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Abstract

Over the past decades in the field of machine teaching, several restrictions
have been introduced to avoid ‘cheating’, such as collusion-free or non-
clashing teaching. However, these restrictions forbid several teaching situa-
tions that we intuitively consider natural and fair, especially those ‘changes
of mind’ of the learner as more evidence is given, affecting the likelihood
of concepts and ultimately their posteriors. Under a new generalised proba-
bilistic teaching, not only do these non-cheating constraints look too narrow
but we also show that the most relevant machine teaching models are partic-
ular cases of this framework: the consistency graph between concepts and
elements simply becomes a joint probability distribution. We show a simple
procedure that builds the witness joint distribution from the ground joint dis-
tribution. We prove a chain of relations, also with a theoretical lower bound,
on the teaching dimension of the old and new models. Overall, this new set-
ting is more general than the traditional machine teaching models, yet at the
same time more intuitively capturing a less abrupt notion of non-cheating
teaching.
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1 Introduction
In machine teaching [1], what we may also call algorithmic teaching, the goal of
the teacher is to find an optimal witness, a collection of labelled examples, that
will steer the learner toward a target concept. An important complexity notion is
the teaching dimension (TD) of a concept class C, which is the minimum number
of examples, from a set of ground elements X , needed to teach any concept in the
class. As the teaching complexity depends on the protocol between teacher and
learner and their shared information, different teaching models lead to different
values for the teaching dimension.

Over the last quarter century several teaching models have been proposed, for
example, the classical teaching (CT) model [2], the optimal teacher (OT) model
[3], recursive teaching (RT) [4, 5, 6], preference-based teaching (PBT) [7, 8], and
non-clashing teaching (NCT) [9]. In all these models, the teacher T : C → W
is viewed as a mapping from concepts c ∈ C to witness w ∈ W (usually sets
of possibly labelled examples from X) and the learner L : W → C as a partial
mapping in the opposite direction. Moreover, the examples T (c) employed to
teach concept c must be consistent with c, and the guessed concept L(w) when
given example set w must also be consistent with w. A successful teacher-learner
pair has L(T (c)) = c for any concept in the class.

Clearly, any formal model of teaching must disallow cheating, or unfair col-
lusion between teacher and learner. As described by Moran et al [10], “roughly
speaking, a collusion occurs when teacher and student agree in advance on some
unnatural encoding of information about the concept c using the bit description
of the chosen examples, instead of using attributes that separate c from the other
concepts”. Goldman and Mathias [11] proposed that a model should be called
collusion-free if whenever T (c) ⊆ w and w is consistent with c, denoted by
c |= w, then also L(w) = L(T (c)) = c (hereafter called GM-collusion-free).
Many abstract teaching models in the literature were introduced specifically to im-
prove the teaching complexity of previous models while remaining GM-collusion-
free. For example, the five models mentioned above (CT, OT, RT, PBT and NCT),
in this order, have strictly improving teaching complexities, and all remain GM-
collusion-free. The non-clashing model is provably the end of this line, as it can
be shown that if every concept in class C can be taught with at most k examples by
some GM-collusion-free model then the same holds for the non-clashing model,
since the non-clashing model actually adheres to no other constraints than those
formulated by the Goldman and Mathias condition.

Note that in a GM-collusion-free model a learner guessing c is not allowed
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to change its mind if given additional examples consistent with c. Consider a
learner that sees the witness w = {3}, composed of one single ground element
3 ∈ X = N, and assigns some plausibility to the hypothesis that the underlying
concept is the set of odd numbers codd. Some other plausibility is given to other
hypotheses, such as the powers of three cpow3, the prime numbers cprime, etc.
Based on simplicity of consistent concepts, the learner guesses codd. Now, if the
same learner sees the witness {3, 29} or {3, 11}, the powers of three is ruled out.
But the likelihood of these examples for cprime now looks higher, even higher than
for codd, so that the learner now guesses cprime. Adding more examples consistent
with a concept (initially guessed as the odd numbers) may end up in a change of
the guess (to the prime numbers), in a very natural way, while forbidden in all
GM-collusion-free models.

We claim that all this is more naturally understood by extending the notion of
the consistency graph between concepts and witness into a witness joint distribu-
tion p : C ×W → [0, 1]. Both teacher and learner share p(c, w) for every pair of
concept and witness, with p(c, w) > 0 if and only if c |= w. In this framework, the
learner L is just defined as choosing the concept that uniquely maximises the pos-
terior L(w) = arg!maxc p(c|w), which can be calculated from the witness joint
distribution and its marginals as p(c, w)/p(w), whenever a particular w is given
by the teacher. With this framework we clearly see that the CT model simply as-
sumes p(c, w) such that p(w|c) and p(c) are both uniform, while the PBT model
allows for non-uniform concept priors p(c). However, we get the new maximum
likelihood (MLE) teaching model, where p(w|c) is free but p(c) is uniform, and
the most general case, the maximum a posteriori (MAP) teaching model, where
all probabilities are chosen freely provided they make up a valid joint distribution
p(c, w).

If the learner does derive its posterior from p(c, w), should p(c, w) be defined
in any natural way? In the beginning, teacher and learner share a set of ground
elements X , from which the whole teaching process is built: a witness is a new
structure that is composed in different ways depending on the teaching paradigm.
One common way of building the set of witness objects is simply W = 2X , i.e.,
a witness is a set of ground elements. But we can also have negative examples
with W = 2X×{−,+}. These two cases represent a situation where the witness is
built by composing elements from X without replacement. But we can also build
witnesses with replacement, as when W = X∗, with X∗ being the set of all finite
sequences that can be built fromX . Under this perspective, we see that the witness
joint probability p(c, w) should derive from a more fundamental distribution, the
ground joint distribution q(c, x), defined as q : C × X → [0, 1], as an extension
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of the consistency graph between concepts and ground elements.
We claim that a natural setting for non-cheating teaching must be based on

teacher and learner only sharing q, the joint distribution on ground elements and
concepts. We claim that whatever this q is, if it corresponds to the beliefs teacher
and learner have about the factual world, then there is no cheating. From here, wit-
nesses can be constructed by composing these ground elements in different ways,
e.g., sets of positive examples, multisets of positive examples, sets of positive and
negative examples, or other structures. In this paper we focus on the first two, sets
and multisets. We present a unifying way of deriving p from q in these situations,
which is based on the notion of Witness Sampling Composition (WSC), where the
joint distribution of concepts and witnesses is derived by composing the witnesses
by sampling from the ground elements, with or without replacement depending on
the case of multisets or sets. We postulate that this model intuitively matches the
notion of non-cheating teaching.

The main contributions of this paper are:

• We show that the use of witness joint distribution is a unifying framework,
by fleshing out that several teaching paradigms can be expressed by dif-
ferent constraints on priors and likelihoods (Table 1). The GM-collusion
property and a probabilistic version of it known as monotonocity hold when
the likelihood is uniform.

• For the two new machine teaching paradigms in Table 1, MLE and MAP, we
show that monotonicity and GM-collusion do not hold (and are not equiva-
lent).

• We propose a new notion of non-cheating machine teaching, where we ar-
gue that T and L can share any factual joint distribution on ground elements
q. Assuming WSC we derive the witness joint distribution p for witness sets
and multisets by applying a composition of probabilities as sampling pro-
cess from the joint distribution without and with replacement respectively.

• We show that the theoretically lowest-bound TD for sets (LBTD+) and
multisets (LBTD++) of positive examples can be achieved by some wit-
ness joint distribution (JDTD). The new WSC machine teaching model
(WSCTD) is less powerful than JDTD , but more powerful than the Non-
Clashing TD (NCTD). The precise chain is shown in Figure 1. In sum, we
show that WSC allows for multiple changes of mind, and can achieve lower
TD than other classical teaching models, while being non-cheating under
our new setting.
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LBTD++ = JDTD++ <WSCTD++ ≤
≤ LBTD+ = JDTD+ <WSCTD+ ≤ NCTD+

Figure 1: Summary of relationships shown between teaching dimensions of the old and
new machine teaching models.

The new generalised probabilistic framework presented in this paper reconnects
the traditional notions of machine teaching with modern probabilistic views of
machine teaching (including Bayesian teaching), and gives a completely different
perspective on what teacher and learner should be allowed to share and how they
should derive their choices according to this shared information.

2 Cheating and Probabilities in MT
In the classical model for machine teaching of Goldman and Kearns (1995) the
shared information between teacher and learner consists of whether every example
is consistent with a concept or not. Note that this information is between the
ground elements in X , and the concepts in C. Then, a witness set can be built
in different ways. When only positive examples are allowed, W = 2X and this
consistency information is extended from X to W . If c is consistent with x1
and x2 then it has to be consistent with {x1, x2}. We will call this compatibility
relation the consistency graph and view it as a bipartite graph between concepts
and witnesses with adjacency denoting consistency, as done by Kirkpatrick et al
(2020). A witness w will then uniquely identify a concept c if the only edge
incident to w is cw.

This demand seemed too strict, and other models where lower complexity
could be achieved were considered. However, it became paramount to avoid
cheating. In 1996 Goldman and Mathias proposed that a model was collusion-
free if further consistent evidence did not make the learner change its mind, i.e., if
L(T (c)) = c then for any superset w′ of T (c), if cw′ is an edge of the consistency
graph then L(w′) = c.

Consider Figure 2 (left); under the classical setting where the only shared in-
formation is the consistency graph on black edges, we have minimal GM-collusion-
free teaching dimension (NCTD = 1) by the teacher function corresponding to
the red matching saturating the concepts. However, TD=1 cannot be achieved
with a learner based on concept preferences only, as there is a long cycle for the
singletons and we thus have CTD=PBTD=2. Note that if we add c2 |= 1 and the
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Figure 2: Consistency graph with |C| = |X| = 4 and witness sets W = 2X . No concept
consistent with a witness of size 3 or 4. Teacher mapping in red, Learner mapping in red
and green. NCTD = 1, CTD= 2, PBTD= 2. Right: Adding c2 |= 1 increases NCTD .

edges c2{1} and c2{1, 2} and c2{1, 2, 3} to the consistency graph (Figure 2 right)
then NCTD = 2. In particular, the red matching is no longer GM-collusion-free,
as w = {1, 2} is a superset of both T (c1) and T (c2).

Kirpatrick et al in [9] proved a theorem stating that a teacher function allows
for GM-collusion-free teaching if and only if the consistency graph does not have
any induced cycle on 4 edges with 2 of them being chosen by the teacher (as would
happen in Figure 2 right, if the red edges in left are chosen by the teacher). They
called such a teaching protocol non-clashing and one could view it, in retrospect,
as an alternative definition for a GM-collusion-free model of teaching.

In preference-based teaching (PBT) the unique identification rule is relaxed
so that the learner will identify c from w, i.e. L(w) = c, as long as w has no
edge in the consistency graph to any concept c′ with higher preference than c. It
is easy to see that for any teacher and learner adhering to this rule the resulting
protocol is GM-collusion-free, as for any node w′ representing a superset of w,
the neighbours of w′ will be a subset of the neighbours of w, so if T (c) = w and
L(w) = c then also L(w′) = c. Note that PBT is a weaker protocol than NCTD,
as we see in Figure 2 (left).

Somewhat in parallel with this evolution of consistency-based teaching, there
have been some other views of machine teaching, from cases where experiments
with humans are performed [12] to the use of machine teaching for explainable
AI [13]. In this case, the teacher selects examples that maximise the explainee’s
probability of a correct inference. A teaching framework aimed at Bayesian learn-
ers is introduced in [14]. The framework is expressed as an optimisation problem
over batch teaching examples that balance the future loss of the learner and the
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effort of the teacher. A new conceptualisation of expected teaching dimension us-
ing a learning and a sampling prior is presented in [15]. Shafto et al. [16] present
the idea that learning can be modelled as Bayesian inference, selecting a small
subset of the data that will, with high probability, lead a learner model to the cor-
rect inference. A general framework for selecting examples to teach probabilistic
learners is presented in [17]. Yang and Shafto [18] use a Bayesian approach where
teacher and learner interact and converge on the likelihood of the data given the
model on the teacher’s side and the posterior of the model given the data on the
learner’s side inspired by iterative teaching [19]. Overall, these papers present an
interactive, non-batch setting, do not consider the notion of teaching or do not cal-
culate teaching dimensions. In the traditional machine teaching setting we follow,
we assume that the teacher works in a batch mode and sends a witness (e.g., a
set of examples) once and for all. Even our use of the term ‘changing mind’ is
metaphorical, as the examples do not come incrementally.

In this paper we study probabilistic teaching models, where the teacher and
learner share a generalisation of the consistency graph (which is based on the bi-
nary function |= on pairs of concepts and ground elements, which derives into a
binary function |= on pairs of concepts and witnesses) in the form of a joint prob-
ability distribution of concepts and witnesses p : C ×W → [0, 1]. In this paper
we consider only finite concept classes. Even if probabilities could be exploited
by teacher and learner to extract confidence in the identification or set different
thresholds for p(c|w), in this paper we will require unique identification. This
reduces to following p, and since p(c|w) = p(c, w)/p(w) this means:

L(w) = arg!max
c∈C

p(c|w) = arg!max
c∈C

p(c, w)

where arg!max only returns an element if it is unique, otherwise L(w) is unde-
fined (recall that L is a partial mapping). Now, for the teacher, following p means
that if T (c) = w we must have p(c|w) > p(c′|w) for all concepts c′ 6= c, as the
teacher assumes that the learner simply follows the posterior and can identify one
concept uniquely with it.

3 MT Models as Witness Joint Distributions
The extension of the consistency graph into a joint distribution assumes that if
c and w are inconsistent then p(c, w) = 0, but if c and w are consistent, then
p(c, w) > 0 could take any possible value, provided, of course, it is well-defined,
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i.e.,
∑

c∈C,w∈W p(c, w) = 1. Basically, the extension converts possibility into
probability. The learner then follows:

p(c|w) =
p(c, w)

p(w)
=
p(w|c)p(c)
p(w)

Table 1 shows a summary of possible cases, depending on the constraints on
p(w|c) and p(c) to build estimators for p(c|w). By uniform prior we mean ∀c, c′ :
p(c) = p(c′). By uniform likelihood we mean ∀c, w, w′, c |= w, c |= w′ :
p(w|c) = p(w′|c). Note that if w and c are inconsistent then p(w|c) = 0 be-
cause p(w, c) = 0. We define the coverage of c as Wc = {w : c |= w}. If this set
is finite, then p(w|c) = 1

|Wc| .

Case Existing and New Spe-
cific MT Models p(w|c) p(c) Results

ULUP - Uniform
Likelihood and
Prior

CT [2] (if all con-
cepts same coverage),
PBT [7] (concepts
with smaller coverage
prevail)

Uniform Uniform Monotone and GM-
collusion-free

ULFP - Uniform
likelihood and Free
Prior

PBT [7] and Learning
Prior [15] (if all con-
cepts same coverage or
extreme priors)

Uniform Free Monotone and GM-
collusion-free

FLUP - free likeli-
hood MLE Teaching Free Uniform Achieves lower bound

on TD

FLFP - all free MAP Teaching Free Free Achieves lower bound
on TD

Table 1: Four different new teaching models depending on constraints on likelihood or
the concept prior as per Bayes’ rule.

When both the likelihood and concept prior are considered uniform we have
a few situations already. The general case is actually a new machine teaching
model, when coverage sizes |Wc| differ between concepts. Only if the coverage
size |Wc| is the same for all c, then we have the extreme case ∀c, c′, w, w′, c |=
w, c′ |= w′ : p(w|c) = p(w′|c′). This happens in some well-studied situations,
such as any class of Boolean concepts when using both positive and negative ex-
amples, since then for any concept c and any w ⊆ 2X there is a unique assignment
of negative and positive to elements of w that will be consistent with c. This case
really corresponds to the classical teaching (CT) dimension model of Goldman
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and Kearns [2]: no preference exists between posteriors and the learner is unde-
fined unless there is unique consistency. If the coverage size is not equal, then
the likelihood is higher the smaller the coverage of the concept is, and this would
be a specific case of the preference-based teaching (PBT) model of [7, 20], with
smaller concepts (in coverage) having preference.

When only the likelihood is assumed uniform we are in a situation that follows
the concept prior p(c) and the coverage size of the concept when choosing among
several consistent hypotheses. Again, if coverage sizes are equal, we are clearly in
the PBT model again, with the priors leading directly to the preferences. However,
if coverage sizes are not equal, we can still have an equivalent PBT model that
follows the priors by choosing them in an extreme way such that the effect of the
likelihood does not affect the choice from the posterior1. For instance, Occam’s
razor, which selects the simpler one of any two consistent hypotheses, could be
represented in this way.

When only the concept prior is assumed uniform we are in a situation where
the “maximum likelihood estimation” (MLE) is used. Finally, in the general case
where both the likelihood and concept prior can vary, we are in the most general
case, “maximum a posteriori” (MAP) estimation.

For the two first rows in Table 1, but not the following two rows, we have that
they are GM-collusion-free.

Proposition 1. If likelihood is uniform then a learner L based on the posteriors
is GM-collusion-free.

Proof. In general, p(c|w) = p(w|c)p(c)
p(w)

so that p(c|w) > p(c′|w) ⇔ p(w|c)p(c) >
p(w|c′)p(c′). Thus if the likelihood is uniform then for any two witnesses w,w′

both consistent with c and c′, if we have p(c|w) > p(c′|w) then also p(c|w′) >
p(c′|w′), which means that no change of mind can occur for a learner acting on
the posteriors, i.e. we have GM-collusion-freeness.

The notion of GM-collusion-freeness is related to the intuitive principle that
increasing consistent evidence should reinforce our beliefs. In a non-probabilistic
setting, this is understood as not changing mind for any superset, but this is too
extreme an interpretation. A more natural interpretation, which we call the mono-
tonicity property, is that the more examples a learner is given that are consistent
with a concept, the more plausibility the learner should assign to that concept,

1We would have to choose a ratio in the priors so high to beat any effect of the likelihoods,
i.e, ∀c, c′, if p(c) > p(c′) then p(c)/p(c′) > k such that k is greater than any likelihood involving
these two concepts.
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Concept p(c) p(c, ∅) ... p(c, {3}) ... p(c, {3, 11})
ceven 0.35 0.15 ... 0 ... 0
codd 0.35 0.15 ... 0.022 ... 0.004
cpow3 0.1 0.08 ... 0.013 ... 0
cprime 0.2 0.125 ... 0.013 ... 0.005

Table 2: Part of a witness joint probability with |C| = 4 over W = 2N with decreasing
probabilities for larger sets and larger probabilities for simpler concepts. As a result, we
have a ‘change of mind’ between {3} and {3, 11}, as the identified concept (in boldface)
changes from codd to cprime. This seems natural, as 11 is more specifically prime than
odd (higher likelihood p(w|c), not shown), but this is not GM-collusion-free.

as it rules out other concepts. However, in a probabilistic setting, the probability
for a concept c1 can still increase (or not decrease) but another competing concept
c2 can increase its probability more, now beating the first. We can translate the
monotonicity property to our probabilistic setting as follows. We say that p is
monotone iff:

∀c ∀w,w′ ∈ W : c |= w ∧ w′ ⊆ w ⇒ p(c|w′) ≤ p(c|w)

Note that the above property and the definition of GM-collusion-free are very
similar. For the two first rows in Table 1 we show that monotonicity is preserved,
but this does not hold for the last two rows.

Proposition 2. If likelihood is uniform then p is monotone.

Proof. Assume c |= w and w′ ⊆ w. By Bayes Rule and the uniform likelihoods:

p(c|w)

p(c|w′)
=

p(w|c)p(c)/p(w)

p(w′|c)p(c)/p(w′)
=
p(w′)

p(w)

Also, since the likelihood is uniform, andw′ is consistent with at least the same
concepts as w, the marginal p(w′) =

∑
c p(w

′|c)p(c) ≥
∑

c p(w|c)p(c) = p(w).
So we have that p(c|w) ≥ p(c|w′), which shows the monotonicity property.

To see why we need to go beyond the first two rows of Table 1, we show in
Table 2 an example where changing mind is not necessarily cheating (even if not
GM-collusion-free). This is a situation where neither p(w|c) nor p(c) are uniform,
but a similar example can be found with p(c) uniform.

We turn to proving results for the last two rows of Table 1, and show that the
degree of freedom they allow is very high. We start by defining the minimum
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teaching dimensions achievable for these new paradigms when likelihoods can be
freely chosen (MLE and MAP teaching).

Definition 1. For C on ground elements X , let JDTD+(C) be the lowest teach-
ing dimension achievable by any teacher and learner protocol following a Joint
Distribution p : C × 2X . By JDTD++(C) we denote the analogous quantity for
p : C × X∗, i.e. multisets. We may also require that p is FLUP (free likelihood
but uniform prior).

Note JDTD+ ≤ JDTD++ as the former is choosing from a set of wit-
ness objects that is a strict subset of the latter. How powerful are these new
paradigms? Does the use of any joint distribution p that is restricted only by
p(c, w) > 0 ⇔ c |= w allow us to reach the minimum possible teaching dimen-
sion in all situations? The answer is Yes. We first define a theoretical lower bound
on teaching dimension.

Definition 2. ForC on ground elementsX and witness setW , and positive integer
k, let Gk(C) be the bipartite graph with a vertex for each concept c ∈ C and a
vertex for each w ∈ W of at most k > 0 elements from X , and with an edge cw
whenever c |= w. Define LBTD+(C) (for W = 2X , i.e. sets) and LBTD++(C)
(for W = X∗, i.e. multisets), as the minimum k such that Gk(C) has a matching
saturating C.

For any teacher mapping T where c |= T (c) we have these variants of LBTD(C)
being a Lower Bound on the Teaching Dimension k achieved by T , as the edges
{cT (c)}c∈C will form a matching saturating C in the graph Gk(C).

Proposition 3. JDTD+ = LBTD+ and JDTD++ = LBTD++, even for FLUP
distributions. For any concept class C on positive examples, with or without repe-
titions, there is a FLUP joint distribution p such that a learner acting on posteriors
achieves lowest possible teaching dimension.

Proof. Assume k = LBTD+(C), or k = LBTD++(C), as per Definition 2 and
consider the graph Gk(C) with the set of k matching edges M saturating C. We
construct p by assigning values to a joint distribution matrix C ×W , which we
assume is an n by m matrix. We partition the nm values p(c, w) into 3 classes:
those where c 6|= w which we set to p(c, w) = 0, those where cw ∈ M , and the
remaining. To a concept c consistent with d witnesses we set p(c, w) = 2

n(d+1)
for

the unique w such that cw ∈ M , and p(c, w) = 1
n(d+1)

for the remaining d − 1
witnesses consistent with c. Note that the marginals for each of the n concepts
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(rows) is 1/n, so this is a FLUP joint distribution. The teacher mapping follows
the matching, with T (c) = w for cw ∈ M . Given T (c) = w the learner will
follow the posteriors and since p(c′, w) < p(c, w) for all c′ 6= c the learner will
correctly guess c.

We have seen that for the two new machine teaching paradigms MLE and
MAP in Table 1, and any Boolean concept class, the theoretically lowest possible
TD can be achieved by cherry picking the joint distribution. While it may be the
case that these arbitrary distributions are actually the true information about the
world that teacher and learner share, for an external observer this is impossible to
tell. In order to clarify this, we now take a step back and define a class of joint
distributions over witness sets that are FLUP and FF but where the distribution is
constructed in a meaningful way.

4 The Witness Sampling Composition Model
The original notion of consistency is defined between concepts in C and ground
elements in X . As we said at the beginning of section 2, if c is consistent with x1
and x2 then c must be consistent with {x1, x2}. Inconsistencies are also extended
from X to W . So, does it make sense that p, the witness joint distribution, is not
an extension of the ground joint distribution q? For instance, if q(c, x1) < q(c′, x1)
and q(c, x2) < q(c′, x2), could p(c, {x1, x2}) > p(c′, {x1, x2})?

In order to derive p : C × W → [0, 1] from q : C × X → [0, 1], we are
going to assume that when two or more elements in X are composed in W their
composition is performed as a sampling process. We call this assumption Witness
Sampling Composition (WSC), and we define it as follows: WSC means that the
construction of witnesses is modelled as a sampling procedure from X where the
extraction of one element does not affect the relative probabilities of extracting
the remaining elements (with or without replacement). We define the WSC con-
struction of p from q recursively, with the base case given by p(c, λ) = r(0) · q(c)
where λ represents the empty witness (no example has been sampled yet) and r
is a regularisation term (with

∑
n r(n) = 1) we will explain later. The recursive
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Concept q(c) ... q(c, 3) ... q(c, 11) ...
ceven 0.35 0 0
codd 0.35 0.087 0.0054
cpow3 0.1 0.05 0
cprime 0.2 0.05 0.0062

Table 3: Part of a joint distribution q with |C| = 4 on ground set X = N. With reg-
ularisation terms r(0) = 0.5, r(1) = 0.25, r(2) = 0.125, ... and using WSC without
replacement this q gives the witness joint distribution p in Table 2.

step is defined as follows:

p(c, w) = r(|w|) ·
∑

xi:w=w′⊕xi

[
p(c, w′)

r(|w′|)
· q(xi|c)

]
=

r(|w|)
r(|w| − 1)

·
∑

xi:w=w′⊕xi

p(c, w′) · q(c, xi)∑
x∈X−w′ q(c, x)

(1)

where |w| represents the dimension ofw (number of elements inw), andw = w′⊕
xi represents that witness w is composed of a smaller witness w′ (of dimension
|w|−1) and xi ∈ X . Finally, with x ∈ X−w′ we denote any x that can be sampled
from X after w′ has been sampled (with replacement or not). Note the difference
between the first and second line of the previous derivation is just a normalisation
keeping the proportions (which is q(c) when there is replacement).

Proposition 4. Under WSC, the concept priors are preserved between q and p,
i.e.: ∀c ∈ C : p(c) = q(c)

Proof. We have p(c) =
∑

w∈W q(c, w) by definition. We first prove, by induction
on i, this Claim: ∑

w:|w|=i

p(c, w) = r(i)q(c)

The base case i = 0 of the Claim follows from the base case given right before
Equation (1) of the recursive definition of p from q by WSC in the main paper,
which says that p(c, λ) = r(0)q(c).

For the induction step of the Claim we apply Equation (1) from the main paper
to get
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∑
w:|w|=n

p(c, w) =

=
∑

w:|w|=n

r(n) ·
∑

xi:w=w′⊕xi

[
p(c, w′)

r(n− 1)
· q(xi|c, w′)

]

= r(n)
∑

w′:|w′|=n−1

∑
xi:w=w′⊕xi

[
p(c, w′)

r(n− 1)
· q(xi|c, w′)

]
= r(n)

∑
w′:|w′|=n−1

p(c, w′)

r(n− 1)

∑
xi:w=w′⊕xi

[q(xi|c, w′)]

= r(n)
1

r(n− 1)

∑
w′:|w′|=n−1

p(c, w′)

and applying the inductive assumption for n− 1, we get:

∑
w:|w|=n

p(c, w) = r(n)
1

r(n− 1)
r(n− 1)q(c) = r(n)q(c)

which completes the proof of the Claim.
Now, since

∑
n r(n) = 1, applying the Claim, we have:

p(c) =
∑
w∈W

p(c, w) =
∑
n

∑
w:|w|=n

p(c, w) =

=
∑
n

r(n)q(c) = q(c)

and we are done with the proof of the proposition.

The meaning of the regularisation term r comes from the fact that ∀c ∀n ≥ 0 :∑
w∈W :|w|=n p(c, w) = r(n) · q(c) but, as q(c) = p(c) =

∑
w∈W p(c, w), then r

is actually a regularisation probability r : N → [0, 1], where r(n) represents how
likely all the witnesses of dimension n are. In other words, if we are given the
ground joint distribution q, expressing how likely any pair of concept and witness
is, and we are also given how likely each dimension is, then we can derive the
witness joint distribution. The choice of r does not affect the behaviour of the
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learner (arg!maxc p(c|w)), as when w is given, we have the same r(|w|) for all
concepts.

We give two examples of ground distributions q and the resulting WSC derived
witness distributions p. One for subsets of natural numbers and sampling without
replacement, with q in Table 3 and p in Table 2, and one example with coins
illustrating sampling with replacement in Table 4.

Concept p(c) q(c,H) q(c, T ) p(c, {H}) p(c, {T}) p(c, {HT}) p(c, {HTT})
coin1 0.25 0.2 0.05 0.05 0.0125 0.005 0.0005
coin2 0.25 0.125 0.125 0.031 0.031 0.0078 0.0020
coin3 0.25 0.10 0.15 0.025 0.037 0.007 0.00225
coin4 0.25 0.05 0.2 0.0125 0.05 0.005 0.0020

Table 4: Coin example with |C| = 4, |X| = 2 and W = X∗. A ground joint probability
distribution q and part of the WSC derived witness probability p of 4 biased coins with
uniform p(c). Coin 1: heavily biased Heads. Coin 2: Fair. Coin 3: mildly biased Tails.
Coin 4: heavily biased Tails. p derived by WSC sampling with replacement and using
r(0) = 0.5, r(1) = 0.25, r(2) = 0.125, .... Note TD = 3.

5 Teaching Dimension of the WSC Model
This section shows the remaining inequalities in Figure 1.

Definition 3. For C over ground elements X , let WSCTD+(C) be lowest teach-
ing dimension achievable by p : C × 2X derived by WSC from joint distribution
q : C ×X , with WSCTD++(C) the analogous for p : C ×X∗.

We start with the case of sets. First, is WSC a real restriction over the free
case in Table 1? We can answer this in the affirmative with a simple proof.

Proposition 5. JDTD+ <WSCTD+. There is a concept classC where JDTD+(C) <
WSCTD+(C).

Proof. Consider X = {x1, x2} and C = {c1, c2, c3, c4} with W = 2X . We have 4
concepts and 4 witnesses. With a free joint distribution we can simply do our 4×4
cells as p(c1, ∅) = 0.25−ε/4, p(c2, {x1}) = 0.25−ε/4, p(c3, {x2}) = 0.25−ε/4,
p(c4, {x1, x2}) = 0.25 − ε/4 and p(c, w) = ε/12 for the other 12 combinations,
with ε a sufficiently small number. JDTD+ is hence 2.

Now, let us try to think of a possible ground joint distribution q, of dimension
2 × 4, to get the same teaching dimension when deriving p using WSC. Here,
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for each c we have that p is simply built from q by constructing a set of elements
w ⊂ X using sampling without replacement from X . By Equation (1) in the main
paper, we have for the empty set:

p(c, ∅) = r(0) · q(c)

and for a set of size 1:
p(c, {x}) = r(1) · q(c, x)

and a set of size 2:

p(c, {x1, x2}) = r(2) ·

[
q(c, x1)q(c, x2)∑

x 6=x1 q(c, x)
+
q(c, x2)q(c, x1)∑

x 6=x2 q(c, x)

]
=

= r(2) ·
[
q(c, x1)q(c, x2)

q(c, x2)
+
q(c, x2)q(c, x1)

q(c, x1)

]
=

= r(2) · [q(c, x1) + q(c, x2)] = r(2) · q(c)

And we see that the concept choice for both w = ∅ and w = {x1, x2},
since r(0) and r(2) are constants, is dominated by q(c). Thus, we will have
arg!maxc(p(c, ∅)) = arg!maxc(p(c, {x1, x2})). Thus, 2 of the 4 witnesses cannot
both be used to distinguish between concepts, and so we must haveWSCTD+(C) >
2.

Our next result shows that WSCTD+, even when restricted to FLUP dis-
tributions, is as powerful as any non-clashing teaching model. To prove this
proposition we construct a ground joint distribution that cherry-picks the non-
clashing teacher function, by assigning small values to q(c, x) if c |= x but
x 6∈ T (c). Note however that these values are not exponentially small, as they
satisfy q(c, x) > 1/|C|3.

Proposition 6. WSCTD+ ≤ NCTD+. For any C we have a FLUP distribution
q : C×X such that p : C×2X derived by WSC from q shows that WSCTD+(C) ≤
NCTD+(C).

Proof. Consider some C on ground set X and set of witness objects W (positive
examples only). Assume a teacher mapping T : C → 2X and for all c 6= c′ either
c 6|= T (c′) or c′ 6|= T (c), i.e. non-clashing/GM-collusion-free.

We assign values to a joint distribution matrix q : C×X . Assume |C| = n and
|X| = m. We will construct an assignment so that q(c) = 1/n for all c ∈ C, thus
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uniform priors, and so that a learner following the posteriors of the WSC without
replacement derived distribution p : C × 2X will correctly guess c when given the
witness set defined by T (c), to prove the proposition.

Let ε > 0 be a small value to be decided later. Consider some c ∈ C and
assume that |T (c)| = k and that c consistent with a further d ground elements.
Assuming d > 0 we assign: q(c, x) = 0 for c 6|= x, and q(c, x) = ε/d for the d
ground elements consistent with c but not in T (c). Note these values sum to ε,
so we have 1/n − ε left to assign for this c and we do this by setting q(c, x) =
(1/n − ε)/k = 1−εn

kn
for each ground element x ∈ T (c). If d = 0 we assign:

q(c, x) = 0 for c 6|= x, and q(c, x) = 1/(kn) for each x ∈ T (c).
To prove the proposition we show that the joint distribution p : C×2X derived

by WSC from this q will have the following main property: ”for any two concepts
c 6= c′ we have p(c, T (c)) > p(c′, T (c))”. Let |T (c)| = k. We have 2 cases:

(1): c′ 6|= T (c). Then p(c′, T (c)) = 0 and we are done.
(2): not (1) so since T is non-clashing we have c 6|= T (c′). Assume |T (c′) −

T (c)| = t and |T (c) − T (c′)| = s. We have t ≥ 1 and s ≥ 0. We have k ground
elements in T (c), and q(c, x) = 1−εn

kn
for all, while for s of them q(c′, x) will

be at most ε/s, and since |T (c′)| ≥ k + 1 − s then for the remaining k − s of
them we have q(c′, x) ≤ q(c, x) k

k+1−s . We thus have Σx∈T (c)q(c, x) = 1−εn
n

and
Σx∈T (c)q(c

′, x) = 1−εn
n
× k−s

k−s+1
+ ε. Since we can choose ε > 0 as low as we

want, we now have a situation where the k values for q(c, x) are all equal and both
their sum and their product, respectively, is larger than the sum and the product,
respectively, of the k values q(c′, x). Since q is FLUP and hence by Proposition 4
also p is FU, we therefore must have that the WSC computation of probabilities
when sampling without replacement, gives that p(c, w) > p(c′, w). Note that
choosing ε = 1/|C|2 suffices, as we then will have the first sum (values for c)
being (n− 1)/n and the second sum (values for c′) being ((n− 1)2 + 1)/n2.

Now we turn to the set of witness objects being multisets over X . Firstly,
as in the set case, there is an easy proof showing that WSC++ is not as free as
JDTD++.

Proposition 7. JDTD++ < WSCTD++. There is a concept class C where
JDTD++(C) <WSCTD++(C).

Proof. Consider any |C| = 5 and |X| = 2 with T : C → X∗ using 2 wit-
nesses of size 1 and 3 witnesses of size 2, as can be done with the completely free
choice of p allowed by JDTD to give JDTD++(C) = 2. As WSC is not able to
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achieve both p(c, {x, x}) > p(c′, {x, x} and p(c′, {x}) > p(c, {x} we must have
WSCTD++(C) > 2.

This proof actually shows that WSCTD avoids a very unnatural situation
which looks like cheating, e.g. tossing a coin where Tail is more likely than Head
but two Heads more likely than two Tails, and this is forbidden by WSCTD .
Finally, we show a somewhat surprising result comparing teaching dimensions
using witness objects that are multisets versus sets, showing that WSCTD++ re-
stricted to FLUP distributions will achieve the theoretical lower bound LBTD+.
To prove this proposition we construct a ground joint distribution that cherry-
picks any given matching in Gk(C) as per Definition 2, by assigning small values
to q(c, x) if c |= x but x 6∈ T (c). These values satisfy q(c, x) > 1/(|C||X|)2.

Proposition 8. WSCTD++ ≤ LBTD+ = JDTD+. For any concept class C
over X and set of witness objects W = 2X , there exists a FLUP joint distribution
q : C × X such that p : C × X∗ derived by WSC with replacement from q has
teaching dimension LBTD+(C) = JDTD+.

Proof. The latter equality follows from Proposition 3. Assume k = LBTD+(C)
as by Definition 2 and consider the graph Gk(C) with the set of matching edges
M = {cw}c∈C . We assign values to a joint distribution matrix q : C×X . Assume
|C| = n and |X| = m. We will construct an assignment so that q(c) = 1/n for
all c ∈ C, thus uniform prior, and so that a learner following the posteriors of the
WSC with replacement derived distribution p : C×X∗ will correctly guess cwhen
given the witness set defined by T (c) = w : cw ∈M , to prove the proposition.

Let δ = 1/(nm2). Consider some c ∈ C and assume that |T (c)| = k and that c
consistent with a further d ground elements. Assuming d > 0 we assign: q(c, x) =
0 for c 6|= x, and q(c, x) = δ/d = 1/(nm2d) for the d ground elements consistent
with c but not in T (c). Note these values sum to δ, so we have 1/n−δ left to assign
for this c and we do this by setting q(c, x) = (1/n − δ)/k = (m2 − 1)/(knm2)
for each ground element x ∈ T (c). If d = 0 we assign: q(c, x) = 0 for c 6|= x, and
q(c, x) = 1/(kn) for each x ∈ T (c).

To prove the proposition we show that the joint distribution p : C × X∗ de-
rived by WSC- witness sampling composition - with replacement - from this q
will have the following main property: ”for any two concepts c 6= c′ we have
p(c, T (c)) > p(c′, T (c))”. Let T (c) = {x1, x2, ..., xk}. Since p is defined by
doing sampling with replacement, and since q is FLUP and hence by Proposi-
tion 4 also p is FU, to prove p(c, T (c)) > p(c′, T (c)) it suffices to show that
Πk
i=1q(c, xi) > Πk

i=1q(c
′, xi). We have 3 cases.
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(1): if there exists x ∈ T (c) such that c′ 6|= x then q(c′, x) = 0 so that
p(c′, T (c)) = 0 and we are done.

(2): not (1) but we have T (c) ⊂ T (c′) and thus |T (c)| < |T (c′)|. We settle
this case by showing that for every x ∈ T (c) we have q(c′, x) < q(c, x). We
observe that q(c′, x) ≤ 1/((k + 1)n) and q(c, x) ≥ (m2 − 1)/(knm2) for any
x ∈ T (c), so the inequality that needs to be shown, after rearranging, is that
m2/(m2 − 1) < (k + 1)/k and this holds since k < m.

(3): not (1) or (2), so we have some x′ ∈ T (c) − T (c′) with c′ |= x′. Let
|T (c) − T (c′)| = s. To show p(c, T (c)) > p(c′, T (c)) the hardest case is when
all the q(c′, x) values for x ∈ T (c) are as high as possible. This will occur when
s = 1 and T (c′) ⊂ T (c) so |T (c′)| = k − 1, and we have q(c′, x) = (m2 −
1)/((k − 1)nm2) for x ∈ T (c′) ∩ T (c) and q(c′, xi) = 1/(nm2) for the unique
xi ∈ T (c)− T (c′), while q(c, x) = (m2 − 1)/(knm2) for all x ∈ T (c). Thus we
need to show

1

nm2
× (m2 − 1)k−1

((k − 1)nm2)k−1
<

(m2 − 1)k

(knm2)k

After rearranging this resolves to showing k × (k/(k − 1))k−1 < m2 − 1.
Note we can assume that m > k, as m = k would imply that both c and c′

consistent with every ground element and hence c = c′. Thus we need to show
k × (k/(k − 1))k−1 < (k + 1)2 − 1, which holds since with k′ = k − 1 we have
(k/(k − 1))k−1 = ((k′ + 1)/k′)k

′
= (1 + 1/k′)k

′
< e < 2.72 and thus we need to

show 2.72k < (k + 1)2 − 1 which holds for any k ≥ 1.
Thus for all 3 cases, we have shown for any pair of concepts c 6= c′ that

p(c, T (c)) > p(c′, T (c)), and we are done with the proof of the proposition.

6 Discussion
[9] was a remarkable paper clarifying the limits of the classical view of cheating as
GM-collusion, by reinterpreting it as non-clash machine teaching. This seemed
the culmination of over twenty years work of finding more and more powerful
GM-collusion-free models, i.e., the most powerful non-cheating teaching mod-
els. However, we have challenged this very notion of cheating, under a natural
probabilistic view. The notion of full-proof identification is replaced by the in-
ductive notion of a guess, and the learners can ‘change their mind’ as posteriors
are affected by changing likelihoods. We have also shown that in some particu-
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lar cases (e.g., dealing with the empty set), the GM-collusion-free paradigm can
allow some unnatural assignments.

The use of a witness joint probability p has been shown powerful enough to
equal the best achievable teaching dimension, LBTD, and in some cases, it can
also do some unnatural assignments. Instead, we have proposed to derive p from
the ground joint distribution q using WSC, in the same way as the consistency
graph for witnesses derives from the consistency graph for ground elements, de-
pending on how witnesses are composed. The new teaching models deriving from
WSC are shown to be slightly less powerful than LBTD, but avoid the unnatural
situations. As a result, whether a teacher and learner do any cheating depends
on whether the ground joint distribution corresponds to the joint beliefs about the
world. If a teacher and learner know that a coin has 73% bias for heads, using this
information for identifying the coin is not cheating. Cheating would be if both
agreed that this coin had a different bias from the actual, one more convenient
for the identification. We see a promising avenue of future work on the analysis
of how much information teacher and learner share by fixing the entropy of the
joint distributions and thinking of the distribution of this entropy that reduces the
uncertainty of the identification. Also, we could pursue the idea that some choices
of r could lead to a likelihood that is guiding the teacher, as in Bayesian teaching.

The general and refreshing probabilistic perspective synthesised in Table 1,
and the connections with the classical teaching models, suggest that our paper
could help bridge two very different conceptions of machine teaching in artificial
intelligence. There is the classical notion of identification, associated with theo-
retical results about the teaching dimension, and a more modern view of machine
teaching as a probabilistic (or Bayesian) process. This should lead to future work
connecting our schema to areas such as MDL/MML [21] inference, or interactive
extensions, or when teacher and learner can adapt their probabilities. All this can
be explored with a more natural paradigm of non-cheating teaching that allows
changes of mind.
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