are created by cells spreading
from cancers primarily located in other regions (metastatic tumours).

Nowadays, most medical institutions use the World Health Organization (WHO)
classification system to identify brain tumors [1]. The WHO classifies the tu-
mours of the Central Nervous System (CNS) as a taxonomy [2]%. attending to
cell origin and how the cells behave, from the least aggressive (benign) to the
most aggressive (malignant). Some tumour types are assigned a grade, ranging
from Grade I (least malignant) to Grade IV (most malignant), which signifies
the rate of growth.

The groups of tumours established in this Thesis were defined by medical experts
participating in the European Projects INTERPRET [3], HEALTHAGENTS [4]
and eTUMOUR [5] and following the WHO Classification.

The most frequent primary brain tumour types are from the meninges (33.8%),
the second most common primary tumour types are derived from glial cells
(32%) followed by those located in the sellar region (13.5%). Cranial and
spinal nerves tumours and Lymphomas account for 8.7% and 2.4% respectively.
Glioblastoma is the most frequent tumour of glial origin (53.8%) [6].

The distributions of the tumour types by age are not uniform. In early ages (0-
19), embryonal/primitive /medulloblastoma and pilocytic astrocytoma are the
most common types of tumours. In young adults (20-34), pituitary tumours and
meningiomas are the most prevalent types. In older adults, the meningioma and,
also, the malignant tumour glioblastoma are the most frequent tumours. The
most common brain tumour types are summarized in Table 2.1 by age.

According to Pollack [7],the overall distribution of the various pediatric tumour
types differs markedly from that of adults. Benign gliomas, primitive neuroec-
todermal tumour (PNET) and craniopharyngiomas account for a substantially
higher percentage of brain tumours in children than in adults. In contrast, ma-
lignant gliomas, meningiomas, Schwann cell and pituitary tumours, and metas-
tases, which are the most common brain tumours in adults, are comparatively

2http://www.brainlife.org/classification /who2007.htm
3Information of brain tumour cells can be found in Section A.1 of Apendix A
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Table 2.1: Most common brain tumour and CNS types by age in years (CBTRUS 2010,
Statistical Report [6]).

Age Most Common Histology Second Most Common Histology
0-4 Embryonal /primitive/medulloblastoma Pilocytic astrocytoma

5-9 Pilocytic astrocytoma Malignant Glioma

10-14 Pilocytic astrocytoma Non-malignant and malignant neuronal/glial
15-19 Pituitary Pilocytic astrocytoma
20-34 Pituitary Meningioma

35-44 Meningioma Pituitary

45-54 Meningioma Glioblastoma

55-64 Meningioma Glioblastoma

65-74 Meningioma Glioblastoma

75-84 Meningioma Glioblastoma

85+ Meningioma Glioblastoma,

uncommon in children [8, 9, 10]. There are also notable differences between chil-
dren and adults in the distribution of tumours by location. The vast majority
of adult brain tumours arise in and around the cerebral hemispheres whilst ap-
proximatedly 50% of brain tumours in children older than 1 year of age develop
infratentorially [11]%.

The growth of a tumour takes up space within the skull and interferes with
normal brain activity. A tumour can cause damage by increasing pressure in
the brain, by shifting the brain or pushing against the skull, and by invading
and damaging nerves and healthy brain tissue. The location of a brain tumor
influences the type of symptoms that occur: visual disturbance or respiratory
arrest, as well as epilepsy, or sudden intracranial hypertension may occur.

When one or more of these symptoms arise, a radiological examination based
on Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) is usu-
ally performed. Information provided by non-invasive radiological techniques
is highly relevant for evidence-based medicine applied to the diagnosis, patient
management and to surgery [12, 13]. MRI is widely used for determining tumour
extension in surgical and radiotherapy planning, with a sensitivity of 14%-100%
depending on tumour type and precision of the wording used by radiologist [14].

Nevertheless, the gold-standard method in the brain tumour diagnosis is the
histological examination of tumour tissue samples obtained either by means of
brain biopsy or open surgery. Up to date, histopathology provides the main
information for deciding the treatment and the prognosis for each patient.

4Information of brain tissues and regions can be found in Section A.2 of Apendix A
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MRS is slowly becoming an additional accurate non-invasive technique for ini-
tial examination of brain masses [13, 15, 16, 17], due to its capability to provide
useful chemical information of different metabolites for characterizing brain tu-
mours and its complementary role to MRI [18, 19, 20, 21].

2.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) spectroscopy is generally known as an
analytical method in chemistry to identify molecules and to determine their
biophysical characteristics. NMR, (or MR) is, thus, defined as the phenomenon
where the nuclei of certain atoms absorb and emit energy because of the effect

of an oscillating magnetic field when they are immersed in other static magnetic
field [22].

The main application of NMR in the clinic is to obtain detailed anatomical im-
ages non-invasively throughout the human body by MRI. Magnetic Resonance
Imaging (MRI) is the use of the NMR phenomenon to visualize the structure
and function of a body. It is largely used in medical imaging because of its
contrasts of soft tissues.

However, not only MRI but also NMR spectroscopy has several clinical and
biomedical applications. When an NMR technique is used in vivo® is referred
to as Magnetic Resonance Spectroscopy (MRS). MRS is the use of the NMR
phenomenon to study the physical, chemical, and biological properties of organic
and inorganic molecules in a non-destructive, non-invasive manner. Just as
in its application in chemistry, MRS allows the detection of relatively small
molecules. The obtained MR spectra supply information on metabolic pathways
and changes therein, which makes MRS a very suitable technique to monitor
metabolic changes due to disease and to follow treatment.

2.3 MRS of the brain from a biochemical per-
spective

5An in vivo technique means that it is applied directly to the patient, in contrast to ez
vivo, where a tissue sample is extracted from the patient.
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MR spectroscopy has arised as a non-invasive tool for the investigation of
metabolic changes in living tissues that are otherwise inaccessible. Interpre-
tation of MRS data is based on general knowledge of biochemical processes in
association with pathological changes revealed as changes in metabolite signals
in MR spectra [23].

At the present, TE used in in vivo 'H MRS by most studies range between 18
and 288 ms. A spectrum acquired with a TE < 45 ms is commonly considered a
Short Time Echo (Short-TE) spectrum, Long Time Echo (Long-TE) spectrum
otherwise.

Short-TE (20-35 ms) 'H MRS allows to observe several metabolites and other
compounds considered useful for tumour classification. N-Acetyl Aspartate
(NAA) (2.01 parts per million (ppm)), Choline (Cho) (3.21 ppm), Creatine (Cr)
(3.02, 3.92 ppm), Glutamate + Glutamine (Glx) (2.04, 2.46 ppm), Alanine (Ala)
(1.4, 3.78 ppm), myo-Inositol (mI) (3.26, 3.53 ppm) and Mobile lipids (ML) (0.92
and 1.29 ppm) are mostly observed in Short-TE spectra [24, 13]. MRS allows us
to obtain metabolite concentration information in a volume defined by a Single
voxel (SV). SV Short-TE 'H MRS is fast (typically 5 min) and robust, and
considered, thus, adequate for clinical studies [25, 13]. These signals, though,
show a large number of overlapping peaks, a strong ML-originated baseline and
a certain sensitivity to artifacts [15].

Long-TE (about 135 ms) *H MRS is less informative than Short-TE, because
resonances with short T2 may be lost [23]. However, Long-TE signals are eas-
ier to analyze than Short-TE signals [15]. ML will not be the dominanting
components at Long-TE, making possible the study of the contributions of
Lactate (Lac) and Ala as inverted peaks (see Table 2.2) [13, 26].

The resonance peaks indentified in in vivo MR spectra are briefly described in
the next sections from the viewpoint of their chemical features emphasizing the
characteristics specific to children and adults when possible.

2.3.1 N-Acetyl Aspartate (NAA)
Role and origin of NAA

The resonance at 2.01 ppm is the highest peak in the spectra of a normal adult
brain and it is called NAA peak.
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Table 2.2: List of resonance peaks in brain H MR spectroscopy for Short-TE and Long-TE
(indicated by a 1/ symbol).

PEAK Shift (ppm) Short-TE  Long-TE
Macromolecules and lipids components at

0.9 ppm (MMLip09) 0.92 4 %
Macromolecules and lipids components at

1.3 ppm (MMLip13) 1.29 v v
Lactate (Lac) 1.31 Vv Vv
Alanine (Alal5) 1.47 Vv 4
N-Acetyl Aspartate (NAA) 2.01 N4 4
Glx: Glutamate (Glu) + Glutamine (Gln) 2.04, 2.46 Vv -
Creatine (Cr) 3.02, 3.92 N4 V4
Choline (Cho) 3.21 Vv 4
myo-Inositol (ml) 3.26, 3.53 Vv -
Taurine (Tau) 3.42 Vv -
Glycine (Gly) 3.55 N4 4
Alanine (Ala38) 3.78 Vv -

N-Acetyl Aspartate is produced in the mitochondria of the neurons and trans-
ported into the neuronal cytoplasm [27]. Although the exact role of NAA is
presently not known, it continues to be used as a marker of neuronal density
and viability. NAA is also found in axons as it is transported along axons from
the site of synthesis in the neuronal mithocondria. The utility of NAA as an ax-
onal marker is supported by the loss of NAA in many white matter diseases like
multiple sclerosis [17]. NAA is undetectable in astrocytes and oligodendrocytes,
although large amounts of NAA (twice that of neurons) are found in inmature
oligodendrocyte and astrocyte progenitor cells [28]. The concentration of NAA
in the brain has anatomical variations. It is 35% higher in grey matter and
white matter than in the thalamus [29]. In a similar fashion, we find higher
concentrations of NAA in the grey matter than in the white matter at a ratio
of 1.5, which reflects a higher neuronal density in grey matter [30, 31].

The level of NAA at birth is only 50% of that in adulthood [32] and increases
considerably with brain development, paralleled by a decrease in Cho. The
NAA /Cho ratio is reversed in children in the first year, in whom myelination is
nearly complete [33]%. The NAA concentration does not reach the level of the
adult brain until the 16th year [34].

6Definition of myelination can be found in Section A.3 of Apendix A
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NAA levels in abnormalities

Changes in the signal intensity of NAA generally appear as a reduction. First, a
reduction in or disappearance of NAA is a sign of a reduced number or absence
of neurons within a region. Second, it is a sign of the dysfunction or death of
neurons or axons. Hence, NAA levels appear to be a sensitive but non-disease-
specific, marker of neuronal number and viability [35, 36]. NAA in brain white
matter could be a biochemical index of axonal integrity [37].

The levels of NAA in brain tumour spectra show large variation. In principle,
if the spectra are obtained from tumour cells, the NAA signal might be absent
in gliomas and meningiomas since glial and meningeal cells do not contain de-
tectable amounts of NAA. However, as the Volume of interest (VOI) do not
always avoid neurons present in brain tissues in clinical measurement, the ap-
pearance of NAA signal in tumour spectra may depend on whether the growth
pattern of the tumour is infiltrative or circumscribed (see Figure 2.1)7. In the
later case, like in typical meningiomas, some lymphomas and metastases, tu-
mours have clear margins and might show almost no NAA resonance peak. MR
spectra of tumours that tend to grow infiltratively, such as astrocytomas and
some lymphomas, show a detectable NAA of various signal intensities (see Fig-
ures 2.2 and 2.3) but, even in these cases, the NAA peak is severely decreased
or undetectable.

When dealing with children, large reductions in NAA with elevated Cho or
Cho/Cr compared with normal-appearing brain tissue generally indicates tu-
mour [13].

2.3.2 Choline (Cho)
Role and origin of Cho

Cho is a metabolic marker of membrane density and integrity with its peak
located at 3.2 ppm. Choline is found in much higher concentrarions in glial
cells, that is, oligodendrocytes and astrocytes, than in neurons [33, 28§].

In neonatal brain, the spectrum shows a high signal intensity of Cho and a rel-
atively low signal intensity of NAA. The absolute Cho content is significantly

"Definitions of tumoral growth patterns is given in section A.3 of Appendix A
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Figure 2.1: Proton spectra of a low grade meningioma (64-year-old, male; case et3028 [5]),
showing dominant Cho. Cr and NAA are reduced. Spectra were obtained with Long-TE (top)

and Short-TE (bottom).

18



Theoretical foundations

higher (+ 82%) than the corresponding values in the adult [32]. With matu-
ration of the brain, considerable changes are observed in the signal intensity of
Cho as well as that of NAA. Changes are rapid during the first year of life,
after which the Cho-to-NAA relationship is reversed, reflecting near comple-
tion of myelination [33]. After three years of age, the relationship begins to
stabilize [33].

Choline-related molecules are precursors in the synthesis and breakdown prod-
ucts of membrane phospholipids®. The signal intensity of Cho, therefore, might
be increased by the acceleration of membrane synthesis and breakdown. The
elevated concentrations of Cho may be associated with proliferation of both
benign and malignant cells and with high cellularity.

Cho concentrations in abnormalities

The relationship between Cho elevation in proton spectra and the cellular prolif-
erative activity has been extensively studied in adults [38]. In tumours, the Cho
signal is correlated with malignancy [39]. However, in cerebral infarction and
inflammation the Cho signal may also increase [40], which may make difficult a
correct differentiation between tumours and other pathologies.

An increase in Cho tends to be detected in high-grade gliomas (see Figures 2.2
and 2.3). Many glioblastomas reveals a high Cho peak, but Cr and NAA are
not detectable in a certain number of high-grade gliomas [41, 42]. Necrotic
high-grade lesions have a reduced amount of Cho [43].

In children, a significantly shorter survival time has been observed for patients
with the highest Cho/NAA ratios, independent of the tumour type [44, 13]. In
low-grade pediatric gliomas the relative Cho was found to be higher in the group
of patients whose tumours progressed [13].

2.3.3 Creatine (Cr)
Role and origin of Cr

In simplistic terms, Cr is a marker of ‘energy metabolism’. The central peak at
3.02 ppm on the spectrum represents the sum of creatine and phosphocreatine.

8Definition of phospholipids membrane can be found in Section A.3 of Apendix A
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Figure 2.2:  Proton spectra of an anaplastic astrocytoma (42-year-old, female; case
et3136 [5]), showing intensive Cho and Lac. Spectra were obtained with Long-TE (top)
and Short-TE (bottom).
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Figure 2.3: Proton spectra of a glioblastoma (73-year-old, male; case et2357 [5]). Spectra
were obtained with Long-TE (top) and Short-TE (bottom).

21



Chapter 2

In the clinical setting, Cr is assumed to be stable and is used for calculating
metabolite ratios (Cho/Cr and NAA/Cr ratios) [17].

Cr is found in much higher concentrations in oligodendrocytes and astrocytes
than in neurons [28]. Since a reduction in Cr signal intensity indicates an energy
deficit in glial cells, it can be used as a reliable marker of cellular integrity.

Cr concentration in abnormalities

An absence of Cr in brain lesions is generally encountered when the lesions
lack creatine kinase, such as meningiomas, lymphomas and metastatic brain
tumours [42]. A reduction in Cr signal intensity occurs also in severily compro-
mised physiologies, such as hypoxic tissues and aggressive tumours. In high-
grade gliomas the Cr level tends to decrease, probably reflecting physiological
severity within the glial cells (see Figures 2.2 and 2.3). Porto et al. [45] sug-
gest that total Cr concentrations combined with lactate could be helpful in
the differential diagnosis of pilocytic astrocytomas and difuse astrocytomas in
children.

2.3.4 Glutamate + Glutamine (Glx)
Role and origin of Glx

Glu and Gln are generally inseparable at 1.5T and result in a complex of peaks
(Glx) between 2.05 and 2.46 ppm which are most readily observed at Short-TE.
In the brain, Glu and Gln are found primarily within the neurons and astrocytes.
Glu is an excitatory neurotransmitter, being the most abundant neurotransmit-
ter in the brain [17]. Glu and Gln play a role in detoxification and regulation
of neurotransmitters [23].

Glx concentration in abnormalitites

Toxicity to brain cells can occur in pathological states during prolonged ex-
tracellular exposure to high Glu concentrations. The neurotoxicity of Glu has
been reported in a wide range of neurodegenerative diseases, including multiple
sclerosis, Alzheimer’s disease and schizophrenia [46].
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Glx is a prominent feature of meningiomas, possibly reflecting altered energy
metabolism involving partial oxidation of glutamine rather than glycolysis [47]°,
the end product being Ala, which is also elevated in meningiomas [48, 47].

2.3.5 Lactate (Lac)
Role and shape of Lac

When present, Lac is recognized as a doublet (twin peak) at 1.31 ppm. Lac is
characterized by variable projection of the peak at different TEs: On acquisi-
tions using Long-TE, the doublet peak is inverted below the baseline, but at
Short-TE, the doublet peak projects above the baseline (see Figure 2.2) [17]. In
normal brain tissues where glucose is consumed in an oxygenated metabolism,
Lac is present only in small amounts and is not resolved using the normal spec-
troscopic techniques. The appearance of the Lac peak, thus, is always associated
with the abnormal state of the brain.

Lac concentrations in abnormalities

Lac is raised in a variety of conditions: reduced oxygen supply, accelerated gly-
colysis, dysfunction of mitochondria, inflammation and fermentation. Anaerobic
glycolysis is a major pathway in the production of Lac and, thus, the Lac level
could be an index of impairment of oxidative metabolism [49]. Most tumour
cells have low respiration and accelerated glycolysis. Thus, the absence of Lac
may suggest slow growth. On the contrary, high-grade tumours exhibit a trend
toward a higher Lac signal [50]. Lac may reflect ischemic compromise in a large
tumour, especially in the central area, leading to anaerobic glycolysis.

2.3.6 myo-Inositol (mI)
Role and origin of mI
ml is a simple sugar appearing as a single peak at 3.26 and 3.53 ppm which

can be observed only at Short-TE. It is absent from neurons and, since ml is
synthesized in glial cells, it is considered to be a glial marker [17, 39].

9Definition of glycolysis can be found in Section A.3 of Apendix A
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ml concentrations in abnormalities

An increase in ml content is believed to represent glial proliferation or an in-
crease in glial cell size, both of which may occur in inflammation [51]. ml is be-
lieved to be mostly found in astrocytes [52] and is high in low-grade gliomas [48],
but low or absent in non-glial tumours such as schwannomas [53] and menin-
giomas [48, 54|. Higher levels of mI have been reported to distinguish heman-
giopericytomas from meningiomas [24].

2.3.7 Glycine (Gly)
Role and origin of Gly

Gly is an amino acid present at almost the same chemical shift position as ml
(3.55 ppm). It has a longer transversal relaxation, T2, so that it is also present
in MR spectra obtained at Long-TE [17, 39).

Gly concentrations in abnormalities

A small peak at 3.55 ppm has been observed in astrocytoma spectra at Long-TE
and is thought to be Gly with its longer T2 rather than mlI [48, 55]. High Res-
olution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS) studies
of tumour biopsies indicate that Gly and mI are both elevated in astrocytomas,
decreasing with grade, and are absent in meningiomas [56].

In a recent study [57], the Gly concentration revealed as a promising biomarker
of malignancy in pediatric brain tumours.

2.3.8 Taurine (Tau)
Role and origin of Tau

Tau is an organic acid that resonates at 3.42 ppm which is only observed at
Short-TE. Tau is implicated in a wide array of physiological phenomena includ-
ing inhibitory neurotransmission [58], membrane stabilization [59], protection
against Glu excitotoxicity [60] and prevention of epileptic seizures [61].
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Tau is generally considered difficult to accurately measure in in vivo MRS be-
cause of signal overlap from stronger signals of mI at 3.26 and 3.53 ppm and
Cho at 3.21 ppm [62].

Tau concentration in abnormalities

Measurement of Tau in gliomas in in vivo MRS can be a useful technique for
monitoring tumour apoptosis in the clinic [62], specially in glial tumours.

Related with pediatric brain tumours, Tau reveals as a biomarker for medul-
loblastoma since it is observed in highly elevated concentrations [63, 64, 65].

2.3.9 Alanine (Ala)
Role and origin of Ala

Ala is an amino acid with uncertain function with a doublet peak at 1.47 ppm,
but its presence may be overshadowed by Lac, which resonates at 1.31 ppm.
The Ala peak shows a phase inversion in a spectrum acquired with Long-TE. It
has a role in the citric acid cycle and is undetectable in normal brain spectra.

Ala concentrations in abnormalities

Ala may be found in some meningiomas [42] and pyogenic abscesses [66].

2.3.10 Mobile lipids (ML)
Role and origin of ML

ML are narrow peaks at 1.3 and 0.9 ppm which are a major component of
the brain, representing up to 20% [38]. This lipis are so-called ML because they
apparently come from the cell membranes during the ongoing metabolic changes
associated with programmed cell death (apoptosis)!® [67]. Although in normal
healthy brain these peaks are absent, an innapropriate volume selection may
result in contamination of the spectrum with lipid signals from tissue close to
the skull [17, 39].

10Definition of apoptosis is given in Section A.3 of Appendix A
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Figure 2.4: Proton spectra of a metastasis (43-year-old, male; case et3181 [5]). Cho and
ML peaks are detected in addition to Lac. Spectra were obtained with Long-TE (top) and
Short-TE (bottom).

ML concentrations in abnormalities

ML signals in pathology are generally associated with necrosis'! such as in

high-grade brain tumours or metastases. Ez vivo studies have demonstrated a
relation between the ML signal and necrosis percentage in high-grade astrocy-
tomas [68]. Hence, the increase in content of MR-visible lipids might be due
to hypoxia (intracellular accumulation) and necrosis (extracellular accumula-
tion) [69, 70]. Many metastatic brain tumours show ML, sometimes inten-
sively [41, 71] (see Figure 2.4). Like in high-grade gliomas, the presence of ML
in metastases may be related to tissue necrosis [72].

HDefinition of necrosis can be found in Section A.3 of Apendix A
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2.4 Pattern Recognition (PR)

The relationship between metabolite concentrations found in tumour lesions and
their classification is a complex task that needs to be performed by experts. Tra-
ditionally, as an initial research step, a univariate analysis to the MRS data can
be carried out in order to assess the levels of individual, specific metabolites.
Depending on the tumour type and stage, different combinations of metabo-
lite concentrations can be observed. The univariate analysis may explain the
contribution of a metabolite but lacks the ability to explain how two or more
metabolites behave together in a tumour lesion. The Pattern Recognition (PR)
discipline can offer such inferential multivariate approach. The PR discipline
has been successfully applied in diagnosis and characterization of MRS data
since the early 90s.

The PR discipline studies how to recognize an object through regularities that
indicate that it belongs to a certain class or category. Typical applications of
PR emulates easy tasks for humans, such as speech recognition, optical charac-
ter recognition, face recognition; or other specialized activities, such as language
translation, fingerprint identification, or quality control of industrial manufac-
turing [73].

There are two alternative possibilities of design of a PR system: to implement
a set of rules and exceptions based on some heuristic reasoning; or to base the
development on a Machine Learning approach, on which a data set is used to
fit an adaptive model to solve the problem. Machine Learning provides the
mathematical and computational mechanisms to infer knowledge in a formal
model from specific data of a given domain [74, 73]. The methodology applied
in this Thesis solves the PR in brain tumour classification using the Machine
Learning approach.

The life cycle of a PR problem based on Machine Learning can be divided into
two main phases: the Training phase and the Recognition phase (see Figure 2.5).
During the Training phase, a set of signals from the problem domain (the train-
ing corpus) is used to adapt a mathematical function of the output values, e.g
diagnosis, treatment, doses or risk. In this phase, the pre-processing and the
features extracted from the signals are established. Then, an adaptive model
is fitted, selected and evaluated in order to obtain the best generalization for
solving new cases (recognition phase).

Once the model is ready, it can be incorporated into a Decision Support System
(DSS) to be used for the recognition of new cases.
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Figure 2.5: PR solution based on the Machine Learning approach.

2.4.1 PR methods for classification

Different methods are proposed in the literature to perform classifications which,
in most cases, consist on estimating the real probability distributions from the
observation of a finite set of cases. From the wide variety of classification meth-
ods available, this Thesis proposes the use of standardized and widely accepted
methods in BT characterization with MRS data. Hence, based on the bench-
mark results of previous studies, a set of classification methods are chosen to
allow direct comparison with formerly reported achievements. A survey of these
studies is provided in Section 2.5. A brief description of the classifiers used in
this dissertation is presented below.

Gaussian Parametric Models

A Gaussian parametric model is a method used to characterize or separate two
or more classes of objects [75]. This separation is performed by estimating
the max-likelihood of the Gaussian distribution for the classes under the study.
Linear Discriminant Analysis (LDA) is a commonly used method to find linear
combination of features based on the assumption that all the classes share a com-
mon variance (see Figure 2.6-left). Quadratic Discriminant Analysis (QDA) can
also be performed by assuming that the covariances of the classes are indepen-
dent. In this case, quadratic decision boundaries can be obtained for separating
the classes (see Figure 2.6-right).
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Figure 2.6: The left plot shows the linear decision boundary obtained by LDA
for a two-class problem in a 2D space. In addition, the ellipsoids depicting the
95% confidence interval for Mahalanobis distances around the mean of each class
are depicted. The right plot shows the quadratic solution obtained by QDA for
a similar problem and the 95% confidence interval for Mahalanobis distance of
each class.
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Figure 2.7: In two dimensions, the nearest-neighbor algorithm leads to a parti-
tioning of the input space into cells, each labeled by the category of the training
point it contains.

K-Nearest neighbors (KNN)

The K-Nearest neighbors (KNN) is a non-parametric method of classification
based on closest training examples in the feature space. In KNN, a sample is
classified according to the majority vote of the k neighbors. In other words, the
class of that sample will be that of the most common class among the k nearest
neighbors. KNN is a type of instance-based learning where the function is
approximated locally and all computation is deferred until classification [76, 77|
(see Figure 2.7).
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2.4.2 Feature selection and feature extraction

The feature extraction and feature selection step consists in searching for the
optimal (or suboptimal) set of features that better represents the objects for the
goal of the PR task. The feature extraction methods used in our experiments
were based on multivariate statistical analysis and signal processing.

Feature extraction with multivariate statistical analysis

Feature extraction can provide dimensionality reduction, eliminate redundant
information, filtrate the available information avoiding noise artifacts and non-
informative data and, thus, simplify the classification problem. There are several
methods described in the literature to perform feature extraction. Some of the
techniques most generally used in BT diagnosis and characterization with MRS
are described:

Principal Components Analysis (PCA): is a projection method com-
mounly used for feature extraction in PR [78, 79]. PCA maps the
original D-dimensional data into an orthogonal P-space, where the
axes of this new coordinate system lie along the direction of maxi-
mum variance of the original data. The more correlated the original
variables are, the more the data variation is explained by the first
principal components (PCs) of the analysis. Hence, feature reduc-
tion can be carried out discarding the remaining PCs.

PCA is closely related to LDA in that both techniques look for
linear combinations of variables which best explain the data [80].
PCA, though, does not take into account the differences between
the classes of data as LDA does.

Independent Component Analysis (ICA): a technique that extracts
statistically independent components from a set of measured signals.
The method is used for blind source separation and can extract a
pure signal from a set of mixtures [81]. ICA is an eligible feature
extraction technique for MRS spectra due to the presence of partial
volume effects. Partial volume effects occur when a signal from a
specific voxel contains components of different tissue types. The
input for the ICA method is usually the full region of interest of the
real spectrum.
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Non-Negative Matrix Factorization (NMF): is a feature extraction
technique useful when there are many attributes and the attributes
are ambiguous or have weak predictability. By combining attributes,
NMF can produce meaningful patterns. While other feature extrac-
tion techniques such as PCA are able to learn holistic, not parts-
based, representations, the NMF can learn parts of the signal [82].

NMF decomposes multivariate data by creating a user-defined num-
ber of features (parts). Each feature is a linear combination of the
original attribute set; the coefficients of these linear combinations
are non-negative. These non-negative combination, obtained by us-
ing non-negativity constraints, lead to a parts-based representation
because they allow only additive, not subtractive, combinations.

NMF decomposes a data matrix V into the product of two lower rank
matrices W and H so that V =~ W H. NMF uses an iterative pro-
cedure to modify the initial values of W and H so that the product
approaches V. The procedure terminates when the approximation
error converges or the specified number of iterations is reached.

PCA was the multivariate analysis technique of choice in the experiments pre-
sented in this dissertation. Analogously to the PR methods selected for classifi-
cation, PCA has been widely accepted in the literature and is a simple, standard
and straigh multivariate technique that obtains reasonably good results in MRS
feature extraction [83, 84].

Feature extraction with signal processing

Peak integration (PI)

Deviations in the MRS spectra are caused by differences in metabolite con-
centrations. Thus, the spectral ranges circumscribing signals of relevant brain
metabolites contain information enough to discriminate between brain tumours
whilst the remaining regions include mainly spectral noise. In order to reduce
the dimensionality and exclude the noise in the data analysis, an estimation of
the levels of metabolites can be performed.

The amplitude of a resonance is proportional to the integral of the corresponding
peak in the spectrum. Nevertheless, accurate estimation of these integrals is
dificult due to several factors such as spectral noise, nonzero baseline, peak
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overlap or the discrete nature of the signal. By using the trapezoidal rule, a
Peak integration (PI) can be performed. The procedure is as follows:

Let s = (s1,...,8;) be a sample of the function s(¢) from which we want to
approximate the integral with respect to t = (t1,....4). I = :1’ s(t)dt. The
trapezoidal integration is computed as:

At :(tz —t1,..., 4 —tlfl)

/ S1 + S2 Si—1+ S
= 2.1
T ) (2.1)
I =Ats

The area under the frequency peak in the magnitude spectrum is then calculated
for each selected metabolite. The intensities of fifteen spectral ranges which
have proportionality to the concentrations of the 11 main metabolites observed
in Short-TE are selected and integrated within a window of 0.15 ppm. In the
case of Long-TE spectra, nine spectral ranges are integrated, corresponding to
8 main metabolites. Table 2.3 reflects the metabolite concetrations considered
by Short-TE and Long-TE PI. This technique has been successfully applied in
previous studies with MRS from adults [83, 84].

Pediatric PI

An alternative extraction of estimations devoted to children (pediatric PI) was
designed for this Thesis. The pediatric PI extracts only the relevant metabolite
concentrations according to Peet et al. [85], what results in 12 estimations for
Short-TE and 7 estimations for Long-TE. The estimations correspond to 10 and
7 main metabolites in Short-TE and Long-TE respectively. The basic difference
between PI and pediatric PI configurations was that the later did not estimate
the Gly and the Ala at 3.78 ppm because the concentrations registered from
1.5T Short-TE in-vivo spectra are not usually significant in children. Table 2.3
reflects the resonance peaks of metabolites considered by each PI configuration.

Metabolites quantitation

Quantification of metabolites and components present in 'H MRS in-vivo data
is a vast signal processing discipline that offers a biological interpretation. Al-
though, strictly speaking, the problem of quantifying signals present in MRS
data falls beyond the feature extraction scope, quantitation algorithms can be
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Table 2.3: Metabolites associated to each peak/region extracted with PI and pediatric PI
for Short-TE and Long-TE (indicated by a / symbol). Estimations are performed within a
window of 0.15 ppm centered in the peak/region.
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applied to in-vivo data as a feature extraction technique to obtain an estimation
of the metabolite contributions in the spectrum.

Several quantitation algorithms have been proposed in the literature [86]. These
algorithms can be categorised as follows: black-box, peak fitting and basis
set. Black-box methods for in-vivo data are based on signal decomposition
algorithms and are effective at extracting peak parameters from simple data.
Hankel-Lanczos Singular Value Decomposition (HLSVD) is a computationally
efficient black-box algorithm [87] successfully applied in MR spectra of human
brain. The main drawback of black-box methods is that additional knowledge
of spectral features cannot be incorporated. The Advanced Method for Ac-
curate, Robust and Efficient Spectral fitting of MRS data with use of prior
knowledge (AMARES) algorithm [88] was developed to address this issue al-
lowing a greater level of prior knowledge in the fitting model.

Black-box and peak fitting methods are effective approaches to quantify sparse
spectra such as Long-TE. For complex data, like Short-TE, which includes
more metabolic information, methods that incorporate a metabolite basis set
have been shown to be more appropriate [89].

LCModel™ is a commercial software [90] widely used for the analysis of Short-TE
MRS that incorporates a metabolite basis set into the fitting model. The al-
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gorithm models data in the frequency domain using a linear combination of
metabolite, lipid and macromolecule signals combined with a smoothing splines
to account for baseline signals. The Quantitation based on semi-parametric
quantum estimation algorithm (QUEST) [91] has been recently developed un-
der an open source license. QUEST also uses a combination of time-domain
fitting but, in contrast with LCModel™, HLSVD is used to model the baseline
signal. Automated Quantitation of Short Echo time MRS Spectra (AQSES) [92]
is a recent open source quantitation algorithm that also uses a combination
of time-domain fitting and penalized splines to model the baseline. It differs
from LCModel™ in the use of a variable projection method to estimate the
amplitudes of the metabolite basis set in a reduction in the number of model
parameters. In the same line drawn by AQSES, the Totally Automatic Robust
Quantitation in NMR (TARQUIN) open source algorithm [93] performs a time-
domain truncation to eliminate baseline interference and models the remaining
signal with a parameterised basis set containing metabolites and, in contrast to
QUEST and AQSES, lipids and macromolecule signals.

The problem with the use of sophisticated quantification algorithms is that
they are in general hard to automate. AQSES requires to set the parameter
that controls the smoothness of the baseline. In QUEST a selection of the
number of points for baseline construction is required. TARQUIN, though,
does not require any parameterization, allowing a non-expert user to process
MRS spectra without a great investment of time. TARQUIN algorithm offers
comparable results to the commecial algorithm LCModel™ [93], with two main
advantages: It is offered under an open source license, which allows a free use for
educational and research purposes, and it is totally automated and no manual
intervention is needed to perform the quantitation.

The TARQUIN (version 4.1.1) software tool is used in the experiments of this
dissertation. The quantitation of MRS data is performed with the standard
metabolite library provided [93] by TARQUIN, which consisted on 16 different
metabolites and nine lipids and macromolecular components. Attending to the
recommendation in the LCModel manual [94], a simulated negative singlet at
3.94 ppm (-CrChy) was included to account for attenuation of the CHs peak of
Cr. The quantitation of metabolites, lipids and macromolecular components was
performed using the spectrum acquired without water suppression as reference.
A total of 21 variables were estimated after grouping the macromolecular and
lipid components into three main resonances around 0.9 ppm (MMLip09), 1.3
ppm (MMLip13) and 2.0 ppm (MMLip20). Table 2.4 lists the set of variables
estimated with TARQUIN.
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Table 2.4: Metabolites, lipids and macromolecular components of the basis set
provided by TARQUIN.
Elements in the TARQUIN basis set
Ala
Cr
Gle
Gln
Glu
Gly
ml
Lac
NAA
Scyllo
Tau
GPC
PCh
—CI‘CHQ
Gua
GABA
Asp
Cho: GPC+PCh
Glx: Glu+Gln
MMLip09
MMLip13
MMLip20
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2.4.3 Evaluation procedures

Usually, when dealing with small-sample datasets, resampling techniques have
to be applied when estimating the classifier performance [95].

K-fold Cross Validation (CV) with stratified blocks was the evaluation procedure
used for some experiments of the Thesis. In the CV evaluation, the data set is
divided into K subsets or blocks, and a training-test evaluation is repeated K
times. In each training-test evaluation, one of the K blocks is used as a test set
and the remaining K — 1 blocks are used together as a training set. Once every
block has been used as test set, the average error across all K trials is computed.
This procedure guarantees that every data sample is used in a test set exactly
once, the other K — 1 times being used as part of the training set. The main
drawback of this method is that the training algorithm needs K runnings in
order to estimate the result. On the other hand, the greater K is, the lower the
variance of the resulting estimate is.

The evaluation procedure of k-Random Sampling Train-Test (kRSTT) with
stratified test sets with k repetitions was also applied for some experiments.
This technique consists on randomly splitting the dataset into a set of samples
to train the classifier (training set) and a set of samples to test the trained
classifier (test set) repeating this procedure k times. This method avoids under-
estimation of the true error when the evaluation is carried out in a nested-loop
that covers the feature and model selection.

2.4.4 Evaluation metrics

The performance of the classifiers was measured in terms of Accuracy (ACC).
ACC is defined as the degree of closeness of measurements of a quantity to its
actual (true) value, (ACC = %, where C'is the number of classes, R, is the
number of right answers to the class ¢ and N is the total number of cases).

Another measure used in this Dissertation is the Balanced Accuracy Rate (BAR),
which is the average of the success rate obtained for each class [96], (BAR

Re
= ZCCJTC, where N, is the number of cases of the class ¢). BAR is useful
to ensure that the sensitivities of the classes are high and balanced when the
prevalence of one or more classes is unbalanced with respect to other in the
dataset. BAR is a metric easily understandable in the clinical domain since it

can be seen as the mean of the sensitivities of each class.
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Figure 2.8: Comparison of two classifiers A and B with ROC curve when the
AUC is the same for both classifiers.

Although generally known and applied in the medical context, the evaluation
metric of the Area Under the Curve (AUC) in the Receiver operating charac-
teristic curve (ROC) (based in the sensitivity and the specificity metrics) was
discarded since it is not robust enough when dealing with unbalanced classes:
As explained in [97], AUC does not consider cost bias. Figure 2.8 shows the
example of two classifiers A and B with the same AUC value. If the classes
they discriminate were balanced, there would be no objective way to decide
which classifier is better. However, in an imbalanced dataset situation, classifier
A should be chosen rather than B, because at higher True Positive (TP) rate
region classifier A has smaller False Positive (FP) rate than classifier B. Hence,
classifier A is preferred over classifier B even though they have the same AUC
value. Therefore, the problem with conventional AUC is that it does not con-
sider cost bias, because this metric sums up the areas with equal weights of 1,
which is an affordable assumption only when the classes are balanced.

38



Theoretical foundations

2.4.5 Bayesian inference learning

One of the objectives pursued in this Thesis is to develop a tool to compare the
performance of different classifiers. The Bayesian paradigm orbitates around the
Bayes’ rule or theorem, which relates the conditional and priori probabilities of
events A and B in the following way:

P(BJA)P(A)

P(AIB) = =

(2.2)

where P(A) is the prior probability, in the sense that it does not take into
account any information about B. P(B|A) is the conditional probability of B
given A, P(B) is the prior of B and acts as a normalizing constant and P(A|B)
is the conditional probability of A given B. It is usually called the posterior
probability because it depends upon the specified value of B. Intuitively, Bayes’
rule describes the way in which one’s beliefs about observing A are updated by
having observed B.

Let us define Z, which represents the set of N data {(x;,t;)}1, where x; is a
data vector describing the j'* sample and ¢; is its associated label.

Then, the Bayes’ rule can be used for two well-differenciated tasks in Machine
Learning. In a first level of inference, known as Model Fitting, the Bayes’
theorem can be used to fit the parameters of a model for a set of data Z. In
a second level, called Model Comparison, the Bayes’ rule can be applied to
compare different models in the light shed by Z.

Let us define a model M; with a vector of parameters 6. Every model is de-
fined by its functional form, M; = {f(0),0 € 2}, where  is the set of possible
values of 6, and two probability distributions: a ‘priori’ distribution P(6|.M;)
which states the plausible values of the parameters of the model; and the likeli-
hood P(Z|0, M;) which contains the information about 6 and M, derived from
observation of Z.

In the first level of inference, we assume that our model M; can explain the
data Z and use the Bayes’ rule to fit its parameters 6 according to that data.
That is, we obtain the posterior probability of the parameters 6:

6| M;)P(Z]0, M;)
P(Z|M;) '

POIM,,Z) = (2.3)

39



Chapter 2

The normalising constant P(Z|M;) is the model likelihood for Z, also known
as the evidence for M, [98]. The evidence is usually ignored in this inference
level because it is irrelevant in the choice of 6.

Nevertheless, the evidence becomes important in the second level of inference,
where we assume that we have several models that can explain the data Z and
we wish to infer which model is most plausible given that data. The posterior
probability of a model M; is:

P(M;|Z) = (2.4)

where the term P(M;) is a ‘subjective’ prior distribution function over the
model space. P(Z) is the unconditional distribution of Z which is constant with
respect to M. So, if Z is fixed, it can be ignored:

P(M;|Z) < P(M;)P(Z|M,) (2.5)

If we have no reasons to assign differing priors P(M;) to the alternative models,
models M; are ranked by evaluating the evidence [99].

If we include the parameter space 6 for model M;, the solution of P(M;|Z) in
Equation 2.5 can be rewritten by marginalization as:

P(M,|Z) x P(M;) / P(Z|0, M;)P(0]|M,)do (2.6)

The calculation of this integral is analitically difficult. We could assume that
P(0|Z, M), the distribution of  of a model in the light of the data Z, is ap-
proximately normal, N (é, V), where 6 is the mode of the posterior density and
V is the inverse of the Hessian of the —logP(f|Z) which, for a normal distribu-
tion, is the covariance matrix. Then we could apply a Laplace approximation
according to the Hessian V! evaluated at 0 to calculate the integral in Equa-
tion 2.6 [99, 100]:
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P(Z|M;) ~  P(Z|6, M;) P(OIM;)(2m) 5 |V|~=
: , (2.7)
Evidence ~ Best fit likelihood Occam factor

The evidence, thus, is found by taking the best fit likelihood that the model
can achieve and multiplying it by an ‘Occam factor’ [101], which is a term with
magnitude less than one that penalizes M, for having the parameters 6. The
more complex the model is, the greater the penalization becomes. Figure 2.9
depicts an example of the evidence of two models M7 and My according to the
data Z. We can deduce that My is a more complex model than M because
it is capable of making a greater variety of predictions. In other words, its
predictive probability P(Z|Ms3) can predict a greater variety of data sets. M,
in contrast, is capable of making only a limited range of predictions, P(Z| M),
centered in the region C. However, in the case where the data are compatible
with both models (data falling into the region C'), the simpler model M; will
be a better candidate and a more probable model. The Occam factor, thus, can
be defined as the ratio of the posterior accessible volume of the parameter space
of M; (that is, the values the model finally chose in the light of Z) to the prior
accessible volume (all the possible values of 6) [99].

If we suppose some other simplifications described in [100], page 64, Equation 2.7
can be simplified to

log P(Z|M;) ~ log P(Z|0, M;) — glogN (2.8)

where N is the number of samples in Z, 6 is a maximum likelihood estimate
and d is the number of free parameters in model M; [76]. Notice that Equa-
tion 2.8 is the Bayesian Information Criterion (BIC) [102] multiplied by —3.
BIC is a statistical measure used as a model selection criterion. This crite-
rion is independent of the prior of # and measures the parameterized model in
terms of data prediction and the complexity of the model (e.g., the number of
parameters) [103].

The main idea in the Bayesian framework is to assess a preference score to the
alternative models M, by the evaluation of the evidence P(Z|M;). The evidence
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evidence

P(Z|M,)

P(Z| My)

A BN XZ
C

Figure 2.9: This figure, adapted from [99], shows graphically why the Bayesian inference
embodies Occam’s razor, that is, why complex models can be less probable. The horizontal
axis represents the space of possible datasets Z. The evidence of two models are shown. The
evidence is the probability of the data given the model M;. In other words, how well the
model M is able to explain or predict the data. Model M is a simple model able to make a
limited range of predictions. Model M3 is a more powerful model able to make a wider range
of predictions. Nevertheless, the powerfulness of Moy is lower than that of My in the region
C'. If we suppose that equal prior probabilities have been assigned to both models, then, if
the data falls in region C, the simpler model M1 will be the more probable model.
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can be evaluated for different modeling tasks like regression, classification or
density estimation. It is also a measure that naturally embodies the principle
of Occam’s razor.

2.5 PR aplied to BT diagnosis using MRS

In order to perform a non-invasive diagnosis by means of in vivo MRS, the use
of automatic techniques based on PR can considerably complement and improve
the knowledge of clinical experts.

This section gives a review of previous research on automatic classification and
diagnosis of brain tumour with in vivo MRS applied to adult and children
patients.

2.5.1 Survey of studies performed with MRS data from
adults

During the last two decades a large amount of studies of cancer research based
on PR have been reported [104], as well as brain tumour research [105, 106, 107].
Hagberg [106] reviewed the classification of brain tumour with MRS based on
PR and clustering methods. A total of eight studies covered in this review
were focused on brain tumour discrimination from normal tissue or other CNS
diseases. All of them applied LDA or Artificial Neural Networks (ANN) to
relative metabolite concentrations or PCA transformations. Performance of
these classification tools was evaluated by Leave-one-out (LOO) CV.

There are several publications describing results for classification of brain tu-
mour based on the MR spectra collected in the framework of the EC project
INTERPRET [105]. In [108, 109], linear and kernel-based methods on MRS
features extracted by automatic procedures were applied. Some studies [15]
were focused on the automatic classification using Long-TE 'H MRS, whereas
other studies were focused on the use of Short-TE 'H MRS [105, 108, 110, 111].
An extensive benchmark study of quantitation and PR-based feature extraction
methods in combination with learning strategies was published in [107] to dis-
criminate between recurrent and non-recurrent brain tumours using Long-TE
MRS. They reported that PR methods perform at least as well as the ones
based on manual quantitation obtaining 5%-10% higher accuracy when auto-
matic techniques were applied. Classifiers for in vivo Short-TE spectra and
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Magnetic Resonance Spectroscopic Imaging (MRSI) obtained good results us-
ing Least-Squares Support Vector Machines (LS-SVM) [112] in [15, 111].

Further investigation with LS-SVM and feature extraction methods for MRS was
carried out by Luts et al. [84] during a subsequent EC project called eTUMOUR.
Luts et al. studied the effect of automating the feature extraction step in the
preprocessing protocol of Short-TE spectra. They conclude that the use of au-
tomated PR methods like ICA, Relief-F or a regularization technique applied
to the full espectra produced the highest overall performances in adults since
these methods allowed a good handling of high dimensional data. In addition,
Postma et al. [113] evaluated the automatic feature selection techniques with
MR spectroscopy data from brain tumour cases in order to see whether the fea-
tures selected correspond to what was expected from the literature and clinical
experience. They conclude that the automatic feature selection was a useful tool
to obtain relevant features but, nevertheless, evaluation of the obtained features
is still needed.

A recent study reported results on the applicaton of Discrete Wavelet Transform
procedure as a pre-process step to the MRS data [114]. In this work, Arizmendi
et al. concluded that the use of this procedure, followed by a standard feature
selection or feature extraction technique, can yield good results in terms of di-
agnostic binary classification of brain tumours with Bayesian Neural Networks.
In [115], Majos et al. compared the Long-TE and Short-TE discrimination
capacity in clinical use. Taking this study as starting point, in [116], Garcia-
Gomez et al. combined the use of Short-TE and Long-TE MRS to improve
the automatic brain tumour classification of the most prevalent brain tumours
in adults [14] (low grade glial tumours, aggressive tumours —glioblastoma and
metastasis-, and meningiomas). This study revealed that the combination of
Short-TE and Long-TE in a classifier performed better in several instances than
the use of one TE 'H MRS only. Further investigation in the interpretation,
visualization and classification of MRS brain tumour data is reported in [117]:
several feature selection methods are explored for dimensionality reduction in
Short-TE, Long-TE and combination of both TEs, demonstrating that feature
selection methods can improve the classification performance over the use of the
full set of features. They also confirmed the result reported in [116], showing
that the use of combined TE information can help to achieve better classification
performance. Finally, they contribute with a linear dimensionality-reduction
technique for visualizing the data corresponding to the selected frequencies.
Ortega-Martorell et al. [118] reported the use of NMF methods as an effective
unsupervised feature extraction technique for Short-TE, Long-TE and combina-
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tion of both TEs MRS data from adults brain tumours. Vellido et al. recently
reported in [119] a simple yet powerful method to discriminate glioblastomas
from metastatic brain tumour with SV MRS. From 109 patients and an inde-
pendent test set of 40 patients, they obtained a simple formula based on a linear

combination from three frequencies from Short-TE and Long-TE that achieved
an AUC of 0.91.

In the framework of the eTUMOUR project, some contributions have also been
made with the development of PR-based models for a multiproject-multicenter
evaluation of brain tumour classifiers based on MRS. In this work [83], Garcia-
Gomez coordinated the efforts of the three universities in charge of developing
predicting tools within e TUMOUR. A multicenter multiproject database was
used to produce the classifiers. This approach consisted on performing a mul-
tiproject evaluation based on training classifiers with the SV 'H MRS data of
a multicenter project, INTERPRET [105, 3, 120], and evaluating the results
with the MRS data acquired in a subsequent multicenter project, eTUMOUR
[5]. This study obtained good classification results with Short-TE MR spectra.
Besides, the obtained predictive models revealed as a powerful tool to detect
outlier or misclassified brain tumour spectra.

Several recent works confirm MRS as a non-invasive useful tool to assess brain
tumour diagnosis. Fellows et al. demonstrated in [121] that, in patients undergo-
ing stereotactic biopsy, the combination of neuroradiological and spectroscopic
evaluation allow good diagnosis of glioblastoma with shuch an accuracy that
could replace the need for biopsy. In [16], Opstad et al. reported that, for
homogeneous-appearing tumors, significant correlations were found between in
vivo and ez vivo "H MRS concentrations of several metabolites: Cr, ml, total
Cho , and the approximately 1.3 and 0.9 ppm lipids). They concluded that
ex vivo astrocytoma biopsy HR-MAS 'H spectra have similar metabolic pro-
files to that obtained in vivo and therefore detailed ex vivo characterization of
glioma biopsies can directly relate to the original tumour. In [122], Vellido et
al. developed a method to overcome the problems derived from the high dimen-
sionality of the MRS data. This method encompassed a nonliear dimensionality
reduction, followed by an outlier detection and expert opinion. Afterwards, a
feature selection and automatic classification process was applied. The method
achieved a classification performance improvement due to the effective outlier
removal. Cruz-Barbosa and Vellido explored in [123] the use of semi-supervised
variants of Generative Topographic Mapping, a manifold learning model, as a
set of learning techniques able to address the diagnostic discrimination of dif-
ferent brain tumour pathologies and stablish the outcome of aggressive tumour
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types. The performance reported was comparable to the results achieved by
Semi-Supervised Support Vector Machines (SVM) and Laplacian Eigenmaps.

PR techniques can be used to predict prognosis aspects rather than diagnosis.
In [124], Majos et al. assessed the predictive value of MRS regarding survival in
high grade astrocytomas. By dividing a set of 187 high grade astrocytomas ret-
rospectively diagnosed into 2 groups according to survival better or worse than
the median, they discovered four significant points in Short-TE and Long-TE
that allowed the stratification into 2 prognostic groups. This first approach re-
vealed the value of MRS as a predicting tool for the lenght of survival in patients
with high grade astrocytoma that can be used to stratify prognostic groups.

New lines of research related with application of PR applied to MRS are cur-
rently being explored. A study to assess whether PR-based classifiers trained
with 1.5T MRS spectra are able to correctly classify spectra acquired with 3T
was performed by Fuster-Garcia et al. [125]. They obtained classifiers trained
with 1.5T samples that showed similar accuracy for independent test sets of
1.5T and 3T. In addition, they reported non-significant differences with most
metabolite ratios and spectral pattern. Thus, these results encourage the use of
existing classifiers based on 1.5T datasets for diagnosis with 3T. This is highly
convenient since there exists large 1.5T databases compiled throughout several
years and the prediction models based on 1.5T acquisitions can be used for diag-
nosis of cases acquired with 3T instruments. In addition, the result reported in
[125] can also be applied to the work presented by Tortajada et al. [126], where
they presented an incremental learning algorithm and successfully applied it
to several diagnosis classification problems using MR spectra. Tortajada et al.
realized that in a clinical or research setting, the gathering, pre-process, and
validation of samples is expensive and time-consuming. Thus, they proposed
an incremental learning approach in order to build an initial classifier with a
smaller number of samples and update it incrementally when new data are col-
lected. The incremental learning algorithm for Gaussian Discriminant Analysis
(iGDA) they introduced did not require access to the previously used data and
was able to include new classes that were not in the original analysis. This can
allow the customization of the models to the distribution of data at a particular
clinical site.
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2.5.2 Survey of studies performed with MRS data from
children

During the last decades several clinical studies have revealed the use of Short-TE
MRS as a useful tool for children with nervous system diseases [33, 127]| and,
more specifically, in tumour diagnosis and treatment in children [128, 64, 85];
Characterizing a brain mass as neoplasm, following treatment response of pri-
mary neoplasm, differentiating residual or recurrent primary neoplasm from
postsurgical changes and identifying inactive neoplasms or in remission are some
of the applications the use of MRS can improve.

Wang et al. [44] quantified the visible metabolites in 35 Long-TE MR spectra
of primary pediatric cerebellar tumours. Quantification of the NAA /Cho and
Cr/Cho ratios was performed from a semiautomatic pre-processing methodol-
ogy applied to the spectra. Discriminant analysis was applied to differentiate
the three major tumour types in children (low grade astrocytoma, ependymoma
and PNET) giving a sensitivity /specificity values of 0.91/0.84, 0.75/0.92, and
0.82/0.89, respectively, based on the data of the study. They obtained an accu-
racy of 0.85 discriminating the three tumour types uwing the metabolites ratios
of NAA/Cho and Cr/Cho.

The use of ANN has also been applied in pediatric brain tumour research in [129].
In this study, Arle et al. obtained data from 33 children presenting Posterior
Fossa (PF) tumours. A computer-based Multilayer Perceptron (MLP) was de-
veloped to combine MRS data (ratios of NAA, Cho, and Cr) with 10 charac-
teristics of tumour tissue obtained from MR image findings, as well as tumour
size and the patient’s age and sex. The neural network trained with the three
spectroscopy ratios alone had a predictive ability of only 58% when discrim-
inating among three categories (PNET, astrocytoma, or ependymoma/other).
Another MLP trained with data including MR imaging characteristics, age, sex,
and tumor size, obtained an accuracy improved to 72%, consistent with the pre-
dictions of the neuroradiologist who was using the same information. A network
that used all of the data (imaging data, spectroscopic data and a limited clinical
information) was able to identify 95% of the tumours correctly.

Schneider et al. [130] calculated the apparent diffusion coefficient (ADC) and
quantified the metabolites signals from diffusion-weighted imaging (DWI) and
MRS in differentiating medulloblastoma, ependymoma, pilocytic astrocytoma,
and infiltrating glioma in a pediatric population of 17 children. Combination of
ADC values and metabolites allowed discrimination between the four tumour
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groups with a predictive value of 1. Linear discriminant analysis using DWI
and MRS using water as internal reference, fully discriminated the four most
frequent posterior fossa tumours in children.

Davies et al. [131] performed univariate metabolite comparisons and multivari-
ate classifiers to 35 SV Short-TE spectra from children with untreated cerebellar
tumours (18 medulloblastomas, 12 pilocytic astrocytomas and five ependymo-

mas). Spectra were analysed using LCModelTM to yield metabolite profiles, and
key metabolite assignments were verified by comparison with HR-MAS NMR of
representative tumour biopsy samples. Successful classification was achieved for
glial-cell (astrocytoma -+ ependymoma) versus non-glial-cell (medulloblastoma)
tumours, with an accuracy of 0.95. The accuracy was 0.93 in the discrimination
of astrocytoma vs medulloblastoma and also in the discrimination of astrocy-
toma vs medulloblastoma vs ependymoma.

Hao et al. [132] applied ICA in order to determine automatically the metabolite
signals which make up MR spectra. The two common techniques for applying
ICA, blind source separation (BSS) and feature extraction (FE) were examined
in this study using simulated data and the findings confirmed on patient data.
Short-TE, low and high field (1.5 and 3 T) in vivo brain tumour MR spectra
of childhood astrocytoma, ependymoma and medulloblastoma were generated
by using a quantum mechanical simulator with ten metabolite and lipid com-
ponents. ICA of simulated data showed that individual metabolite components
can be extracted from a set of MRS data. The BSS method generated indepen-
dent components with a closer correlation to the original metabolite and lipid
components than the FE method when the number of spectra in the dataset
was small. When the methods were applied to the patient dataset (117 patients,
Short-TE, 1.5T), results were consistent with the synthesized experiments.

Porto et al. [45] tried to differentiate between WHO grade I pilocytic astro-
cytoma and diffuse, fibrillary WHO grade II astrocytoma in children by using
normalized concentrations of total Cho and total Cr. To do so, they counted
with 16 children with histologically proven astrocytomas (11 children with pi-
locytic astrocytoma and 5 children with diffuse astrocytoma). They reported
that normalized total Cho did not show any statistically significant difference
between the two groups. However, they detected a strong trend toward higher
values of normalized total Cr in the diffuse astrocytomas. They concluded
that choline as a single parameter is not reliable in the differential diagnosis
of low-grade astrocytomas in children and suggest that total Cr concentrations
combined with lactate could be helpful in the differential diagnosis of pilocytic
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astrocytomas and difuse astrocytomas in children.

To our knowledge, most of the research carried out on MRS of brain tumours
in children are based on relatively small sample populations and/or gathered
from a unique clinical institution [44, 45, 129, 130, 131, 132]. This is due to
low incidence of paediactric brain tumours and the difficulties of coordinating
multi-centre studies. In [132], MRS data from 117 patients was available. Nev-
ertheless, all the cases were coming from the same institution. MRS data from
35 patients was applied in [44] as well as in [131]. The study of Arle et al. [129]
was performed with the data of 33 different patients. Regarding Schneider et
al. [130], they only counted with 17 patients. In [45], 16 children with astrocy-
tomas were studied. Although these studies showed good classification results
when discriminating the three main brain tumour classes in children (ependy-
moma, medulloblastoma and astrocytoma), it is necessary a multi-centre eval-
uation to demonstrate the reproducibility of these performances.

2.6 DSSs in BT Research

A DSS is a computer-based system that aids in the process of decision mak-
ing [133].

With increasing quantities of clinical data being collected in hospitals, the prac-
tice of evidence-based medicine is becoming more and more feasible. The use of
clinical DSSs is based on the goal of making the hospital data repositories, and
the information contained therein, available to physicians at the point of care.
Clinical DSSs are active knowledge systems which use two or more items of pa-
tient data to generate case-specific advice [134]. Clinical DSSs facilitate access
to high-quality medical practices, which contributes to better health care [135].

The expected benefits of using a clinical DSS are an increase on the quality of
treatment by providing automated alerts and consistency checks; an increase in
treatment efficacy by providing best-practice guidelines; an increase in knowl-
edge by providing information when and where it is needed, and a cost recution
by eliminating redundant tests [136, 137]. The potential benefits of clinical
DSSs are summarized by Coiera and Sintchenko in three major items [138, 139]:
improved patient safety, improved quality of care, and improved efficiency in
health care delivery.

Clinical DSSs based on Pattern Recognition (PR) have been widely accepted
in medical applications due to their capability for flexibility, accuracy and in-

49



Chapter 2

terpretability [104]. Studies on the evaluation of the use of clinical DSSs indi-
cate a positive effect on clinical practice [140, 141, 142| and quality of primary
care [143].

Several examples of clinical DSSs related to the diagnosis of brain tumours
studied in this Thesis are:

e The SV INTERPRET GUI'2 based on an LDA latent space projection.

The SV INTERPRET GUI provides easy access to a database of spectra,
images and clinical information from 304 validated cases of human brain
tumours. It is designed to allow the display of classification plots which are
useful for automating the classification of tumour spectra [105]. Recently,
the INTERPRET DSS version 3.0 has been released [144]. Version 3.0
improves the initial analysis capabilities of the first version by incorporat-
ing an embedded database, user accounts, more diagnostic discrimination
capabilities and the possibility to analyse data acquired under additional
data acquisition conditions. Other improvements include a customisable
Graphical User Interface (GUI). A picture of the INTERPRET GUI can
be seen in Figure 2.10. Most diagnostic problems have been addressed
through a pattern-recognition based approach, in which classifiers based
on LDA were trained and tested.

The Computer Aided Diagnosis System (CADS) of eTUMOUR, which
offers advanced functionalities for patient management, as well as aided
diagnosis on several questions with capability to accept SV Long-TE and
Short-TE spectra. It is designed to provide the user with a percentage of
confidence associated to the answer it provides when supporting diagno-
sis. The classifiers are built from the most important repository of brain
tumours in Europe.

The HEALTHAGENTS dDSS. This DSS differs from the previous in its
arquitecture definition. It offered a web accesible DSS distributed along
a network of clinical and producer nodes'3. Conceived as a collaborative
network where users (clinical nodes) request services (support in the diag-
nosis) to knowledge suppiers (producer nodes, constituted by PR reseach
groups), this dDSS is able to address more than 10 different questions, sort
the results attending to a ranking model and show latent space projections
of the LDA classifiers it contains [145, 146].

12http://azizu.uab.es/INTERPRET /sv_tutorial /index.php
13 Currently not accesible
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Figure 2.10: INTERPRET DSS version 3.0 GUI. Image obtained from [144].

e SpectraClassifier. Is a solution for designing and implementing MRS-
based classifiers [147]. It incorporates several feature selection tools and
implements the Fisher LDA classification method and several evaluation
techniques (see Figure 2.11). It is able to read low resolution in-vivo MRS
(single-voxel and multi-voxel) and HR-MAS, processed with existing tools
(JMRUI, INTERPRET, 3DiCSI or TopSpin). In addition, to facilitate
exchanging data between applications, a standard format capable of stor-
ing all the information needed for a dataset was developed. Data from
the INTERPRET project was used with the purpose of bug-testing and
validating the methods.

e CURIAM. Designed as a general purpose DSS for clinical environments,
CURIAM BT offers a powerful classification framework able to use most
kind of biomedical data and allows a specialized support on the diagnosis
of brain tumours based on the grounds of MRS of adults and pediatric
patients [148, 149]. It is able to automatically or semi-automatically pre-
process MRS from three major manufacturers and implements several PR
techniques for brain tumour classification. It has been designed as a tool
for offering a taylored decision support, taking into account the patient
profile in order to give the user the most adequate answer to each evaluated
case (see Figure 2.12).
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Figure 2.11: SpectraClassifier tool GUI. It is not a DSS in itself, but allows to
easily create PR-based classifiers with MRS data.
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Chapter 3

Brain tumour classification in
childhood and adulthood

“We do not choose to be born. We do not choose our parents. We do not choose
our historical epoch, the country of our birth, or the immediate circumstances
of our upbringing. We do not, most of us, choose to die; nor do we choose the
time and conditions of our death. But within this realm of choicelessness, we
do choose how we live.”

Somebody

Several studies confirm that the nature of child BT may be totally different
from adults. This chapter focuses on developing pediatric classifiers with high
accuracy that overcome the biochemical differences found in children and adult
BT. Automatic BT classification of MRS data from two multi-centre projects
(INTERPRET and eTUMOUR) was performed to develop classifiers special-
ized in child patients and adult patients. Our evaluation demonstrates that
children classifiers tested with an adult test set show a poor performance and
vice-versa. A filter based on the normal probability density function of the
training dataset’s age can successfully overcome these differences and obtain a
classifier that globally behaves as predicted by the training performance.
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The core of this chapter has been published in the proceedings of the 17th Scien-
tific Meeting of the International Society for Magnetic Resonance in Medicine
Conference [1]. The pre-processing protocol applied to the spectra is described in
Section 3.2 and was published in [2]. Sections 3.4.1 and 8.4.2 include an anal-
ysis of spectral features highlighting the metabolic differences observed in child
and adult brain tumours described in Chapter 1.

3.1 Introduction

Although limited studies have been reported in children, they confirm that
childhood BT differ from those arising in adulthood in their relative incidences,
histological features, sites of origin and responsiveness to therapy [3, 4, 5, 6,
7]. Section 2.5.2 of Chapter 2 showed that PR applied to in-vivo 'H MRS is
becoming an important tool for additional accurate non-invasive technique for
classification and characterization of pediatric tumours. However, the results
reported were based on relatively small sample populations and/or gathered
from a unique clinical institution.

In the context of the multi-centre projects e TUMOUR and INTERPRET, 489
(93 children, 396 adults) SV 'H MRS at 1.5T histopathologically diagnosed
brain tumour cases from 10 different centers in Europe and South America have
been gathered. This amount of multi-centre data offered us the opportunity to
demonstrate the reproducibility of the studies reporting the metabolic differ-
ences in the nature of children and adult BT.

In this chapter we applied PR techniques to pediatric and adults BT with a
multi-centre MRS database. With the obtained classifiers, a study of the com-
patibility was performed. This study consisted of detemining whether a classifier
aimed to adult BT diagnosis could correctly predict pediatric cases and vice-
versa. Finally, a design of a filter was proposed. This filter was based on the
patient age to internally decide when the classifier specialized with child patients
should be used.
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Table 3.1: Number of samples divided by aggressiveness (bold letters) and associated tu-
mour types. Notice that there are 2 adult cases labeled as OTH and considered aggressive
(corresponding to one anaplastic meningioma and one germinoma). The remaining OTH
cases, both in children and adults, belonged to non-aggressive tumour types.

Aggressiveness Tumour type Child  Adult

Aggressive 36 225
HG glial 12 156
MED 24 2
MET 0 65
OTH 0 2

Non-aggressive 57 171
LG glial 48 7
MEN 3 69
OTH 6 20
NOR 0 5
TOTAL CASES 93 396

3.2 Materials

3.2.1 Cases

489 SV 'H MRS at 1.5T (TE of 20-32 ms, Recycling time (TR) of 1600-2020 ms)
histopathologically diagnosed brain tumor cases acquired by ten institutions in
the framework of the European projects INTERPRET (2000-2002) [8, 9, 10] and
eTUMOUR (2004-2009) [11] has been used for this study. Signal quality and
histopathological diagnoses of the cases were validated by the INTERPRET
Clinical Data Validation Committee [8], the eTUMOUR Clinical Validation
Committee, and expert spectroscopists [12].

The 489 spectra belonged to 93 children and 396 adults. The classes considered
in this study were based on the histological classification of the CNS tumours
as described by the WHO Classification [13]. Pathology distribution in children
was: 60 glials (12 High grade (HG) and 48 Low grade (LG)), 24 Medulloblastoma
(MED), 3 Low-grade meningioma (MEN) and 6 cases belonging to other less
frequent tumour types (OTH). Distribution of pathology in adults was: 233
glials (156 HG, 77 LG), 2 MED, 69 MEN, 65 Metastases (MET), 5 Normal
brain spectra (NOR) and 22 OTH. Mean age in children and adults was 11.54+8
and 54+13 respectively. Summary of the data available is gathered in Table 3.1.
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Data acquisition

In the INTERPRET project, a protocol was defined to guarantee the compati-
biliy of the signals acquired at different hospitals [10, 12]. The subsequent mul-
ticenter project eTUMOUR has benefited from the data and expertise gathered
by INTERPRET. The INTERPRET acquisition protocols for clinical, radiolog-
ical, and histopathological data were extended to ez-vivo transcriptomic (DNA
microarrays) and metabolomic (HR-MAS) data acquisition in e TUMOUR [14].

276 SV 'H MR at 1.5T spectra from the INTERPRET database [12] were in-
cluded. These signals were acquired with Siemens, General Electric (GE), and
Philips instruments by six international centres. Data were acquired avoiding ar-
eas of necrosis or cysts and with minimum contamination from the surrounding
non-tumoral tissue. The acquisition protocols included PRESS or STEAM se-
quences, with TR between 1600 and 2020 ms, TE of 20 or 30-32 ms (Short-TE),
spectral width of 1000 - 2500Hz, and 512, 1024 or 2048 data-points.

Slightly differing were the spectral parameters of the 213 SV 'H MR spectra
at 1.5T acquired from the 10 international centres participating in eTUMOUR:
PRESS, PROBE or STEAM sequences, with TR between 1500 and 2000 ms,
TE of 20 or 30 ms, spectral width of 500 - 2500Hz, and 512, 1024 or 2048
data-points.

Pre-processing

Each signal was pre-processed according to the INTERPRET protocol. A fully
automatic pre-processing pipeline was available for the INTERPRET signals.
Besides, a semi-automated pipeline was defined for some new file formats of the
eTUMOUR spectra from GE and Siemens manufacturers. The semi-automatic
pipeline was designed to ensure compatibility of its output with the automatic
one.

Automatic pipeline

The steps of the automatic pre-processing pipeline were:

1. The Klose algorithm was applied to the water-suppressed Free induction
decay (FID) of each case for eddy current correction: The quality of
volume-localized MRS is affected by distortions, called eddy currents, in
the gradient directions. Eddy currents distorsions can be corrected using
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affine registration to a reference volume. The Klose algorithm performs
such correction by using the water signal FID of a case as a reference for
water-suppressed FID of that case [15].

2. Suppression of the residual water signal is a prerequisite to an accurate
quantification of cerebral metabolites. The HLSVD time-domain selective
filtering using 10 singular values and a water region of [4.33, 5.07] ppm was
applied for residual water resonance suppression. This algorithm allows
complete elimination of the residual water signal [16].

3. Apodization was applied to the resulting signal in order to improve the
signal-to-noise ratio (SNR) of the spectrum. Apodization consists in a
point-by-point multiplication of the time domain signal by a decaying
exponential function. By doing so, the initial part of the FID, where
the SNR if higher, gains more weight compared to the latter part. The
apodization was perfomed with a Lorentzian function of 1Hz of damping.

4. A zero filling was applied to the frequency domain spectrum in order to
interpolate the number of points to the maximum number used in the
acquisition protocols (2048).

5. Afterwards, the baseline offset is estimated as the mean value of the region
[11, 9] and [-2, -1] ppm and subsequently subtracted from the spectrum.

6. The region [4.33, 5.07] ppm was set to zero to avoid the influence of possible
residuals of the water peak.

7. A Unit length normalization (ULN) is applied to the spectra using the
region of interest [7.1, -2.7] ppm. The ULN allows a normalization of all
the spectra under pre-processing to the Euclidean norm.

8. A frequency alignment check was then performed by referencing the ppm-
axis to the total Cr at 3.03 ppm; the Cho at 3.21 ppm or the ML at 1.29
ppm, depending on the tumour pattern and on the SNR. Each peak is
searched in a range close to the expected positon and, if none of them are
found, the spectrum no shift correction is applied.

9. Finally, a last step of reduction of the number of points of the spectra to
190 points was performed for the defined region of [0.5, 4.1] ppm. This
region corresponds to the range where the main metabolites are found in
the brain.
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Semiautomatic pipeline

Some of the eTUMOUR samples were pre-processed by a semi-automatic pipeline
that was partially based on the Java magnetic resonance user interface (jMRUI)
software package [17]. The modifications of the semiautomatic pipeline with re-
spect to the automatic one were: (1) The phase of the water-supressed FID
was mainly corrected with the reference water. (2) Additional manual phase
correction of zero oder (non-frequency dependent) and first order (proportional
to the frequency) was performed after the zero-filling step. (3) The Hankel sin-
gular value decomposition algorithm of the JMRUI implementation was used to
remove the residual water. The filter was parameterized as in the automatic
pre-processing.

As a result, a pre-processing pipeline based on different software implementa-
tions but compatible with the automatic one was set up, and comparable signals
for developing the PR models were obtained.

3.3 Methods

3.3.1 Feature extraction

Two different PR automatic feature extraction methods were applied in this
study: PI and PCA. Both techniques were chosen because of the good results
reported in [2]. PI technique was applied after the (semi)automatic process-
ing pipeline to estimate the relative concentration of metabolites integrating
the frequency signal around the resonance frequencies. This technique has been
successfully applied in previous studies with MRS from adults [2, 18]. Addition-
ally, Principal Components Analysis (PCA) [19, 20] was applied in the region of
[4.1, 0.5] ppm interval, taken as input for the classification models the principal
components that explained the 85% of the total variance. PCA applied to the
PI was also applied as dimensionality reduction technique to the inputs of the
classifiers.

3.3.2 Classification and evaluation

The classification problem of discriminating between two levels of aggressiveness
in BT (aggressive or non-aggressive) is addressed for child and adult cases.
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LDA and KNN techniques were applied to generate the predictive models. Clas-
sifiers were evaluated following this methodology: A corpus of 60 children cases
and 300 adult cases was available for training purposes. An initial evaluation
estimated on a 10-Folded CV was calculated for each classifier. Then, children
classifiers were tested with two independent test sets: one containing 33 chil-
dren cases and other with 396 adult cases. Analogously for the adult classifiers,
an independent test set of 96 adult cases and a second with the total set of 93
childhood cases were applied.

The performance of the classifiers was measured with the ACC and the BAR
both in the training stage and when evaluated with the independent test sets.

3.3.3 Age-filtered classifier

The pediatric classifier that showed best performance according to the CV eval-
uation was selected. Analogously, the adult classifier with best CV peformance
was also selected. With them, a filter based on the normal probability density
of the ages of their respective training cases was applied in order to decide what
classifier should be used for each case to be evaluated. This ‘filtered classifier’
was tested with both independent test set of 33 children cases and 96 adult
cases. ACC and BAR were calculated for this combined indenpendent test set.

3.4 Results

3.4.1 Spectral features

A detailed view of the mean profile of the different tumour types is shown in
Figure 3.1. Visual discrimination of the different tumour types can be done
attending to the metabolite concentrations. The mean spectra of every tumour
type differs visually to the mean spectra of normal adult brain tumour (NOR),
with its characteristically prominent NAA peak, a neuronal marker located at
2.00 ppm [6, 7]. In LG glials, NAA and ML at 0.9 ppm and 1.3 ppm shows
more variability in children than in adults. HG glials in children shows a great
elevation of Choline (Cho) peak at 3.2 ppm with respect to the Cr peak at
3.0 ppm, whereas in adults the elevation of Mobile lipids (ML) is the most
prominent feature. MEN shows the characteristic plateau around the NAA
resonance both in children and adults althought the concentration of NAA may
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be slightly greater in children. MED mean spectra is also similar in children
and adults, with two relevant aspects: the great elevation of Cho compared to
the Cr intensity; and a lower amount of NAA compared to the LG glials. The
adult MET mean spectra shows a similar profile to that of HG glials in adults,
with a prominent ML peak.

When joining the tumour types attending to their aggressiveness, several visual
key features prevail in the mean spectra obtained (Figure 3.2): aggressive tu-
mours in children display an increase in Cho peak with respect to the Cr peak.
In contrast, in the mean spectra of aggressive tumours in adults the main fea-
ture is the presence of an elevated ML peak. Mean spectra of non-aggressive
tumours shows a similar profile in children and adults with an slightly superior
concentration of NAA observed in children.

3.4.2 Metabolite comparison

The estimated metabolite concentrations in aggressive and non-aggressive BT
in children and adults can be seen in Table 3.2. The Kruskal-Wallis test for the
analysis of the variance (e = 0.05) has been applied to determine the significant
differences in metabolite concentrations in pediatric and adult aggressive and
non-aggressive tumours. Bonferroni test correction (with o = 0.01) was applied
to avoid bias in the multiple comparison.

Statistical significant differences were observed between child and adult aggres-
sive BT (significance of p <0.01 in every concentration peak but the Ala peak),
whilst non-aggressive BT in children and adults did not reflect remarkable differ-
ences in metabolite concentration, with exception of the estimated concentration
of the Cho peak (p < 0.05) and the peaks related with ML (Macromolecules and
lipids components at 0.9 ppm (MMLip09), with p <0.05 and Macromolecules
and lipids components at 1.3 ppm (MMLip13)+Lac, with p <0.01).

In adults, all the metabolite concentrations had significant differences between
aggressive and non-aggressive tumours (p <0.01, Table 3.2-Bottom). In con-
trast, only the differences of five metabolite concentrations were statistically
significant (p <0.01) in pediatric aggressive and non-aggressive tumours: ml,
Glx, Cho, NAA and Ala.
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Children Adults
(a) Low grade glial

4 a5 3 25 2 15 i oS 4 a5 3 25 2 15 i oS
Chemical Shift (ppm) Chemical Shift (ppm)

n—48 n=77

(b) High grade glial

4 a5 3 25 2 15 i oS 4 a5 3 25 2 15 i oS
Chemical Shift (ppm) Chemical Shift (ppm)

n=12 n=156

(¢) Meningioma

4 @5 3 25 2 s 4 as 4 @5 3 25 2 s 4 as
Chemical Shift (ppm) Chemical Shift (pprm)

n=3 n=69

(d) Medulloblastoma

4 a5 3 25 2 15 i oS 4 a5 3 25 2 15 i oS
Chemical Shift (ppm) Chemical Shift (ppm)

n—=24 n=2

(e) Metastasis (adults) (f) Normal (adults)

4 &8s 3 25 2 s 4 as 4 @5 3 25 2 s 4 as
Chemical Shift (ppm) Chemical Shift (pprm)

n=65 n=>5

Figure 3.1: Mean spectra of children (left) and adults (right) of several tumour types with
standard deviation indicated by the shaded region. Number of patiens for each tumour type
is indicated beneath each graph. X-axis is in ppm. Y-axis is in arbitrary units.
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Children Adults

(a) Non-aggressive tumour

4 a5 3 s 2 15 : 0s 4 a5 3 s 2 15 : 0s
Chemical Shift (ppm) Chemical Shift (ppm)
n=>57 n=171
(b) Aggressive

4 a5 3 s 2 15 : 0s 4 a5 3 s 2 15 : 0s
Chemical Shift (ppm) Chemical Shift (ppm)

n=36 n—=225

Figure 3.2: Mean spectra of pediatric (left) and adult (right) aggressive and non-aggressive
tumours with standard deviation indicated by the shaded region. Number of patiens for each
tumour type is indicated beneath each graph.
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Table 3.2: Estimated metabolite concentrations in aggressive and non-aggressive brain tu-
mours according to the PI method. The total contribution of each metabolite when resoning
at several ppm is calculated. The standard deviation of the concentrations is given in brack-
ets. Analysis of the variance (Kruskal-Wallis test, with a= 0.05, corrected with Bonferroni
test) is shown for comparison of aggressiveness in children and adults. On the top, differences
in children and adults for the same level of aggressiveness. On the bottom, differences of
aggressive and non-aggressive tumours grouped by age (in children and in adults).

Differences in the aggressivencss attending to age

Metabolite Aggressive Non-aggressive
Concentrations  Children Adults Signif. Children Adults Signif.
MMLip09 0.89 (0.32) T.16 (0.36) <0.01 0.93 (0.41) 0.81 (0.41) <0.05
MMLip13+ Lac 1.59 (0.90) 2.9 (1.11) <0.01 1.52 (0.88) 1.18 (0.75) <0.01
Total Ala 1.83 (0.41) 1.87 (0.53) - 2.21 (0.54) 2.11 (0.56) -
NAA 1.17 (0.25) 0.97 (0.39) <0.01 1.27 (0.50) 1.33 (0.38) -
Total Cr 2.07 (0.72) 1.16 (0.77) <0.01 1.97 (0.70) 2.13 (0.72)
Cho 2.10 (0.66) 0.86 (0.59) <0.01 1.37 (0.49) 1.56 (0.54) <0.05
Gly 1.31 (0.52) 0.59 (0.49) <0.01 1.33 (0.63) 1.28 (0.55)
Glx 1.87 (0.39) 1.45 (0.60) <0.01 2.05 (0.74) 2.19 (0.56)
Total ml 3.11 (0.89) 1.31 (0.93) <0.01 2.58 (1.02) 2.68 (0.91)
Tau 0.84 (0.40) 0.40 (0.34) <0.01 0.93 (0.40) 0.91 (0.36) —
Discrimination by aggressiveness in children and in adults
Metabolite Children Adults
Concentrations  Aggressive Non-aggressive _ Signif. Aggressive Non-aggressive _ Signif.
MMLip09 0.89 (0.32) 0.93 (0.41) = 1.16 (0.36) 0.81 (0.41) <0.01
MMLip13+ Lac 1.59 (0.90) 1.52 (0.88) - 2.9 (1.11) 1.18 (0.75) <0.01
Total Ala 1.83 (0.41) 2.21 (0.54) <0.01 1.87 (0.53) 2.11 (0.56) <0.01
NAA 1.17 (0.25) 1.27 (0.50) <0.01 0.97 (0.39) 1.33 (0.38) <0.01
Total Cr 2.07 (0.72) 1.97 (0.70) - 1.16 (0.77) 2.13 (0.72) <0.01
Cho 2.10 (0.66) 1.37 (0.49) <0.01 0.86 (0.59) 1.56 (0.54) <0.01
Gly 1.31 (0.52) 1.33 (0.63) 0.59 (0.49) 1.28 (0.55) <0.01
Glx 1.87 (0.39) 2.05 (0.74) <0.01 1.45 (0.60) 2.19 (0.56) <0.01
Total ml 3.11 (0.89) 2.58 (1.02) <0.01 1.31 (0.93) 2.68 (0.91) <0.01
Tau 0.84 (0.40) 0.93 (0.40) 0.40 (0.34) 0.91 (0.36) <0.01
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Table 3.3: Training and independent test set performances of adult classifiers trained with
300 samples and children classifiers trained with 60 samples. These classifiers discriminate ag-
gressive and non-aggressive BT. Average performance of the 6 classifiers (PI+LDA; PI+KNN;
PCA+LDA; PCA+KNN; PI+PCA+LDA; PI+PCA+KNN) is shown as well as the perfor-
mance of the best one for each category, according to the CV evaluation.

Training Adults Test Set  Children Test Set

Adults Classifiers Performance (96 cases) (93 cases)
ACC BAR ACC BAR  ACC BAR

Average performance 0.84  0.83 0.78 0.78 0.53 0.50

Best classifier

(PT+LDA) 085 085 0.85 0.85 0.62 0.60

Training Adults Test Set  Children Test Set

Children Classifiers Performance (396 cases) (33 cases)
ACC BAR ACC BAR  ACC BAR

Average performance  0.77  0.80 0.51 0.52 0.76 0.75

Best classifier

(PT+PCA+LDA) 0.84 0.87 0.55 0.50 0.88 0.88

3.4.3 Classification

Mean training performance of adult classifiers was ACC=0.84; BAR=0.84 (see
Top Table 3.3). On the other hand, mean training performance of childhood
classifiers was slightly inferior with ACC=0.77; BAR—=0.80 (see Bottom Ta-
ble 3.3).

When applying the adult independent test set to the adult classifiers, similar
results to the training performance were obtained. On the contrary, when the
children test set was applied to the adult classifiers, a low mean performance
was observed (ACC=0.52; BAR=0.50). Analogously, the performance obtained
with the childhood independent test set in children classifiers is similar to the
training performance. When the adult test set was applied, the performance
became significantly worse (mean performance of ACC=0.51; BAR=0.52).

The best classifier of each age category, according to the CV evaluation, was
selected and a filter based on the normal probability density of the ages of their
respective training cases was applied in order to decide the convenient classifier
for each case to be evaluated. Figure 3.3 depits a diagram of the decision process
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Table 3.4: Independent test set performance of an age-filtered classifier combination of
the best children and adult classifiers. Mixed Test Set of 33 children samples and 96 adults
samples.

Mixed Test Set
ACC BAR
Age-Filtered Classifier 0.84 0.85

to decide which classifier should perform the classification attending to the age
of a test case. This ‘filtered classifier’ was tested with an independent test set of
33 children cases and 96 adult cases. The performance obtained was similar to
the performances obtained by each classifier individually when tested with a test
set in accordance to the age of their training samples (ACC=0.84: BAR=0.85;
see Table 3.4).

3.5 Discussion

3.5.1 Tumour characterization from metabolite concen-
tration

The estimation of metabolite concentrations was carried out with the PI tech-
nique. Relevant differences were detected between pediatric and adult aggressive
tumours, being statistically significant the differences between the concentra-
tions of every peak but the Ala. These significant differences agree with the
works of [3, 4, 5, 6, 7], which reported notable differences between children and
adults in the distribution of tumours by location, and therefore, with regard to
the metabolite concentrations found in the lesions.

In contrast, most of the metabolite concentration did not present relevant dif-
ferences in the non-aggressive tumours. Only the Cho peak (p < 0.05) and the
peaks related with the ML (MMLip09, with p <0.05 and MMLip13+Lac, with
p <0.01) showed significant differences.

The significance in Cho concentrations aggrees with the fact that children present
higher concentrations compared to the amount of NAA due to the brain cell for-
mation during the childhood [21, 22]. Regarding the ML peaks, elevated ML
is usually associated to hypoxia and necrosis [23, 24, 25]. These phenomenona
occur in HG glials and metastasis, where a great peak of lipids predominates.
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\ = == Child age distribution
Adultage distribution

120

Is an adult
case?

Pediatric

Adult
classifier

classifier

Figure 3.3: Diagram of the ‘filtered classifier’ that decides which specilized classifier should

give the answer attending to the age of the test case with respect to the normal probability
density of the ages of the cases used to train each classifier.
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The appearance of the Lac peak is always associated with the abnormal state of
the brain. Low concentration of Lac may suggest low growth. On the contrary,
medulloblastomas exhibit a trend toward a higher Lac signal [26].

The Kruskal-Wallis test was also applied to analize the significant differences
between metabolite concentration of aggressive and non-aggressive tumours in
adults. It revealed that every metabolite concentration obtained with PI had
a significant different concentration for this discrimination problem (p < 0.01).
The visual examination of both mean signals (Figure 3.2-Right) gave an intu-
ition of how different both levels of aggressiveness are. This was confirmed by
the univariate analysis. Since all the relevant metabolite concentrations were
significantly different, it migth be plausible that a multivariate analysis of these
data will obtain a high accuracy rate.

Analogously, the differences in the aggressiveness level in pediatric BT was
also analized. In contrast with the results with adults, only five metabolite
concentration revealed as significantly different. From this result we can infere
that this diagnostic discrimination has more inherent complexity in children
compared to adults.

The higher presence of Glx and its end product, Ala, in non-aggressive tu-
mours compared to aggressive tumours in children (p < 0.01) may be due to
the contribution of low grade meningiomas. Important concentrations of these
metabolites are usually found in low grade meningiomas [27, 28|. This behaviour
is also observed in adult tumours. Higher mI concentrations are found in pedi-
atric aggressive tumours compared to non-aggressive. This might be due to the
contribution of high grade glials, since ml is considered a glial marker and its
elevation associated to inflammatory processes and increase and proliferation
of glial cells [29]. A significant reduction of NAA is observed in the pediatric
aggressive tumours compared with the non-aggressive ones (p < 0.01). NAA is
a marker of neuron activity, both in adults and children. A reduction of NAA
indicates reduction or absence of neurons in the region [30, 31]. In children,
large reductions in NAA with elevated Cho generally indicates tumour [32].
Cho is also significantly higher in the pediatric aggressive tumours compared to
the non-aggressive. In children, a significantly shorter survival time has been
observed for patients with the highest Cho/NAA ratios, independent of the
tumour type [33, 32].

3.5.2 Classification of aggressiveness
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LDA and KNN classifiers obtained similar performaces both in the training and
test evaluation with children and adults. Although non-statistically significant,
lower performance was achieved when discriminating aggressiveness levels in
children. This might be explained by the complexity of the problem: univari-
ate analysis revealed that every PI input was statistically different in adults
aggressive tumours compared to non-aggressive. In children, though, only five
metabolite concentrations were reported to be statiscally different. This would
explain why the best pediatric classifier was trained with PI4+PCA; the firsts
principal components of PCA applied after PI made that only the metabolite
concentration with significantly relevant information were used to train the clas-
sifier. In comparison, the data used to train the adult classifiers (PCA, PI or
PCA-+PI) did not reveal as a critical factor to improve the performance since
both KNN and LDA achieved similar results.

Both types of classifiers performed as predicted by their respective training
performance when an independent test set of samples with age accordance was
applied. On the contrary, when children classifiers were tested with an adult
test set and vice-versa (adult classifiers with a children test set), performance
lowered drastically. This result reinforces the idea suggested in [3] that the
nature of childhood and adulthood BT may be totally different.

A simple filter based on the normal probability density function of the age es-
timated in the training dataset can successfully overcome these differences and
obtain a classifier that globally behaves as predicted by the training perfor-
mance.

3.6 Conclusions

The results obtained with this experiment shed light to the need of developing a
tool that decides which classifier is more adequated to a specific patient. From
our point of view, in a clinical DSS oriented to BT diagnosis, and specially if
it gives support to both adult and children patients, a tool for auditing and
selecting the most adequated predictive model is of the utmost importance.

Chapters 5 and 6 will describe a tool that tries to pursue this aim. Next chapter
focuses on the development of classifiers for children.
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Chapter 4

Automatic classification of
childhood brain tumours from
multi-centre in vivo 'H MRS

“I hope our wisdom will grow with our power, and teach us, that the less we use
our power the greater it will be.”

Thomas Jefferson

The aim of the current chapter is to evaluate the automatic classification of
pediatric brain tumours by combining single-voxel 'H MRS at two different echo
times (TE). Our hypotheses are (1) that the classification provides an accurate
non-invasive diagnosis in multi-centre datasets and (2) the combination of TE
improves the accuracy of classification compared with the use of one TE alone.

78 patients under 16 years old with histologically proven brain tumours from 10
international centres were investigated. Discrimination of 29 medulloblastomas,
11 ependymomas and 38 pilocytic astrocytomas was evaluated. Single voxel
MRS was undertaken prior to diagnosis (1.5T PRESS, PROBE or STEAM, TE
20-32 ms, and PRESS, 135-136 ms). MRS data was processed using three strate-
gies, determination of metabolite concentrations using TARQUIN software and
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automatic feature extraction with Peak integration and Principal Components
Analysis. Linear Discriminant Analysis was applied to this data to produce
diagnostic classifiers. An evaluation of the diagnostic accuracy based on resam-
pling to measure the BAR was performed.

The accuracy of the diagnostic classifiers for discriminating the three tumour
types was found to be high (BAR 0.98) when a combination of TE was used. The
combination of both TE significantly improved the classification performance
(p < 0.01, Tukey’s test) compared with the use of one TE alone. Other tumour
types were classified accurately as glial or primitive neuroectodermal (BAR
1.00).

'H-MRS with combined Short and Long TE has very good accuracy for the
non-invasive diagnosis of common childhood brain tumours and should become
part of routine clinical assessment for these children.

The core of this chapter has been recently accepted as a scientific paper in the
European Journal of Cancer [1] and published in the proceedings of the 15th
International Symposium of Pediatric Neuro-Oncology [2].

4.1 Introduction

The conventional MR images are inaccurate in discriminating between most
childhood brain tumours and a diagnosis is usually made from biopsy samples
taken at operation with the histology of the tumour being used to formulate
the treatment plan. Whilst histopathology provides a definitive diagnosis there
would be several advantages to obtaining an accurate non-invasive diagnosis.

For tumours where surgical resection is not the initial therapeutic option, an
accurate non-invasive diagnosis would avoid an invasive procedure. For tumours
where surgery is undertaken at diagnosis, accurate diagnostic information on the
tumour type prior to initial surgery would help surgical decision-making, allow
timely adjuvant therapy planning and aid discussions with the family. A com-
mon site for childhood tumours is the cerebellum and surgical resection is usually
the initial therapeutic intervention. However, the importance of a complete re-
section varies between the tumour types. A complete macroscopic resection is
highly prognostic for ependymomas [3, 4], whereas small amounts of residual
medulloblastoma (up to 1.5cm?) are not of prognostic significance if treated
with radiotherapy and chemotherapy [5] and small residual masses of pilocytic
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astrocytoma may be observed without further treatment [6]. Histopathology
is usually not available for several days after the operation and intraoperative
histopathology is commonly used to inform the surgeons of the likely tumour
type but the techniques available are not accurate [7] and this strategy does not
allow patient-specific clinical management planning prior to surgery. With im-
proved adjuvant treatment, therapeutic strategies may evolve to ones in which
surgery is undertaken at a later point, which is already common for childhood
tumours outside the brain.

Histopathology remains the ‘gold standard’ for classifying childhood brain tu-
mours and is the basis for treatment planning in the majority of cases. However,
patients with identical histopathological diagnosis can respond in different ways
to treatment and there is increasing evidence that additional information from
tumour biology can improve the classification [8]. Advances in imaging have
allowed tissue properties to be probed non-invasively giving important insights
into in vivo tumour biology [9]. The aims of modern imaging are therefore
not just to give a non-invasive histological diagnosis but rather to improve the
classification of tumours.

Multivariate analysis of automated MRS processing is a powerful technique that
can yield rapid and robust results and promises to translate into routine clinical
practice.

However, a multi-centre evaluation of these techniques is required. Although a
large number of multi-centre studies on automatic classification of brain tumours
has been reported in adults [10, 11, 12, 13, 14, 15, 16, 17|, these results cannot
be extrapolated to children since the overall distribution of the tumour types,
locations and etiology differs markedly from that of adults [18, 19, 20, 21].
Also, combining Short-TE and Long-TE MRS can potentially give accurate
quantification of more metabolites than either technique alone [22] but this has
currently not been reported in pediatric brain tumours.

The present study investigates the accuracy of tumour metabolite profiles mea-
sured by 'H MRS as a diagnostic aid for common childhood brain tumours.
The aim of this work is twofold: first, to evaluate the automatic classification of
pediatric brain tumours using a large multi-centre 'H MRS dataset; and second,
to test whether maximizing the metabolite information available by combining
Short-TE and Long-TE MRS improves the automatic classification of pediatric
brain tumours compared with the use of one TE alone.
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4.2 Material and methods

4.2.1 Cases and data acquisition

The study includes 97 patients under 16 y.o. (mean age 7.344.7) with histolog-
ically proven brain tumour collected from 10 international centres in the frame-
work of the eTUMOUR project (2004-2009) [23]. Histopathological diagnoses
were validated in the context of clinical setting and radiological images and
reviewed by the multidisciplinary Clinical Validation Committee. MRS data
was reviewed for quality control by expert spectroscopists of the e TUMOUR
project [10, 24].

The classes considered in this study were defined according to the histological
classification of the CNS tumours established by the WHO [25]. The 97 cases
were distributed as follows: 38 Pilocytic Astrocytoma (PILOA), 20 of them in
the PF; 11 Ependymoma grade IT (EPEN), 7 in the PF; 29 MED, all of them
in the PF; Additionally we included 10 Diffuse Astrocytoma (DASTRO), 3 in
the PF; 3 Subependymal giant cell astrocytoma (SASTRO), 2 in the ventricular
atrium and 1 in the frontal lobe; one primitive neuroectodermal tumour located
in the frontal lobe; 3 Atypical teratoid Rhabdoid Tumour (ATRT), 2 in the PF;
and 2 Pineoblastoma (PINEOB) in the pineal region. Table 4.1 documents the
available cases.

Acquisition protocols for clinical, radiological and histopathological data were
defined to ensure the compatibility of the data acquired at the different hospitals
[26, 24].

Single voxel 'H MRS at 1.5T from 90 patients were acquired at Short-TE and 61
spectra at Long-TE, from which 54 patients had both echo times available from
scanners of three major manufacturers (Philips, Siemens and General Electric).
Voxels were placed avoiding as much as possible areas of necrosis or cysts and
with minimum contamination from the surrounding non-tumoral tissue. The
acquisition protocols for Short-TE included PRESS, PROBE or STEAM se-
quences, with TR of 1500-2000ms, TE of 20 or 30ms, spectral width of 500 -
2500Hz, and 512, 1024 or 2048 data-points. Long-TE spectra were acquired with
the PRESS sequence with TR of 1500-2020ms, TE of 135 or 136ms, spectral
width of 1000-2500Hz and 512 or 2048 data-points.
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Table 4.1: Number of cases.

Label Short-TE  Long-TE  Short-TE+Long-TE | Total different cases
PILOA 37 27 26 38

EPEN 9 7 5 11

MED 28 15 14 29
SASTRO 2 3 2 3
DASTRO 8 8 6 10

ATRT 3 0 0 3

PNET 1 1 1 1

PINEOB 2 0 0 2

TOTAL 90 61 54 97

4.2.2 MRS processing

Two different MRS data processing methods were compared: quantitation of
metabolite concentrations using the time-domain fitting algorithm TARQUIN
(version 4.1.1) [27]; and the automatic feature extraction technique of PI [17, 28].

Quantitation with TARQUIN

The MRS data were processed and fitted with TARQUIN (version 4.1.1) soft-
ware tool [27]. The quantitation of metabolites, lipids and macromolecular com-
ponents was performed using the spectrum acquired without water suppression
as reference as defined in Section 2.4.2 of Chapter 2.

Mean metabolite estimations were compared using non-parametric analysis of
variance and multiple comparison tests to detect statistically significant differ-
ences between tumour types.

Two quality control criteria were taken into account in order to include the
samples in the analysis: (1) A quality fit (Q) lower or equal to 2, where @ is
supplied by TARQUIN and defined as the standard deviation of the frequency
domain residual between 0.2 and 4.0 ppm divided by the standard deviation of
the spectral noise; and (2) a SNR of the spectra greater than 5. These criteria
were established based on the minimum quality standard that the commercial
software LCModel™ recommends [27, 29]. The inclusion of data that not ac-
complish these two quality criteria would negatively affect to the performance
of the classifiers due to the incorporation of spurious information like noise
artifacts and distorted baseline signals in the spectra.
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Semiautomatic processing pipeline

Each spectrum was also semiautomatically processed following the MRS process-
ing pipeline defined in Chapter 3, Section 3.2.1. This processing was performed
as a previous step to the application of PR feature extraction approaches.

4.2.3 Feature extraction

Two different PR automatic feature extraction methods were explored in order
to compare them with the quantitation: PI and PCA. Both techniques were cho-
sen because of the good results reported in [17]. PI technique was applied after
the semiautomatic processing pipeline to estimate the relative concentration of
metabolites integrating the frequency signal around the resonance frequencies.
This technique has been successfully applied in previous studies with MRS from
adults [17, 28]. The pediatric PI, as described in Section 2.4.2 of Chapter 2,
was also used in this study.

Additionally, PCA [30, 31] was applied in two different ways: (1) to the region
of [4.1, 0.5] ppm interval on the spectra obtained after the semiautomatic pro-
cessing pipeline, and (2) to the variables estimated after applying quantitation
and after applying PI. In both cases, we took as input for the classification
models the minimum principal components that explained at least the 85% of
the total variance.

4.2.4 Classification methods and evaluation technique

A set of three classification problems is addressed in this study: a binary discrim-
ination of glial-cell tumours (EPEN and PILOA) from MED; a binary discrim-
ination of PILOA and MED; and a three-class classification for discriminating
EPEN from PILOA and from MED. Obtaining high diagnostic accuracy from
PILOA, EPEN and MED is clinically relevant to define a surgical strategy for
tumour resection. Since a common location of these tumours is the PF, where
it is difficult to distinguish the tumour type with MRI alone, we obtained the
classifiers trained only with the tumour cases located in the PF. Afterwards,
new classifiers trained with tumours in any brain location were also obtained.
For each discrimination problem, classifiers were designed and evaluated using
features from Short-TE and Long-TE alone and combining both time of echo
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(Short-TE+Long-TE). Our results were compared with the results reported in
previous works [32, 33, 34, 35].

Based on the benchmark results of previous studies [17, 22, 28|, we choose
LDA [36] as the classification technique to apply to the pediatric brain tumour

types.

Classifiers were evaluated with the kRSTT strategy with k set to 150 and the
performance of the classifiers was measured with the BAR. The BAR is useful
to ensure that the sensitivity of every class is high and balanced when the
prevalence of one or more classes is unbalanced with respect to other in the
dataset. This situation occurs in our study, when discriminating EPEN from
MED and from PILOA, because the amount of EPEN cases was low compared
to the number of the other two tumour types (see Table 4.1).

In order to check the significance of differences between the use of combination
of both time echo and the use of Short-TE or Long-TE alone, the Friedman’s (F)
non-parametric two-way analysis of variance test with a= 0.05 [37] was applied,
for each classification problem, to the classifiers trained with each feauture set
from Short-TE, Long-TE and the combination of both time echo. When ap-
plying multiple comparisons, the results were analyzed with the Tukey’s (T)
honestly significant difference criterion with a=0.01 [38].

The feature sets compared in our experiments were: (1) the principal compo-
nents after applying the semiautomatic processing, (2) the variables obtained
applying PI, (3) the variables obtained applying pediatric PI, (4) the principal
components after applying PI, (5) the quantitation variables estimated with
TARQUIN, (6) the subset of significant quantitation variables estimated with
TARQUIN, and (7) the principal components of the TARQUIN quantitation.

4.3 Results

4.3.1 Spectral features

Several key features allow visual discrimination of PILOA, EPEN and MED.
Figures 4.1 and 4.2 show the Short-TE and Long-TE mean spectra of the tumour
types. Minimum differences are found between the mean spectra of the tumours
in the PF and those of tumours in any location. All tumour spectra display
an increase in Cho peak (3.2ppm) with respect to Cr peak (3.0ppm). This
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is most notable in Long-TE MRS. NAA (2.0ppm) presents a less prominent
peak in MED and EPEN compared with PILOA. Elevation of macromolecules
and lipids at 0.9ppm and 1.3ppm (MMLip09, and MMLip13) is observed in
Short-TE. Regarding Long-TE, the inverted peak at 1.3ppm, corresponding to
Lactate can be seen in PILOA and EPEN but not in MED.

4.3.2 Univariate metabolite comparison

In Table 4.2, the metabolite concentrations estimated with TARQUIN software
in Short-TE and Long-TE for the three tumour types found in any brain location
can be seen. The Kruskal-Wallis non-parametric test for the analysis of the
variance (o = 0.05) has been applied to determine the significant differences
in metabolite concentrations for the three questions addressed for classification.
For all questions, both Cho components, glycerophosphocholine (GPC) (p <
0.01) and Phosphocholine (PCh) (p < 0.01 for Short-TE; p < 0.05 for Long-TE)
showed significant differences. Cr (p < 0.01) and Tau (p < 0.01) concentrations
revealed as significant in both time of echo. The ml metabolite peak (p <
0.01) was significant in Short-TE for discrimination of PILOA and MED and
discrimination of the three tumour types. Although ml revealed as significant in
Long-TE, this may be due to the contribution of Gly, which was not included in
the TARQUIN basis set and, therefore, no attempt was made by the algorithm
to separate it from ml. Macromolecules and lipids at 0.9, 1.3 and 2.0 ppm
(p <0.05, p <0.01 and p < 0.01, respectively) showed statistical differences in
Short-TE.

4.3.3 Classification

Tables 4.3, 4.4 and 4.5 summarize the classification results of the different ques-
tions addressed in this study for the cases in the PF and the cases in any
brain location and shows the performance when using Short-TE, Long-TE and
a combination of both time of echo. Each discrimination was tackled with the
quantitation estimated with TARQUIN, with PI and pediatric PI and with PCA
applied after performing the semiautomatic processing, applied to the variables
estimated with TARQUIN and to the PI variables.

The BAR obtained with the models trained with tumour cases from any loca-
tion was slightly higher than the BAR of the models trained only with the PF
cases. Comparable performances were obtained with the different approaches
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Figure 4.1: Short-TE mean spectra of tumours located in the PF (left) and in any other
location than PF (right) with standard deviation indicated by the shaded region. Number of

patients is indicated beneath each graph.
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Figure 4.2: Long-TE mean spectra of tumours located in the PF (left) and in
any other location than PF (right) with standard deviation indicated by the
shaded region. Number of patients is indicated beneath each graph.
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Table 4.2: Estimated metabolite concentrations (mM) at several ppm calcu-
lated with TARQUIN relative to total water from Short-TE spectra (top) and
Long-TE spectra (bottom). The standard deviation of the concentrations is
given in brackets. The p—value of the analysis of the variance (Kruskal-Wallis
test, o = 0.05) is shown for different discriminating questions when significant
differences are observed.

Shor-TH
Tumour Type Kruskal-Wallis test (p value)

Metabolite (PILOA, EPEN)  PILOA PILOA

PILOA (mM) EPEN (mM) MED (mM) , vs EPEN

vs MED vs MED
vs MED
Ala 5.9 (0.9) 35 (2.3) 0.6 (0.5)
Cr 1.3 (1.1) 3.4 (1.5) 3.6 (1.9) <0.01 <0.01 <0.01
Gle 2.7 (1.7) 2.3 (1.8) 1.9 (1.2 <0.01 <0.01 <0.01
Gln 3.7 (1.9) 6.7 (3.0) 41 (3.1)
Glu 2.0 (1.6) 3.1 (3.2) 2.5 (1.5)
mI 2.1 (1.9) 9.0 (5.3) 5.3 (3.2) - <0.01 <0.01
Lac 2.4 (1.9) 3.2 (4.3) 2.9 (3.0) - - -
NAA 1.6 (1.4) 1.1 (0.3) 1.5 (1.0) - - -
Seyllo 0.7 (0.8) 0.6 (0.4) 0.9 (0.5) <0.05 <0.01 <0.05
Tau 1.8 (1.3) 1.8 (1.6 4.5 (3.6) <0.01 <0.01 <0.01
GPC 0.9 (0.4) 1.6 (0.5 2.2 (1.2) <0.01 <0.01 <0.01
PCh 1.6 (2.4 1.3 (1.0) 2.2 (1.6) <0.01 <0.01 <0.01
_CrCH, 1.7 (1.8) 3.2 (1.9) 1.3 (1.1)
Gua 1.8 (1.7 1.2 (1.2) 2.1 (2.0)
GABA 3.8 (7.9) 2.2 (1.7) 2.9 (3.5)
Asp 9.1 (24.2) 4.5 (3.6) 3.6 (2.7)
Cho: GPC+PCh 1.4 (1.6) 2.4 (1.1) 11 (1.6) <0.01 <0.01 <0.01
Glx: GlutGln 4.9 (2.2) 8.9 (4.2) 5.5 (3.1) - - <0.05
MMLip09 4.9 (2.9) 8.1 (5.5) 8.3 (5.9) <0.05 <0.05 <0.05
MMLip13 7.7 (7.0) 27.3 (17.6) 20.5 (18.9) <0.01 <0.01 <0.01
MMLip20 6.2 (2.9) 10.8 (3.3) 11.3 (5.2) <0.01 <0.01 <0.01
Long-TE
Tumour Type Kruskal-Wallis test (p value)

Metabolite (PILOA, EPEN)  PILOA PILOA

PILOA (mM) EPEN (mM) MED (mM) , vs EPEN

vs MED vs MED
vs MED

Ala 5.9 (0.9) 0.9 (1.0 T2 (08 Z0.05 Z0.05 Z0.05
Cr 1.3 (1.1) 5.8 (2.2) 5.6 (2.1) <0.01 <0.01 <0.01
Gle 2.7 (1.7) 7.2 (5.4) 3.0 (1.8)
Gln 3.7 (1.9) 7.2 (3.5) 3.4 (2.1)
Glu 2.0 (1.7) 5.3 (1.9) 5.8 (2.3)
mib 2.1 (1.9) 24.1 (14.8) 31.1 (14.5) <0.01 <0.01 <0.01
Lac 2.4 (1.9) 2.2 (1.0) 1.9 (1.7) - - -
NAA 1.6 (1.4) 2.4 (1.3) 2.3 (1.6) - - -
Seyllo 0.7 (0.9) 0.9 (0.6) 0.8 (0.6) - - -
Tau 1.8 (1.3) 4.3 (4.5) 6.9 (6.4) <0.01 <0.01 <0.01
GPC 0.9 (0.4) 2.1 (1.3) 41 (4.2) <0.01 <0.01 <0.01
PCh 1.6 (2.4 3.0 (0.9) 5.7 (5.6) <0.05 <0.05 <0.05
_CrCH, 1.7 (1.8) 3.9 (3.2) 3.4 (1.7)
Gua 1.8 (1.7 1.5 (0.1) 0.7 (0.4) <0.05 <0.05
GABA 3.9 (7.9) 1.3 (0.8)
Asp 9.1 (24.2) 2.4 (1.3) 3.4 (3.1) <0.05
Cho: GPC+PCh 1.4 (1.6) 1.3 (1.9) 9.5 (5.9) <0.01 <0.01 <0.01
Glx: GlutGln 4.9 (2.2) 10.5 (4.9) 7.4 (3.5) - - -
MMLip09 4.9 (2.9) 1.8 (1.1) 0.5 (0.2) - - <0.05
MMLip13 7.7 (7.0) 9.2 (8.8) 3.6 (2.0) - <0.05 <0.05
MMLip20 6.2 (2.9) 1.6 (1.3) 1.2 (0.9) <0.05 <0.05 -

b Concentration of mlI may contain Gly contribution. Gly was not included in the TARQUIN basis-set.
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followed to calculate the classification models for each discrimination question
and input data (Short-TE, Long-TE and combination). The (PILOA + EPEN)
vs MED discrimination (Table 4.3) obtained a best BAR of 0.91 for Short-TE
and Long-TE alone and 0.98 for the combination of both time of echo. Discrim-
ination of PILOA vs MED (Table 4.4) obtained a best BAR of 0.92, 0.95 and
0.96 respectively for Short-TE, Long-TE and combination of both time of echo.
The discrimination of the three classes (Table 4.5) obtained the best BAR per-
formance of 0.81 for Short-TE, 0.88 for Long-TE and 0.98 for the combination
of both time of echo. In the three addressed questions, the best performance
obtained with the combination of both time of echo showed a significant im-
provement (p < 0.01, Tukey’s test, & = 0.01) compared to the best performance
obtained with one TE alone.

Figure 4.3 shows the LDA latent spaces from Short-TE, Long-TE and the com-
bination of both echo times obtained for the discrimination of PILOA, EPEN
and MED located in the PF. In addition, Figure 4.3-d shows the latent space
from Short-TE for the three tumour types in any brain location.

Other tumour types were classified as glial or primitive neuroectodermal ac-
cording to the result with the classifier developed for PILOA, EPEN and MED.
A BAR of 0.91 was obtained with Short-TE, 0.67 for Long-TE and 1.00 was
achieved with the combination of both echo times. Figure 4.4 shows the latent
space from Figure 4.3-d with other tumour types projected. The ATRT and
PNET cases fall close to the boundaries of the MED area, the only exception
being the ATRT case located in the frontal lobe. The DASTRO and SASTRO
cases are spread all over the PILOA and EPEN area, never within the MED
area.
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Table 4.3: Balanced Accuracy Rate (BAR) of the classifiers trained with
Short-TE, Long-TE and combination of both time of echo (Short-TE+Long-TE)
for the discrimination problem of (PILOA, EPEN) vs MED.

Cases from tumours located at the PF
(PILOA, EPEN) vs MED
Short-TE Long-TE Short-TE+Long-TE

full spectra PCA 0.74 0.94 0.94
PI 0.83 0.89 0.86
Pediatric PI 0.82 0.91 0.86
PI + PCA 0.83 0.87 0.90
TARQUIN 0.77 0.81 0.81
TARQUIN signif 0.71 0.76 0.83
TARQUIN + PCA 0.74 0.86 0.84

Cases from any brain tumour location
(PILOA, EPEN) vs MED
Short-TE  Long-TE  Short-TE+Long-TE

full spectra PCA 0.86 0.91 0.94
PI 0.88 0.85 0.89
Pediatric PI 0.87 0.85 0.87
PI + PCA 0.91 0.85 0.87
TARQUIN 0.82 0.83 0.98
TARQUIN signif 0.81 0.87 0.86
TARQUIN + PCA 0.81 0.85 0.91

Table 4.4: Balanced Accuracy Rate (BAR) of the classifiers trained with
Short-TE, Long-TE and combination of both time of echo (Short-TE+Long-TE)
for the discrimination problem of PILOA vs MED.

Cases from tumours located at the PF
PILOA vs MED
Short-TE  Long-TE  Short-TE+Long-TE

full spectra PCA 0.81 0.94 0.95
PI 0.86 0.93 0.94
Pediatric PI 0.83 0.93 0.91
PI + PCA 0.89 0.92 0.95
TARQUIN 0.87 0.91 0.80
TARQUIN signif 0.78 0.91 0.89
TARQUIN + PCA 0.82 0.92 0.89

Cases from any brain tumour location
PILOA vs MED
Short-TE  Long-TE  Short-TE+Long-TE

full spectra PCA 0.88 0.93 0.96
PI 0.92 0.94 0.95
Pediatric PI 0.90 0.91 0.94
PI + PCA 0.91 0.93 0.96
TARQUIN 0.89 0.94 0.94
TARQUIN signif 0.89 0.95 0.93
TARQUIN + PCA 0.89 0.95 0.94
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Table 4.5: Balanced Accuracy Rate (BAR) of the classifiers trained with
Short-TE, Long-TE and combination of both time of echo (Short-TE+Long-TE)
for the discrimination problem of PILOA vs EPEN vs MED.

Cases from tumours located at the PF
PILOA vs EPEN vs MED
Short-TE Long-TE Short-TE+Long-TE

full spectra PCA 0.65 0.78 0.98
PI 0.65 0.62 0.90
Pediatric PI 0.65 0.64 0.90
PI + PCA 0.71 0.60 0.93
TARQUIN 0.67 0.94 0.96
TARQUIN signif 0.70 0.75 0.96
TARQUIN -+ PCA 0.72 0.92 0.97

Cases from any brain tumour location
PILOA vs EPEN vs MED
Short-TE Long-TE Short-TE+Long-TE

full spectra PCA 0.80 0.76 0.96
PI 0.76 0.69 0.92
Pediatric PI 0.77 0.63 0.93
PI + PCA 0.78 0.67 0.92
TARQUIN 0.79 0.83 0.98
TARQUIN signif 0.81 0.88 0.99
TARQUIN -+ PCA 0.77 0.81 0.99
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4.4 Discussion

Combination of '"H MRS with a conventional MRI investigation can yield a
metabolite profile of the tumour, showing impressive results in brain tumour
diagnosis. In 1996, Pruel et al. demonstrated that high diagnostic rates could be
achieved for brain tumours in adults by combining MRS with pattern recognition
techniques [39]. However, generalization of this approach to multiple centres has
faced considerable challenges and accurate diagnosis with MRS has only recently
been confirmed in large multi-centre studies of adults [17].

Limited single-centre studies have shown the promise of MRS in the non-invasive
diagnosis and characterization of childhood brain tumours. These studies fo-
cused on the three most prevalent tumour types: EPEN, MED and PILOA.
For example, Wang et al. [32] collected data from 26 patients using a Long-TE
MRS technique, which detected a small number of metabolites, and presented
these as ratios. They obtained an accuracy of 0.85 discriminating the three tu-
mour types using the metabolites ratios NAA:Cho and Cr:Cho. Arle et al. [33]
obtained an accuracy of 0.88 with a neural network using metabolites ratios of
NAA, Cho and Cr from MRS data of 33 patients.

Improvements in technology allowed a larger number of metabolites to be quan-
tified using Short-TE MRS. Schneider et al. [34] combined Short-TE MRS and
diffusion-weighted imaging data from 17 patients. They obtained a predictive
value of 1 in all the cases when applying an LDA with seven variables from the
diffusion-weighted image and six metabolites. Davies et al. [35] used an auto-
mated method for fitting MRS data of 35 patients to quantify 25 metabolite,
lipid and macromolecule concentrations and used this as an input to an LDA.
They reported an accuracy of 0.93 when discriminating the three tumour types.

To our knowledge, our study is the first to report key differences in pediatric
brain tumours in a large multi-centre 'H MRS investigation. Diagnostic clas-
sifiers were developed for discrimination of MED, EPEN and PILOA and high
levels of accuracy achieved. Different methods of MRS data processing and clas-
sifier building were compared, and similar results obtained. A significant im-
provement in the diagnosis rates was obtained with the combination of Long-TE
and Short-TE compared to the performance when using either TE alone. The
performances of classifiers using one TE were similar to those reported previ-
ously [32, 33, 34, 35]. More sophisticated classification techniques could have
been used to address this experiment, nevertheless, linear classifiers were ap-
plied for the sake of comparison with previous works and to state clear that the
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high performance is achiveable with simple and standard methods.

The pediatric PI omitted the information of Gly and Ala at 3.78 ppm since
these concentrations are usually not significant in children when registered from
1.5T MRS. No significant differences were achieved between the performance
of the classifiers trained with PI and those trained with pediatric PI. Hence,
the pediatric PI feature extraction might be a more convenient technique to be
applied to MRS from children since it reduces the input to the classifiers respect
to the conventional PI, initially designed for MRS from adults.

Estimation of metabolite concentrations was performed with the TARQUIN
software (Table 4.2). Results are in broad accordance with other studies of
pediatric brain tumours [40, 41, 35] where the metabolite concentrations were
estimated using the LCModel™ software [42]. Significant differences in metabo-
lite concentrations of PILOA, EPEN and MED were found with the Kruskal-
Wallis non-parametric test for the analysis of the variance with o = 0.05. GPC
and PCh are higher (p < 0.01) in MED (grade IV) and EPEN (grade II) com-
pared to PILOA (grade I). This reveals Cho as an important marker for distin-
guishing between these tumours. Other studies have observed this behaviour,
considering high peaks of Cho as an indicator of cell proliferation and tumour
malignancy [19, 20]. As previously reported [43, 40, 41|, Tau concentration is
significantly higher in MED than glial tumours (p < 0.01). This is a useful
biomarker but little is known currently about its role in these tumours. Dif-
ferences in Cr and ml are also significant (p < 0.01). Greater concentrations
of both metabolites are detected in EPEN and MED compared to PILOA. ml
has been associated with grade II tumours in adults, being particularly high
in grade II EPEN [35]. Lipids and macromolecules are significantly different
between the three tumour types MMLip09 and MMLip13 in both echo times
(p < 0.05), MMLip20 in Short-TE (p < 0.01). PILOA has lower concentrations
of lipids and macromolecules, whereas EPEN shows significantly more elevated
concentrations of MMLip13 compared to PILOA and MED (see also Figure 4.1).
Elevated mobile lipids usually suggest hypoxia, apoptosis and necrosis and are
associated with high malignancy and poor survival [44, 45].

Garcia-Gomez et al. [22] found that the combination of both TEs improves the
results when performing automatic classification of brain tumours in adults with
'H MRS. Our study confirms this finding in pediatric brain tumours, obtaining
significant differences (p <0.01, Tukey’s test, &« = 0.01) between the performance
of the models trained with both TEs and the performance of the models trained
with Short-TE or Long-TE alone. This behaviour is observed with either MRS
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analysis technique applied (quantitation with TARQUIN or PI).

Discrimination of PILOA, MED and EPEN using one TE achieved accuracies
similar to the performances reported by equivalent single-centre studies with
smaller datasets [32, 33, 34, 35]. In most studies, overall accuracy is reported
rather than BAR. Nevertheless, BAR is a more realistic measure of accuracy,
especially when the classifier accuracies vary between diagnostic groups and
the groups vary greatly in size. In our study, the diagnostic accuracy of the
Short-TE classifier was lower for EPEN than the other two tumour types. This
led to a lower BAR (0.79 with TARQUIN; 0.76 with PI) than overall accuracy
(0.84 with TARQUIN; 0.80 with PI) since there was a smaller number of EPEN.
The diversity of their metabolite profiles might have contributed to the lower
classification of EPEN. Short-TE determines a larger number of metabolites
than Long-TE and, hence, is prone to greater variability in quality which might
be accentuated in a multi-centre study.

Figure 4.4 illustrates the potential for generalization of our classifiers to other
tumour types. Although these classifiers have been trained with PILOA, EPEN
and MED, they effectively separate other low-grade glial tumour types (SASTRO
and DASTRO) from embryonal tumour types (ATRT and PNET). The combi-
nation of both TEs achieved a BAR of 1.00 for this diagnostic classification.

Although PI is a signal pre-process feature extraction that benefits from prior
knowledge of the metabolite distribution in the spectra and TARQUIN is a com-
plex algorithm for quantitation of components in the MRS data, the general-
purpose feature selection technique of PCA achieved similar classification per-
formance. Classifiers trained with PCA after TARQUIN performed worse than
those with TARQUIN alone. This might happen due to the fact that only the
components explaining the 85% are taken into account with PCA and, applied
after TARQUIN, might omit some relevant information. When treating sim-
ple signals like Long-TE, where the variability and amount of information is
lower than in Short-TE, PCA classifiers worked slightly better. Analogously,
the performance achieved with TARQUIN was similar to the performance ob-
tained with PI and PCA. These results agree with the ones reported by Luts
et al. [28]. In this study, several multivariate feature extraction techniques were
applied to MRS. In addition, two quantitation algorithms, AQSES and QUEST,
were applied. The performance of classifiers trained with traditional PR fea-
ture extraction techniques was slightly better to the performance achieved when
the classifiers were trained with the quantitation information. They conclude
that, for classification purposes, the use of simpler feature extraction techniques,
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which can be easily automated and used as a black-box pre-process method, are
prefereable to using sophisticated metabolite quantitation algorithms which re-
quire computational availability and are difficult to implement and automate.

Nevertheless, metabolite quantitation might be useful if a biological explanation
is desired. Processing MRS data to yield a metabolite profile prior to diagnostic
classification provides the concentrations of specific metabolites for additional
analysis. Expertise in interpreting these values can be gained by the radiologist
and thereby add to the confidence in the result from the diagnostic classifier.
The TARQUIN software is a highly automated and stable method for determin-
ing metabolite concentrations from MRS data and allows a non-expert user to
process MRS spectra at various echo times without difficulty.

The use of TARQUIN quantitation in automatic DSSs provides a powerful clin-
ical tool. The CURIAM DSS incorporates the classifiers developed in this work,
offering the possibility of giving advice both to adult and children cases. CU-
RIAM [46, 47, 48] has been evaluated at several hospitals in Europe providing
decision support for brain tumour diagnosis based on 'H MRS.

4.5 Concluding remarks

'H MRS data was collected at diagnosis from children with brain tumours in
10 international centres in Europe and South America and was used to test
the ability of MRS to discriminate between different tumour types. Our results
show that particularly high diagnostic accuracies are achieved when MRS is
collected at two TEs and that this accuracy can be achieved with data collected
from multiple centres. MRS with automated processing and pattern recognition
provides a useful technique for accurate, non-invasive diagnosis and classification
of childhood brain tumours and thereby a powerful diagnostic tool for clinical
practice.
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Chapter 5

Audit method suited for DSS

in clinical environment

“Don’t judge each day by the harvest you reap but by the seeds that you plant.”

Robert Louis Stevenson

This chapter presents a novel on-line method to audit predictive models using
a Bayesian perspective. The auditing model has been specifically designed for
DSSs suited for clinical or research environments. Taking as starting point the
working diagnosis supplied by the clinician, this method compares and evalu-
ates the predictive skills of those models able to answer to that diagnosis. The
approach consists in calculating the posterior odds of a model through the com-
position of a prior odds, a static odds and a dynamic odds. To do so, this method
estimates the posterior odds from the cases that the comparing models had in
common during the design stage and from the cases already viewed by the DSS
after deployment in the clinical site. In addition, if an ontology of the classes is
available, this method can audit models answering related questions, which of-
fers a reinforcement to the decisions the user already took and gives orientation
on further diagnostic steps. The main technical novelty of this approach lies in
the design of an audit model adapted to suit the decision workflow of a clinical
environment. The audit model allows deciding which is the classifier that best
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suits each particular case under evaluation and allows the detection of possible
misbehaviours due to population differences or data shifts in the clinical site.
We show the efficacy of our method for the problem of brain tumour diagnosis
with MRS.

The core of this chapter has been published as a chapter of proceedings in [1]
and in [2]. Section 5.5 depicts how the audit method can effectively influence
the user’s decision process. It also gives a description of how it can be combined
with the incremental learning algorithms described in [3].

5.1 Introduction

Early studies focused on evaluation of predictive models in a DSS expected the
models to be able to predict ‘correct’ diagnosis by examining the diagnostic
accuracy of the DSS functioning in isolation [4, 5]. Recent evaluations, though,
balance the value of testing the system and the impact of the DSS on the user’s
diagnostic plans [6, 7]. This means that the suggestions made by the DSS should
positively influence the user’s diagnostic reasoning.

In order to make a DSS useful for routine clinical use, a trustworthiness feeling
needs to be created in the clinician. Thus, for a clinical diagnosis DSS based on
predictive models obtained with inference methods, showing the performance
evaluated in laboratory might not suffice.

Let us assume that a DSS contains M models of classification and that every
model has been trained with the same data Z = {(x;,¢;)}¥, a set of N samples
where x; is a data vector describing the j* sample and ¢, is its associated label.

The posterior probability of a model M; can be expressed as:

P(M;)P(Z|M;)

P(MZ) = =,

(5.1)

where P(Z|M;) is the model likelihood or evidence for Z. The term P(M;) is a
‘subjective’ prior over the model space which expresses our prior believe on the
basis of experience. This term is typically overwhelmed by the objective term,
the evidence [8]. P(Z) is usually ignored since it is assumed that models are
compared for the same Z.
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Typically, when a trained and evaluated classifier is introduced in a DSS, it is
assumed that its predictive performance will remain in the course of time. Such
assumption, though, may be unrealistic, especially in biomedical domains where
dynamic conditions of the environment may change the assumed conditions in
the models: modification of the data distribution, P(Z) (covariate shift [9, 10]),
inclusion of new classes through time, which modifies the prior P(M;), (prior
probability shift [10]) or a change in the definition of the classes itself, P(Z|M,),
(concept shift [10, 11, 12]) might take place.

In order to give guidance in the user’s diagnostic workflow, we propose a method
that, taking as starting point the diagnosis supplied by the clinician, compares
and evaluates the predictive skills of those models able to answer to such diagno-
sis. In addition, this auditing process should also be capable of comparing those
predictive models able to answer more general diagnosis (superclasses) since
they could serve as a mechanism to reinforce the decisions already taken by the
clinician. Analogously, audit of predictive models discriminating subclasses of
the initial diagnosis is also desirable since these predictive models might give
guidance on the next steps to take in order to refine his/her diagnostic process.
Such comparisons can be performed by our method if an ontology describing
the relationships among the different diagnosis labels is available.

The Bayesian paradigm offers a model comparison framework that allows it to
objectively assess the predictive skills of two or more classifiers by comparing
the posterior odds. This approach has been typically followed for model selec-
tion under the assumption that all the models are trained with the same data.
Nevertheless, this is not the case when deployed classifiers addressing similar
and related discriminations have to be compared. The proposed method over-
comes the limitation of the model comparison under the Bayesian paradigm and
allows the comparison of predictive models trained with different datasets and
answering related questions.

The capabilities of this method are shown for the problem of brain tumour
diagnosis with MRS. The results obtained reveal the proposed method as able
to objectively compare predictive models answering related problems but also
to take part in the physicians’ diagnostic decisions, contributing to assess the
role and potential benefits of the DSS in real clinical setting.
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5.2 Methods

5.2.1 Bayesian approach

To compare two models M,,, and M; we form the posterior odds

PMm|Z) _ P(Mm) P(Z|Mm) (5.2)
P(M,|Z) P(M;) P(Z|M,) " '

If the odds are greater than one we choose model m, otherwise we choose model [.
If we assume a uniform distribution of the prior probabilities P(M;), models
M, are ranked by evaluating the evidence [13].

% is a ratio of the evidences and is called the Bayes Factor (BF), the

contribution of the data toward the posterior odds [14].

Several techniques are available for computing BF. An exhaustive review can
be found in [13]. The Bayesian Information Criterion (BIC) gives a rough ap-
proximation to the logarithm of P(Z|M;) and can be used for calculating Equa-
tion 5.2 [15]. We consider BIC in this study to calculate an approximation to
BF.

5.2.2 Comparison of models adapted to a clinical environ-
ment

In order to take part in the decision workflow of a clinician, a DSS for diagnosis
based on inference models deployed in a clinical environment should inform
the user, according to his/her proposed diagnosis, about which of the predictive
models available are going to give a useful advise. Let us call L to the set of labels
supplied by the clinician as working diagnosis, which is the preliminary diagnosis
given by the clinician and is based on experience, clinical epidemiology, and early
confirmatory evidence provided by ancillary studies. A sensible mechanism to
decide which predictive models are audited is selecting those able to discriminate
L or, at least, some of the labels [; in L.

Additionally, the predictive models may be trained from different sets of data
acquired from different patients and centres. Let us call Z; to the arbitrary set
of samples each model M; has been estimated with.
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In order to apply the Bayesian framework, the M; models are required to be
compared with a common dataset Z. We propose to obtain Z from the samples
of each Z; labeled with L.

Furthermore, most of biomedical problems show equivalences and polymor-
phisms in the classes involved in the discrimination process. This is the case,
for example, of brain tumour diagnosis where, depending on the detail level of
the addressed question, a tumour can be named with different terms. Thus,
depending on the detail in the diagnosis, a glioblastoma can be labeled as ag-
gressive tumour or high grade glial tumour [16]. This variety of labels for the
same concept can be depicted in an ontology. An ontology is a specification
of a conceptualisation that consists of a poset (partially ordered set) of con-
cept types, a poset of relations between these concepts and, sometimes, a set
of instances of the concepts [17]. Let us call correspondence table, CT, to a
tabular structure that reflects the hierarchy between classes where each column
indicates an ‘is a’ relationship. An example of C'T for brain tumour types is
given in Table 5.1.

We propose a method capable of auditing models related through the hierarchy
in the classes they discriminate. If we define the function msl(t) that makes
reference to the ‘most specific label’ of each set of input variables x, we can
define z* = (x,msl(t)) as the sample z labeled with its most specific label (the
left-most column of the CT'). Figure 5.1 shows an example of the labels T; and
msl(T;) of four corpora for brain tumour discrimination.

To apply our method for comparing M; models estimated from Z;, we need
to know the set of labels T; each model can discriminate among. Besides, it is
assumed that we can express any sample z into its most specific label, z*. Then,
we can produce Z as the union of the samples in Z; having a most specific label
equivalent to the most specific label of any element of L. Formally:

Z ={z"® 2" = x®) mst(t™)), msi(t®) e {msl(1;)}},

k=1,...,|Z",
M 5.3
2~ )z (5.3)
=1
Ji=1,...,|L]

In order to calculate the evidence from Z, we need a mechanism to transform
the labels in Z into the labels T; that a model M; understands. Let us define
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Table 5.1: Correspondence table (CT') based on WHO classification of tumours of the central
nervous system.

WHO is an is a is a is a is a

Label a

ressive® gll glial®  grade I-II¢  grade III-IVY  men®

GLIOBLASTOMA
METASTASIS

5 a
g8
y y
V. v
ANAPLASTIC
ASTROCYTOMA \/ n n \/ n
ANAPLASTIC

OLIGOASTROCYTOMA \/ \/
ANAPLASTIC \/ \/

OLIGODENDROGLIOMA

DIFFUSE
ASTROCYTOMA
OLIGOASTROCYTOMA -
OLIGODENDROGLIOMA -
PILOCYTIC
ASTROCYTOMA

<L

FIBROUS
MENINGIOMA
MENINGIOMA - -
MENINGOTHELIAL
MENINGIOMA

¢ aggressive tumour

b glial tumour grade II

¢ grade I or II tumour type

@ grade III or IV tumour type
¢ meningioma grade II

\
\

LU
\ \
<!
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(" Ty =  { aggressive, grade II glial, men}\
VA GLIOBLASTOMA, DIFFUSE ASTROCYTOMA, MENINGIOMA,
msi(Ty) = METASTASIS, ~ OLIGOASTROCYTOMA, MENINGOTHELIAL MENINGIOMA,
OLIGODENDROGLIOMA, FIBROUS MENINGIOMA
/" Ty= {gradelI, grade LIV}
DIFFUSE ASTROCYTOMA, GLIOBLASTOMA,
7y OLIGOASTROCYTOMA, METASTASIS,
OLIGODENDROGLIOMA, ANAPLASTIC ASTROCYTOMA,
msl(T2) = PILOCYTIC ASTROCYTOMA,  ANAPLASTIC OLIGOASTROCYTOMA,
MENINGIOMA, ANAPLASTIC OLIGODENDROGLIOMA

MENINGOTHELIAL MENINGIOMA,

\ FIBROUS MENINGIOMA, /

7 T3 =  {GLIOBLASTOMA, METASTASIS }
3| msl(T3) = {cLoBLAsTOMA, METASTASIS.}
. >y
2
z Ty =  {DIFFUSE ASTROCYTOMA, OLIGOASTROCYTOMA, OLIGODENDROGLIOMA }
4| mst (Ty) =  {DIFFUSEASTROCYTOMA, OLIGOASTROCYTOMA, OLIGODENDROGLIOMA, }
L J

Figure 5.1: Example of corpora for brain tumour diagnosis. Each corpus Z; has samples
labeled as T;, grouped from the tumour types defined in msi(T};), according to the C'T in
Table 5.1.

Z'i = L(Z,T;,CT) to be the result of applying the function £ which transforms
the labels of Z into one of the labels specified in 7T; according to CT. This
mechanism will allow the models to explain the data according to the labels
they discriminate. Formally:

P(M;|Z) = P(M|Z™). (5.4)

Figure 5.2 illustrates the process for obtaining the common Z and shows how
the function £ works in two different scenarios.

Once Z™" has been calculated for each model, we can perform the comparison
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z = (%, OLIGOASTROCYTOMA")

| think the case zis a
low grade glial:
L =grade I-Il

N

Candidate models in the DSS:

—— )
Mt Mg
| |
e E—
Mi2 Mo
—— ———
) o a)
A\ —
M) M)
Mia Mg
— —

DIFFUSE ASTROCYTOMA,
msl(T) =< OLIGOASTROCYTOMA,
OLIGODENDROGLIOMA

2T = £(2,T1,CT)
= (x, 'grade II glial’)
212 = L(2,T2,CT)
= (X, ‘grade I—II’)
274 = L(2,T4,CT)
= (x, "OLIGOASTROCYTOMA’)

|

z = (x, METASTASIS")

| think the case z may be a
A glioblastoma or a
metastasis:
\{ L = METASTASIS or
GLIOBLASTOMA

Candidate models in the DSS:

/ .
M Mg
N ! | TCR—
e .
Miz Mg
—— ——
e )
Mis Mgys
— ~—
X X
N— —

msl(T) :{ METASTASIS, }

GLIOBLASTOMA

2T = £(2,Ty,CT)

= (x, 'aggressive’)

212 = L(2,T»,CT)

= (X, grade III—IV’)

218 = £(z,T3,CT)

= (x, METASTASIS")

Figure 5.2: Example of two scenarios: A clinician, who does not know the diagnostic label
of the sample z, introduces z in the DSS and proposes a working diagnosis. Then, a selection
of the models in the DSS is performed attending to that working diagnosis. Models M; ; and
My i are linear and quadratic Gaussian modeled from the Z; defined in Figure 5.1. Once
the models are selected, the common set of cases labels, msl(T) is obtained to build Z to
calculate the static odds. Examples of the function £ that maps the label of a sample z into
one of the labels T; (according to the CT') are also given.
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of two models M,,, and M; in the light of Z forming the posterior odds

P(Mw|Z) _ P(Mypn) P(Z"" | My,) (5.5)
P(MZ) _ P(M;) P(ZT M) '

5.2.3 Audit of dynamic performances

If the DSS is able to store the data introduced by the users, an audit according
to the predictive performances for these data is possible. This dynamic auditing
will give a real vision of the predictive skills of the classifiers in the environment
of the DSS.

Let us suppose that Zpgg is a dataset of new samples introduced into the DSS
by the users and that it is composed by a set of samples different to any sample
in Z. If we assume that samples in Z and Zpgg are independent and identically
distributed (i.i.d.), we can calculate the next posterior odds for comparing M,,
and M;:

P(Mm|Z,Zpss) _ P(Mw) P(Z,Zpss|Mm) _
P(M|Z,Zpss) P(M;) P(Z,Zpss|M,)
_ P(My,) P(Z|M.,) P(Zpss|Z, M.,)

~ P(M,;) P(Z|M,;) P(Zpss|Z, M;)’

(5.6)

We have assumed that the samples in Z are i.i.d.. Therefore, we can split Z =
Z;\JZ-;, where Z; is the data used to design a model M;, and Z-;, = (Z\Z;)
is the set of samples not used in M, estimation. Notice that the set of samples
Z_,; is independent to Z; because they are i.i.d. and it is also independent to
M, because its samples has not been used to design M;. Then, Equation 5.6
can be rewritten as:

P(Mm‘Z7ZDSS) _ P(Mm) P(Z|Mm) P(ZDSS|Z—\m7Z7n7Mm) (5 7)
P(M|Z,Zpss) P(M;) P(ZIM;) P(Zpss|Z-i,Z;, M;) '
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Hence, Equation 5.7 can be simplified to

P(Mm‘Z7ZDSS) — P(Mm) P(Z|Mm) P(ZDSS|ZmaMm) (5 8)
P(M|Z,Zpss) P(M;) P(Z\M;) P(Zpss|Z;, M;) '

To perform the calculation of the posterior of each model according to Zpss,
we need to apply our mechanism to translate the labels in Zpgg into the labels,
T;, that a model M; understands as in Equation 5.4:

P(Mi|Zpss) = P(Mi|ZLss)- (5.9)

Where Z:B'SS = L(Zpss,T;,CT), the result of applying the function £ which
transforms the labels of Zpgg into one of the labels specified in T; according to
CT.

Thus, applying Equation 5.9 to Equation 5.8 we obtain:

P(Mn|Z,Zpss) _ P(Mwm) P(Z"™ | M) P(Z5%s|Zm, Mm)
P(Mi|Z,Zpss) ~ P(Mi) P(ZTiMi)  P(ZT J|Zi, My) (5.10)
N — e ———

Posterior odds =Prior odds Static odds Dynamic odds

where ZTi = Z]" | JZTi. Since Z]" = L(Z;,T;,CT) = Z;, the relation between
Z" and Z; is: 27 = Z;|J 2.

We call static odds to % because it compares the prediction abilities
of both models with Z, which has been produced from the Z; used to tune the

parameters of each model M;.
T’V?l
Mthe dynamic odds because it measures the
P(ZDLss|ZL7Ml)
predictive ratio of the two models with respect to a set of new samples Zpsgs

introduced in the DSS and not previously used during the design of the models.

Analogously, we call

Finally, to compare M models, Equation 5.10 can be generalized:

M P(M|Z,Zpss) Y, P(Mi)P(ZT M) P(ZL g |20, M)
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5.3 Evaluation

The evaluation of the audit method was performed with a multi-center database
of MRS data of brain tumours. Gaussian discriminants were trained and audited
according to the formulae described above, simulating the real scenario of a DSS
working in a clinical environment.

5.3.1 Procedure

A database from a multi-center project was divided into two datasets. One
dataset was used to create the predictive models that give support in a DSS. To
do so, several interesting questions T; were defined and Z; datasets were obtained
according to each T;. Linear and quadratic Gaussian discriminant models (M; ;
and M, ;, respectively) were fed with each Z;. The other dataset, Zpgs, was
used as an independent test set. Each sample in Zpgg represented a case
introduced into the DSS by a clinician in order to obtain support. Each sample
in Zpgss had an associated proposed diagnosis supplied by the clinician.

To simulate a DSS running in a real clinical setting, we assume that there is
an internal order in the N samples of Zpgg. The procedure is as follows: the
clinician introduces into the DSS the n-th sample from Zpgg for diagnosis sup-
port along with his/her proposed diagnosis L,,. Then, the static odds of each
predictive model are calculated from Z, a dataset obtained from the cases in the
different Z; matching L,,. The dynamic odds are also calculated for each pre-
dictive model the set of cases previously introduced in the DSS, z},4g - - - zggls,
that also match L,,. Finally, the posterior odds are calculated by combination of
the static and dynamic odds as described in Equation 5.11. For this evaluation
we assume equal priors for each model. Next chapter will address an approach

to assess prior probabilities.

A randomized algorithm to set the internal order of the samples from Zpggs was
used, repeating the procedure k times. This repetition procedure prevents from
obtaining variance in our results when k is big enough. In this work, & was set

to 100.
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5.3.2 Database

The database used for this evaluation consisted of 682 Single Voxel 'H MRS sig-
nals at 1.5T at Short-TE (TE, 20-32 ms) from the European project eTUMOUR
[18, 19]. Several studies applying PR-based feature extraction methods in com-
bination with learning strategies to the eTUMOUR spectroscopy database have
been previously reported [20, 21, 22].

The PI selection feature technique was applied to the spectroscopy data. This
method has been described in detail in Section 3.3 of this Thesis. PI is a
method described and successfully applied in [20] that allows a reduction from
the whole spectra to 15 parameters. PI has proportionality to the concentration
of the main metabolites in each spectra.

All the classes considered in this study are described in Table 5.1 and were
based on the histological classification of the central nervous system tumours as
described by the WHO Classification [23].

The eTUMOUR, spectroscopy database was divided into two datasets. One
dataset from where 4 corpora Z; were defined as described in Figure 5.1. From
the other dataset, Zpss was obtained containing only the samples labeled
as ‘GLIOBLASTOMA’, ‘METASTASIS’, ‘DIFFUSE ASTROCYTOMA’, ‘OLI-
GOASTROCYTOMA’ or ‘OLIGODENDROGLIOMA’, that corresponds to the
elements in T3 and T} described in Figure 5.1. With such a Zpgg, we were able
to simulate the two scenarios depicted in Figure 5.2: One scenario where the
clinician would provide a general working diagnosis L of ‘grade I-II’ tumour
when dealing with samples labeled as any of the elements in Tj; and a sec-
ond scenario where the clinician would express the differential diagnosis L of
‘METASTASIS or GLIOBLASTOMA’ when trying to diagnose samples labeled
as any of the elements in T5. Table 5.2 shows the number of samples available.

5.3.3 Classifiers

Gaussian discriminant have been selected to train the predictive models and
evaluate the audit method. Parametric Gaussian discriminant functions can
describe linear boundaries when the covariance matrices of all the classes are
equal and quadratic decision boundaries if a covariance matrix is calculated per
class [24].

Gaussian discriminant were chosen because calculating the complexity of each

128



Audit method suited for DSS in clinical environment

Table 5.2: Number of brain tumour samples available for Z; and Zpgg. Each Z; discrimi-
nates the labels T; described in Figure 5.1.

Label Z; Zpss
GLIOBLASTOMA 182 126
METASTASIS 67 49
ANAPLASTIC ASTROCYTOMA 17 0
ANAPLASTIC OLIGOASTROCYTOMA 4 0
ANAPLASTIC OLIGODENDROGLIOMA 9 0 Number
DIFFUSE ASTROCYTOMA 52 19 Dataset
of samples

OLIGOASTROCYTOMA 17 7
OLIGODENDROGLIOMA 23 17 Zy 447
PILOCYTIC ASTROCYTOMA 17 0 Zo 464
FIBROUS MENINGIOMA 13 0 Zs 249
MENINGIOMA 40 0 Z 92

4
MENINGOTHELIAL MENINGIOMA 23 0
aggressive 279 175 Zpss 218
gll glial 92 43
grade I-1T 185 43
grade III-IV 279 175
men 76 0

Table 5.3: Number of parameters associated to each predictive model.

Complexity GL (Gauss linear) GQ (Gauss quadratic)
(in parameters) (2 outputs) 152 272
p (3 outputs) 168 408

predictive model, which is required for the BIC criterion, is straightforward.
Complexity in Gaussian discriminant is measured in terms of the cardinality of
the mean vector, the covariance matrix and the prior probabilities associated
to each class. Linear and quadratic Gaussian discriminants were calculated for
each corpus. Table 5.3 shows the complexities associated to each model.

5.4 Results

According to the diagnosis proposed to each sample in Zpggs, two scenarios can
be identified. A set of models is selected as auditing candidates (see Figure 5.2)
attending to the proposed diagnosis. Then, the audit model calculates the per-
fomance of these relevant candidates. Figure 5.3 shows the average likelihood
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calculated for both scenarios. The likelihood was averaged by k = 100, the
times that the experiment was repeated to avoid variances in the results, and
was calculated from all the samples in Zpgs whose proposed diagnosis L was
‘grade I-IT" (top) or ‘METASTASIS or GLIOBLASTOMA’ (bottom) and from
the common Z obtained from the Z; of the eligible predictive models according
to L. In general, when the likelihood of the models is measured from Z, bet-
ter results are reported compared to the likelihood measured from Zpgg. This
behaviour is expected because the samples in Z have been used to tune the
parameters of the predictive models, whilst the samples in Zpgg remain totally
independent. Nevertheless, the differences in the average likelihood are of no
importance for each predictive model except in the quadratic Gaussian model
that discriminates Ty, where the likelihood from Zpgg drops dramatically com-
pared to the likelihood from Z. This may be due to the complexity inherent to
the discrimination of the three classes in Tj.

Another interesting view of the usefulness of our audit method for clinical DSSs
is depicted in Figure 5.4, which shows the evolution of the posterior odds. The
X axis represents the samples of Zpgg introduced in the DSS in the course of
time. When the clinician introduces the n-th sample from Zpgg along with
L, the posterior odds of each elegible model are calculated from: Z, a dataset
obtained from the cases in the different Z; matching L (static odds) and from
those cases previously introduced into the DSS, z}gs . . . 2555, Which also match
L (dynamic odds). Thus, the posterior odds in Figure 5.4 is calculated using
the Equation 5.11 and covering the Zpsgs so that the first point in the figure
corresponds to the static posterior, (since no samples in Zpgg are evaluated yet),
and the last point corresponds to the scenario where all the samples of Zpgg
have been introduced in the DSS. Although, in the limit, all the models showed
similar posterior odds, those models answering more general questions (77 and
T5) obtained a slighly better posterior than the models solving more specific
questions (T3 and T}) for the two scenarios. These results are in agreement with
previous studies [20], where classifiers discriminating superclasses of tumour
types obtained better performances than classifiers discriminating more specific
tumour groups. All the predictive models show stationary behaviour in the
limit.
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Figure 5.3: Average likelihood of the models according to the scenario where the clinician
proposes L as ‘grade I-II’ (top) and the scenario where the working diagnosis L suplied is
‘METASTASIS or GLIOBLASTOMA’ (bottom), as described by Figure 5.2. Notice that
., T4 correspond to the discrimination labels described in Figure 5.1. The likelihood
of the models are depicted with the error bars for Z (crosses) and for Zpgg (circles) after
repeating the experiment £ = 100 times.
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Figure 5.4: Evolution of the posterior odds (in logaritmic scale) of the predictive models as

the samples of Zpgg are introduced into the DSS in the course of time.
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5.5 Discussion

In this section we discuss considerations about the audit method’s design as well
as how the proposed method can improve the decision support experience.

5.5.1 Design concerns

The proposed audit method relies on the Bayesian approach, which allows it
to objectively select the more adequated model among two or more. When
performing model comparison inference under a Bayesian paradigm, the models
need to be compared in the light of the same data. Furthermore, the audit
method is designed to work on-line, that is, the performance of each eligible
model needs to be calculated for each case introduced in the DSS for decision
support.

The audit method has been designed to work each time the clinician introduces
a case in the DSS. Thus, it is required to have a good time response and
optimizations to improve the performance are needed. Precalculation of several
operations during low activity periods of the DSS (at nights, sundays, holydays,

..) could positively improve the response time of the audit method. Elegible
operations to be precalculated are the calculation of the common Z from the Z;
of each model, the complexity of each model in terms of its free parameters, or
the calculation of the dynamic performance attending to Zpgs.

Considering that the scenario of comparison of general and specific models is
common in clinical environments, we proposed a mechanism to transform the
labels of Z into the labels T; each model M; can understand. By doing so, we
can express P(M;|Z) = P(M;|Z™"), and calculation of the posterior of each
model is properly performed. In addition, we restrict the posterior calculation
to only the set of samples Z that any comparing model can deal with. This
might be seen as sub-optimal because the models discriminating subclasses are
imposing that the samples in Z should belong to such subclasses. Nevertheless,
we consider this design as a compromise solution: if Z was obtained from the
union of all the samples in each Z;, the situation where a model would try to
predict a sample belonging to a class it cannot discriminate upon would arise and
misclassifications would occur. Consequently, this would lead to an undesired
side-effect of punishing those classifiers discriminating very specific labels, since
its evidence would dramatically drop.

133



Chapter 5

Taking into account the previous concerns, the audit method can perform a
consistent comparison between models in a non-painfully time allowing a ‘fair’
comparison of classifiers discriminating super-classes, which typically will give
right answers to a general discrimination problem, and classifiers devoted to
sub-classes that might address more challenging questions but be trained with
lower number of samples.

The design of the audit method is compatible with the multiple inheritance
in an ontology. In the CT described in Table 5.1, each row with more than
one ‘is a’ relationship can be seen as a term that inherits from several super-
terms. GLIOBLASTOMA, for example, inherits from the group of tumours
that can be considered as aggressive but also from those with high grading
stage (grade III-IV). With the mechanism defined to obtain the candidates for
comparison attending to the working diagnosis, the audit method can effectively
select models where multiple inheritance in some of their labels might occur: in
case that the user defined his/her working diagnosis as ‘Glioblastoma’, classifiers
discriminating this specific tumour type would be selected but, in addition,
also those discriminating the label of ‘grade III-IV’ or ‘aggressive’, if they are
available in the system.

One possible limitation of the audit method, though, is that it calculates the
evidence by using the BIC. The BIC is a rough approximation to the evidence
and limits the use of this audit method to the classification techniques where the
calculation of the parameters is possible. Implementation of alternatives to the
calculation of the evidence using regularization methods should be studied in
order to allow the auditing of other classification techniques. Special attention
should be taken on the performance of such regularization methods since they
usually are computationally expensive and we want them to work in an on-line
scenario where the models will be dynamically audited for each case introduced
in the DSS for diagnostic support.

5.5.2 Decision support for diagnostic confirmation or fur-
ther research

The main purpose of the audit method is to positively influence the user’s
diagnostic reasoning. Starting from an initial diagnosis, all the models able
to discriminate one or more of the label diagnosis supplied by the clinician are
selected. Once the models are evaluated, the DSS interface can be designed
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in order to (a) just show the answer given by the model with the best audit
performance, which will be the best suited for the case under evaluation, or (b)
to show all the classifiers’ answers.

By showing only the classifier with best performance able to deal with the
proposed diagnosis, we omit information that can distract the user and focus
his/her attention on the specific question he/she wants to be answered. Thus,
the adoption of (a) is the most recommended for diagnostic confirmation, where
the clinician will not invest more than 30-60 seconds to obtain reinforcement to
his/her decision [18, 19].

Alternatively, the option of showing all the answers, (b), is best suited for clinical
research purposes or diagnosis support for a non-trivial case that requires further
time investment. The fact of showing to the user the classifiers able to answer
super-classes of the proposed diagnosis can give him/her arguments to decide
whether the previous reasoning decision steps were right. In adittion, allowing
the user to observe the diagnosis support given by classifiers dealing with sub-
classes, can help on refining the user’s reasoning process.

By asking the user at the moment of the data insertion whether he/she considers
the case under evaluation as rutinary, a DSS running the proposed audit method
would choose to show just the answer of the best audited model. Otherwise,
all the answers, sorted by granularity of the question and by the performance
obtained, will be shown.

5.5.3 Complementary use to incremental learning algo-
rithms

In a clinical or research setting, the gathering, pre-process, and validation of
samples is expensive and time-consuming. Usually, the PR-based DSSs rely on
classification models obtained from a unique training set and the learning stops
once this set has been processed [3]. If the DSS has the ability to store the
data introduced by the users, this new data can be used to retrain the models.
An incremental learning approach allow us to build an initial classifier with
a smaller number of samples and update it incrementally when new data are
collected.

Our proposed audit method can help on the use of incremental learning al-
gorithms in two different ways: On one hand, by deciding the moment when
a retraining should be performed. A stationary behaviour in the evolution of
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the posterior odds (Figure 5.4) usually indicates that the predictive capabilities
of the classifiers are stable and no further classification improvement will be
reached unless new training samples are introduced. This phenomenon could
be used as an indicator to retrain or evolve the predictive models by using the
data Zpggs already introduced into the DSS.

On the other hand, it can also help on detecting when a learning technique or
discrimination problem has reached its ‘learning roof’, that is, when the perfor-
mance does not improve although new cases are used for retraining. Keeping
both the last retrained version of a classifier and the one previous to the last
retraining would allow to detect if no performance improvement is achieved in
the course of time.

5.5.4 Detector of misbehaving models and data shift

Measuring both static and dynamic odds is useful to detect problems in the
clinical setting: If a bias between the static and the dynamic odds is detected, it
might be due to possible overtraining in the predictive models. The performance
evaluated in laboratory might be optimistic for a number of reasons. Here we
briefly describe some of them:

e Low number of training samples: The number of samples available
to train a classifier is a key factor in the success (accuracy) of the results.
If a classifier obtains an elevated training performace from few data, an
overtraining might be happening: the classifier has learned the character-
istics of each sample and is able to perfectly discriminate them but, due to
this excessive training, the classifier has a poor generalization power and
limited abilities in discriminating other cases different to the ones used for
training. Classifiers trained with a low amount of data might probably
obtain a good performance when tested in lab, but chances are high that
this discrimination ability might be spurius. That is, it is highly probable
that there exists a combination of variables able to perfectly separate the
low amount of data. This happens due to a phenomenon called curse of
dimentionality [25]: when the amount of cases available is smaller than the
number of variables used from each case, the available data becomes sparse
and this sparsity makes difficult that any learning method can achieve a
good result with statistical significance. In the specific domain of brain
tumour diagnosis from MRS signals, if the number of cases available is not
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significantly greater than the number of variables extracted from the MR
variables to train the classifier, the curse of dimentionality might occur.

e Use of a poor evaluation strategy: Since having a great amount of
data to train classifiers is not always possible, a good design of the training
and evaluation stage can help to overcome or, at least, reduce the afore-
mentioned problems. Usually, when dealing with small-sample datasets,
resampling techniques can be applied when estimating the classifier per-
formance [26]. These techniques try to optimize the use of the available
samples in order to give a non-optimistic performance measure and avoid-
ing the overtraining. In addition, the set of training samples might con-
tain unbalanced classes. If so, a proper evaluation metric, like BAR, that
avoids overoptimistic measures, should to be taken into account for the
design of a evaluation strategy.

e Lack of an independent test set to evaluate the classifier: The
use of a test set (independent collection of data not previously seen by
the classifier) to prove the generalization capability of the model is a req-
uisite [27]. Although a good evaluation technique can take profit of the
available training data and avoid as much as possible any optimistic bias
in the evaluation, the use of an independent test is the best practise to
establish an objective evaluation of a classifier.

If a classifier suffering from some of these conditions is deployed in a real en-
vironment for decision support, its performance will low dramatically. That is,
the dynamic odds will be biased with respect to the static odds.

Furthermore, a relevant worsening of the dynamic odds with respect to the static
odds might also indicate data shift in the clinical centre when acquiring the
biomedical data: classifiers are very sensitive to the input they use to perform a
classification. If the clinical center does not follow the MRS acquisition protocol,
chances are high that the classifiers will be unable to give a proper answer. A
similar result is to be expected if the test spectra would not be preprocessed
following the same steps used with the training samples. In addition, a great
bias may also be an indicator of different patient populations if the training
cases were gathered from clinical centre(s) different to the clinical site where
the DSS is deployed.
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5.6 Concluding remarks

The proposed audit method, suited for DSSs in clinical or research environment,
is able to compare predictive models from the initial diagnosis made by the
clinician. Comparison is perfomed using a Bayesian framework and focusing
on auditing only those models that are relevant to help on the diagnosis of the
current patient.

If an ontology or hierarchy of the labels related to the biomedical domain is
available, our audit model compares not only the predictive models able to
answer the diagnosis proposed by the clinician, but also those models that can
deal with more general labels and those dealing with sub-classes of the given
diagnosis. Auditing of the models dealing with super-classes can reinforce the
decisions already taken by the clinician. Meanwhile, auditing of models focused
on sub-classes can guide to the user on which further step should be taken to
address a definitive diagnosis to the current case.

This audit method evaluates both the static and dynamic odds. Static odds
tell us how well the predictive models deal with data they were trained with,
similarly to an evaluation performed on laboratory, where the models were de-
signed. Dynanic odds evaluation allows to study the effectiveness of the models
in a real clinical environment. Measuring both static and dynamic odds is useful
to detect problems in the clinical setting: If a bias between the static and the
dynamic odds is detected, it might be due to possible overtraining in the pre-
dictive models, data shift in the clinical centre when acquiring the biomedical
data or even an indicator of different patient populations.

Experiments on real datasets of brain tumour diagnosis with MRS have been
performed. We emphasize that this audit method is an effective tool to transmit
trustworthiness to the final user and potential benefit of deploying a clinical DSS
in real clinical setting.
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Chapter 6

Similarity model for proper
prior assessment

“I define nothing. Not beauty, not patriotism. I take each thing as it is, without
prior rules about what it should be.”

Bob Dylan

A DSS based on Machine Learning can offer support to experts by means of
a set of relevant predictive models. In a dynamic scenario, a DSS should also
be dynamic by being able to cope with changes in the environment and con-
ditions. Biomedical domains are a clear example of a dynamic scenario since
dynamic conditions of the environments may change the assumed conditions in
the models. The definition of a mechanism that calculates the suitability of the
classifiers attending to each particular test case can improve the performance
of the predictions in such dynamic systems. This chapter contributes with a
methodology for prior probability assessment to a set of classifiers based on a
similarity model. This similarity model, inspired in a Bayesian approach, is a
natural extension of the audit method presented in the previous chapter. Such
mechanism will allow the DSS to select on-line the most adequate classifier for
each test case attending to contextual information, which is information not used
in the design stage of the classifiers, but related to the case or its environment.
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The evaluation of this prior assessment based on a similarity model has been
carried out for brain tumour grade diagnosis from MR spectra data. For this
scenario, the age, gender and location of the tumour in the brain have been
defined as contextual information. Specialized classifiers aimed to adult and
children patients were designed with MRS data. Non-specialized classifiers de-
signed with the spectra and the contextual information were also developed.
A similarity model was defined for each specialized classifier attending to the
contextual information. The overall performance of the DSS when using the
prior assessment calculated from the similarity model was comparable to the
performance of the non-specialized classifiers. In addition, the discrimination of
set of particularly difficult cases like those of children or young adults improved
when using the similarity model for prior probability assessment with the spe-
cialized models. The evaluation demonstrates the viability of integration of this
mechanism into a real DSS for dynamic environments.

This chapter complements the audit method presented in Chapter 5 by focusing
in assessing prior probabilities to each candidate model. The core of this chapter
has been published in the proceedings of [1] and in [2]. The adult and children
classifiers developed in this work are based on the question addressed in Chap-
ter 8. Section 6.4.4 describes how the similarity model can be combined with the
information related to compatibility of classifiers trained with 1.5T MR spectra
with 3T datasets presented in [3].

6.1 Introduction

The conception of a DSS aimed to clinical diagnosis and prognosis as an ‘evi-
dence adaptive’ system is becoming a new trend design [4]. Such systems incor-
porate automated and continuous updating to reflect the most recent advances
in clinical science and local practice knowledge. These systems, likewise, provide
solutions dealing with the incorporation of information from diverse sources and
adaptability to varied practice settings.

In that way, a dynamic DSS based on PR classifiers should include mechanisms
to guide on which classifier is adequated to give support on the decision related
to a specific test case.

This work contributes with a methodology for calculating the prior probabilities
of a set of classifiers according to a specific test case. The definition of this
mechanism can contribute to improve the performance of the predictions in the

144



Similarity model for proper prior assessment

dynamic systems. The approach presented in this chapter is a natural extension
of the development described in Chapter 5. Hence, the Bayesian paradigm is
our basis to obtain a proper prior assessment of two or more comparing models.

In the audit method presented in Chapter 5, effords were focused in evaluating
the predictive abilities of classification models by comparing its posterior odds.
The method, though, treated the prior probabilities associated to each model in
a simple fashion: those models unable to deal with the working diagnosis pro-
posed by the clinician were discarded as candidates. In other words, their prior
probabilities were set to 0. Then, the audit method assigned an arbitrary prior,
based on a uniform distribution probability, to the M models able to answer to
the working diagnosis. This treatment of the prior probabilities, though, might
be oversimplistic, specially in the environment of a set of classifiers giving diag-
nosis support in a clinical DSS. Chapter 3 depicted such a plausible scenario:
two classifiers performing the same discrimination (aggressive brain tumours
VS non-aggressive brain tumours) but aimed at different patient profiles: one
devoted to adult and other to pediatric cases. A filter mechanism based on the
patient’s age was proposed as a solution and allowed an adequated selection for
classification.

The purpose of this chapter is to unify the solution proposed in Chapter 3 into
the audit method of Chapter 5. More specifically, we propose the calculation of
the prior probabilities of the candidate models attending to a similarity model
based on extra information of the data from which each classification model
has been designed. This extra information about the samples, that we will call
contextual information, is not necessarily used for design purposes but is related
to the environment of the problem.

In that way, given a test sample, the prior probability assigned to each classifica-
tion model will be calculated according to the similarity between the contextual
information of the test sample and the contextual information of the design
dataset of each model.

The sections below are structured as follows: Section 6.2 depicts how our pro-
posal is linked with the audit method described in Chapter 5, our proposed
mechanism to calculate the prior probabilities using the similarity model, and
the procedure followed to its evaluation. Section 6.3 shows comparative results
of the mechanism in a dynamic scenario of prediction of the aggressiveness of
BT. Section 6.4 describes some theoretical issues related to the calculation of
the prior probabilities with the similarity model, recites medical significance
to the diagnosis of the aggressiveness of BTs and concludes that the proposed
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mechanism can contribute to improve the overall performance in dynamic envi-
ronments.

6.2 Methods

6.2.1 Prior probabilities in the audit method

A sample z is defined as a pair (x,t), where x is a data vector describing the
sample and t is its associated label. The objective of the audit method is to
compare among the classification models available in a DSS in order to assist
about which of them gives a better classification support. Let us call z" to
the test sample a clinician wants to introduce in the DSS. Notice that at the
moment the user introduces z", the label t* of the test case remains unknown
both to the clinician (who is asking to the DSS for confirmation or support) and
to the classifiers in the DSS. Hence, the audit method takes as starting point
the initial diagnosis, L, proposed by the user and selects the M models able to
answer any element [; of L. That is, calculates the prior probability of each
model in the DSS according to this rule:

v_J0 if msl(T;) (\msl(L) =0
PM) _{ 1/M  otherwise, (6.1)
where Tj is the set of labels that M, is able to discriminate, msli(t) is a function
that makes reference to the ‘most specific label’ as defined in Section 5.2 of
Chapter 5, and M is the total amount of models with msl(T;) (\msl(L) # 0.

In other words, the prior probabilities are assessed previously to the comparison
of the M candidates according to the prior beliefs of the clinician. This prior
assessment allows to discard those models unable to answer the working diag-
nosis and assigns an arbitrary uniform probability to each selected candidate.
Then, the comparison of the M selected candidates is perfomed as described in
Section 5.2 of Chapter 5:

P(Mn|Z,Zpss) _ P(Mwm) P(Z" | M) P(Z5%s|Zm, Mm)
P(Mi|Z,Zpss)  P(Mi) P(ZT|Mi)  P(Z]o|Zi, M) (6.2)
—_—— —— —

Posterior odds =Prior odds Static odds Dynamic odds
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where each classification model M; is estimated with a set of samples Z;, where
Zpss represents the samples already introduced in the DSS (and with a known
label associated) and where Z was obtained as a combination of all the Z; from
the comparing models.

6.2.2 Prior assessment based on the similarity model

The audit model, so far, assumes that we have no reason to assign strongly
difering priors P(M;) to the M comparing models. Thus, the prior odds of
Equation 6.2 can be ignored since both comparing models have the same prior
probability 1/M.

However, given a dynamic environment where change in the samples may occur,
it could be useful to define a mechanism that gives a tailored recommendation
on which of the M models are more suited to correctly predict the label of
z". Our proposal is to assess the prior probabilities of the models of the DSS
attending not only to the working diagnosis, L, but also to a measure of the
similarity of z* to Z; with respect to extra information not used during the
design stage of M;.

Let us redefine Z = {(k;,x;,%;)}Y as a set of N samples where x; is the data
vector describing the ;" sample, t; is its associated label and k; is a set of
values describing the contextual information. Contextual information is defined
as extra information about the samples not used in the input space of the
classification models.

So far, for each Z;, we had a M, a learning model with parameters 6 that tried
to assign to each set of variables x; of Z; its corresponding label ¢;. Let us now
define K;, which we will call similarity model of Z;, as a model with a set of
parameters w modeling the k; values, the contextual information of Z;. Then,
the prior probability of M; can be expressed as:

if msl(T;) (\msl(L) =10

0
P(M;) = { P(K;|2") otherwise,

(6.3)
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where the calculation of the posterior P(/C;|2") is:

P(K;)P(k"|K;)

P(Ki|2") = P(Ki|k") = D

_ P(Ki) .
- P(k") /P(k |Wa’Ci)P(w|Ki)dw. (6.4)

The k” is the contextual information associated to the current sample z". P(IC;)
if the prior probability of the contextual model, a ’subjective‘ prior distribution
function over the model space. P(K;|z") is the posterior of the similarity model
for Z; where, by definition of Equation 6.3, >, P(K;|2") = 1. The posterior of
the similarity model is a way of objectively determine the similarity of a test
sample to the dataset Z; used for M; in the design stage.

The calculation of the integral of Equation 6.4 can be locally approximated as
a Gaussian by maximization of the posterior probability:

log P(k"|K;) ~ log P(k"|w, K;) (6.5)

where w is a maximum likelihood estimate.

Now that we have a procedure to calculate the posterior of the similarity model,
we can use it to estimate the prior odds of two comparing models:

P(M,)  PEBPEKn) P PR [Km)

POM) ~ EEIpeiky) | PROPOIK) (60

If we assumed that we have no reasons to assign strongly differing priors to each
similarity model, Equation 6.6 can be simplified to:

PMn) _ PK"|Km)

_ 6.7
P(Mz) P(k“|ICl) ( )
And hence, Equation 6.2 can be rewritten:
P(Mm|Z,Zpss)  P(k"|Kn) P(Z"" | M) P(Z5%s|Zim, M) (68)

P(Mi[Z.Zpss) PO Ki) POZRM)  P(Z0yq|Z0, M)
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Finally, to compare M models, equation 6.8 can be generalized:

P(Mwl|Z,Zpss) _ P(K*|Kun) P(Z"" (M) P(Z 15| Zin, Min)
S P(MI|Z,Zpss) 3oL, P(KR|KC)P(Z7 M) P(Zi | 2o, M)

(6.9)

6.2.3 Evaluation of the prior assessment with the similar-
ity model

The goal of the prior assessment based on the similarity model is to select the
adequate classification model for each test case evaluated in the DSS in order
to improve the overall performance of the system. To measure the performance
of the similarity model, we propose to evaluate how it affects the overall perfor-
mance of a DSS running classifiers devoted to diagnosis aggressiveness of BTs
with MRS. Age, gender and location of the tumour in the brain are defined
as contextual information for this problem. We have divided the dataset into
different ‘specialized’ sets, attending to some criteria. These specialized sets are
divided into a set for classification model design and a set for independent test.

The classification models are obtained with the LDA technique. LDA is a Gaus-
sian Parametric model designed to find boundaries between classes [5] based on
the maximum likelihood estimation of the parameters of the Gaussian distribu-
tions for the classes considered under the study.

In order to assess the prior probabilities to each classifier (or corpora Z;), we
define a similarity model K; based on the estimation of the probability den-
sity mixture of the contextual information. By using this estimation, we can
establish a mixture of binary, discrete and continuous variables assuming that
they follow a Bernoulli, multinomial and Gaussian distribution given the nature
of the contextual information variables. Each contextual model K; calculates,
attending to the contextual information of a test sample, the probability of
belonging to its design dataset, Z;. In other words, how similar is the test sam-
ple to the samples used in the design of each model. The highest probability
determines the winner candidate.

Taking the contextual information of each design dataset, a similarity model is
set up. A simulation of the scenario of a DSS using the similarity to apply the
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prior probability assessment is then performed. That is, for each test sample,
the similarity model as defined in Equation 6.3, decides which of the classifier
candidates is more adequate (attending to the contextual information). The
prediction for this sample is carried out by the classifier selected by the similarity
model.

A set of ‘non-specialized’” LDA classifiers is also designed, for comparison pur-
poses, using together the MRS data and the contextual information. Then,
combining every independent test set from each specialized dataset, we will
compare the performance of the non-specialized classifiers with the specialized
ones using our proposed similarity model.

6.2.4 Dataset for evaluation

To evaluate the prior assessment based on the similarity model, an MRS database
for BT aggressiveness is used.

The dataset consisted on 1042 MRS at 1.5T histopathologically diagnosed brain
tumour cases acquired by ten institutions in the framework of the eTUMOUR |[6]
project. The classes considered in this study were based on the histological
classification of the CNS tumours as described by the WHO Classification [7].
Signal processing was performed following the protocols defined in [8, 9]. The
cases were divided into adults (889 cases; mean age 52 & 15) and children, who
are patients with age under 16 years old (153 cases; mean age 7 4 5). Division
of the cases into these groups responds to the differences reported in the nature
of brain tumour in children and adults [10]. Brain tumours were categorized
into aggressive and non-aggressive attending to this distribution: In adults, 357
samples of non-aggressive tumours and 532 samples of aggressive tumours. In
children, 89 samples of non-aggressive and 64 labeled as aggressive tumour.
Table 6.1 shows the cases distributed in design and independent test attending
to the patient age and the tumour classes. Figure 6.1 shows the mean MRS
data of each tumour type for children and adults.

A total of 68 cases of young adults (17 < age < 25 years old), with 40 cases of
non-aggressive tumours and 28 aggressive tumours, was available. A set of 28
cases (17 non-aggressive; 11 aggressive) was defined as independent test set of
young adults for evaluation purposes. These 28 cases were those not used in the
design stage of the classifiers.

A PT around mean frequency positions corresponding to particular metabolites
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Non-aggressive Aggressive
(a) Children

4 as 3 25 2 15 1 05 4 35 3 25 2 15 1 ns

Chemical Shift (ppm) Chemical Shift (ppm)
n=389 n=64
(b) Adults

4 35 3 25 2 15 1 0s 4 35 3 25 2 15 1 0s

Chemical Shift (ppm) Chemical Shift {ppm}
n=357 n=>532

4 as 3 25 2 15 1 05 4 35 3 25 2 15 1 ns

Chemical Shift (ppm) Chemical Shift (ppm)
n=40 n=28

Figure 6.1: Mean spectra of pediatric (top), adult (center) and young adult (bottom, age
between 17 and 25 years old) non-aggressive and aggressive tumours with standard deviation
indicated by the shaded region. Number of patiens for each tumour type is indicated beneath
each graph.
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Table 6.1: Number of samples for the brain tumour grade diagnosis problem
divided into design and test.

Classes Design stage (Z;) Independent test (Zpss)

Children Adults Both Children Adult Both
Non-aggressive 58 246 304 31 111 142
Aggressive 44 347 391 20 185 205
TOTAL 102 593 695 51 296 347

in the region of [0.5, 4.1] ppm interval is carried out. PI is a method successfully
applied in [11] that allows a reduction from the whole spectra to 15 parameters.
PI has proportionality to the concentration of the main metabolites in each
spectra.

Three different variables are used as contextual information: the age of the
patient (continuous), gender (binary) and the tumour location in brain (cate-
gorical). Distributions of age, gender and brain tumour location are given in
Figures 6.2, 6.3 and 6.4, respectively.

6.3 Results

Table 6.2 summarizes the performances obtained by two specialized classifiers
trained with PI extracted from MRS data. One is tuned exclusively from adult
cases; the other, with pediatric cases. The classifiers showed an optimistic bias
when comparing the likelihood from Z; (design stage) with the likelihood mea-
sured from all the samples of the independent test set (Zpgs). Nevertheless,
this bias is not as relevant if we take a closer examination: these specialized
classifiers obtain a likelihood similar to the one in design stage when are eval-
uated with an independent dataset with age accordance. In contrast, when
the children classifier is evaluated with an adult test set, and vice-versa, the
performance dramatically decreases. Having an age accorcance seems to be an
important factor for showing a proper performance and Figure 6.1 can help to
explain why this happens: Although the mean spectra of aggressive BT cases
of children and adult are visually different, the non-aggressive mean spectra of
pediatric and adult cases looks similar, the main difference being that the pe-
diatric mean spectra presents greater variability. Thus, a classifier devoted to
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Age histogram of children

Age histogram of adults

35

Age histogram of youngd adults

Figure 6.2: Histograms of the age in children, adults and young adults (age between 17 and

25 years old) with brain tumour.
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Gender histogram of children

Female

Gender histogram of adults

Male

Femnale

30

Gender histogram of young adults

25

20

Male
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Figure 6.3: Histogram of gender in children, adults and young adults (age between 17 and
25 years old) with brain tumour.
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Table 6.2: Likelihood achieved by BT aggressiveness classification from PI ex-
tracted from the MRS data specialized in ages: Children (age under 16 years
old) and adults (age over 16 years old).

Specialized classifiers (by age)

Classifier Number of Design evaluation Independent test
training samples (Z;) (Zpss)
Children Adults All
(51 cases) (296 cases) (347 cases)
Adults 593 0.76 0.53 0.78 0.75
Children 102 0.71 0.77 0.53 0.53

discriminate children cases needs to be able to deal with such variability but
with less training samples to learn, compared to a classifier devoted to adults.

To measure the overall performance of a DSS, we use the similarity model in
order to choose the most adequate specialized classifier for each sample to be
tested. The overall performance of the DSS measured as the likehood obtained
according to the different combinations of contextual information is depicted in
Table 6.3. Different combinations of contextual information are tested to model
this proper prior assessment. The overall performance when using the contex-
tual information to decide which specialized classifier should be used shows an
improvement when the age and the BTloc are considered as contextual infor-
mation (Table 6.2). Gender information, on the contrary helps to discriminate
better the pediatric cases but the overall performances does not improve when
compare to the performance of the classifier specialized in adults.

In order to evaluate the use of the contextual information applied to special-
ized classifiers, we compare the performances of Table 6.3 with those of non-
specialized classifiers. Non-specialized classifiers are trained with all the samples
(adult and children) plus the contextual information. Table 6.4 summarizes the
performance of the non-specialized classification models, which combine the PI
applied to MRS data with the contextual information. These classification mo-
dels can be seen as a reference for the estimation of the performance achievable
for this problem. Table 6.4 shows the evaluation of independent test sets ac-
cording to the age: children (patients under 16 years old) and adults (age > 16
years old). It also shows the result of discriminating all the samples.

Analysis of Table 6.4 reveals similar results for the different combinations of PI
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Table 6.3: Overall likelihood of a DSS with specialized classifiers when using
a similarity model to determine which classifiers is more adequate to each test

sample.
Contextual information Overall Performance
(similarity model) Independent test
Children Adults All
(51 cases) (296 cases) (347 cases)
Age 0.77 0.78 0.78
Gender 0.76 0.64 0.65
BTloc 0.80 0.76 0.77
Age + gender 0.77 0.64 0.65
Age + BTloc 0.80 0.77 0.78
Age + gender + BTloc 0.78 0.76 0.75

and contextual information. The best performance when evaluating with all the
test cases is 0.74, almost identical to the likelihood of 0.75 measured with the
data of the design stage. The performance achieved when testing child cases
(around 0.65) is inferior to the global. In contrast, the likelihood for adult cases
is slightly better (0.77) than that of the global performance (measured with
adult and child test cases).

Attending to the results of Tables 6.3 and 6.4, the overall likelihood of the DSS
obtained when applying the similarity model is comparable to the likelihood
of the non-specialized classifiers although slightly better. Nevertheless, these
improvement is marginal since no statistical significant differences are found
between the performances of Tables 6.3 and 6.4 (p < 0.01, Tukey’s test, o« =
0.05).

Finally, Table 6.5 shows the result of testing the different classifiers to an in-
dependent dataset of 28 young adults. A likelihood of 0.70 is achieved by the
classifier specialized in adult cases. The likelihood achieved by the pediatric
classifier is slightly inferior, with a likelihood of 0.65. If we use the similarity
model to select the adequate specialized classifier according to the contextual
information, the overall performance of the DSS can improve up to 0.80 if using
the age or the BTloc. In contrast, all the non-specialized classifiers obtained a
likelihood of 0.60 or 0.67. The difference in performance achieved with the use
of the contextual information is statistically significant (p < 0.01, Tukey’s test,
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Table 6.4: Likelihood of the non-specialized models for BT aggressiveness clas-
sification (trained with 695 cases). These models are trained with both adults
and children cases and combine the PI extracted from the MRS data with the

contextual information: age, gender and Brain Tumour location (BTloc).
Non-specialized classifiers

Classifier designed with: Likelihood for Z Likelihood for Zpsgs
Children Adults All
(51 cases) (296 cases) (347 cases)
PI 0.74 0.65 0.74 0.72
PI + age 0.74 0.63 0.77 0.74
PI + gender 0.74 0.65 0.74 0.72
PI + BTloc 0.75 0.65 0.72 0.72
PI + age + gender 0.75 0.63 0.77 0.74
PI + age + BTloc 0.75 0.63 0.74 0.74
PI + age + gender + BTloc 0.75 0.63 0.77 0.74

Table 6.5: Likelihood of specialized classifiers (designed with PI), specialized
classifiers using the similarity model and non-specialized classifiers (designed
with PI and contextual information) for an independent test set of young adult
patients.

Classifier Young Adults test set
(28 cases)

- . Adults (593 cases 0.70
Specialized Classifiers Childrer(l (102 casis) 0.65
Age 0.80
Overall performance Gender 0.65
. L BTloc 0.80
with similarity model Age - gender 0.65
Age + BTloc 0.80
Age + gender + BTloc 0.70
PI 0.67
PI + Age 0.60
Non-specialized PI + gender 0.67
Classifiers PI + BTloc 0.67
(695 cases) PI + age + gender 0.60
PI + age + BTloc 0.60
PI + age + gender + BTloc 0.60
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a = 0.05) compared to performance obtained with non-specialized classifiers.
It seems that, for this discrimination problem, the use of the variables of age,
BTloc or gender might be more convenient if used as contextual information
rather than using them as input for the classifiers.

6.4 Discussion

A proposal for prior probabilities assessment is designed to select the most ad-
equate classification model in a DSS. This prior assessment is founded on the
Bayesian paradigm. It calculates the prior assigned to each classification model
attending to a similarity model. The evaluation of this prior probabilities assess-
ment model has been performed by simulating a DSS with a set of specialized
classifiers for BT aggressiveness diagnosis that selected the more adequate clas-
sifier attending to contextual information.

6.4.1 Dealing with the Simpson’s paradox

The Simpson’s paradox [12, 13] is a phenomenon whereby an event A increases
the probability of other event B in a given population and, at the same time,
decreases the probability of B in every subpopulation. This phenomenon might
occur with the audit method and, particularly, when using the contextual in-
formation and the similarity model to assess proper priors.

An example of such effect is formally described: given a population of adults
and children with BT that can be categorized as aggressive or non-aggressive,
the rate of aggressive cases is greater in adults than in children. Nevertheless, if
such population is divided attending to the center from each case was acquired
(subpopulations), the probability is reversed:

P(Aggressive|Adult) > P(Aggressive|Children), (6.10)
P(Aggressive|Adult, Centre A) < P(Aggressive|Children, Centre A), (6.11)
P(Aggressive|Adult, Centre B) < P(Aggressive|Children, Centre B). (6.12)
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Table 6.6 depicts Simpson’s paradox numerically (numbers are given for ped-
agogical purposes). Looking at equations (6.11) and (6.12), the prevalence of
aggressive tumours in children is higher than that of adults in both centres.
Paradoxically, if we look at the whole poputalion (Equation 6.10), aggressive
tumours are more prevalent in adults. How is this possible?

Table 6.6: Rate of aggressive tumours in children and adults in two centres A
and B and both combined.

All Aggressive  Non-aggressive Aggressiveness rate
Adults 20 20 40 50%
Children 16 24 40 40%

36 44 80
Centre A Aggressive Non-aggressive Aggressiveness rate
Adults 18 12 30 40%
Children 7 3 10 70%

25 15 40
Centre B Aggressive Non-aggressive Aggressiveness rate
Adults 2 8 10 20%
Children 9 21 30 30%

11 29 40

According to global statistical studies like that of CBTRUS [10], aggressive
tumours are less prominent in children. However, a naive classifier answering
attending to the frequencies observed would say otherwise if it was trained only
with the data in Centre A, for example.

Lindley and Novick in [14] explained the reason behind this paradox using the
concept of exchangeability and, more recently, Pearl solved this contradiction
using the paradigm of causality [15]. Although using somewhat different approx-
imations, both works stated that this paradox occurs due to distorted causal
interpretations. In our example, if the fact that a case is acquired from Centre
A is perceived to be the cause for both the aggressiveness level and the age of
the patient, then the aggressiveness needs to be evaluated separately for each
center (as in (6.11) (6.12)) and then averaged accordingly. Hence, if the fact of
coming from a particular centre is the only confounding factor, (6.11) and (6.12)
just represent the aggressiveness rates in the respective populations while (6.10)
represents merely the evidential weight in the absence of centre information,
and the paradox dissolves.
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In other words, the correct interpretation of the data available and the under-
standing of the acquisition circumstances makes the paradox disappear. Num-
bers in Table 6.6 make sense if we knew that Centre A was a hospital specialized
in treatment of aggressive BT cases both in adults and children and that Cen-
tre B was a children hospital where most of the cases were pediatric and the
remaining were from young adults.

The use of the similarity model might arise Simpson’s paradoxes depending on
the variables taken under consideration as contextual information. Neverthe-
less, a proper interpretation of the subpopulations obtained should effectively
dissolve any contradictory explanation. Since the contextual information is ex-
tra information not mandatory for classification purposes, a convention can be
taken in order to avoid possible Simpson’s paradoxes: whenever the contextual
information is available in a test set (in our example, the centre from where it
comes), the similarity model can be calculated (according to the data informa-
tion of each centre A or B). Otherwise, equal priors will be assigned to each
candidate model and the final decision of chosing the best classification model
will be left to the user of the DSS or performed arbitrarily by taking into account
the evidences of the candidates.

6.4.2 Theoretical issues

The proposed model to assess the prior distribution of the classification mo-
dels relies on the contextual information, which is extra information about the
samples not used for design purposes but related to the samples or their envi-
ronment. In that way, contextual knowledge about the design samples can be
incorporated and applied for determining the prior of each candidate model.

Several proposals have been made in the literature to model the prior probabili-
ties of comparing models. Some authors claimed that prior probabilities can be
inspired from trust models in multi-agent systems, which promote the exchange
of information on the reliability of individual agents through feedback systems
to provide reputation information. This feedback mechanism induces a substan-
tial improvement in transaction efficiency and benefits the trust and trustworthy
behavior for the whole community [16] (for review see [17]). However, prior as-
sessment based on trust models may rely only on subjective perception of the
experience of an interaction partner (user), but ignoring the ‘objective’ infor-
mation related to the data from where each classifier was build-up.

A mechanism that indicates the similarity of a test sample to the data used to
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design a model can compensate the natural bias that a model can present when
its performance is evaluated attending to cases to which is not aimed. According
to the statistics [10], in a clinical site assisting both adults and children with
BT, the incidence of pediatric BT cases represents the 15-20% of the total seen
cases. The dynamic performance of a pediatric classifier in a DSS can be biased if
such classifier has been selected as candidate for adult cases. With the proposed
similarity model, when the sample under evaluation is that of a children, the
prior probabilities assigned would reduce this possible bias by suggesting to the
clinician an appropiate model according not only to the performance but also
to the contextual information.

In order to obtain a prior assessment as objective as possible, each similarity
model K; must take into account the same contextual information: if it is estab-
lished that the contextual information is the patient’s age, the IC; associated to
each M; should consider only that variable. By following this premise, the com-
parison of a test sample among the different candidate models will be performed
attending always to the same set of variables, allowing a ‘fair’ prior assessment.

6.4.3 BT - case study

BT aggressiveness offers a good framework to test this proposal for proper prior
assessment. The classification task is performed with MRS data but other con-
textual information is also available. The importance of this contextual infor-
mation has been reported in several studies: the age is a relevant factor for
determining the grade of tumours because the nature of child brain tumours
may be totally different from adults [10]. The data used in this experiments
clearly follows a normal distribution in adults (Figure 6.2). In the case of young
adults and children patients, the distribution does not seems to be Gaussian and
this might be due to the difference in the amount of data available from these
populations. Analogously to the age, the differences in tumour nature makes
also reference to the location in the brain, which varies with the brain develop-
ment and aging. These anatomical differences can be seen in the distributions
gathered in Figure 6.4. BTloc in young adults reveals that these patients can
be considered as a mid-term between adults and children: several tumours are
located in frontal, parietal and temporal locations where brain tumours are typ-
ically found in adults. Nevertheless, a significant amount of tumours are also
found in the cerebellum and the ventricular atrium, which are locations where
pediatric tumours might appear. Hence, although anatomical location of brain
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tumours is not sufficient to make classifications based on this variable alone, tu-
mour location could be used as an informative prior [18]. Similarly, information
about the gender distribution [10] might be an interesting factor. Figure 6.3
reveals that, with independence of the age, brain tumours are more prevalent in
men. This is specially observed in children, where the number of males doubles
that of females.

The information regarding the use of age, gender and BTloc as contextual data
has been consensuated and recommended by oncologists, spectroscopists and
radiologists of the consortium of the multicenter project HEALTHAGENTS (2005-
2008) [19].

The nature of the BT aggressiveness diagnosis fosters the specialization of classi-
fication models attending to an age scope. These specialized classifiers improve
the performance of non-specialized classifiers, even when the non-specialized
models are designed using also the contextual information. This improvement,
though, is only observed when the specialized classifiers are evaluated with test
samples similar to those used in the design stage.

The scenario proposed in this evaluation retakes the question addressed in Chap-
ter 3 but making use of more tumour cases. The prevalence of pediatric cases
is of 14.7% with respect to the total. This is in broad accordance with the lit-
erature [10] and also depicts an scenario similar to the one in Chapter 3, where
the incidence of pediatric brain tumours was of 19%.

The results described in Table 6.2 correspond to two specialized classifiers at-
tending to the patient’s age. These results are similar to the ones described in
Chapter 3. The overall performance of the pediatric classifier (likelihood of 0.53)
is closer to that obtained when tested with adult cases. This is explained by the
great amount of adult cases in the Zpgs (296 adult cases and only 51 pediatric
cases). The overall performance of the adult classifier (likelihood of 0.75) was
also lowered by the presence of the pediatric cases in Zpgs but, analogously,
it remained closer to the performance obtained when evaluated only with adult
cases. The results of these specialized classifiers can correspond to an scenario
of a DSS using an audit method that assigns equal priors to each classifier.

Table 6.3 summarizes the overall performance of the DSS when our similarity
model is used to decide which specialized classifier is to be used for each test case
according to the contextual information. Compared to the overall performances
described in Table 6.2, the DSS is able to globally achieve a slight performance
improvement. These results are in agreement with the age-filtered classifier
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described in Chapter 3.

Another interesting aspect of this evaluation is the performance comparison
with classifiers that make use of both adult and children cases and, in addi-
tion, make use of the variables defined as contextual information (Table 6.4).
The first row of Table 6.4 describes the performance of a classifier trained only
with the PI. The achieved performance, though, is slightly inferior than the
performance that the specialized classifiers can achieve with some combinations
of contextual information (Table 6.3). The other rows of Table 6.4 describe a
similar performance. This implies that the age, gender and BTloc have a mini-
mal weight compared to the information given by the PI in the discrimination
abilities of the classifiers obtained when using contextual information as input.
Nevertheless, these variables, if used as contextual information, can improve the
overall performance of the DSS if used with specialized classifiers. In addition,
a further analysis reveals that the use of the similarity model improved, in some
cases, the performance of the pediatric cases.

A final performance comparison is described in Table 6.5, which shows the
predictive power of the classifiers when discriminating an independent dataset
of 28 young adults. The performance achieved by any non-specialized classifier
(likelihood of 0.67 at the best) is comparable to that of the classifier specialized
in children (likelihood of 0.65). The use of the similarity model, though, slightly
improves the performance up to a likelihood of 0.80, a statistically significant
improvement (p < 0.01, Tukey’s test, « = 0.05). This result demonstrates that
the similarity model for assigning priors can help to achieve a better global
classification for particularly difficult cases like those of young adults.

The similarity model based on the use of the contextual information to establish
a proper prior to the specialized models for a test set allows the measurement
of the overall performance of a DSS. In our results, the overall performance is
slightly better than the one obtained with the non-specialized classifiers and,
hence, the use of the similarity model can help to improve the diagnostic per-
formance of specific populations like the pediatric cases or young adult cases,
whose brain tumours are considered in the mid-way between children and adults
nature [10].

The proposed approach of using the similarity model to stablish the appro-
priateness of a classifier to each test case resembles a meta-learning approach
where an exploitation and understanding of the learning itself is done in order
to increase in efficiency through experience [20].

164



Similarity model for proper prior assessment

Other biomedical domains where the classification task should be specialized
attending to one or several criteria might take benefit from using this approach
of proper prior assessment based on a similarity model.

6.4.4 Limitations and future work

The prior probability assessment based on the similarity model has been calcu-
lated with the estimation of the probability density mixture of the contextual
information. This estimation establishes mixtures of binary, discrete and con-
tinuous variables assuming independence between these variables. Any other
classification technique able to estimate a distribution model and to calculate a
probability to each class considered is susceptible to be used instead. Alterna-
tive methods like the web metrics for auditing the importance of web pages may
be studied. Some of these algorithms take into account several evolving promi-
nent features of the web like its hierarchical structure [21] or use features that
are independent of the link structure of the web, like the frequency with which
users visit web pages [22]. Such features, applied to the contextual infomation,
may be useful to face the covariate and concept drift phenomena underlying the
biomedical domains.

In order to assess the prior probabilities to each classifier (or corpora Z;), we
define a similarity model XC; based on the estimation of the probability den-
sity mixture of the contextual information. By using this estimation, we can
establish a mixture of binary, discrete and continuous variables assuming that
they follow a Bernoulli, multinomial and Gaussian distribution given the nature
of the contextual information variables. Each contextual model K; calculates,
attending to the contextual information of a test sample, the probability of
belonging to its design dataset, Z;. In other words, how similar is the test sam-
ple to the samples used in the design of each model. The highest probability
determines the winner candidate.

The proposed similarity model needs contextual information in order to assess
proper priors. This contextual information should not be used for design pur-
poses in order to keep the independence between the prior distribution and the
evidence. Hence, the proposed model requires some extra features that effec-
tively describe the profile of each sample but allowing, at the same time, that
its omission in the design stage does not drastically alter the prediction skills of
the classifiers. Biomedical domains, fortunately, offer a good framework where
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the classification task should be specialized attending to one or serveral criteria
(which might be used as contextual information).

In the specific biomedical domain of brain tumour diagnosis with MRS data,
another variable that may be useful as contextual information is the magnetic
field of the MR scanner. The data used for this study was acquired from 1.5T
MR scanners. Nevertheless, 3T scanners are becoming widely available in the
clinical environment because of an improvement in the SNR and spectral reso-
lution, which enhances the diagnostic abilities of MRS. Gathering a database
of 3T with the amount of data currently available at 1.5T would take many
years and can imply the risk that, by the time it will be achieved, the tech-
nology might has evolved again and scanners with greater magnetic fields will
be available. In [3], we demonstrated that 3T MRS data can be used with the
currently available brain tumour diagnostic classifiers trained on databases of
1.5T spectra. To do so, we evaluated a set of classifiers trained with 1.5T with
two independent test set of 1.5T and 3T. Although no significant differences
were detected in the evaluation, there could be specific classification problems
where the metabolites in the [3.5 4] ppm region are of paramount relevance for
proper discrimination [3, 23]. Including the magnetic field of each of the training
samples as contextual information might help on the selection of an appropriate
candidate in case of co-existence of 1.5T and 3T MRS trained classifiers.

The evaluation of the prior assessment based on a similarity model presented
in this chapter demonstrates the viability of integration of the prior assessment
model into the clinical DSS CURIAM [24, 25, 26].
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CURIAM DSS for BT
diagnosis support

“I do not fear computers. I fear the lack of them.”

Isaac Asimov

The inclusion of DSSs into a clinical site may improve the clinicians’ decision
routine workflows. The final purpose of the experiments reported in previous
chapters is the improvement of brain tumour diagnosis in clinical or research
environments throughout the integration of the PR developments in clinical
DSSs.

In this chapter, after a brief review of previous clinical DSSs in the literature,
we focus on CURIAM BT, a DSS for brain tumour diagnosis support, which in-
cludes the specific contributions described in this dissertation: the incorporation
of the pediatric classifiers as an effective non-invasive pre-operative tool to define
the tumour resection strategy; and the incorporation of the audit method and
the similarity model as tools that will positively influence the decision process
followed by the clinicians.

CURIAM BT diagnosis support is a DSS that borns in the multidisciplinary
research line Biomedical-Mining from the IBIME group of the research insti-
tute ITACA in the Universitat Politécnica de Valéncia. The development of
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CURIAM has been paralleled and complementary to those of the eTUMOUR,
and HEALTHAGENTS European Union projects of the 6th Framework Pro-
gramme. Partial sections of this Chapter have appeared as scientific contribu-
tions in [1, 2, 8, 4, 5, 6].

7.1 Decision support systems in clinical environ-
ments for cancer research

Since the first clinical DSS designed in the 1970s by Leaper et al. [7] for the
support of diagnosis and surgery of acute abdominal pain based on a naive
Bayesian approach, there have been numerous attempts to automate and im-
prove the decision support in the clinical practice. Related to cancer diagnosis
and treatment, the first efforts were materialized in 1981 with a clinical DSS
designed by Shortliffe et al. [8] to assist physicians in the treatment of cancer
patients receiving chemotherapy. A continuous series of specific clinical DSSs
aimed to cancer detection and diagnosis have been published in clinical and
technical journals in the last three decades. Most studies have focused on the
solution of questions related to specific medical problems, such as breast [9, 10],
gastrointestinal [11, 12, 13|, hematologic [14, 15, 16], oral [17], lung [18, 19],
bladder [20], or prostate [21, 22, 23] cancer detection or diagnosis. Neverthe-
less, few systems have invested effort in providing generic distributed solutions
to standardize the incorporation of predictive models in clinical DSSs [24].

In order to obtain a translational clinical DSS, several aspects need to be ac-
complished [25, 26, 27]: (1) the accuracy in solving the specific problem should
be demonstrated; (2) the adequate evaluation of the capability to generalize
the performance on new cases of the problem domain should be given; (3) the
clinical community will accept easier the DSS if it is transparent in relation to
clinical knowledge; (4) the DSS should provide an easy access to the users; and
(5) the DSS needs to be integrated with the clinical routine workflow.

These are key points in the deployment of the system in a clinical environment
and have been taken into account in the design of CURIAM BT, which also
provides a generic solution to standardize the incorporation of predictive models.

Sections 7.2 and 7.3 describe, respectively, the incorporation of the pediatric
classifiers reported in this dissertation into CURIAM BT DSS for brain tumour
diagnosis support and how the audit method, along with the similarity model,
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are included into CURIAM BT. Section 7.4 will discuss how the incorporation
of these contributions into CURIAM BT addresses the key points described
as mayor issues in the design of a translational DSS for clinical environment.
Finally, this chapter finishes with some conclusions.

7.2 Inclusion of pediatric classifiers into CURIAM
BT

CURIAM BT is a DSS able to handle several predictive models which can deal
with categorical and numerical data or signals. In order to extend the system
capabilities;, CURIAM BT offers the feature of incorporating new classifiers to
the system just by simple ‘drag & drop’. This functionality enables both to
improve the available classifiers and the incorporation of new ones.

7.2.1 Classification Framework (CF)

CURIAM BT architecture is modular. It contains an independent and auto-
matic Classification Framework (CF) that allows:

(1) To ensure — due to the CF capability to be easily extended with new
techniques — that new improvements in PR and brain tumour classifica-
tion can be rapidly integrated from validated research results into clinical
environments.

(2) To incorporate new classifiers into CURIAM by including their specifi-
cation files. These specification files are created following the provided
Extensible Markup Language (XML)?! specification, as shown in [24]. The
use of the XML standard enables new classifier specifications to be ex-
tended when the framework is improved with new methods. It also en-
ables the inclusion of additional information about the field to which a
classifier is related. This information can be displayed to the user to en-
hance the decision support task. In addition, XML-based documents can
be interpreted by many computer tools and applications, which enables
the management of classifiers as well as its sharing with other systems or
tools.

I Extensible Markup Language, http://wuw.w3.org/XML/
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7.2.2 PR techniques in CURIAM BT

In the context of brain tumour diagnosis, procedures such as data pre-processing,
feature selection, and extraction are crucial and can drastically affect the general
accuracy of the system [28, 29]. In this way, one PR technique may work better
for a specific problem than another. Our experiments follow evaluation protocols
to ensure the reliability of the obtained classifiers and their accuracies [30]. The
CF mainly focuses on the classification process, leaving the training process
to the laboratory tools that individual PR research groups are accustomed to
using. Therefore, the PR techniques that can be included in the CF do not need
to implement the training algorithm process but just the algorithm related to
the classification process. The PR techniques that are currently available in the
CF for brain tumour classification are LDA, KNN, LS-SVM, PCA and ICA.

7.2.3 A Classifier in CURIAM BT

The CF separates the specification of a classifier from the implementation of
the PR techniques it uses. A classifier added to the system is defined by a set of
specification files in order to make use of any of the techniques included in the
CF. This approach enables technique implementations that are already part of
the system to be reused.

PR classifiers, as defined in this framework, are structured by different actions
for making predictions, which can include various methods for feature selection
and extraction, data transformation, and classification. Conceptually, these
methods can be considered as classifier actions, where each method takes an
input and provides an output. A classifier can also pipeline a set of these
actions before obtaining its final result.

In statistical PR, a data sample consists of an array of features, and most types
of data can be expressed in this way for data mining, e.g. medical and biological
data. Even if classifiers use combinations of different data, this array could be
formed as a concatenation of the two original arrays. The CF can receive these
arrays, and select from them the set of features a classifier needs to make a
classification. In this way, the input of the framework becomes standard. An
example of such functionality can be seen in Figure 7.1. Since the CF is offered
as a generic tool, the classifiers are able to deal with most types of data and
solve the questions that can be expressed by this data.

By allowing an open data input and the possibility of using any classifica-
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Figure 7.1: Example of a set of classifier actions pipelined to obtain a classifica-
tion of an array of features. From the whole set of features (from x1 to x7), four
are selected by the feature extraction filter (x1, x3, x5 and x7). Normalization
is applied to x5 and x7. A transformation is then applied to x1, x3, and the
normalized features x5’ and x7’. Finally, the output of the transformation is
sent to the classification module in order to obtain the posterior probabilities of
each class.
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tion technique, or even a combination of techniques, the CF provides a flexible
method of including classifiers in the system. An XML specification template
has been defined in the CF. Therefore, to add a classifier to the system, it is
only necessary to write the corresponding XML specification and add it to the
framework.

The XML classifier specification is divided into three separate XML files (Fig-
ure 7.2):

description.xml: contains information related to the description of the
classifier, such as what kind of input data is used, the question it
solves, where it was developed, and what cases have been used for
its training. Based on this file, the classifier gives information to the
users so that they know whether it is suitable to their problem or
not.

profile.xml: contains information related to the classifier’s profile: clas-
sifier accuracy figures, statistical information on the training data,
and dynamic values about the use of the classifier — such as a mea-
sure of the correctness of the classifier answers.

method.xml: contains the specification of the classification process. This
file enables the inclusion of the actions required by the classifier,
where the set of parameters used for its execution and the selection
of features for its input are defined for each classifier action. The
method.xml file describes which outputs will be returned by the
classifier, and these can be any combination of output from any
of the actions. In addition, extra elements such as plots or data
visualizations can be included in this file.

A simple classification scenario using the CF can be described as follows: the
client module (a user) requests the description of the available classifiers to check
which fit its needs. Once a valid classifier is selected, it is instantiated by indi-
cating its name. The classifier parses the content of its method . xml specification
and creates an array of classifier actions. Parameters specified in the XML are
loaded by these actions. When the classifier is ready to perform a classification,
the data sample to be classified is received from the client. Data passes through
the pipeline of classifier actions, and generates the corresponding outputs at
each step. Once the final action is complete, the classifier generates the cor-
responding output which is sent back to the client module. This procedure is
illustrated in Figure 7.3.
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Figure 7.2: A classifier is represented by three XML specification files.
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Figure 7.3: A client module requests the classification of X using the classi-
fier Classifier2. The classifier actions specified in the method.xml file of
Classifier2 are loaded with their corresponding parameters to create the
pipeline. Probabilities are sent back to the client module once the classifica-
tion of X is complete.
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Table 7.1: Performance of the classifiers included into CURTAM BT for discrim-
ination of aggressive and non-aggressive BT, extracted from Table 3.3. Balanced
Accuracy Rate (BAR) of Adult Classifiers trained with 300 Short-TE samples
and Children Classifiers trained with 60 Short-TE samples.

Training Adults Test Set  Children Test Set

Classifier Performance (96 cases) (93 cases)
Adult classifier

(PT+LDA) 0.85 0.85 0.60
Pediatric classifier

(PL4+PCA+ LDA) 0.87 0.50 0.88

7.2.4 Pediatric classifiers

In CURIAM BT, the inclusion of new classifiers is straightforward and consists
in creating the associated XML files describing the actions each classifier needs
to perform in order to obtain a classification.

Hence, from the results reported in Chapter 3, two classifiers for assessment
of tumour aggressiveness are incorporated into CURIAM BT. One aimed to
adult patients and other aimed to children (patients under 16 years old). Both
dichotomic classifiers are able to discriminate between non-aggressive tumours
— generally low tumour grade (grades I and II) with a slow growing tendency
— and aggressive tumours (high tumour grades, that is, stage III and IV of
the tumour). The best adult classifier applies LDA after a feature extraction
with PI. In contrast, the classifier devoted to children with best performance
applies PI followed by PCA and then applies an LDA. These classifiers have
been trained from SV MRS acquired at Short-TE. The adult classifier has
been trained from 396 samples and the classifier devoted to children has been
trained with 93 samples. The classification performance of both classifiers is
described in Table 7.1, extracted from Table 3.3. In addition, the mean spectra
of each class is also included into each classifier. This allows easy comparison
of the case under evaluation with respect to the mean spectra of aggressive and
non-aggressive tumours.

Regarding the classification of the three most prevalent brain tumour in chil-
dren, nine classifiers are incorporated into CURIAM BT. They are able to an-
swer three different discriminations: a binary discrimination of glial-cell tu-
mours (EPEN and PILOA) from MED:; a binary discrimination of PILOA and
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Table 7.2: Performance of the nine pediatric classifiers included into CURIAM
BT, extracted from Table ??. Balanced Accuracy Rate (BAR) of the classifiers
trained with PI applied to Short-TE, Long-TE and combination of both time
of echo (Long-TE-+Short-TE) for each discrimination problem.

Classifier Short-TE  Long-TE  Short-TE+Long-TE
(PILOA, EPEN) vs MED 0.88 0.85 0.89
PILOA vs MED 0.92 0.94 0.95
PILOA vs EPEN vs MED 0.76 0.69 0.92

MED; and a three-class classification for discriminating EPEN from PILOA and
from MED. Each discrimination is perfomed with Short-TE spectra alone, with
Long-TE spectra alone and with a combination of both times of echo, which
gives a total of nine classifiers (3 discriminations x 3 MRS combinations). All
nine classifiers apply PI to perform an LDA afterwards. In Chapter 4, no signif-
icant differences were reported between the classifiers trained using only brain
tumour cases in the PF compared to classifiers trained from cases at any brain
location. Thus, in order to offer discrimination tools trained with the maximum
available number of samples, the classifiers introduced into CURIAM BT were
trained from cases in any brain location. The performance of these classifiers is
summarized in Table 7.2, extracted from Table ??7. The mean spectra of each
class is also included into each classifier to allow easy comparison of the case
under evaluation with respect to the mean spectra of the three most prevalent
pediatric tumours.

Figure 7.4 shows two screenshots of CURIAM BT with pediatric classifiers.
Classifiers in CURIAM BT do not just give an answer but show the posterior
probability they assign to each class they discriminate. They also show the mean
spectra and standard deviation for each class in the training dataset. Figure 7.4,
top, shows the children classifier for assessing the tumour aggressiveness. Below,
the pediatric classifier for discrimination of EPEN, PILOA and MED can be
seen. Since it is an LDA discriminating three classes, a projection of the latent
space is also shown. Each coloured dot in the latent space represents a labeled
case from the training set of the classifier. Notice that the test case is projected
as an squared dot in order to show where it belongs, according to the classifier.
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Figure 7.4: Screenshots of CURIAM BT DSS for tumour diagnosis. Top, the
classification result screen of the children classifier discriminating among ag-
gressive and non-aggressive tumour types from Short-TE spectra. Bottom, the
classification result screen of an LDA classifier discriminating PILOA, EPEN
and MED from a combination of Short-TE and Long-TE MR spectra.
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7.3 Inclusion of the audit method and the simi-
larity model into CURIAM BT

Since several classifiers could coexist in CURIAM BT, users may want the sys-
tem to identify which classifiers are more suitable for a particular case to di-
agnose. The audit method, along with the similarity model to assess prior
probabilities, pursues this aim. These tools can also be used to rank the ob-
tained results from a set of classifiers, so the higher the position in the ranking,
the more reliable the result. In addition, it can also be useful to solve possi-
ble conflicts between classifiers giving contradictory answers. This can happen
when a test case is close to a decision boundary in one or more classifiers.

7.3.1 Storage of feedback diagnosis

The audit method is based on a statistical method to compute a score for
classifiers. Two types of classifier performance are taken into account: static
and dynamic. Static performance is the evidence of the classifier obtained after
training, during the evaluation stage of the classifier. It is an initial approach in
assessing how good the classifier is according to the evaluation stage — and is
usually based on an independent test set, or other techniques such as kRSTT or
CV. Dynamic performance is a measure that represents the performance of the
classifier over time, based on user validations of previous classifications carried
out in the system. To work properly, feedback of the diagnosis from the test
cases introduced into CURIAM BT is needed from the clinicians. The CF stores
the results that classifiers provided for a case. When the user updates the label
of a case with the diagnosis obtained from the histopathological analysis, the
CF is notified and, depending on the correctness of the answers given by the
classifiers, the dynamic performance values will increase or decrease. Figure 7.5
shows a diagram depicting this process.

7.3.2 Contextual information for proper prior assessment

The similarity model works with the audit method by giving a measure of the
suitability of a case for the classifier by using the contextual information. The
classifier specification defines the distributions of the contextual information of
the cases in the training set. In a clinical case, for example, values such as
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Figure 7.5: The Clinical User answers the feedback interview through the CU-
RIAM BT Graphical User Interface. When finished, the Classification Client
Agent sends the interview result to the Classification Server Agent. When the
interview results are received, the Classification Server Agent joins the previ-
ously stored result of the Classifier Agent with the interview results, creating

a request. This request is sent to the Reputation Agent which updates the
classifier reputation according to the audit method.

182



CURIAM DSS for BT diagnosis support

patient age, gender or the location of the tumour in the brain could be used.
By combining the prior odds of the similarity model and the evidence odds
provided by the audit method, a score is calculated for each classifier, which is
then used for sorting the classifiers.

This contextual information is asked to the user at the moment he/she intro-
duces the MRS case into CURIAM BT. Then, when the user wants to classify
the case with CURIAM BT, the DSS selects the candidate classifiers by ask-
ing the user which is (are) the label(s) he/she thinks the case should belong
to (Figure 7.6). Afterwards, according to this proposed diagnosis and the data
supplied with the current case (a Short-TE spectrum alone, a Long-TE spec-
trum or both spectra), CURIAM BT selects the classifier candidates that can
give answer using that input. While all the candidates are running in back-
ground, the audit method calculates the scores. If contextual information has
been given, then, the audit method will call the similarity model in order to
assess the prior probability of each candidate. If, on the contrary, no contextual
information is available for the current case, the audit method will assign equal
priors to each candidate classifier.

Equation 7.1 represents the formula of the audit method used when comparing
two classifiers M,,, and M.

P(Mn|Z,Zpss) _ P(k"|Kmn) P(Z"" (M) P(Z5s|Zm, Mm) (71)
P(Mi|Z,Zpss)  P(k*|Ky) P(ZTM)  P(Zg|Z, M) '

This formula takes into account the data with which each classifier has been
trained (Z,, and Z;, respectively). The first term of the ratio, %, is
calculated by the similarity model and refers to the contextual score, where K,
and K; represent the contextual information associated with each classifier (i.e.
the mean age of the training cases); and k" is the contextual information of

the current test case (namely, the age of the patient being tested); mid term,
P(ZTm IMWL)

P(Z7t| M)
releasing it into the system. Finally, the rightmost term represents the dynamic
performance, that is, the measurement of how well each classifier is predicting
over time when working in the system. The cases being predicted are represented
in the formula with Zpgss.

, refers to the evaluation of the classifier while ‘in lab’ and before

Equation 7.2 is the formula implemented in CURIAM BT, which is a generaliza-
tion of equation 7.1 for the case when the system needs to compare M models:
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Figure 7.6: Screenshot of CURIAM BT. The user is asked to provide his/her
initial diagnosis by choosing, on the left side of the screen, one or more of the
labels the classifiers are able to discriminate. As the user selects labels for
the initial diagnosis, CURIAM BT shows on the right side of the screen the
classifiers that can deal with one or more of these labels.
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P(Mw|Z,Zpss) _ P(K"|Km) P(ZT" | M) P(Z5% 5| Zm, Mm)
Sy P(MI|Z,Zpss) Y12, P(KR|K) P(Z7 | M) P(Z g | Zi, Mi)

(7.2)

7.4 Discussion

The combined use of the CF with the audit method and similarity model enables
up-to-date management of sets of classifiers. Due to several factors, such as a
poor design, overtraining, or an unrepresentative training set, the level of clas-
sifier trust may vary over time. The dynamic component of the audit method
penalizes, or rewards, classifiers depending on their accuracy over time. The
more reliable classifiers earn better scores. Therefore, in a large set of classi-
fiers, even for the same question, the best classifiers will be identified by leaving
to the CF the task of selecting which classifiers to show to the final user. This
approach enables the use of multiple classifiers for the same question, each built
from different PR methods or trained from different datasets. Moreover, the
contextual component of the similarity model will emphasize those classifiers
most suitable for a case of particular contextual information. Therefore, the au-
dit method can make intelligent recommendations over a large set of classifiers.

In addition, a brief discussion on how the pediatric classifiers and the audit
method contribute to accomplish the main aspects suggested in [25, 26, 27] for
the design of a translational clinical DSS is given in the next subsections.

7.4.1 Demonstrate the accuracy in solving a specific prob-
lem

CURIAM BT is a clinical DSS for brain tumour diagnosis based on SV MRS
data. It is specilized in the classification of brain tumour cases by solving
different questions regarding diagnosis or grading. Different questions can be
selected by the user according to the tumour classes or groups from which to
obtain a prediction.

With the incorporation of the diagnostic classifiers presented in chapters 3 and
4, CURIAM BT is able to solve the specific problem of determining the aggres-
siveness of a brain tumour in adults and in children and to solve the problem of
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discriminating among the three most common pediatric brain tumours. These
classifiers have been properly evaluated ‘in lab’ and their performances and re-
sults are supported by scientific publications. The performance of each classifier
in CURIAM BT is available to the user in order to let him/her know how reliable
the classifier is.

The accuracy in solving a specific problem is not only supported by scientific
publications but also is shown as a classification result: the answer given by a
classifier in CURIAM BT is accompained by a piechart that shows the posterior
probability associated to each disciminating class (Figure 7.6). In that way, the
diagnostic orientation given is supported by the belief degree of the classifier.
This allows the user to have more confidence, for example, in a classifier that
discriminates two classes and assigns a 0.90 posterior probability to one of the
labels than in another dichotomic classifier assigning 0.60 of posterior probability
to the winner label.

7.4.2 Provide an adequate evaluation of the capability to
generalize the performance on new cases of the prob-
lem domain

The audit method described in Chapter 5 provides an appropriate framework
to measure the generalization capabilites of a set of classifiers in CURIAM BT.
The audit method calculates an score to each comparing classifier based on the
cases used in the design stage (static odds) and the cases already entered in
CURIAM BT for diagnosis support (dynamic odds). This method, as discussed
in Section 5.5, is able to detect misbehaving models and data shift in the clinical
site: it may occur that in some cases like that where a clinical site applies a
different acquisition protocol to the one followed by our classifiers, the ‘in lab’
performance is not enough to demonstrate the predictive abilities of a classifier
in solving a specific problem. In such scenario, the audit method contributes to
detect classifiers optimistically biased that behaved correctly when trained but
show poor generalization ability once deployed in the system and, hence, can
give guidance on why this bias is happening.
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7.4.3 Acceptance from the clinical community by offering
clinical knowledge

The GUI of CURIAM BT has been designed taking into account the input
provided by expert spectroscopists and radiologists from a series of interviews
performed for obtaining the system’s requirements previous to the development
of the DSS. One of the mayor premises was that the system did not provided
just an answer in a ‘black box’ fashion, but that this answer was supported
for clinical knowledge that would help the clinician in their diagnosis. Several
aspects contribute in offering this required clinical knowledge:

e A classifier in CURIAM BT shows the answer accompained with the pos-
terior probability they assign to each class they discriminate. Such infor-
mation provides a belief degree in the answer given by the classifier and
helps the clinician to decide the confidence that such answer can provided
to formulate his/her final diagnostic decision.

e A classifier in CURIAM BT displays a plot with the mean spectra and
standard deviation of each class in the training dataset. This allows the
user to contrast the mean spetra with the signal of the case under eval-
uation. Amplification of a specific region of the plot is allowed (zoom).
Several checkboxes in the GUI give detailed management of this plot by
allowing to display the mean spectra of each class, the mean spectra and
the standard deviations, and allowing the visualization of the mean spec-
tra from all the classes the classifier discriminates among or just of some
specific classes. In order to provide an easy detection of the metabolites
involved in the spectra, vertical lines indicating the main metabolites in
the plot (and, optionally, their names) can also be displayed.

e An LDA classifier discriminating three classes displays in CURIAM BT a
plot with the projection of the latent space of the samples used to train
the classifier. The test case under evaluation is projected and displayed
in the latent space plot. This provides a visual interpretation of the clas-
sifier, that no longer remains as a ‘black box’ but shows how its decision
boundaries and the samples from each class are distributed. This plot
provides zoom in and out functionalities. In addition, the user can click
on any training sample. By doing so, CURIAM BT shows in the mean
spectra plot the signal of the case selected by the user. With this func-
tionality, CURIAM BT provides the user with a tool to compare the case
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under evaluation not only with respect to the mean spectra, but also with
specific cases used in the design of a classifier.

7.4.4 Provide an easy access to the users

CURIAM BT has recently been evaluated in three different clinical centers. This
evaluation has been carried out under the Spanish project CURIAM-Sistema
de ayuda a la decision medica. Plan de explotacion y prueba de concepto en el
Hospital Universitario Doctor Peset. One of the aspects covered by this project
was the evaluation of the usability of the DSS with a quantitative study and
a qualitative study. The qualitative study evaluated the usefulness and ease
of use of the system perceived by the users. The tool used to measure the
system’s usability was the TAM questionnaire (Technology Acceptance Model)
adapted to the specific problem of the brain tumour diagnosis with MRS. The
quantitative study was designed as a randomized controlled trial to measure the
added value and effectiveness of CURIAM BT as an additional tool to the usual
diagnostic techniques in novel clinicians.

Users gave a mean value of 3.6 over 5 to the usefulness of CURIAM BT. The
ease of use was scored with a mean value of 4.3 over 5. With regard to the
quantitative study, a total of 46 cases were assigned to control (diagnosis using
usual techniques) and 41 to experimental (usual techniques and CURIAM BT).
57% of diagnostic accuracy was achieved in the control group, whereas 70%
was obtained in the experimental group. The results in the quantitative study
showed a clear tendency of improvement in the diagnosis success with the use
of CURIAM BT as an additional tool, specialy in novel clinicians.

This evaluation demonstrate that CURIAM BT can be accessible to clinical
users and reveals that this DSS is seen as a useful tool for diagnostic support
both by junior and senior clinicians.

7.4.5 Integration with the clinical routine workflow

The pediatric classifiers presented in Chapter 4 are designed to assist a multi-
displinary team on the neurosurgical strategy for tumour resection in children.
Depending on the tumour type, a different action protocol should be taken.
Hence, a macroscopic total resection is recommended for EPEN; a resection
and posterior application of irradiation and chemotherapy is recommended for
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MED; and partial resection can be performed in case of PILOA since these le-
sions show good prognosis although small residuals are observed after resection.

CURIAM supplies tools for automatic pre-processing of MRS raw data from
different manufacturers (Siemens, GE, Philips) by means of automatic calls to
external jJMRUT [31] and jDMS [32] applications. Additionally, j]MRUI or DMS
pre-processed signals can also be loaded. A manual phase correction tool is also
provided. These capabilities allow an easier integration of CURIAM BT into a
research environment, where the use of JMRUI and jDMS applications is com-
mon and extended; and into clinical environment by enabling its compatibility
with raw data from the three main manufacturers of MRS.

In addition, CURIAM offers two views conceived for confirmation diagnosis of
routine cases and for research purposes for cases needing further investigation.
For routine cases, the results of the available models are assembled in a common
view specialized for the task domain. This assemble view offers a faster and
wider criterion for clinical diagnosis by means of several classifiers for different
features, questions or learning algorithms (Figure 7.7). In this view, the results
are sorted according to the scores assigned by the audit method, so the first
answers correspond to the classifiers more suited for the case under evaluation.
Besides, an advanced view for specific classifier can also be displayed for research
purposes on specific interesting cases (Figure 7.4). In this view, the classifier
shows the answer accompained with the posterior probability they assign to each
class they discriminate. It also shows the mean spectra and standard deviation
for each class in the training dataset. In some cases (LDA discriminating three
classes) a projection of the latent space is also shown.

7.5 Conclusions

This Chapter has described the inclusion of the scientific contributions studied
in this Thesis into CURIAM BT, a DSS for BT diagnosis support: The in-
corporation of the pediatric classifiers as an effective non-invasive pre-operative
tool to define the tumour resection strategy; and the incorporation of the audit
method and the similarity model. Besides, a discusion on how these contribu-
tions positively influence the decision process followed by the clinicians is also
given, demonstrating that such practical solutions are suited for deployment in
clinical or research environments.
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Figure 7.7: Screenshot of the multiple classifiers view in CURIAM BT. The
classifiers are sorted according to the audit method. Each classifier shows its
answer along with a piechart with the posterior probabilities for each discrimi-
nating class.
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Chapter 8

Concluding remarks and
future work

“Success is getting what you want. Happiness is wanting what you get.”

Dale Carnegie

8.1 Conclusions

This Thesis compiles some applications of the PR discipline for the analysis of
biomedical data. More specifically, the aim of this Thesis is to develop computer-
assisted support of brain tumour diagnosis for clinical environments based on

the PR discipline.

This aim can be particularly described in several aims: to develop predictive
models with high accuracy in classification aiming at the diagnosis of pediatric
brain tumours with MRS data; to develop an evaluation methodology to mea-
sure the prediction skills of the classifiers working in a DSS; and to implement
and integrate these developments into a DSS for clinical environment.

The technical aspects covered in the Thesis include the processing, feature ex-
traction and modeling of MRS brain tumour data; the inference and evaluation
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of predictive models; the integration of the predicting models into DSSs for the
clinical environment; and the follow-up of predictive models whithin a DSS by
means of an audit method which measures and reports their performance.

The conclusions extracted from this Thesis are:

198

There exist biochemical differences in children BT compared to those aris-
ing in adults. The spectral features and metabolite comparison carried
out with MRS data from two multi-centre European datasets confirms
this finding.

Classifiers aiming to assess aggressiveness of a brain tumour have been
developed devoted to adult patients and child patients. They show good
performance, but it dramatically lowered when children classifiers were
tested with an adult test set and vice-versa. A filter based on the normal
probability density function of the training dataset’s age allowed to obtain
a classifier able to assess the aggressiveness of a brain tumour with high
accuracy, improving the overall classification performance.

This experiment sheds light to the need of developing a tool that decides
which classifier is more adequated to a specific patient. In a clinical DSS
oriented to BT diagnosis and giving support to both adult and children
patients, the need of a tool for auditing and selecting the most adequated
predictive model is of paramount importance.

Classification models aimed at the discrimination of the three most com-
mon brain tumour types in children have been developed. These classifiers
were trained and evaluated with a multi-centre European dataset of MRS
data of pilocytic astrocytomas, ependymomas and medulloblastomas.

The combination of single voxel MRS at 1.5T at two different TE, Short-TE
and Long-TE, improves the classification of pediatric brain tumours over
the use of one TE alone in the discrimination of pilocytic astrocytomas,
ependymomas and medulloblastomas.

MRS with automated processing and pattern recognition provides a useful
technique for accurate, non-invasive diagnosis and classification of child-
hood brain tumours and thereby a powerful diagnostic tool for clinical
practice.

An audit method suited for PR-based DSSs devoted to clinical or research
environment has been designed and implemented. Taking as starting point
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the initial diagnosis made by the clinician, it allows to objectively audit,
based on the Bayesian framework, the models relevant to help on the
diagnosis of the current patient.

e The designed audit method improves the user’s decision workflow by com-
paring not just the predictive models able to answer the diagnosis proposed
by the clinician, but also those models that can deal with more general la-
bels, offering reinforcement to the decision steps already taken, and those
dealing with sub-classes of the given diagnosis, which can help to further
refine the diagnosis process.

e The audit method contributes to detect potential problems in the clinical
setting such as possible overtraining of the predictive models, data shift in
the centre when acquiring the biomedical data or the existence of different
patient population.

e A prior probability assessment inspired in the Bayesian approach has been
designed and implemented. This approach is defined as a similarity model
that allows the DSS to select the most adequate classifiers for each test
case attending to contextual information, which is information not used in
the design of the classifiers but related to the case or its environment. This
prior probability assessment is a natural extension of the audit method.

e Two practical solutions that apply directly to the results of the e TUMOUR
and HEALTHAGENTS projects have been developed to improve the clin-
ical decision workflow supplied by CURIAM BT, a DSS for BT diagnosis
support: The incorporation of the pediatric classifiers as an effective non-
invasive pre-operative tool to define the tumour resection strategy; and
the incorporation of the audit method and of the similarity model as tools
that will positively influence the decision process followed by the clinicians.

8.2 Future work

Some of the future lines of investigation directly related to the results of this
Thesis are:

e Development of predictive models to assess prognosis in children patients
undergoing a brain tumour resection.
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Evaluation of the impact of incorporating CURIAM BT with the pedi-
atric classifiers in a clinical environment as an effective non-invasive pre-
operative tool to define the tumour resection strategy.

Integration of metabolite quantitation tools like TARQUIN, developed
at University of Birmingham and Birmingham Children’s Hospital NHS

Foundation Trust, into CURIAM BT in order to wider its pre-processing
skills.

Combination of the audit method with the use of incremental learning
algorithms in order to: decide the moment when a retraining should be
performed; and help on detecting when a learning technique or discrimi-
nation problem has reached its ‘learning roof’.

Application of the audit method and similarity model to other challenging
biomedical domains such as diagnosis of cardiovascular pathologies from
electrocardiography.



Appendix A

Human brain cells, tissues
and physiological processes

“The chief function of the body is to carry the brain around.”

Thomas A. Edison

This appendix gathers the definitions of concepts and terms related to brain
cell biology and brain tumours. Although description of every brain cell, tissue
and physiological process is beyond the scope of this dissertation, this appendix
tries to compile all (or almost all) the concepts cited along the present Thesis to
give a richier vision to the reader non-familiarized with the brain biology. The
definitions have been gathered from [1].

A.1 Brain cells

Neurons

A neuron is an electrically excitable cell that processess and transmits infor-
mation by electrical and chemical signaling. Chemical signaling occurrs via

201



Appendiz A

NEURON

s Dendrites i
|'; ' Axon Terminals (receiverS)

=) (tramsmitters)

Schwann's
Cells
(they make

the myelin
yelin) Node of

Ranvier

Axon )
(the conducting ~ Myelin Sheath
fiber) (insulating fatty layer that

Speeds transmission) EnchantedLearning.com

Figure A.1: Structure of a typical neuron.
From http://www.enchantedlearning.com/subjects/anatomy/brain/Neuron.shtml

synapses, specialized connections with other cells. Neurons connect to each
other to form networks. Neurons are the core components of the nervous sys-
tem, which includes the brain, spinal cord, and peripheral ganglia.

A typical neuron possesses a cell body (often called the soma), dendrites and an
axon (see Figure A.1). Dendrites are filaments that arise from the cell body,
often extending for hundreds of microns and branching multiple times, giving
rise to a complex ‘dendritic tree’. An Axon is a special cellular filament that
arises from the cell body at a site called the axon hillrock and travels for a
distance, as far as 1 m in humans or even more in other species. The cell body
of a neuron frequently gives rise to multiple dendrites, but never to more than
one axon, although the axon may branch hundreds of times before it terminates.
At the majority of synapses, signals are sent from the axon of one neuron to a
dendrite of another.

All neurons are electrically excitable, maintaining voltage gradients across their
membranes by means of metabolically driven ion pumps, which combine with ion
channels embedded in the membrane to generate intracellular-versus-extracellular
concentration differences of ions such as sodium, potassium, chloride, and cal-
cium. Changes in the cross-membrane voltage can alter the function of voltage-
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Human brain cells, tissues and physiological processes

dependent ion channels. If the voltage changes by a large enough amount, an
all-or-none electrochemical pulse called an action potential is generated, which
travels rapidly along the cell’s axon, and activates synaptic connections with
other cells when it arrives.

Neurons of the adult brain do not generally undergo cell division, and usually
cannot be replaced after being lost, although there are a few known exceptions.
In most cases they are generated by special types of stem cells, although astro-
cytes (a type of glial cell) have been observed to turn into neurons as they are
sometimes pluripotent.

Glial Cells

Glial cells, commonly called neuroglia or simply glia (Greek for "glue"), are
non-neuronal cells that maintain homeostasis, form myelin, and provide support
and protection for the brain’s neurons. In the human brain, there is roughly
one glia for every neuron with a ratio of about two neurons for every three glia
in the cerebral grey matter.

As the Greek name implies, glia are commonly known as the glue or "bricks
and mortar" of the nervous system; this, however, is not fully accurate. The
four main functions of glial cells are to surround neurons and hold them in
place, to supply nutrients and oxygen to neurons, to insulate one neuron from
another, to destroy pathogens, and remove dead neurons. They also modulate
neurotransmission.

Some glial cells function primarily as the physical support for neurons. Others
regulate the internal environment of the brain, especially the fluid surrounding
neurons and their synapses, and nutrify neurons. During early embryon devel-
opment, glial cells direct the migration of neurons and produce molecules that
modify the growth of axons and dendrites.

Glial cells can have chemical synapses and release neurotransmitters. For ex-
ample, astrocytes are crucial in clearance of neurotransmitter from within the
synaptic cleft, which provides distinction between arrival of action potentials
and prevents toxic build-up of certain neurotransmitters such as Glu (excito-
toxicity).

Glia are also crucial in the development of the nervous system and in processes
such as synaptic plasticity and generation of synapsis. Futhermore, these cells
have a role in the regulation of repair of neurons after injury. In the CNS, the
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astrocytes are capable to enlarge and proliferate to form a scar and produce
inhibitory molecules that inhibit regrowth of a damaged or severed axon. In the
Peripheral Nervous System (PNS), glial cells known as Schwann cells promote
repair; After axonal injury, Schwann cells regress to an earlier developmental
state to encourage regrowth of the axon. This difference between PNS and CNS
raises hopes for the regeneration of nervous tissue in the CNS. For example, the
spinal cord may be able to be repaired following injury or severance.

Some types of glial cells are described in deeper detail:
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e Astrocytes

Located at the CNS, are the most abundant glial cell. Astrocytes (also
called astroglia) have numerous projections that anchor neurons to their
blood supply (see Figure A.2). They regulate the external chemical en-
vironment of neurons by removing excess ions, specially potassium, and
recycling neurotransmitters released during synaptic transmission. The
current theory suggests that astrocytes may be the predominant ‘building
blocks’ of the blood-brain barrier. Astrocytes may regulate vasoconstric-
tion and vasodilation by producing substances such as arachidonic acid.

It has recently been shown that astrocyte activity is linked to blood flow
in the brain, and that this is what is actually being measured in fMRI.

Oligodendrocytes

Oligodendrocytes are cells that coat axons in the CNS with their cell
membrane forming a specialized membrane differentiation called myelin,
producing the so-called myelin sheath (see Figure A.3). The myelin sheath
provides insulation to the axon that allows electrical signals to propagate
more efficiently.

Oligodendrocyte precursor cells in nervous tissue cells precede oligo-
dendrocytes, and may also be able to generate neurons and astrocytes.

Ependymal cells

Ependymal cells, also named ependymocytes, line the cavities of the CNS
and make up the walls of the ventricles. These cells create and secrete
cerebrospinal fluid (CSF) and beat their cilia to help circulate that CSF
and make up the Blood-CSF barrier (see Figure A.4). They are also
thought to act as neural stem cells.
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Figure A.2: Astrocyte with end-feet on capillary and neuron.
From http://www.benbest.com/cryonics/protocol.html#BBB
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Figure A.3: Oligodendrocyte simultaneously wrapping multiple axons with a myelin sheath.
Nodes of Ranvier, which are small unmyelinated axonal regions, can be observed. Peroxisomes
are present in myelin sheaths surrounding axons and are also present in the axons. From [2].
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Figure A.4: Ependymal cells along the spinal cord. Image obtained with an HE stain
(hematoxylin and eosin stain). From School of Anatomy and Human Biology, The University

of Wetern Australia.
http://www.lab.anhb.uwa.edu.au/mb140/CorePages/Nervous/Nervous.htm
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Figure A.5: Diagram of the process of myelination of an axon. Myelination begins with
the invaginations of a single nerve axon into a Schwann cell; a mesoaxon is then formed. As
myelination proceeds, the mesoaxon rotates around the axon enveloping it in concentric layers
of Schwann cell cytoplasm and plasma membrane.

From Wheater’s.
http://www.mc.vanderbilt.edu/histology/images/histology/nervous_tissue/display/schwann3. jpg

e Schwann cells

Similar in function to oligodendrocytes, Schwann cells provide myelination
to axons in the PNS (see Figure A.5). They also have phagocytotic activity
and clear cellular debris that allows for regrowth of PNS neurons.

A.1.1 Arachnoidal cells

Arachnoidal cells are located in the arachnoid villi in the meninges. Menin-
giomas arise from arachnoidal cells.
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Figure A.6: Diagram of the meninges.
From http://www.nlm.nih.gov/medlineplus/ency/imagepages/19080.htm

A.2 Tissues and regions

A.2.1 Meninges

The meninges is the system of membranes which envelops the CNS. The
meninges consist of three layers: the dura mater, the arachnoid mater, and the
pia mater (see Figure A.6). The primary function of the meninges and of the
CSF is to protect the CNS.

Dura mater
The dura mater is a thick, durable membrane, closest to the skull. It contains

larger blood vessels which split into the capillaries in the pia mater. It is com-
posed of dense fibrous tissue, and its inner surface is covered by flattened cells
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like those present on the surfaces of the pia mater and arachnoid. The dura
mater is a sac which envelops the arachnoid and has been modified to serve
several functions. The dura mater surrounds and supports the large venous
channels (dural sinuses) carrying blood from the brain toward the heart.

Arachnoid mater

The middle element of the meninges is the arachnoid mater, so named because
of its spider web-like appearance. It provides a cushioning effect for the CNS.
The arachnoid mater exists as a thin, transparent membrane. It is composed
of fibrous tissue and, like the pia mater, is covered by flat cells also thought to
be impermeable to fluid. The arachnoid does not follow the convolutions of the
surface of the brain and so looks like a loosely fitting sac. In the region of the
brain, particularly, a large number of fine filaments called arachnoid trabeculae
pass from the arachnoid through the subarachnoid space to blend with the tissue
of the pia mater.

Pia mater

The pia or pia mater is a very delicate membrane. It is the meningeal envelope
which firmly adheres to the surface of the brain and spinal cord. As such it
follows all the minor contours of the brain (gyri and sulci). It is a very thin
membrane composed of fibrous tissue covered on its outer surface by a sheet
of flat cells thought to be impermeable to fluid. The pia mater is pierced by
blood vessels which travel to the brain and spinal cord, and its capillaries are
respounsible for nourishing the brain.

Spaces

The subarachnoid space is the space which normally exists between the arach-
noid and the pia mater, which is filled with CSF.

Normally, the dura mater is attached to the skull, or to the bones of the vertebral
canal in the spinal cord. The arachnoid is not attached to the dura mater,
while the pia mater is attached to the CNS tissue. When the dura mater and
the arachnoid separate through injury or illness, the space between them is the
subdural space.
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A.2.2 White matter

White matter is one of the two components of the CNS and consists mostly of
myelinated axons. White matter is the tissue through which messages pass be-
tween different areas of grey matter within the nervous system (see Figure A.7).
Using a computer network as an analogy, the grey matter can be thought of
as the actual computers themselves, whereas the white matter represents the
network cables connecting the computers together. The white matter is white
because of the fatty substance (myelin) that surrounds the nerve fibers (axons).
This myelin is found in almost all long nerve fibers, and acts as an electrical
insulation. This is important because it allows the messages to pass quickly
from place to place.

The brain in general (and especially a child’s brain) can adapt to white-matter
damage by finding alternative routes that bypass the damaged white-matter
areas, and can therefore maintain good connections between the various areas
of grey matter.

Unlike grey matter, which peaks in development in a person’s twenties, the
white matter continues to develop, and peaks in middle age.

A.2.3 Grey matter

Grey matter is a major component of the CNS, consisting of neuronal cell bodies,
neuropil (dendrites and both unmyelinated axons and myelinated axons), glial
cells (astrocytes and oligodendrocytes) and capillaries. Grey matter contains
neural cell bodies, in contrast to white matter, which does not and mostly
contains myelinated axon tracts.

The function of grey matter is to route sensory or motor stimulus to interneu-
rons of the CNS in order to create a response to the stimulus through chemical
synapse activity. Grey matter structures (cortex, deep nuclei) process infor-
mation originating in the sensory organs or in other grey matter regions. This
information is conveyed via specialized nerve cell extensions (long axons), which
form the bulk of the cerebral, cerebellar, and spinal white matter.

211



Appendiz A

Figure A.7: White and grey matter.
From http://science-naturalphenomena.blogspot.com/2009/04/white-matter.html

A.3 Physiological processes in brain cells

A.3.1 Myelination

Myelination is the process of supplying myelin to the neurons. Myelin is a
dielectric (electrically insulating) material that forms a layer, the myelin sheath,
usually around only the axon of a neuron. It is essential for the proper func-
tioning of the nervous system. Myelin is an outgrowth of a glial cell. Schwann
cells supply the myelin for peripheral neurons (see Figure A.5), whereas oligo-
dendrocytes myelinate the axons of the central nervous system (see Figure A.3).
In healthy humans, the myelination process is nearly complete at the first year
of life [3].

The main purpose of a myelin sheath is to increase the speed at which impulses
propagate along the myelinated fiber. Along unmyelinated fibers, impulses move
continuously as waves, but, in myelinated fibers, they hop or ‘propagate by
saltation’. Thus, myelination helps prevent the electrical current from leaving
the axon.
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When a peripheral fiber is severed, the myelin sheath provides a track along
which regrowth can occur. Unmyelinated fibers and myelinated axons of the
mammalian central nervous system do not regenerate.

Demyelination and Dysmyelination

Demyelination is the loss of the myelin sheath insulating the nerves, and is the
hallmark of some neurodegenerative autoimmune diseases, including multiple
sclerosis, acute disseminated encephalomyelitis or transverse myelitis, among
others.

Research to repair damaged myelin sheaths is ongoing. Techniques include
surgically implanting oligodendrocyte precursor cells in the CNS and inducing
myelin repair with certain antibodies. While there have been some encouraging
results in mice (via stem cell transplantation), it is still unknown whether this
technique can be effective in replacing myelin loss in humans.

Dysmyelination is characterized by a defective structure and function of myelin
sheaths; unlike demyelination, it does not produce lesions. Such defective
sheaths often arise from genetic mutations affecting the biosynthesis and for-
mation of myelin. Human diseases where dysmyelination has been implicated in-
clude leukodystrophies (Pelizaeus-Merzbacher disease, Canavan disease, phenylke-
tonuria) and schizophrenia.

A.3.2 Phospholipids Membrane

Cells are limited by a continuous thin barrier called membrane made of lipid
molecules. This membrane, known as lipid bilayer or phospholipid membrane,
surround the cells of almost all living organisms and many viruses. The lipid
bilayer is the barrier that keeps ions, proteins and other molecules where they
are needed and prevents them from diffusing into areas where they should not
be.

Lipid bilayers are usually made of phospholipids, which have a hydrophilic head
and two hydrophobic tails. When phospholipids are exposed to water, they
arrange themselves into a two-layered sheet (a bilayer) with all of their tails
pointing toward the center of the sheet (see Figure A.8).
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Figure A.8: Lipid bilayer.
From Encyclopaedia Britannica Inc.
http://www.britannica.com/EBchecked/media/92240/Phospholipid-molecules

A.3.3 Apoptosis

Apoptosis is the process of programmed cell death (PCD) that may occur in
multicellular organisms. Biochemical events lead to characteristic cell changes
(morphology) and death.

In contrast to necrosis, which is a form of traumatic cell death that results
from acute cellular injury, apoptosis, in general, confers advantages during an
organism’s life cycle. For example, the differentiation of fingers and toes in a
developing human embryo occurs because cells between the fingers apoptose;
the result is that the digits are separate. Between 50 and 70 billion cells die
each day due to apoptosis in the average human adult. For an average child
between the ages of 8 and 14, approximately 20 billion to 30 billion cells die a
day.

Excessive apoptosis causes atrophy, such as in ischemic damage, whereas an
insufficient amount results in uncontrolled cell proliferation, such as cancer.
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Process

The process of apoptosis is controlled by a diverse range of cell signals, which
may originate either extracellularly (extrinsic inducers) or intracellularly (in-
trinsic inducers).

Extracellular signals may include toxins, hormones, growth factors, nitric
oxide or cytokines, and therefore must either cross the plasma membrane or
transduce to effect a response. These signals may positively (i.e., trigger) or
negatively (i.e., repress, inhibit, or dampen) affect apoptosis.

A cell initiates intracellular apoptotic signalling in response to a stress,
which may bring about cell suicide. The binding of nuclear receptors by glu-
cocorticoids, heat, radiation, nutrient deprivation, viral infection, hypoxia and
increased intracellular calcium concentration, for example, by damage to the
membrane, can all trigger the release of intracellular apoptotic signals by a
damaged cell.

Before the actual process of cell death is precipitated by enzymes, apoptotic
signals must cause regulatory proteins to initiate the apoptosis pathway. This
step allows apoptotic signals to cause cell death, or the process to be stopped,
should the cell no longer need to die. Several proteins are involved, but two
main methods of regulation have been identified: targeting mitochondria
functionality, or directly transducing the signal via adaptor proteins to
the apoptotic mechanisms. Another extrinsic pathway for initiation identified in
several toxin studies is an increase in calcium concentration within a cell caused
by drug activity, which also can cause apoptosis via a calcium binding protease
calpain.

e Execution

A cell undergoing apoptosis shows a characteristic morphology (see Fig-
ure A.9):

1. Cell shrinkage and rounding are shown because of the breakdown of
the proteinaceous cytoskeleton by caspases.

2. The cytoplasm appears dense, and the organelles appear tightly packed.

3. Chromatin undergoes condensation into compact patches against the
nuclear envelope in a process known as pyknosis, a hallmark of apoptosis.

4. The nuclear envelope becomes discontinuous and the DNA inside it is
fragmented in a process referred to as karyorrhexis. The nucleus breaks
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Figure A.9: Diagram of the process of apoptosis. From Kalmakoff & Ward. University of
Otago, Dunedin, New Zealand.
http://www.microbiologybytes.com/virology/kalmakoff/baculo/baculohostinteract.html
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into several discrete chromatin bodies or nucleosomal units due to the
degradation of DNA.

5. The cell membrane shows irregular buds known as blebs.

6. The cell breaks apart into several vesicles called apoptotic bodies, which
are then phagocytosed.

Apoptosis progresses quickly and its products are quickly removed, making
it difficult to detect or visualize.

e Removal of dead cells

The removal of dead cells by neighboring phagocytic cells has been termed
efferocytosis. Dying cells that undergo the final stages of apoptosis display
phagocytotic molecules, such as phosphatidylserine, on their cell surface.
Upon recognition, the phagocyte reorganizes its cytoskeleton for engulf-
ment of the cell. The removal of dying cells by phagocytes occurs in an
orderly manner without eliciting an inflammatory response.

A.3.4 Necrosis

Necrosis is the premature death of cells and living tissue. Necrosis is caused by
factors external to the cell or tissue, such as infection, toxins, or trauma. This is
in contrast to apoptosis, which is a naturally occurring cause of cellular death.
While apoptosis often provides beneficial effects to the organism, necrosis is
almost always detrimental and can be fatal.

Cells that die due to necrosis do not usually send the same chemical signals to
the immune system that cells undergoing apoptosis do. This prevents nearby
phagocytes from locating and engulfing the dead cells, leading to a build-up of
dead tissue and cell debris at or near the site of the cell death. For this reason,
it is often necessary to remove necrotic tissue surgically, a process known as
debridement.

A.3.5 Glycolysis

Glycolysis (from glycose, an older term for glucose + -lysis degradation) is the
metabolic pathway that converts glucose, C¢H120g, into pyruvate, CH;COCOO™
+ HT. The free energy released in this process is used to form the high-energy
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compounds, ATP (adenosine triphosphate) and NADH (reduced nicotinamide
adenine dinucleotide).

A.3.6 Growth pattern of brain tumours

There exists two growth pattern in brain tumour:

e Infiltrative growth: A process whereby inflammatory or other types of
disease spread throughout an organ.

e Circumscribed growth: Bounded or limited growth; confined to a lim-
ited space.

In circumscribed tumours, like in typical meningiomas, some lymphomas and
metastases, tumours have clear margins and might show almost no NAA res-
onance peak. MR spectra of tumours that tend to grow infiltratively, such as
astrocytomas and some lymphomas, show a detectable NAA of various signal
intensities but, even in these cases, the NAA peak is severely decreased or un-
detectable.
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