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PREFACE

The 6th ECCOMAS Young Investigators Conference YIC 2021 belongs to a series of International Conferences that 
have been organized since 2012 in different European cities, under the auspices of the European Community on 
Computational Methods in Applied Sciences (ECCOMAS). YIC 2021 has been jointly organized by the two Spanish 
associations of ECCOMAS: the Spanish Association for Numerical Methods in Engineering (SEMNI) and the Spanish 
Society of Applied Mathematics (SEMA), as a joint effort to promote the collaboration between young researchers 
from both organizations with other European young investigators and to reinforce the social impact of 
computational engineering science and computational applied mathematics. Although YIC2021 originally was 
going to be held at Universitat Politécnica de València (UPV), one of the leading universities in Spain, due to the 
pandemic situation caused by COVID-19 the conference was carried out finally in an online format from 7th to 9th 
July 2021. 

The main goal of the YIC 2021 conference was to bring together young investigators and experienced researchers, 
and provide a forum for discussing the current state-of-the-art on Computational Methods and Applied Sciences. 
This successful combination was already seen in the Scientific Committee of the event which included 
distinguished professors of internationally recognized prestige and brilliant young researchers with a promising 
career.  

The scientific program of YIC 2021 combined four plenary lectures, mainly given by outstanding young 
researchers, with more than two hundred presentations included in nineteen specific minisymposium sessions, 
proposed by the participants, and one more general session of contributed talks. In addition, the ECCOMAS PhD 
Olympiad also took place during the celebration of the conference. This latter consisted of scientific presentations 
of some of the finalists of the ECCOMAS PhD Thesis Awards nominated by each ECCOMAS member association, 
and resulted in two prizes for the best presentations. In occasion of the YIC 2021 conference, the ECCOMAS 
Young Investigators Committee (EYIC) also organized different activities for the participants of the conference. In 
particular, these activities comprised three short introductory courses on recent research topics, a Career Forum 
to discuss issues regarding pursuing an academic career, and a panel discussion on European research funding 
opportunities. Finally, to encourage the interaction between the participants and to promote a pleasant virtual 
environment, several dynamization activities were proposed to enjoy all together.  

We were delighted to welcome all participants of the 6th ECCOMAS Young Investigators Conference YIC 2021, 
and we hope that you found in this meeting valuable information and inspiring ideas for your scientific work. We 
would like to take the opportunity to thank you for taking part in the YIC2021 Conference, that has been a success 
thanks to your interesting contributions and your active participation.  

On behalf of the Conference Organizers 

Enrique Nadal Soriano, UPV, Spain   
Carmen Rodrigo Cardiel, UZ, Spain   
José Martínez Casas, UPV, Spain 
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Abstract: A simulation method for large eddy simulations (LES) of dispersed gas-liquid bubbly
flows based on an Eulerian-Eulerian (E-E) model is presented. A volume averaging approach is
used resulting in a set of conservation equations for each phase. The liquid phase is predicted
using a lattice Boltzmann method, while the gas phase is modeled by a finite volume method.
Interface terms between the phases result in a two-way coupled system. Both methods are
formulated on a shared Cartesian grid similar to the concept in [1], which facilitates the exchange
of coupling terms between the two solvers and an efficient implementation on high-performance
computing (HPC) hardware. This coupled multiphase approach combines the advantages of the
lattice Boltzmann (LB) method as an efficient prediction tool for low Mach number flows with
those of a finite volume method used for the modeling of the phase with larger density changes
by solving the Navier-Stokes equations. To accurately model the turbulent motion of the liquid
phase on all resolved scales, a cumulant-based collision step for the lattice Boltzmann method [2]
is combined with a Smagorinsky sub-grid-scale turbulence model. In the finite volume solver, the
effect of the sub-grid-scale turbulence is incorporated according to the MILES approach. For the
validation of the new method, large-eddy simulations of turbulent bubbly flows are performed.
The accuracy of the predictions is evaluated comparing the results to experimental reference
data for a generic test case, for which good agreement is found. The applicability of the method
will be demonstrated for a bubbly turbulent channel flow, which mimics the phenomena in the
electrochemical machining (ECM) process.

1 INTRODUCTION

The study of gas-liquid multiphase flows has been an active research topic for many decades.
They occur in processes belonging to industries including chemical, pharmaceutical, food, en-
ergy, and machinery industries. The quest for an improved design of these processes, generates
an increasing demand for the accurate prediction and detailed analysis of such two-phase flows.
Multiphase gas-liquid flows can be classified in many categories, mainly depending on the gas-
liquid volume ratio and the bubble size. Here, we consider a dispersed phase in a carrier phase,
such as small gas bubbles in liquids or liquid droplets in a gas.

The technical application for which the current method is developed, is an electrochemical
machining (ECM) process, in which gas bubbles are generated in a liquid electrolyte during the
electrochemical removal of material. Since the local removal rate of material depends on the
electrical current and the gas is non-conductive, the local gas concentration greatly influences
the process speed and the geometry of the final workpiece. Therefore, a detailed prediction of
the highly unsteady gas transport phenomena in the electrolyte flow is important for a good
design of the ECM process. The simulation results can be used to identify process parameters

https://doi.org/10.4995/YIC2021.2021.12211
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and a tool geometry for an improved accuracy of the workpiece geometry without deviations
caused by, e.g., local gas agglomerations.

The turbulence modeling in E-E models of gas-liquid bubbly flows can be based on the
Reynolds-averaged Navier-Stokes (RANS) or large eddy simulation (LES) approaches. In the
LES, the larger turbulent scales are fully resolved, whereas in RANS methods all turbulent
motions are filtered from the flow field and modeled by additional transport equations. This
leads to less strict spatial resolution requirements compared to LES but limits the level of details
that can be predicted. In LES, the turbulent motion is explicitly resolved up to a certain spatial
filter width, which is usually on the order of the local spatial step. LES typically provides more
accurate results where the assumptions of the RANS models do not hold, i.e., typically in flows
with strong streamline curvature, adverse pressure gradients or in large scale vertical motion
in separated flow regions or wakes. Since such flows might occur in the ECM process, an LES
method should be used.

In the following, a brief overview over existing E-E modeling approaches for gas-liquid bubbly
flow is given. Early examples of LES methods for E-E models are the works of Milelli et al. [3]
and Deen et al. [4]. In both cases, the E-E model is implemented by extending the commercial
ANSYS CFX code, that is based on the finite volume (FV) method. Many authors improved on
these works by studying certain aspects of the earlier models in more detail [5]. In particular,
the interface forces between the phases and the sub-grid scale modeling of turbulence in the
liquid phase are discussed. Recent studies include [6], [7], and [8], in which different solver
types based on a finite volume formulation are used for the two sets of conservation equations.
While the finite volume method is capable of producing excellent results, it is computationally
more expensive compared to the lattice Boltzmann (LB) method. The LB method has been
successfully used for direct numerical simulations (DNS) of gas-liquid flows [9]. DNS, however,
becomes too expensive for dispersed bubbles in high Reynolds number flow. Sungkorn et al. [10]
performed LES of bubble columns using the Eulerian-Lagrangian (E-L) approach with the LB
method. Recently, an E-E model solved with coupled FV and LB solvers was presented by
Shu et al. [11], which was, however, based on the RANS approach and which used a coupling
strategy of the solvers different from that presented in this study.

This paper is organized as follows. The details of the method will be described in Sections 2
and 3. Validation results for the method are shown in Section 4. Finally, the application to
an ECM setup is shown in Section 5, where results of the LES of turbulent gas-liquid channel
flows, similar to the electrolyte flow in the ECM process are presented.

2 PHYSICAL MODELING

The phase averaged Eulerian-Eulerian conservation equations for mass and momentum are
given by [12, 5]

∂αk ¯̄ρk
∂t

+∇ · (αk ¯̄ρkv̂k) = Γk (1)

∂αk ¯̄ρkv̂k
∂t

+∇ · (αk ¯̄ρkv̂kv̂k) = −αk∇p̂−∇ · (αkτ̂k) + αk ¯̄ρkg +Mk . (2)

The quantity k represents the gas or liquid component of the fluid, i.e., g for gas and l for
liquid, and αk is the local void fraction of the phase, which represents the probability of finding
the corresponding phase at a certain location in time and space. For the gas-liquid flow, the
condition αg + αl = 1 holds. The other variables are the density ρ, velocity v, pressure p,
viscous fluxes τ , and the gravity vector g. The mass and momentum transfer terms between
the two phases are denoted Γ and M . The symbols ¯̄· and ·̂ define the phase averaging and
mass weighted averaging operators [12].
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2.1 Model simplifications

The Eulerian-Eulerian model equations Eq. (1) and (2) can become stiff and difficult to solve
due to possibly large two-way coupling terms resulting from the interfacial force terms, which
are discussed in Section 2.2, and the influences of the coupled void fractions αk. Some models
avoid these difficulties by completely neglecting the influence of the dispersed phase on the
liquid phase. These one-way coupled models are valid only for cases, where the motion of the
liquid phase is dominated by external forces and the volume fraction of the gas phase is very
low. A more accurate approach can be derived for the liquid phase via the mixture balance
equations [13, 12]. Exploiting the fact that the density difference between gas and liquid is large,
the influence of the void fraction αk can be removed from all terms of the liquid momentum
equation for moderate void fractions except for the gravity term. This simplification is similar
to the Boussinesq approximation for the single-phase momentum balance equations. In that
case, changes in density due to temperature changes are also neglected in all terms except for
the gravity term. Additionally, no mass transfer between the phases is present in our case,
hence Γg = Γl = 0. This leads to the following conservation equations for the liquid phase

∂ ¯̄ρl
∂t

+∇ · (¯̄ρlv̂l) = 0 (3)

∂ ¯̄ρlv̂l
∂t

+∇ · (¯̄ρlv̂lv̂l) = −∇p̂−∇ · τ̂l + αl ¯̄ρlg . (4)

These equations only differ from their single-phase counterparts by the last term of the momen-
tum equation. This makes it possible to use a standard solution procedure for a single phase
with only minor changes for the solution of the liquid phase flow.
The balance equations for the gas phase resemble the base E-E equations Eq. (1) and (2) much
more closely. Like in [13], an additional diffusive term is added to the mass equation of the gas
phase to model the bubble path dispersion. This diffusion effect is caused by the interaction of
bubbles with the turbulent wake of other bubbles. This effect causes a diverging flow pattern
of the ascending bubbles in locally aerated bubble columns. It can also be described using a
drifting velocity vdrift that reads [13]

vdrift = − 1

Sc

µl,turb
¯̄ρl

I · 1

αg
∇αg . (5)

The Schmidt number Sc is usually assumed to be Sc = 1 for the bubble path dispersion. The
quantity µl,turb is the turbulent viscosity of the liquid phase that is representative for the wake
of the bubbles. The resulting conservation equations of the gas phase are

∂αg ¯̄ρg
∂t

+∇ · (αg ¯̄ρgv̂g) =
1

Sc
∇ · (µl,turb

¯̄ρg
¯̄ρl
∇αg) (6)

∂αg ¯̄ρgv̂g
∂t

+∇ · (αg ¯̄ρgv̂gv̂g) = −αg∇p̂−∇ · (αgτ̂g) + αg ¯̄ρgg +Mg . (7)

2.2 Interfacial forces

The interfacial forces represent the forces that the individual bubbles experience during the
movement through the liquid phase. The relevant forces are the drag force FD, the lift force
FL, the virtual mass force FVM , and the turbulent dispersion force FTD [8]

Mg = FD + FL + FVM + FTD . (8)
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The corresponding reaction forces on the liquid phase are disregarded in the liquid momentum
equation Eq. (4), due to the large difference in density between the phases. For the closure of
the force terms, the equations described in [8] are used.
The drag force is modeled as

FD =
3

4
αgCD

¯̄ρl
dB
|v̂l − v̂g|(v̂l − v̂g) (9)

with the bubble diameter dB and the coefficient of drag CD. For the distorted bubble regime,
the drag coefficient CD can be estimated [12]

CD =
2

3

√
Eo (10)

with the Eötvös number Eo = |g|(ρl−ρg)d2B/σ. The quantity σ represents the surface tension of
the liquid phase. The distorted bubble regime is applicable for the bubble column in Section 4.
For the simulation in Section 5, Stokes’ drag law is assumed since the bubbles are sufficiently
small to be considered spherical [12]

CD =
24

ReB
=

24 νl
|v̂l − v̂g| dB

. (11)

The lift force is modeled by

FL = CLαg ¯̄ρl(v̂g − v̂l)× (∇× v̂l) . (12)

The correct coefficient of lift CL for bubbly flows has been a controversial topic. In the review
paper [5], the values range from -0.05 to 0.5. In principle, the value and sign of the lift
force highly depends on the shape of the bubble and the flow conditions around it. A widely
adopted variable model for the coefficient of lift is the Tomiyama lift force model [14]. This
leads to CL = 0.288 for the validation case studied in this work, when the Morton number is
extrapolated for an air-water mixture. Tomiyama’s model, however, was obtained for single
bubbles under static shear flow conditions, that differ from turbulent dispersed bubbly flows.
In recent studies, Shu et al. [11] have shown that simulations of buoyancy driven bubbly flows
can be performed without lift force. Because of the uncertainties regarding the value of the lift
coefficient for the different flow regimes studied in this work, the lift force is taken here as zero.
The virtual mass force is modeled by

FVM = CVMαg ¯̄ρl

[(
∂v̂l
∂t

+ (v̂l · ∇)v̂l

)
−
(
∂v̂g
∂t

+ (v̂g · ∇)v̂g

)]
(13)

with the virtual mass coefficient CVM = 0.5.
The turbulent dispersion force is

FTD = −3

4

CD
Sc

µl,eff
dB
|v̂l − v̂g|∇αg (14)

with the effective liquid viscosity µl,eff (see Section 2.3).

2.3 Turbulence modeling

Since in LES not all the scales of turbulent motion are resolved in the continuous phase, the
influence of the sub-grid scale (SGS) motions have to be modeled. In this work, a Smagorinsky
SGS model is chosen due to its previous successful application to bubble columns [5]. In addition
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to the influence of the SGS turbulence, bubble induced turbulence (BIT) must be accounted
for in the simulation of bubbly flows. Thus, the effective viscosity of the liquid phase is the sum
of the molecular viscosity, the viscosity due to the SGS of turbulence and the BIT contribution

µl,eff = µl,M + µl,SGS + µl,BIT . (15)

The equation for the SGS viscosity µSGS is

µl,SGS = ¯̄ρl(CS∆)2
√

2SijSij (16)

as a function of the Smagorinsky constant CS, the rate-of-strain tensor Sij, and the grid filter
width ∆. In this study, CS = 0.1 is used for all simulations.
For the BIT viscosity, the model from [3, 8] is used

µl,BIT = CS∆¯̄ρlαg|v̂g − v̂l| . (17)

The influence of the turbulent motion in the gas phase is incorporated according to the MILES
approach [15].

3 NUMERICAL METHOD

The Eulerian-Eulerian model described in Section 2 is implemented in the multiphysics
solver mAIA – formerly denoted ZFS – developed by the Institute of Aerodynamics of RWTH
Aachen University [16]. One of the strengths of mAIA is the coupling concept that allows
multiple solvers of different type to share simulation data in a common data structure. In this
study, a lattice Boltzmann (LB) solver representing the liquid phase is coupled to a finite volume
(FV) solver for the gas phase. This approach combines the advantages of the LB method as an
efficient prediction tool for low Mach number flows with those of the FV method for the phase
with higher density changes. Both solvers are implemented for the efficient parallel execution on
HPC hardware, which enables the simulation of problems requiring a large number of mesh cells
as the simulations discussed in Sections 4 and 5. Both methods are discretized on hierarchical
Cartesian meshes, which allows a straightforward local mesh refinement with dynamic load
balancing. For the generic cases simulated in this paper, however, local grid refinement was
not necessary.

3.1 Description of the solvers

The conservation equations for the liquid phase Eq. (3) and (4) are identical to their single-
phase counterparts except for the buoyancy term. Therefore, only minor modifications to the
single-phase LB solver are necessary. The LB method is based on the discrete Boltzmann
equation with the Bhatnagar-Gross-Krook approximation [17]. The particle probability distri-
bution functions (PDFs) are discretized in this study according to the D3Q27 model [18] in a
cell-centered approach. A cumulant based collision step [2] is used that is capable of producing
accurate results across a wide range of Reynolds numbers. This is important due to the highly
turbulent nature of the studied gas liquid bubbly flows. In contrast to the multi-relaxation
time (MRT) approach, the cumulant based collision step does not require the tuning of model
parameters. The buoyancy term of the momentum equation Eq. (4) is implemented according
to [19], adding the force components to the PDFs before the propagation step.

The finite volume method solving the gas conservation equations combines an advective up-
stream splitting method (AUSM) with the second-order accurate monotone upstream centered
scheme for conservation laws (MUSCL) approach for the computation of the inviscid fluxes.
The viscous fluxes are discretized by a second-order accurate centered scheme as well. Time
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integration is accomplished by an explicit, low-storage 5-step Runge-Kutta method. The gas
momentum equations become stiff due to the momentum exchange terms in Eq. (8). To main-
tain numerical stability, the explicit time-integration scheme is modified for the momentum
equations. The influence of the drag, turbulent dispersion and the local term of the virtual
mass forces are incorporated by an implicit Crank–Nicolson scheme, while the explicit formu-
lation is kept for the remaining terms.

3.2 Solution procedure

The time steps of the two solvers are synchronized by using the constant time step of the LB
solver also for the finite volume method. Due to the strongly two-way coupled nature of the
conservation equations of the two phases, the flow solvers operate in a staggered approach in
time direction. First, the liquid phase solver completes a time-step using the gas void fraction
field of the previous time step. The resulting updated liquid velocity and pressure field is then
transferred to the gas phase solver. Secondly, the gas solver completes its time step, consisting
of the following procedure. The density distribution is updated with the liquid pressure field.
The changes in gas velocity and gas void fraction are obtained by the solution of the gas mass
and momentum equations in each Runge-Kutta step. Finally, the updated gas flow variables
are transferred to the liquid flow solver for the next time step.

4 VALIDATION OF THE METHOD

For the validation of the numerical method, a standard test case for turbulent, buoyancy
driven bubbly flow is simulated. It was first studied experimentally and numerically by Deen
et al. [20, 4]. Air is injected at the bottom surface into a water column with a height H of
H = 0.45 m and a square cross-section W ×D of 0.15× 0.15 m2. The bubbles enter the duct
geometry through a perforated plate with 49 holes at the center of the bottom surface. The
holes have a diameter of 1 mm and are arranged in a square pattern of 7× 7 holes with a pitch
of 6.25 mm. At the top, the water forms a free surface through which the injected air escapes.
The gas velocity above the water surface is specified as 4.9× 10−3 m s−1, which leads to a gas
flow rate of 1.1× 10−4 m3 s−1 at ambient pressure. The diameter of the resulting bubbles dB is
4.0 mm [4]. This test case has been extensively studied for the validation of numerical models
for bubbly flows. Recent studies that feature simulation results of this setup are [6, 7, 8, 11].

For the present simulations, a uniform, unstructured Cartesian grid with 44× 44× 128 cells
is used to discretize the bubble column. For the liquid phase, no-slip boundary conditions are
applied at the column walls and bottom surface. The interpolated bounce back following the
BFL rule is used for these boundaries [21]. The water surface is modeled by a slip-wall boundary
condition. The gas flow rate is enforced in the inflow boundary condition. Furthermore, a no-
slip condition is applied to the walls and the remaining bottom surface. For the outflow,
a pressure outflow boundary condition is imposed to the top surface. The time step of the
simulation is constant at 6.77× 10−4 s.

The bubble diameter dB is assumed to be 4 mm, bubble coalescence or break-up are not
accounted for in this study. The original experiment was designed to minimize coalescence of
bubbles by adding salt to the water [20]. The change in bubble diameter due to the varying
hydrostatic pressure is also neglected. This approximation is justified since the increase in
bubble diameter over the height of the column only amounts to about 1.4 %.

4.1 Instantaneous results

The flow field of the bubble column is mainly determined by a bubble plume meandering in
the column. The liquid flow field is turbulent and strongly influenced by the location of the
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(a) (b) (c)

Figure 1: Liquid axial velocity at the times t = 67.7 s and t = 135.3 s (a), average gas void fraction (b) and
average liquid axial velocity (c) at the mid-plane of the column.

bubble plume. Close to the plume, the liquid moves predominantly in the upward direction due
to the buoyancy of the gas phase. The axial component of the liquid velocity at the mid-plane
is shown in Figure 1(a) for two time levels, t = 67.7 s and t = 135.3 s.

4.2 Time-averaged results

For the generation of time-averaged results and turbulence statistics, 100,000 time steps
are performed first, to obtain a fully developed flow field before the time averaging begins.
The averaging is based on an additional 400,000 time steps. This corresponds to an averaging
window from 68 s to 271 s in physical time.

In Figures 1(b) and 1(c), the averaged liquid axial velocity and gas void fraction in the
mid-plane of the column are displayed. In the bottom part of the column, the gas void fraction
is confined to a narrow, but diverging area. Due to the movement of the bubble plume, this
differs from the top part of the column, where gas can be found over the full width of the
column. The highest liquid velocity values are found in the region close to the gas inlet. Near
the walls, a recirculation region with negative velocity values is visible. In the bottom corners,
vortices are formed in the liquid phase.

In Figures 2(a) and 2(b), the liquid and gas axial velocities at the mid-plane are plotted along
a line at the height of 25 cm above the bottom of the column. The liquid axial velocity agrees
well with the experimental data of Deen [4]. The gas axial velocity is somewhat underestimated,
especially in the center region of the column.

In Figures 2(c) and 2(d), the root-mean-square of the fluctuating liquid axial velocity w′l
and the turbulent kinetic energy TKEl = 0.5 (u′lu

′
l + v′lv

′
l + w′lw

′
l) are plotted. The turbulent

fluctuations of the liquid phase flow are slightly overestimated by the present method except
for the region near the walls, where the intensity must vanish. Both graphs exhibit a dent
near the center of the column, that is visible in the simulation results and the experiments.
The asymmetry of the results indicates that the time averaging interval is not sufficient, which
can be attributed to the highly unsteady character of the test case featuring low frequency
variations from the meandering bubble column. This may also explain a part of the visible
deviations of the numerical solution.

5 SIMULATIONS OF A TURBULENT CHANNEL FLOW

The presented method is applied to a generic setup of the gas-liquid flow as it occurs in the
ECM process in the gap between the tool and the work piece. This multiphase flow is studied
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Figure 2: Averaged liquid (a) and gas (b) axial velocity, root-mean-square of the fluctuating liquid axial
velocity (c) and liquid turbulent kinetic energy (d) at a height of z = 25 cm in comparison with measurements
from [4].

experimentally and numerically in the research project described in [22]. For the experimental
investigations, the flow is upscaled from a gap height of 1×10−4 m to a gap height of 1×10−2 m,
keeping the Reynolds number constant. This upscaled machining gap is modeled as a turbulent
channel flow with a Reynolds number of Re = 3000 based on the channel height and the mean
flow velocity. The machining process is imitated by the introduction of gas bubbles through
the bottom or top wall of the channel with a constant flow rate. As a starting condition, a fully
developed turbulent channel flow is generated. The friction velocity based Reynolds number
Reτ of this single-phase flow is approximately Reτ = 100. To capture the large turbulent
structures that are present in such a low Reτ flow, a simulation domain of 1H × 3H × 12H
channel heights is used in the wall normal, spanwise, and streamwise direction. The no-slip
boundary condition is applied at the top and bottom boundary, and periodic conditions for the
remaining boundaries. A volume force in the main flow direction is applied to keep a constant
volume flow rate. The simulation domain is discretized with a uniform, Cartesian grid using
100 × 300 × 1200 cells leading to a ∆y+ of 2.07. The gas flow rate per channel height unit
is chosen to be 1/500 of the average liquid flow rate in the channel. The liquid is modeled
as water with a density of 1000 kg m−3 and a kinematic viscosity of 1 × 10−6 m2 s−1. The
gas is air with a density of 1.2 kg m−3 at atmospheric pressure and a kinematic viscosity of
1.52×10−5 m2 s−1. Gravity acts in the downward direction with the acceleration of 9.81 m s−2.
The bubble diameter is estimated to be 10−4 m, which is equal to the mesh cell size.

Figure 3 shows instantaneous gas void fraction fields for the gas injection from the bottom
and the top of the channel. The effect of the buoyancy is clearly visible. In the case of the
injection from the bottom wall, the gas is much more distributed throughout the channel. The
large turbulent structures of the channel flow lead to areas of severely varying gas void fraction
along the axis of the channel. In the case of the injection from the top of the channel, the
buoyancy prevents the gas bubbles to be distributed throughout the channel. A nearly uniform
layer of higher gas void fraction in formed at the top wall.
The averaged liquid velocity profiles in Figure 4 reflect this difference in the gas distribution.
For the injection from the bottom wall, the velocity profile stays much more symmetric after the
initial distribution of the bubbles. Compared to the single-phase profile, the velocity gradients
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at the walls increase after the gas injection due to the increased momentum exchange normal to
the walls. In the case of the injection from the top of the channel, the velocity profile becomes
increasingly asymmetric. In this case, the buoyancy of the gas bubbles prevent momentum
transfer in the top region of the channel enabling higher axial velocities in the top half of the
channel.

Figure 3: Instantaneous gas void fraction at t = 0.385 s after gas injection from the bottom (a) and the top
(b) walls into the turbulent channel flow.
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Figure 4: Averaged relative liquid velocity distribution plotted over the distance from the channel bottom wall
for the times t1 = 0.192 s, t2 = 0.385 s, t3 = 0.577 s and t4 = 0.770 s after the start of the gas injection at
time t0. Gas injection from the bottom wall (a) and the top wall (b).

6 CONCLUSION

A coupled lattice Boltzmann/finite volume method for the Eulerian-Eulerian simulation of
gas-liquid bubbly flows is presented. The novel method is validated with LES of Deen’s bubble
column case. The model is capable of reproducing the meandering of the bubble plume in the
column. The averaged results show good agreement with the experimental data. An engineering
application of the method is shown with the simulation of a turbulent channel flow, similar to
the gas-liquid electrolyte flow during the ECM process. The method predicts the expected large
differences in the gas distribution depending on the location of the gas generation. Since the
local gas void fraction has a strong influence on the geometry of the workpieces produced with
the ECM process, the method can be used to further study the influence of process parameter
variations on the resulting workpiece.
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Abstract: In this work we consider two domains: an external domain whose geometry varies,
and an internal fixed one. From the thermal insulation viewpoint, we are considering a body
to be insulated, enveloped in a layer of insulator, and we want to find the best shape for the
thermal insulator, in terms of heat dispersion. Mathematically, our problem is described by an
elliptic partial differential equation with Dirichlet-Robin boundary conditions.

1 INTRODUCTION

One of the major challenges for environmental improvement is represented by thermal in-
sulation. Problems related to insulation are well-known and widely studied in mathematical
physics. Nevertheless, mathematics involved is still hard especially when one looks at shape
optimization issues [1, 2], and sometimes the answers are counterintuitive [3]. In this work we
focus on the case of an internal domain of circular shape (the body to be insulated), enveloped
in a layer of thermal insulator whose geometry varies. Our aim is to explore different shapes
for the external domain, in order to find configurations which produce low values in terms of
heat dispersion.

The work is organized as follows: In Sect. 2 we formulate our problem, explaining the
peculiar behavior of the heat dispersion looking at the case of two concentric circles. In Sect.
3 we move to the numerical part, describing the numerical resolution and the results obtained,
ending with final remarks and future perspectives contained in Sect. 4.

2 THE PROBLEM

Let us consider a domain Ω embedded into a domain D. The formulation of the problem we
deal with is the following:

Find D∗ ∈ D such that
Fβ(D∗,Ω) := min

D∈D
Fβ(D,Ω)

where Fβ(D,Ω) := β
∫
∂D
u dx

and u is solution of

(PDE)


∆u = 0, in D \ Ω,
∂u

∂n
+ βu = 0, on ∂D,

u = 1, on ∂Ω,

(1)

where u ∈ H ′(D ∪ Ω) represents the temperature, D is the set of admissible domains, n the
exterior normal vector, and β > 0 a fixed parameter depending on the physical characteristics

https://doi.org/10.4995/YIC2021.2021.12288
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of the insulating material. We fix the domain Ω as a unit circle, i.e., Ω := B1(0), and D as the
class of polygons, in which the domain D varies. From the thermal insulation viewpoint, the
compact connected set Ω represents a conductor of constant temperature fixed to 1, which is
thermally insulated by surrounding it with a layer of thermal insulator, denoted by the open
set D \ Ω, with Ω ⊂ D̄. The goal of the present work is to find configurations for the domain
D which give sufficiently low values for the heat dispersion functional defined as

Fβ(D,Ω) := β

∫
∂D

u dx, (2)

comparing the results with the case of two concentric circles, for which we are able to compute
the heat dispersion functional analytically. In fact, let us consider Ω and D as two circles of
radius r and R, respectively, with 0 < r < R. The set of solutions to the Laplace’s equation in
the case of a circular crown is

A log
√
x2 + y2 + C = u(x, y), (3)

where A and C are two constants. Using for u the expression (3), the functional (2) can be
written as

β

∫
∂D

u = β

∫
∂D

A log
√
x2 + y2 + C (4)

= β

∫ 2π

0

(A log

(√
R2 cos2(t) +R2 sin2(t)

)
+ C)Rdt (5)

= β2πR(A log(R) + C). (6)

Using the boundary conditions of the partial differential equation (PDE) in (1), the constants
A and C can be computed solving the following system of two equations:{

A log r + C = 1

β(A logR + C) + A 1
R

= 0.
(7)

In that way, we get

A = − 1

log(R
r
) + 1

βR

, C = 1− A log r = 1 +
1

log(R
r
) + 1

βR

log r . (8)

Notice that for r = 1, the constant C is always equal to one, independently from the admissible
values for R and β.

For fixed β > 0 and r ∈ (0, R), the dispersion computed according to (6) only depends on
R. In particular, it is an increasing function for R < 1/β, and decreasing for R > 1/β. Since
must be R > 1, for β > 1 the dispersion is a decreasing function (the insulation increases
adding insulator), whereas for 0 < β < 1 the dispersion increases for R < 1/β and decreases for
R > 1/β. About the increasing phase, it may seem surprising that adding insulator increases
the heat dispersion; however this is a well-known phenomenon, that from the physical viewpoint
can be explained by the competing effects of the convection and the conduction resistances (see
[4], Sect. 3.3.1-3.3.2).

The dependence of the dispersion function on the parameter β vanishes looking at its asymp-
totic behavior, as visible also in Fig. 1 (see [5] for details).

Considering a geometry which is different from the circle of radius R for the external domain
D, we noticed that the qualitative behavior of the dispersion function by varying the parameter
β is analogous. As an example, see the plots in Fig. 2 for a comparison between a circle and a
regular octagon as external domain.
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Figure 1: Plot of (R,Fβ(BR(0), Br(0))) for different values of β (β = 0.2, 0.5, 0.8, 1).

Figure 2: Plots of (Area, Fβ(D,Ω)) with Ω = B1(0), D as a regular octagon (black �) or D as a circle
(red ∗), for different values of β (β = 0.3, 0.4, 0.5, 0.55).

3 NUMERICAL EXPERIMENTS

We discretized the weak formulation of (PDE) in (1), that is∫
D

∇u · ∇φ+

∫
∂D

βuφ = 0, (9)

using Finite Element method implemented via Matlab software, in order to calculate the func-
tion u. We analyzed the results of the numerical simulations by distinguishing them in the
cases summarized below (see [5] for more details):
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• We considered circles and polygons with the same area as convex geometries for D. The
computational experiments show that the circle seems to be in general the best choice
for the external domain, even if, in a few cases, irregular polygons produce a smaller
dispersion Fβ(D,Ω) for values of β < 1. An example is depicted in Fig. 3 related to an
irregular octagon, compared to the circle visible in Fig. 4 with the same area. However,
such an example may be misleading: the example in Figs. 3-4 refers to a case in which
the prescribed quantity of insulator represents a technically inadvisable option if we want
to have little heat dispersion, since in this case using no insulator at all would be a much
better choice (looking at Fig. 1 for β = 0.2, R ' 5 corresponds to the maximum possible
heat dispersion for the case of concentric circles).

(a) (b)

Figure 3: Plots of (a) the mesh and (b) the numerical solution in the case β = 0.2, area A = 87.49.
Dispersion F0.2(D,Ω) = 2.32.

(a) (b)

Figure 4: Plots of (a) the mesh and (b) the numerical solution in the case β = 0.2, area A = 87.49.
Dispersion F0.2(D,Ω) = 2.41.

• Motivated by the previous considerations, that seem to advise against a fixed amount
of insulator, we considered the problem of minimizing the heat dispersion functional (2)
under the constraints Area(D) ≤ Amax, D ∈ D, considering different values of Amax.
For the numerical minimization, we made use of the patternsearch MATLAB routine
for global minimization, varying the starting point, and imposing geometrical non linear
constraints on the outer polygons. We observed different behaviors of the heat dispersion
for β < 1 and β > 1. In particular, for β > 1 all the amount of insulator material is
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used (saturation case), whereas for β < 1 the minimization process may lead to different
solutions, depending on the starting point (see [5] for more details).

• Simulations by considering internal domains with shape different from the unit circle have
been carried out confirming that the external circle is the domain which gets the lowest
values of heat dispersion among all the convex domains considered (see [5]).

Further details and results will be shown during the talk and can also be found in [5].

4 CONCLUSIONS

In this work we have performed a systematic numerical analysis of a mathematical model
for thermal insulation problems described by a shape optimization formulation. The results
obtained seem to suggest that the most effective thermal insulation for a conductor of constant
temperature is obtained by surrounding it with insulating material disposed according to a
circular geometry, independently from the shape of the internal body. Counterexamples to
that, obtained comparing different geometries which share the same area, do not seem to be
of practical interest. Nevertheless, a similar computational approach, possibly with a more
complex model, appears extremely useful for the understanding of the physical problem of
thermal insulation. In that line, in the future we would like to further explore the thermal
insulation problem in order to face in a more accurate way the real life needs coming from
engineering applications.

ACKNOWLEDGMENTS

This research has been carried on within the PON R&I 2014-2020 - “AIM: Attraction and
International Mobility” (Linea 2.1, project AIM1834118 - 2, CUP: E61G19000050001).
The authors are members of the INdAM Research Group GNCS.

REFERENCES

[1] Della Pietra, F. and Nitsch, C. and Trombetti, C., An optimal insulation problem. Math.
Ann., (2020). DOI: https://doi.org/10.1007/s00208-020-02058-6.

[2] Bucur, D. and Buttazzo, G. and Nitsch, C., Two optimization problems in thermal insu-
lation. Notices Am. Math. Soc., 64(8): 830–835, 2017.

[3] Bucur, D. and Buttazzo, G. and Nitsch, C., Symmetry breaking for a problem in optimal
insulation. J. Math. Pures et Appl., 107(4): 451–463, 2017.

[4] Bergman, Theodore L. and Lavine, Adrienne S. and Incropera, Frank P. and Dewitt, David
P., Introduction to heat transfer, John Wiley & Sons, 2011.

[5] Tozza, S. and Toraldo, G., Numerical Hints for Insulation Problems, Applied Mathematics
Letters, 123, 2022. DOI: https://doi.org/10.1016/j.aml.2021.107609.

             15



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Modelling delamination of a DCB test using non-linear truss
interface elements and plate elements with assumed shear strain
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Abstract: In this work we are investigating mode I delamination of plate-like specimens,
where the width is comparable to the length. In such cases anticlastic bending of the plates
takes place on the debonded part and the crack front is a curve, rather than a straight line. We
model the interface by means of discrete non-linear truss elements with embedded exponential
traction-separation law. Such choice is justified because in this test, only pure mode I (opening)
displacements occur at the interface, which in our case will cause axial elongation of the truss
elements. The plates are modelled using 4-node plate finite elements derived by the assumed
shear strain approach that pass the general constant-bending patch test. Cohesive-zone interface
parameter identification is performed by a direct method (J-integral) and by virtual experiments
regression. Numerical tests have been performed and the exponential cohesive-zone interface
model compared against the bi-linear in terms of precision, robustness and computational time.
The results confirm the experimentally observed behavior with anticlastic bending of the arms
and the curved crack front.

1 INTRODUCTION

Delamination is one of the most important and severe failure modes of composite structures.
Resistance to delamination is essentially resistance to fracture of the interlayer connection,
which is expressed in terms of fracture-mechanics parameters such as the critical energy release
rate (GC), the stress intensity factor (KC) or the J integral.

Although in general there are three basic modes of delamination, as well as the combination
of the basic modes (so-called mixed-mode delamination), in this work we will focus only on
mode I (opening) delamination. Experimental studies of mode I delamination are commonly
performed by so-called double cantilever beam (DCB) test [1,2]. For structural joints and
composites, crack is introduced by inserting a thin film in otherwise glued interface and by
pulling the specimen apart one is able to monitor the crack propagation.

Fracture mechanics is divided into discipline of linear elastic (LEFM) fracture mechanics
and elastic-plastic fracture mechanics. In contrast to limit load analysis, fracture mechanics
allows for modelling of inelastic behaviour and drop in load-carrying capabilities. Currently,
this is usually done by using the so-called cohesive zone model (CZM) which was introduced
by Dugdale and Barenblatt [3,4] in the early ’60s of the last century. CZM is used in combi-
nation with finite element method by making the constitutive behaviour of material nonlinear.
This nonlinearity requires iterative solver (e.g. Newton-Raphson method) and definition of so-
called traction-separation law (TSL). By using the J-integral approach, one can experimentally
determine the TSL from DCB experiment [5].

https://doi.org/10.4995/YIC2021.2021.12587
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2 PROBLEM DESCRIPTION AND DCB TEST FOR PLATE-LIKE SPECI-
MEN

Double cantilever beam (DCB) test is the standard test for determining the fracture resis-
tance in mode I. Typical geometry, boundary conditions and loading of the test is illustrated
in Figure 1. Test specimens are made by gluing two equal adherends together in order to
expose them to a symmetric opening load during the experiment, thus creating crack propa-
gation along the bonded surface. Applied load, load-line displacement and crack length are
continuously measured during the experiment. While the first two parameters can be obtained
directly from the tensile-testing machine, for the measurement of the crack length, additional
optical measuring equipment is required. The data obtained from the experiment is then used
to compute the fracture toughness of the adhesive using methods known as data-reduction
schemes [6]. Geometry and material properties used are given in Table 1.

Table 1: Geometry and material used.

Aluminium layer

L = 250 mm
B = 120 mm
h = 6 mm
a0 = 45 mm
E = 70 GPa
ν = 0.33

SikaPower R©-4720 interface

t = 0.5 mm
GIC = 1.15 N/mm2

δ0 = 0.02 mm
σ = 21.15 MPa

Figure 1: Geometry of a DCB specimen with corresponding boundary conditions and loading.

2.1 Critical energy release rate

Crack propagation occurs when G reaches critical value GC . Furthermore, it was shown that
this value equals,

GC =
P 2dC

2Bda
(1)

By using the well-known beam theory expressions for cantilever beam deflection we can
calculate the compliance and its derivative over change of the fractured area, i.e. we can
derive the critical energy release rate GC . Calculation of GC is usually done in accordance
with international standards for determining the fracture resistance in mode I, namely ISO
25217:2009 and ASTM-D3433-99. Experimentally determined fracture resistance is used as a
parameter in CZM model.
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2.2 DCB test for plate-like specimen

To the best of authors’ knowledge, there is no available method to determine fracture resis-
tance of wide specimens where width is comparable to the length. In this scenario beam theory
does not apply and crack front is not a straight line i.e. dA 6= B · da as defined in expression
(2). Experimental findings show that the crack front is curved and that the crack length at the
specimen’s edges is shorter than at its center (see Figure 2). Earlier research [7] reported that
curved crack front has a parabolic shape which is verified in this work.

International standards give instruction on how to measure the crack length along the edge
of the specimen assuming that the crack front does not vary along the width of the specimen.
However, this assumption becomes very questionable for relatively wide specimens. By using
digital image correlation (DIC) it is possible to measure the crack without restricting it to the
edges only. Measurement method takes advantage of the experiment symmetry.

Figure 2: DCB test of wide specimens and observable crack front from the DIC measurement (debonded area
is given in red).

3 MODELLING DELAMINATION

3.1 Cohesive zone model

In a cohesive zone model, a non-linear relationship with softening is introduced between the
relative displacements at the interface and the corresponding tractions. Interface surfaces are
able to lose cohesion and separate from one another as the interface traction σ approach zero.
At first, material behaves elastically, as it would in linear calculation, but after reaching the
maximum traction, softening at the interface takes place.

3.2 Interface elements

Finite element analysis can use specific TSL for various interface elements, such as 1D
spring or multi-node interface, e.g. INT-4, INT-8 [8]. Traction-separation laws can have various
shapes, such as bi-linear, trapezoid, exponential, etc. This report will show the application of 1D
truss/spring element with material described by exponential and bi-linear [9] TSL. Comparison
between the two is shown on Figure 3. Exponential law used here is equivalent to Needleman’s
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mixed mode law [10] but for spring element application, where only mode I is sufficient, TSL
is defined by the authors as follows,

σ (δ) =
GC

δ20
δ · e−

δ
δ0 , (2)

K (δ) =
GC

δ20
· e−

δ
δ0 ·

(
1− δ

δ0

)
. (3)

Area under the curve of TSL (Figure 3) is by definition equivalent to critical energy release
rate GIC . Other TSL parameters such as initial stiffness, maximum traction (maximum stress)
and maximum elongation might be adopted from simple mechanical experiments but this is
not practical nor reliable. Size effect and other influences result in different behavior for bulk
material and cohesive material at interface.

Cohesive-zone interface parameter identification is performed by a direct method (J-integral)
[5] and by virtual experiments regression. Exponential TSL parameters used here are retrieved
from experiments on regular DCB tests [6] and they are mentioned earlier in Table 1. Bi-linear
TSL law has two additional parameter δC , σMAX which can be reduced to either one of the
two. Bi-linear TSL is chosen to match the maximum traction of exponential TSL by integrating
Expression (2) and finding relation,

σmax = GC/(δ0 · e) = 21.155 MPa. (4)

Figure 3: Exponential (eCZM) vs bi-linear (BLCZM) traction-separation law; critical energy release rate and
maximum traction are both made equal for the two TSL.

3.3 Layer elements

Q4-U3 is a facet shell element desig ned for the general shell model analysis [11]. It is
structured as a joined plate and in-plane (membrane) element whose stiffness matrices are
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integrated for a 3D environment. The plate part is based on the cubic linked interpolations for
lateral displacement and two section rotations, and since it is cubic it is also, problem dependent,
e.g. the material parameters E, ν and thickness t are necessary values in the interpolations.
The final expressions for strains (shear strains) are assumed in the simplified form, derived
from the differential kinematic equations because they have to match the equilibrium equations
too. The membrane part of interpolations is also displacement based and has the cubic form
with higher order terms depending of the drilling nodal rotations similar to Allman’s cubic
interpolations for triangle membrane elements. Membrane part is not needed in delamination
simulation considered in this work because in pure mode I delamination there are no in-plane
(membrane) stresses.

3.4 Delamination model

The proposed numerical model makes use of truss interface elements with embedded expo-
nential TSL and 4-node linked interpolation plate/shell element for the layers. Truss elements
are perpendicular to the layers. Pre-processing and post-processing was done in Python while
the main calculations were implemented in FEAP [12] where solution procedure minimizes the
residual. At first, it checks the strain energy norm and then the residual norm before stop-
ping. Equation (2) and (3) are implemented in a user material element along with the plate
finite element from earlier chapter. Only one half of the DCB specimen is modelled due to the
symmetry. Truss interface element has cross-sectional area equal to

A =
(L− a0) ·B

(m− 1) · (n− 1)
, (5)

where m,n are number of nodes across length and width respectively. Interface elements at
edges have only half of the area A from (5), while the four elements at vertices have the same
area as if they were edge elements for simplicity only. Damage history variable that usually saves
the value of maximum separation is not needed because no unloading or reloading occurs during
a DCB experiment. One of the problems encountered was the inability to use a computationally
lightweight mesh size while achieving a convergence in iterative residual minimization. Higher
ductility of the interface parameters (higher δ0, δC) and mesh refinements are the simplest way
to improve convergence. It was found that type of finite element for layer also influences the
result, especially the oscillations as reported in [8]. Advanced solution procedures, such as
arc-length method [8], that can significantly improve convergence of delamination simulation,
have not been used in this work. It has been found that the choice of interface TSL can have a
strong influence on the convergence, which will be evident from the results in the next chapter.

4 COMPARISON OF RESULTS

4.1 Results

Minimum required finite element mesh for exponential TSL was found to be 50 x 10, which
corresponds to element size of 5 x 12 mm. On the other hand, minimum required finite element
mesh for bi-linear TSL was found to be 250 x 24 (or more), meaning that one finite element
is as small as 1 x 5 mm. Mesh regularity (aspect ratio) could be improved for both cases but
this would additionally increase the computational time, in particular for the bi-linear law,
while not improving the results noticeably. Figure 4 and 5 show comparison with experimental
force-displacement data on the left hand side graph. On the right hand side is the plot of
layer separation where the yellow color represents delamination and the purple color represents
portion that is still intact while the white color represents area of initial crack.
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Figure 4: Results for exponential TSL

Figure 5: Results for bi-linear TSL

4.2 Performance assessment

In terms of robustness, we found that the exponential TSL, unlike the bi-linear TSL, is
capable of converging even with oscillating behavior and large number of iterations. The model
with the bi-linear TSL lost convergence near the end of virtual experiment (Figure 5) which
suggests that minimum mesh size should in fact be even more refined, e.g. 250 x 48. Results
for refined mesh are not presented here for the sake of brevity, but they approximately match
the results in Figure 4 although with less oscillations due to increased number of FEM nodes
(over 20 000).

Table 2 shows performance in terms of computational cost. It is found that exponential
law again outperforms the bi-linear law. Our findings relate to a specific case with truss
interface element and this may not translate to other scenarios because this was not observed
earlier by other authors [8]. It is worth noting that the number of iterations per increment
is approximately the same for different meshes used. Furthermore, exponential law as defined
by (2) and (3) is continuous and does not need any IF statements in FEM code in contrast
to bi-linear law which require a total of 3 IF statements. As shown in Table 2, the run-
time needed to finish simulation is obviously in favor to the eCZM. Important factor that has
substantial influence on convergence is the choice of finite element for the layers. All reported
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observations were similar for FEAP’s original SHELL element which actually showed better
convergence properties in all cases. By taking into consideration shear strains of plate (or
beam), delamination problems converge harder. Nevertheless, authors expect that the layer
elements that account for shear deformation will show better behavior in scenarios with multi-
node interface cohesive elements and solution procedures where mesh is sparser as this was the
case in simpler benchmarks [11].

Table 2: Geometry and material used.

eCZM BLCZM
Minimal mesh (No. of elements) 50 x 10 250 x 24
No. of nodes 1012 11300
Average No. of iterations per increment 4.75 4.68 (before loss of convergence)
Run-time 33 seconds 47 minutes

5 CONCLUSIONS

In this work, the curved crack front of a double cantilever beam specimen with width com-
parable to its length has been obtained experimentally and numerically. In addition, force vs
displacement data for experimental and numerical results are in good agreement. Non-linear
truss elements used to model delamination in conjunction with shell elements behave better
in all aspects if exponential, rather than bi-linear, TSL is assumed. Benefits of elements with
higher order interpolation were not noticed for relatively dense meshes used. On the contrary,
accounting for shear strain introduced problems such as oscillations or even loss of convergence.
Reasons behind this phenomenon will also be a topic of further study.
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Abstract: Problems in civil engineering are often characterized by significant uncertainty in
their material parameters. Sampling methods are a straightforward manner to account for
this uncertainty, which is typically modeled as a random field. A popular sampling method
consists of the classic Multilevel Monte Carlo method (h-MLMC). Its most distinctive feature
consists of a hierarchy of h-refined meshes, where most of the samples are taken on coarse and
computationally inexpensive meshes, and few are taken on finer but computationally expensive
meshes. We present an improvement upon the classic Multilevel Monte Carlo, called the p-
refined Multilevel quasi-Monte Carlo method (p-MLQMC). Its key features consist of a mesh
hierarchy constructed from a p-refinement scheme combined with a deterministic set of samples
points (quasi-Monte Carlo points). In this work we show how the uncertainty needs to be
accounted for and present results comparing the total computational cost of the h-ML(Q)MC
and p-MLQMC method. Specifically, we present two novel approaches in order to account for
the uncertainty in case of p-MLQMC. We benchmarking the different multilevel methods on a
slope stability problem, and find that p-MLQMC outperforms h-MLMC up to several orders of
magnitude.

1 INTRODUCTION

Problems in the engineering sciences are typically subject to uncertainty. In order to assess
the uncertainty on the solution of the considered engineering problem, different steps need to
be taken. First, the engineering problem is discretized, i.e., the underlying partial differential
equation (PDE) governing the problem is approximated, by for example, the Bubnov–Galerkin
Finite Element method. Second, the uncertainty present in the material parameters of the
model, is to be represented as accurately as possible. Here, we chose to represent the uncer-
tainty by means of a random field obtained through a Karhunen-Loève expansion (KL). Third,
the modeled uncertainty needs to be accounted for in the Finite Element method. We con-
sider two methods to achieve this step, i.e., the midpoint method and the integration point
method. Fourth, the uncertainty on the solution is to be assessed. A straightforward man-
ner to accomplish this last step, is by means of a stochastic sampling method. A well-known
stochastic sampling method consists of the classic Multilevel Monte Carlo (h-MLMC) method.
First developed by Giles, see [1, 2], the h-MLMC method relies on a hierarchy of refined meshes
in order to reduce the total computational cost by means of variance reduction. Most of the
samples are taken on low resolution and computationally cheap meshes, while a decreasing
number of samples are taken on high resolution and computationally expensive meshes. The
mesh hierarchy is typically constructed by selecting a coarse Finite Element mesh approxima-
tion of the considered problem, and recursively applying the h-refinement scheme. In previous
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work, we introduced the p-refined Multilevel Quasi-Monte Carlo method (p-MLQMC), see [3],
which essentially combines a mesh hierarchy based on a p-refinement scheme, i.e., increasing the
polynomial order of the elements’s shape function, together with a quasi-Monte Carlo sampling
rule based on a rank-1 lattice sequence, e.g., [4]. This combination yields significant compu-
tational cost savings with respect to classic Multilevel (quasi-) Monte Carlo (h-ML(Q)MC).
When accounting for the uncertainty in the Finite Element model, we observed a greater chal-
lenge with the p-MLQMC method than with the h-ML(Q)MC method. In our implementation,
h-ML(Q)MC makes use of the midpoint method, while p-MLQMC makes use of the integra-
tion point method. In this work we present two novel approaches in order to implement the
integration point method, with respect to our previous work see [3], i.e., the Local Nested Ap-
proach (LNA) and the Non-Nested Approach (NNA). In addition to this, we will benchmark
the h-ML(Q)MC method against the p-MLQMC method on a slope stability problem where
the cohesion of the soil is uncertain. The slope stability problem is a geotechnical engineering
problem, where the goal is to assess the stability of natural or man-made slopes.
The paper is structured as follows. First we introduce the considered model problem. Second,
we present the theoretical background pertaining to multilevel methods. Third, we discuss how
the uncertainty is modeled as a random field and focus on how to account for said uncertainty
in the Finite Element model. Last, we present the results obtained for p-MLQMC coupled with
LNA and NNA, and h-ML(Q)MC with the midpoint method.

2 MODEL PROBLEM

The model problem we consider for benchmarking the methods, consists of a slope stability
problem where the soil’s cohesion has a spatially varying uncertainty, see [5]. We will discuss
how to model this uncertainty in §4. In a slope stability problem, the safety of the slope can
be assessed by evaluating the vertical displacement of the top of the slope when sustaining its
own weight. Different discretizations of the slope stability problem are presented in Figure 1.

——— p-refinement ———

——— Level 0 ——— ——— Level 1 ———

——— h-refinement ———

——— Level 0 ——— ——— Level 1 ———

Figure 1: An example of a fine and a coarse mesh used for the slope stability problem with
the location of QoI indicated by �.

We consider the displacement in the plastic domain, which is governed by the Drucker–Prager
yield criterion. In the plastic domain, the stress–strain relation has a nonlinear behavior. There-
fore, in order to compute a strain increment given a stress increment, an elastic predictor–plastic
corrector iterative solver is used. In literature, this is commonly referred to as the ‘Return Map-
ping algorithm’, e.g., [6]. The governing partial differential equations are discretized by means
of the Bubnov–Galerkin Finite Element method, giving rise to a system of equations. In order
to compute the displacement, an incremental load approach is used, i.e., the total load resulting
from the slope’s weight is added in discrete load steps, starting with a force of 0 N. These load
steps are added until the total downward force resulting from the slope’s weight is reached. The
discretized system of equation, describing the displacement, that needs to be solved iteratively
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by a Newton–Raphson solver is given as

K∆u = f + ∆f − k, (1)

where ∆u stands for the displacement increment and K the global stiffness matrix resulting
from the assembly of element stiffness matrices Ke. The right hand side of Eq. (1) stands for
the residual. Here, f is the sum of the external force increments applied in the previous steps,
∆f is the applied load increment of the current step and k is the internal force resulting from
the stresses. For a more thorough explanation on the methods used to solve the slope stability
problem we refer to [7, Chapter 2 §4 and Chapter 7 §3 and §4].

3 SAMPLING AND MESH HIERARCHIES

The expected value of a function P against an s-dimensional probability density function φ is
defined by

E [P ] :=

∫
R
· · ·
∫
R
P (x1, . . . , xs)φ(x1, . . . , xs) dx1 · · · dxs =

∫
Rs

P (x)φ(x) dx. (2)

In order to approximate the integral in Eq. (2), an equal-weight quadrature rule can be used.
An example of such an equal-weight quadrature rules is the Monte Carlo method. In our case,
the function P is obtained by means of a Finite Element method on a chosen discretization
level L, which leads to a first approximation of the integral, E[P ] ≈ E[PL]. The computation
of the integral itself is performed by defining an estimator, leading to a second approximation,
E[PL] ≈ Q

ML(Q)MC
L .

3.1 Multilevel Monte Carlo

In multilevel methods, the expected value of E[PL] is written as a telescoping sum

E[PL] = E[P0] +
L∑
`=1

E[P` − P`−1]. (3)

The resulting MLMC estimator used for the approximation of Eq. (2) is then given as

QMLMC
L :=

1

N0

N0∑
n=1

P0(x
(n)
0 ) +

L∑
`=1

{
1

N`

N∑̀
n=1

(
P`(x

(n)
` )− P`−1(x

(n)
` )
)}

, (4)

where x
(n)
` stands for the nth sample point. In the MLMC estimator the x

(n)
` are (pseudo-

)randomly chosen points, which are distributed according to φ(·), see Eq. (2). The expected
value of the quantity of interest on the finest level ` = L, is expressed as the sample average of
the quantity of interest on the coarsest level ` = 0, plus a series of correction terms on levels
` = {1, . . . ,L}, hence the name ‘telescoping sum’. The variance of the MLMC estimator is
given by

V
[
QMLMC

L

]
=

L∑
`=0

V
[
∆QMLMC

`

]
=

L∑
`=0

V [∆P`]

N`

≈
L∑
`=0

V`
N`

=
L∑
`=0

1

N`

N∑̀
n=1

(
∆P

(n)
` −∆Q`

)2

N`

, (5)

where ∆Q` := 1
N`

∑N`

n=1 ∆P
(n)
` , with ∆P

(n)
` := P`(x

(n)
` ) − P`−1(x

(n)
` ) and P−1 := 0. Multilevel

methods rely on a variance reduction across the levels in order to achieve a computational
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speedup. This means that the sample variance of the difference for increasing level ` contin-
uously decreases, i.e., V [∆P1] > V [∆P2] > · · · > V [∆PL]. This variance reduction is only
obtained when a strong positive correlation is achieved between the results of two successive
levels, P` := P`(x

(n)
` ) and P`−1 := P`(x

(n)
`−1), i.e.,

V [∆P`] = V [P` − P`−1]

= V [P`] + V [P`−1]− 2cov (P`, P`−1) ,
(6)

where cov (P`, P`−1) := ρ`,`−1

√
V [P`]V [P`−1] is the covariance between P` and P`−1 with ρ`,`−1

the correlation coefficient.

3.2 Multilevel quasi-Monte Carlo

The MLQMC estimator is given by

QMLQMC
L :=

1

R0

R0∑
r=1

1

N0

N0∑
n=1

P0(x
(r,n)
0 ) +

L∑
`=1

1

R`

R∑̀
r=1

{
1

N`

N∑̀
n=1

(
P`(x

(r,n)
` )− P`−1(x

(r,n)
` )

)}
, (7)

with its variance given by

V
[
QMLQMC

L

]
=

L∑
`=0

V
[
∆QMLQMC

`

]
. (8)

In order to estimate V[∆QMLQMC] we use the sample variance V` over the R` independent shifts,
see [8]

V` =

R∑̀
r=1

1

R` (R` − 1)

(
1

N`

N∑̀
n=1

∆P
(r,n)
` −∆Q`

)2

, (9)

where ∆Q` := 1
R`

∑R`

r=1
1
N`

∑N`

n=1 ∆P
(r,n)
` , with ∆P

(r,n)
` := P`(u

(r,n)
` )−P`−1(u

(r,n)
` ) and P−1 := 0.

While the MLMC method is based on (pseudo-)random distributed sample points, the MQLMC

method uses deterministic sample points (QMC points), x
(r,n)
` . More specifically, here we

use a rank-1 lattice sequence. In order to recover unbiased estimates of the estimator, the
computation of the estimator and its variance include an averaging over a number of shifts
r = 1, 2, ..., R` on each level `. The procedure of random shifting consists of adding to each
point of the lattice sequence, a uniformly distributed number Ξr ∈ [0, 1)s, after which the
fractional part is taken. This is illustrated in Figure 2. In our implementation R` = 10 for each
`, 0 ≤ ` ≤ L.
The shifted version of the lattice points is given by

x(r,n) := Φ−1 (frac (φ2(n)z + Ξr)) , n ∈ N, (10)

where Φ−1 is the inverse of the univariate standard normal cumulative distribution function,
frac (x) := x−bxc, x > 0, φ2 is the radical inverse function in base 2, and z is an s-dimensional
vector of positive integers. The generating vector z was constructed with the component-by-
component (CBC) algorithm with decreasing weights, γj = 1/j2, see [9].

3.3 Mesh Hierarchies

In the multilevel setting, the levels 0 ≤ ` ≤ L refer to the meshes in the mesh hierarchy. The
coarsest mesh is denoted as level 0, while subsequent refinements of the coarse mesh are denoted
as level 1, level 2, . . . Classically, the mesh hierarchy in the ML(Q)MC method is constructed
starting from a coarse Finite Element mesh, to which h-refinement is recursively applied, see
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Figure 2: Random shifting procedure applied to points belonging to a rank-1 lattice sequence.

[10]. Here, we use a mesh hierarchy based on a p-refinement approach, i.e., increasing polyno-
mial order of the elements’s shape function with increasing level. This mesh hierarchy applied
to the slope stability problem, is shown in Figure 1. The Finite Element nodal points are rep-
resented as black dots. In Figure 1, we also present the h-refined mesh hierarchy of the slope
stability problem.

3.4 Number of Samples

In Multilevel methods, the error is controlled by imposing a tolerance, ε2, on the Mean Square
Error (MSE) of the of the estimator. This MSE is defined as,

MSE
[
Q

ML(Q)MC
L

]
:= E

[(
Q

ML(Q)MC
L − E[P ]

)2
]

= V[Q
ML(Q)MC
L ] +

(
E
[
Q

ML(Q)MC
L

]
− E[P ]

)2

= V[Q
ML(Q)MC
L ] + (E[PL − P ])2 .

(11)

The right-hand side of Eq. (11) consists of two parts, i.e., the variance of the estimator,

V[Q
ML(Q)MC
L ], and the squared bias, (E[PL − P ])2. The stopping criterion for multilevel schemes

is typically based on the requirements that both terms are less than ε2

2
. In order to achieve the

requested tolerance for the variance of the estimator, the number of samples is increased. In
the MLMC method, the optimal number of samples per level is given as

N` =
2

ε2

√
V`
C`

L∑
`=0

√
V`C`, (12)

where V` stands for the sample variance, see Eq. (5), and C` is the cost to compute one sample
on level `, see [2]. However, in the MLQMC method, the number of samples to be taken is
determined by means of a ‘doubling’ algorithm, see [4]. The procedure starts by computing a
number of warm-up samples together with a user-defined number of shifts on each level. From

these samples V
[
∆QMLQMC

`

]
is estimated on each level `, see Eq. (9). The iterative step consists

of selecting the level τ on which the ratio of the variance of the estimator with the sample cost
is maximal, i.e., argmax

τ∈L
(Vτ/Cτ ). On this level τ the number of samples is multiplied with a

constant factor. This procedure is repeated until V
[
QMLQMC

L

]
< ε2

2
. In our approach, this

constant is chosen as 1.2.
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4 UNCERTAINTY MODELING AND INCORPORATION

The uncertainty present in the cohesion of the soil of the slope stability problem is modeled
as a lognormal random field, i.e., the exponential of a Gaussian random field. Realizations
of the Gaussian random field are computed by means of the truncated Karhunen–Loève (KL)
expansion,

Z(x, ω) = Z(x) +
s∑

n=1

√
θn ξn(ω) bn(x), (13)

where s is the number of terms in the expansion, i.e., the number of stochastic dimensions.
Here, Z(x) is the mean of the field and ξn(ω) denote i.i.d. standard normal random variables.
The eigenvalues θn and eigenfunctions bn(x) are the solutions of the eigenvalue problem∫

D

C(x,y) bn(y) dy = θn bn(x), (14)

where C(x,y) is a given covariance kernel. The kernel we consider for the random field is the
Matérn covariance kernel

C(x,y) :=
σ2

2ν−1Γ (ν)

(√
2ν ‖x− y‖2

λ

)ν

Kν

(√
2ν
‖x− y‖2

λ

)
, (15)

where ν is the smoothness parameter, Kν(·) is the modified Bessel function of the second kind,
Γ(·) is the gamma function, σ2 is the variance, λ is the correlation length, and ‖·‖2 is the L2

norm. The integral in Eq. (14) is approximated by means of a numerical collocation scheme.
For more information, we refer to [11, Chapter 7 Section 2]. The lognormal representation
of the random field is obtained by applying the exponential to the field obtained in Eq. (13),
Zlognormal(x, ω) = exp(Z(x, ω)).
In order to incorporate the uncertainty in the Finite Element model, we consider two different
methods, the midpoint method and the integration point method. In both methods the uncer-
tainty resides in the elastoplastic constitutive matrix D. This matrix is used for constructing
the element stiffness matrices by integrating the following expression,

Ke =

∫
Ωe

BTDBdΩe ≈
|q|∑
i=1

BT
i DiBiwi. (16)

The matrix B contains the derivatives of the element shape function, and |q| is the number
of quadrature points used for the numerical integration. The assembly of the element stiffness
matrices results in the global stiffness matrix, see Eq. (1). In practice, the matrix Ke is
computed by means of a quadrature rule, where Bi stands for the matrix B evaluated at
quadrature point qi ∈ q, i.e., B(qi), Di the matrix D containing the uncertainty, i.e., D (ωi),
and wi the quadrature weight.
We will now present the two methods used to account for the uncertainty in the Finite Element
method. The goal consists of selecting the random field evaluation points x used for the
evaluation of Eq. (13). Because we are considering a multilevel approach, a set of random field
evaluation points must be selected for each level, i.e., x` for ` = {0, . . . ,L}.

4.1 Midpoint Method

The midpoint method is often used in conjunction with the h-ML(Q)MC method. The random
field evaluation points are selected as the centroids of the elements, i.e., Eq. (13) is evaluated

30



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

at the centroids of the elements and the resulting values are assigned to the elements. This is
shown in Figure 3, where  represent the spatial locations of the centroids of the elements. In
case of the midpoint method, the uncertainty inside each element is assumed to be constant,
i.e., D1 = D2 = · · · = D|q|, see Eq.(16). Note that the resolution of the random field increases
with each level, i.e., |x0| < |x1| < · · · < |xL|.

——— Level 0 ——— ——— Level 1 ———

Figure 3: Locations of the random field evaluation points  for the midpoint method.

4.2 Integration Point Method

In the p-MLQMC method, the number of elements in the hierarchy of mesh discretizations
remains the same. Therefore, the midpoint method can not be used if we want the resolution
of the random field to increase with increasing level. In order to obtain a higher resolution of
the random field per increasing level, we use the integration point method, see [12], with the
added condition that the number of quadrature points used to numerically integrate Eq. (16)
also increases with increasing level. In the integration point method, Eq. (13) is evaluated
at the locations of the quadrature points, or integration points, meaning that the uncertainty
varies inside each individual element, i.e., D1 6= D2 6= · · · 6= D|q|.

4.2.1 Non-Nested Approach

The Non-Nested Approach is the most simple way to select random field evaluation points. In
this approach, the random field evaluation points are chosen equal to the quadrature points
used for the numerical integration of Eq. (16). In practice, these quadrature points are first
selected on a reference triangular element, see Figure 4, before being mapped to the global
coordinates of the mesh. Note that the sets of quadrature points are not nested across the
different levels, i.e., q0 6⊆ q1 6⊆ · · · 6⊆ qL. Hence the sets of random field evaluation points are
not nested across the levels either, i.e., x0 6⊆ x1 6⊆ · · · 6⊆ xL. The obtained sets of random
field evaluations points x`, with 0 ≤ ` ≤ L, are then used to compute discrete instances of
the random field according to Eq. (13). As such, the random field Z(x, ω) is approximated on
each level by a discrete set of random variables. Defining Z` := (Z(x`, ω),x`) as the the set of
random variables representing the random field and their locations, we see that those are not
nested across levels, i.e., Z0 6⊆ Z1 6⊆ · · · 6⊆ ZL. This impacts the variance reduction, see Eq. (6),
as it leads to a weak correlation between the solutions on successive levels.

—— Level 0 —— —— Level 1 —— —— Level 2 ——

Figure 4: Locations of the quadrature points 4 and the random field evaluation points  on
a reference triangular element for NNA.

             31



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

4.2.2 Local Nested Approach

In the Local Nested Approach we try to improve the correlation between the solutions on
different levels. Ideally, one would have Z0 ⊆ Z1 ⊆ · · · ⊆ ZL, i.e., the random field on each
level is represented by using an exact subset of the information used to represent the random
field on the finest level. Such an approach has been tried in [13], with limited success. Here,
we suggest an alternative in which we only aim at a good correlation between each set of two
successive levels in the mesh hierarchy. Such a two-by-two correlation is sufficient for multilevel
sampling methods to achieve a rapid reduction of V[∆P`].
Consider the correction E[∆P`] := E[P` − P`−1], which is one of the terms in the telescopic
sum, Eq. (3). The integral for computing the element stiffness matrices in P` makes use of the
quadrature point set q`. At those points, we evaluate the random field Z(x, ω), i.e., we set
x` = q`. The integral for computing the element stiffness matrices in P`−1 makes use of the
quadrature point set q`−1. However, we do not evaluate the random field at those locations,
but rather evaluate the random field at points which are a subset of x`, i.e., x`−1,subs ⊆ x`, such
that they have minimal distance with q`−1. This is illustrated in Figure 5. (Note that this
approximation is done on the level of the reference triangular element, before the mapping to
the actual elements of the mesh.)
Define again Z` := (Z(x`, ω),x`), here with x` = q`, and x`,main := x`. The local nested ap-
proach ensures that, for each correction E[∆P`] separately, a relation Z`−1,subs ⊆ Z` is satisfied.
Here, Z`−1,subs is a ’substitute random field’, which approximates Z`−1. The substitute field
correlates well with the discrete field on the `’th level as it shares part of that field’s random
variables.

—— Level 0 ——

—— Main —— —— Substitute ——

—— Level 1 ——

—— Main —— —— Substitute ——

—— Level 2 ——

—— Main ——

Figure 5: Locations of the quadrature points 4 and the random field evaluation points  on
a reference triangular element for LNA.
An important note must be made concerning the LNA approach. While it successfully correlates
the solutions of two successive levels, the expected value obtained from the telescoping sum is
biased. We have observed a small bias of the order of 10−6 with respect to the actual values, an
error that is well below the discretization error of the finite element discretization. The reasons
behind this additional bias stems from the fact that substitute random fields are used. We are
currently investigating how this additional bias can be avoided.

5 RESULTS

In this section we discuss the results obtained with the p-ML(Q)MC-LNA/NNA and the h-
ML(Q)MC methods. The quantity of interest (QoI) is taken as the vertical displacement in
meters of the upper left node of the model. This location of the QoI is depicted in Figure 1
by �. The mesh hierarchies shown in Figure 1 are generated by using a combination of the
open source mesh generator GMSH, see [14], and Matlab, see [15]. In this paper we consider
two-dimensional Lagrange triangular elements. The random field, computed by means of the
Julia package GaussianRandomFields.jl [16] has the following parameters ν = 0.4, σ2 = 1.0,
λ = 1.5. The characteristics of the lognormal distribution used to represent the uncertainty
of the cohesion of the soil are as follows: a mean of 8.02 kPa and a standard deviation of
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400 Pa. The spatial dimensions of the slope are: a length of 20 m, a height of 14 m and a
slope angle of 30◦. The material characteristics are: a Young’s modulus of 30 MPa, a Poisson
ratio of 0.25, a density of 1330 kg/m3 and a friction angle of 20◦. The number of stochastic
dimensions considered for the generation of the Gaussian random field is s= 400, see Eq. (13).
With a value s = 400 at least 99% of the variability of the random field is accounted for.
The stochastic sampling was performed with the Julia packages MultilevelEstimators.jl, see
[17]. The Finite Element code used, is an in-house Matlab code developed by the Structural
Mechanics Section of the KU Leuven. All the results have been computed on a workstation
equipped with 2 physical cores, Xeon Gold 6240 CPU’s, each with 18 logical cores, clocked at
2.60 GHz, and a total of 192 GB RAM.

5.1 Displacement of the Mesh

In Figure 6 we show the displacement of the mesh and the value of the QoI for four samples of
the random field computed on the first four levels.

——— Level 0 ——— ——— Level 1 ——— ——— Level 2 ———- ———– Level 3 ————

QoI = 0,0536m QoI = 0,0591m QoI = 0,0625m QoI = 0,0628m

Figure 6: Displacement of the mesh and QoI for different samples of the random field.

5.2 Variance and Expected Value

In Figure 7 we show the sample variance over the levels V [P`], the sample variance of the
difference over the levels V [∆P`], the expected value over the levels E [P`] and the expected
value of the difference over the levels E [∆P`].
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Figure 7: Variance and Expected Value over the levels.

As expected, we observe that E [P`] remains constant over the levels, while E [∆P`] decreases
with increasing level. As explained in §3.1, multilevel methods are based on a variance re-
duction. In practice this means that the sample variance V [P`] remains constant across the
levels, while the sample variance of the difference over the levels V [∆P`] decreases per in-
creasing level. This is indeed what we observe for p-ML(Q)MC-LNA and h-ML(Q)MC. For
p-ML(Q)MC-NNA we observe that V [∆P`] does not decrease, but oscillates. From Figure 7,
we can conclude that the choice of the evaluation points for the random field greatly influences
the behavior of V [∆P`] in the p-MLQMC method.
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5.3 Runtimes
We show the absolute and relative runtime as a function of the user requested tolerance ε on
the RMSE in Figure 8.
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Figure 8: Absolute runtimes in function of requested user tolerance.

The results for the absolute runtime are expressed in seconds. For the relative runtime, we
have normalised the computational cost of all the methods such that the results for p-MLQMC-
LNA have unity cost for each tolerance. We observe that p-MLQMC combined with the LNA
approach outperforms all other considered methods. p-MLQMC-LNA outperforms p-MLQMC-
NNA by a factor 2 to 8. In addition, the p-refined Multilevel methods outperform the h-refined
Multilevel methods. p-refined MLQMC achieves a speedup up to a factor 60 with respect to
h-MLQMC and a factor 100 with respect to h-MLMC.

6 CONCLUSION

In this work, we have benchmarked the p-MLQMC method on a slope stability problem where
the soil has a spatially varying uncertainty. We also investigated how the evaluation points
of the random field are to be selected in the p-MLQMC method in order to obtain a lower
computational cost. We distinguished two different approaches, the Non-Nested Approach and
the Local Nested Approach. We showed that the approaches impact the variance reduction over
the levels, and thus the total computational cost. p-MLQMC combined with LNA exhibits a
much better decrease of V [∆P`] due to a better correlation between the levels than with NNA.
This is reflected in the total computational cost where the LNA approach outperforms NNA
by a factor between 2 to 8. We also showed that the p-MLQMC-LNA method outperforms
h-Multilevel Monte Carlo (h-MLMC) by a factor ranging between 60 and 100, and classic
Multilevel quasi-Monte Carlo (h-MLQMC) by a factor 25 to 60. Of the considered approaches,
the p-MLQMC-LNA method offers the lowest computational cost for a given tolerance on the
RMSE.
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Abstract: Fiber metal laminates (FML) are lightweight hybrid structural materials that com-
bine the ductile properties of metal with high specific stiffness of fiber reinforced plastics. These
advantages led to a dramatic increase in such materials for aeronautical structures over the last
few years. One of the most common and vulnerable defects in FML is impact-related delami-
nation, often invisible to the human eye. Guided ultrasonic waves (GUW) show high potential
for monitoring structural integrity and damage detection in thin-walled structures by using the
physical phenomena of wave propagation interacting with the defects. The focus of this research
project is on describing an inverse solution for the detection and characterization of defect in
FML. Model-based damage analysis utilizes an accurate finite element model (FEM) of GUW
interaction with the damage. The FEM is developed by the project partners from mechanics at
Helmut-Schmidt-University in Hamburg, Germany, and will be treated as a black-box for fur-
ther analysis. A Bayesian approach (Markov chain Monte Carlo) is employed to characterize
the damage and quantify its uncertainties. This inference problem in a stochastic framework
requires a very large number of forward solves. Therefore, a profound investigation is carried
out on different reduced-order modeling (ROM) methods in order to apply a suitable technique
that significantly improves the computational efficiency. The proposed method is well illustrated
on a simpler case study for the damage detection, localization and characterization using 2D
elastic wave equation. The damage in this case is modeled as a reduction in the wave propa-
gation velocity. The inference problem utilizes a parameterized projection-based ROM coupled
with a surrogate model instead of the underlying high-dimensional model.

1 INTRODUCTION

Fiber reinforced plastics (FRPs), due to their very high strength to weight ratio, are often
the favorite choice of material for engineers in building lightweight structures. Although FRPs
possess high specific stiffness, they exhibit a weak bearing behaviour and impact resistance. In
order to overcome these disadvantages of FRPs, fiber metal laminates (FMLs) are developed
in the late 20th century. FMLs have the ability to demonstrate elastic-plastic behavior, as a
corollary, a part of the energy introduced by impacts is absorbed by plastic deformations of the
metal layers impeding its failure. The most commonly used FML is glass laminate aluminium
reinforced epoxy (GLARE), which has excellent fatigue strength, high specific strength and
low weight. However, due to its complex structure with different materials, its application is
very challenging in terms of its production as well as the damage detection. Guided ultrasonic
waves (GUW) have an immense potential in ensuring integrity of the structure and have been
extensively used over the last decade. It has been shown that the propagation behavior of
GUW changes when interacting with a damage.[1,2]

Numerical studies like finite element methods (FEM) play a crucial role for a well founded
analysis of wave propagation and to assess the suitability of the GUW for damage detection.
Furthermore, based on these numerical models, the requirements for sensors and actuators

https://doi.org/10.4995/YIC2021.2021.12684
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can be derived with regard to their sensitivity through the solution of an inverse problem.
Often high-dimensional FEM analysis will be very expensive which restricts us to use them
directly for an inverse problem analysis. To alleviate this burden, projection-based model order
reduction techniques are commonly used. There exits two approaches towards solving an inverse
problem: the method of maximum likelihood estimation (MLE) and Bayesian estimation. The
former results into the best single point estimation of the parameter while the latter models the
parameter as a random variable and produces a probability density function (PDF) associated
with it. The fact that the likelihood function is often extremely complicated with several local
maxima, inhibits the use of MLE approach. Therefore, the inverse optimization problem is
reformulated to a stochastic inference problem.[3]

Based on the current status of this research project, we consider a two-dimensional elastic
hyperbolic wave equation as a test case, upon which a parameterized reduced order model is
developed and Bayesian inference is applied to estimate the damage parameters. The remainder
of this paper is organized as follows. Section 2 and section 3 describes the numerical model
and the model order reduction approach used in this project respectively. Bayesian stochastic
framework for damage identification is described in section 4. Section 5 discusses the results of
parametric model reduction and damage characterization. Finally, conclusion and future works
are given in section 6.

2 NUMERICAL MODEL

As the FEM model for wave propagation in FML is currently being developed by the project
partners from mechanics group at Helmut-Schmidt-University in Hamburg, several potential
inverse problem algorithms for damage characterization are simultaneously analyzed at Techni-
cal University Braunschweig. This led to the use of a simpler model, a two dimensional elastic
hyperbolic wave equation, instead of the FEM model itself.

A 2D plate of isotropic and heterogeneous medium with multiple damages (two damages) is
considered and the wave propagation is modeled by the equation:

ü− c2∆u = f. (1)

Here, u(µ, t) is displacement of the plate, ∆ is the Laplacian in R2, c(x, y) describes the wave
velocity at any given point (x, y) on the plate, and f(x, y, t) is the excitation function. The
system is parameterized by µ ∈ R3d, where d represents the number of damages and the factor
3 accounts for the number of parameters x, y, c for each of the damages.

Figure 1: Distribution of wave propagation velocity in the plate

The plate has a side of 5 m and the damage was modeled as a change in the wave propa-
gation velocity. Approximating the spatial derivatives using central difference operators, the
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considered hyperbolic wave equation can be written as follows:

ü− Au = f (2)

with A(µ) = C(x, y)∆. Here, A(µ) ∈ RN×N is a parameterized symmetric positive definite
matrix, C(x, y) ∈ RN×N is a matrix with squared wave velocities at any given x-y coordinate,
and u(µ, t), f(x, y, t) ∈ RN at any given instant of time t ∈ [0, T ]. The plate is discretized with
an element size of 0.02 m in both x and y directions. The wave propagation velocity in the
intact area is assumed to be 0.5 ms−1. Figure 1 represents the distribution of wave propagation
velocity in the plate. The green intact area of the plate has the highest velocity (0.5 ms−1)
whereas the brown regions represent the damages with relatively lower propagation velocity.
Based on Courant-Friedrichs-Lewy condition[4], the time step for numerical integration of the
system is evaluated as 0.02 s in order to avoid the convergence issues.

3 PARAMETRIC MODEL ORDER REDUCTION

The numerical simulation of large-scale engineering problems requires a huge computational
effort. To overcome this computational cost, projection-based model reduction techniques are
often employed to reduce the model without a considerable loss of accuracy. The order reduc-
tion is accomplished by projecting the full order solution to the reduced order space using an
orthogonal projection matrix Φ ∈ RN×n such that,

u ≈ uh = Φα ü ≈ üh = Φα̈. (3)

where, uh is the approximation of displacement u. Inserting (3) into (2) and projecting it onto
the lower dimensional space leads to the reduced order problem,

Φα̈− AΦα = f

ΦTΦα̈− ΦTAΦα = ΦTf

α̈− Arα = fr (4)

where, α(µ, t) ∈ Rn, Ar(µ) ∈ Rn×n and fr(x, y, t) ∈ Rn at any given instant of time t. The
projection matrix Φ can be obtained by proper orthogonal decomposition (POD) of adap-
tively extracted features of the system. The displacements of the system that are numerically
evaluated at m discrete time steps are saved in an observation matrix called snapshot matrix
U ∈ RN×m

U =

 u(t1) u(t2) . . . u(tm)

 . (5)

The snapshot matrix is then split into its basis and coefficients using singular value decom-
position, U = PΣV T . Here, Σ ∈ Rm×m is a diagonal matrix containing singular values σj,
P ∈ RN×m is a left singular matrix with proper orthogonal modes (POMs) and V ∈ Rm×m is
a right singular matrix. The projection error incurred for considering upto σk singular values
can be measured as

E =

∑m
j=k+1 σ

2
j∑m

j=1 σ
2
j

(6)

see Kerschen and Golinval, 2002[5]. Using (6), the required level of accuracy to capture the
energy of the system can be chosen and subsequently, the number of POMs that enriches the
projection matrix can also be decided

Φ = [p1, p2, ..., pn]. (7)
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As the governing equation depends on several parameters like x-y coordinates of the central
position of the damage(s) and wave propagation velocity c in the damaged area(s), a parametric
model order reduction (PMOR) is targeted. Due to its affine parameter dependency of the wave
equation, PMOR involves an offline training phase, where the projection matrix Φ is built. This
ensures that the projection matrix need not vary with the model parameters during the inverse
problem analysis (online phase). After an intensive literature review, it was found that there was
only one previous work that studied PMOR for hyperbolic wave equation using classical POD-
Greedy approach[6]. However, in this project, an adaptive POD-Greedy procedure with kriging
based on the work of Paul-Dubois-Taine[7] is applied to accomplish the PMOR through an
optimized exploration strategy. This includes construction of a surrogate model for evaluating
the reduced model error estimates, finding the largest error estimate, solving the full order model
for the corresponding parameter sample with largest error estimate and subsequently updating
the reduced-order model (ROM). The error estimate[6,8,9] at time t used in this procedure is as
follows:

eh(µ) = ‖u− uh‖ ≤
√

(
γ

β
‖eh,0‖2 +

1

β
‖ėh,0‖2) +

1√
β

∫ t

0

‖r(s)‖ ds (8)

where, eh,0 and ėh,0 are the error estimate and its derivative at t = 0 respectively. β and γ are
the coercivity and continuity constants of A(µ) and the residual is given by r with s ∈ [0, T ].
After each greedy iteration, more error estimates are available to build the surrogate model. As
the greedy algorithm proceeds, it eventually makes the error model more accurate and thereby
finds a more optimal reduced space. It is essential to ensure that Φ remains orthogonal in
this procedure. The offline phase can be terminated whenever the largest error estimate in an
iteration is less than the specified threshold error value. Once the projection matrix Φ which
is enriched with the required number of POMs is obtained, the solution can be evaluated using
(3).

4 BAYESIAN INFERENCE FOR DAMAGE CHARACTERIZATION

Given the shape and size of the damage, the parameters µ = {x, y, c} for a damage are
estimated using the Bayesian stochastic framework. The parameter vector µ is represented
by a prior probability distribution P (µ|I) conditioned upon the prior knowledge I on the
parameters. The posterior PDF P (µ|D, I) given data D and prior information is given by the
Bayes’ formula:

P (µ|D, I) =
P (D|µ, I)P (µ|I)

P (D|I)
(9)

where, P (D|µ, I) is the likelihood function that describes how likely are the candidate param-
eters to produce the given measurement data. The denominator P (D|I) is called as marginal
likelihood or evidence which ensures the integration of the posterior PDF results to 1. Unlike
the deterministic approach that yields point estimates of the damage parameters, Bayesian
inference method aims to describe posterior distribution for a given set of measurement data
D. This allows the researcher to quantify the uncertainties associated with those parameters.
The L2 norm of the residual between the measurements and model output recorded at each
sensor is considered to identify the damage. This quantity implicitly signifies the time-of-flight
information. In this test case problem, four sensors are located at 4 corners of the plate with an
actuator in the center that establishes a pitch-catch configuration to characterize the damage
(see Figure 2(a)). The presence of model and measurement errors are described together by
the variable ε. For convenience, ε is assumed to be an independent Gaussian variable with its
mean at zero and standard deviation of σε, ε ∼ N (0, σε). This uncertainty is added to the
model output to generate synthetic data D which is used to carry out this inference problem.
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The evaluation of posterior distribution is often analytically intractable and hence one tend
to draw samples numerically from the posterior. A more commonly used procedure is Markov
chain Monte Carlo (MCMC) method, which results into a dependent sequence of samples from
a stationary distribution, asymptotically equal to that of the target distribution. Of several
existing MCMC variants, we describe Metropolis-Hastings (MH) algorithm[10] and the same is
used in this work.

(a) Multiple damages (b) Single damage

Figure 2: A snapshot of wave propagation and damage scattering

An arbitrary sample from the prior distribution µi is picked, then the algorithm produces a
proposal candidate sample µ∗

i using a stochastic model P (µ∗
i |µi) which denotes the probability

of attaining µ∗
i conditioned upon the current sample. Both the samples µ∗

i , µi are then used to
evaluate the ratio r:

r =
P (D|µ∗

i , I)× P (µ∗
i |I)× P (µi|µ∗

i )

P (D|µi, I)× P (µi|I)× P (µ∗
i |µi)

(10)

which is nothing but the ratio of their posteriors multiplied by the ratio of the candidate
generating stochastic models. The current sample µi is updated to the proposal candidate
sample µ∗

i if the ratio r > z, where z is a random value between 0 and 1. This acceptance-
rejection sampling is iteratively carried out for a large specified number of samples, NT , which
ensures that the resulting Markov chain is stationary. Often, when starting from an arbitrary
sample, there exist an initial phase of non-stationary period nB while building the chain. This
period is called ’burn-in’ period and the samples until nB have to be discarded to represent the
final posterior distribution.

5 RESULTS

For convenience, model reduction is carried out on a slightly different setup with 2 sensors
and one damage as shown in figure 2(b). The PMOR is trained in the parametric domain,
P = {x× y × c | [0.5, 4.5]× [0.5, 4.5]× [0.05, 0.45]}. The application of adaptive POD-Greedy
algorithm as described in section 3 produced 800 global modes that could very well capture
dynamics of the system for any sample µ from P . Figure 3 depicts the reconstruction of wave
signal measured at sensor 1, as shown in figure 2(b), for four randomly selected parameter
samples in P . On a 4-core Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz processor with 16
GB RAM, the evaluation of high-fidelity (HiFi) 2D elastic wave equation took 1.73 s while the
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reconstruction using global modes took 1.92 s. Based on the computation time, the first instinct
questions the purpose of model reduction. But the actual computational efficiency of PMOR
can be realized when applied to a much sophisticated higher-dimensional problem, for example,
the FEM-model of composite structures which involves the evaluation of individual element
shape functions. However, the application of adaptive POD-Greedy PMOR on hyperbolic
wave equation is very well demonstrated through this test case.

(a) µ = [2.2, 2.2, 0.05] (b) µ = [1.4, 3.0, 0.05]

(c) µ = [1.68, 3.0, 0.3] (d) µ = [1.68, 2.6, 0.15]

Figure 3: Comparison of reduced-order solution with high-fidelity solution

Bayesian inference for damage characterization was informed by the reduced-order model
instead of the high-fidelity model. In order to embed multiple damages, the configuration shown
in figure 2(a) is used to estimate the damage parameters and quantify their uncertainties. The
MCMC approach described in section 3 is performed to localize and characterize the damages.
The measurement data is obtained by adding a zero mean Gaussian-type errors to the model
output. The data used for Bayesian inference is generated as follows:

D = M(µ, t) + ε (11)

where, M(µ, t) is the noise-free model output and ε is the normally distributed measurement
error of 5%. The damage localization parameters, i.e., the x-y coordinates are uniformly dis-
tributed in [0.5, 4.5] m and the localized wave propagation velocity in the damaged areas are
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also uniformly distributed in [0.05, 0.45] ms−1. By MCMC-MH algorithm, 35000 samples from
the posterior distribution are drawn. Figure 4(a) illustrates the point estimate and figure 4(b)
shows the joint posterior PDF of the x-y coordinates of the center location of the damages
in 2D view. The posterior PDF is not normalized with the evidence. The identified center
locations of damage 1 and damage 2 are 0.21 m and 0.11 m respectively away from their actual
locations accounting for relative errors of 4.2% and 2.2% with respect to the minimum sensor
spacing. Similarly, the propagation velocities in damage 1 and damage 2 are estimated to have
relative errors of 3.3% and 6.08% respectively. These small quantities of errors in parameter
estimation describes the effectiveness of Bayesian inference approach.

(a) Deterministic estimate (b) Stochastic estimate

Figure 4: Illustration of the localization of the damages with center locations at (3.2, 1.7) and
(1.25, 3.75) using the deterministic and stochastic approaches

Figure 5: Trace plot of the estimated damage parameters using Bayesian approach with their
true values indicated in red dashed lines.

Trace plots and histograms for the damage parameters corresponding to 5% measurement
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error are shown in figure 5 and 6 respectively. Trace plots show the Markov chains for each
parameter while the histograms represent their marginal posterior distributions. The true
values are indicated in red dashed lines in each of these plots. The histograms indicate that all
the parameters appear normally distributed with some skewness around their true values.

Figure 6: Histograms of the estimated damage parameters using Bayesian approach

Table 1: CoVs of damage parameters for 5% measurement error

Parameters Damage 1 Damage 2
x 0.144 0.122
y 0.324 0.101
c 0.318 0.374

The uncertainties associated with parameters are analyzed using coefficient of variation
(CoV)[11]. CoV is defined as the ratio of the standard deviation to the mean of the distri-
bution. The CoVs for the estimated damage parameters are listed in table 1. The values of
CoVs increase as the standard deviation of the error model in (11) increases. This is illustrated
in the table 2 containing the CoVs for 7% and 10% error. Therefore, it is crucial to recog-
nize the fact that the estimation uncertainties are positively correlated with the errors, i.e.,
uncertainties magnifies with the rise in modeling and measurement errors.
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Table 2: CoVs of damage parameters for 7% and 10% measurement errors

7 % 10 %
Parameters Damage 1 Damage 2 Damage 1 Damage 2

x 0.287 0.274 0.422 0.421
y 0.382 0.219 0.451 0.407
c 0.412 0.433 0.487 0.574

6 CONCLUSIONS AND FUTURE WORK

This work implemented considerable amount of the future work associated with this re-
search project. An investigation of the applicability of parametric model-order reduction and
Bayesian framework for damage identification is presented here. The effectiveness of the pro-
posed approaches for model-order reduction and damage identification is validated by a nu-
merical experiment on a two-dimensional elastic wave equation. The numerical study showed
that not only the damages are localized but also the defects are well characterized, i.e., the
wave velocities in the damaged areas are also estimated in this case study. The described
adaptive POD-Greedy procedure with kriging produced a global projection matrix over the
entire parametric domain which is used to evaluate the reduced-order solution. Subsequently,
the Bayesian approach for inferring the damage parameters employed the reduced-order model
rather than the high-fidelity model. Unlike pinpointing the estimate of parameters through the
classical deterministic method, the Bayesian inference produced a distribution for the damage
parameters. These distributions are not only used to identify the damage parameters with
certain confidence levels but also to quantify their associated uncertainties.

Future work concerns the application of the presented methods on a finite element model
of guided wave propagation in fiber metal laminate structures for the damage identification.
Obviously, the anisotropic nature of the material could possibly impose challenges which need
to be addressed. The number of parameters involved in the constitutive modeling of composite
materials is usually large and hence a prior sensitivity analysis should be performed in order to
ignore the less influential parameters in damage characterization. Also the embedded sensors
and actuators could potentially act as defects, hence novel techniques are required to solve this
artefact. It is ultimately aimed to detect, localize and characterize the class and degree of the
damage in FML structures. This study can also be further extended to estimate the in-plane
residual strength of the structure corresponding to the estimated parameters using a suitable
artificial neural network model.
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Abstract: Isogeometric Analysis (IgA) can be seen as the natural extension of the Finite
Element Method (FEM) to high-order B-spline basis functions. Combined with a time inte-
gration scheme within the method of lines, IgA has become a viable alternative to FEM for
time-dependent problems. However, as processors’ clock speeds are no longer increasing but
the number of cores are going up, traditional (i.e., sequential) time integration schemes become
more and more the bottleneck within these large-scale computations. The Multigrid Reduced
in Time (MGRIT) method is a parallel-in-time integration method that enables exploitation
of parallelism not only in space but also in the temporal direction. In this paper, we apply
MGRIT to discretizations arising from IgA for the first time in the literature. In particular,
we investigate the (parallel) performance of MGRIT in this context for a variety of geometries,
MGRIT hierarchies and time integration schemes. Numerical results show that the MGRIT
method converges independent of the mesh width, spline degree of the B-spline basis functions
and time step size ∆t and is highly parallelizable when applied in the context of IgA.

1 INTRODUCTION

Isogeometric Analysis (IgA) [1] can be seen as the natural extension of the Finite Element
Method (FEM) to high-order B-spline basis functions. By using the same building blocks (i.e.,
B-splines and Non-Uniform Rational B-Splines) as in Computer Aided Design (CAD), IgA
tries to bridge the gap between CAD and FEM, resulting in a highly accurate represention of
(curved) geometries. Furthermore, the use of high-order B-spline basis functions has shown to
be advantageous in many applications [3, 4, 5] and the accuracy per degree of freedom (DOF)
compared to FEM is significantly higher [6].

For time-dependent partial differential equations (PDEs), Isogeometric Analysis is often
combined with a time integration scheme within the method of lines. However, as with all tra-
ditional time integration schemes, the latter part is sequential by design and hence, a bottleneck
in numerical simulations. When the spatial resolution is increased to improve accuracy, the
time step size has to be reduced accordingly to ensure stability of the overall method. At the
same time, processors’ clock speeds are no longer increasing, but the core count goes up, which
calls for the parallelization of the calculation process to benefit from modern computer hard-
ware. As traditional time integration schemes are sequential by nature, new parallel-in-time
methods are needed to resolve this problem.

The Multigrid Reduced in Time (MGRIT) method [2] is a parallel-in-time algorithm based
on multigrid reduction (MGR) techniques [7]. In contrast to space-time methods, in which time
is considered as an extra spatial dimension, sequential time stepping is still necessary within
MGRIT. Space-time methods have been combined in the literature with IgA [8]. Although
very successful, a drawback of such methods is the fact that they are more intrusive on existing
codes, while MGRIT just requires a routine to integrate the fully discrete problem between two
time instances. Over the years, MGRIT has been studied in detail and applied to a variety of
problems in the literature [9, 10].

https://doi.org/10.4995/YIC2021.2021.12219
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To the best of our knowledge, this is the first publication that reports on combining Isogeo-
metric Analysis and MGRIT and therefore our focus lies on the performance of MGRIT when
different multigrid hierarchies, geometries and time integration schemes are considered within
an IgA setting.

This paper is structured as follows: Section 2 presents our two-dimensional model problem
and its spatial and temporal discretization. The MGRIT algorithm is then described in Sec-
tion 3. Numerical results, including CPU timings, obtained for different geometries and time
integration schemes are presented for different configurations of the MGRIT method in Section
4. Finally, conclusions are drawn in Section 5.

2 MODEL PROBLEM AND DISCRETIZATION

As a model problem, we consider the transient diffusion equation:

∂tu(x, t)− κ∆u(x, t) = f(x), x ∈ Ω, t ∈ [0, T ]. (1)

Here, κ denotes a constant diffusion coefficient, Ω the unit square (i.e., [0, 1]2) and f ∈ L2(Ω)
a source term. The above equation is complemented by initial conditions and both Dirichlet
and Neumann boundary conditions:

u(x, 0) = u0(x), x ∈ Ω, (2)

u(x, t) = 0, x ∈ ∂Ω \ ∂ΩW , t ∈ [0, T ], (3)

∂u(x, t)

∂n
= 1, x ∈ ∂ΩW , t ∈ [0, T ], (4)

where ΩW denotes the left boundary of Ω. Figure 1 denotes the solution of Equation (1) subject
to these initial and boundary conditions at various time instances.

(a) t = 0 (b) t = 0.01 (c) t = 0.02

Figure 1: Solution to Equation (1) on the unit square at different times t.

First, we discretize Equation (1) (in time) by dividing the time interval [0, T ] in Nt subin-
tervals of size ∆t and applying the θ-scheme to the temporal derivative, which leads to the
following equation to be solved at every time step:

u(x)k+1 − κ∆tθ∆u(x)k+1 = u(x)k + κ∆t(1− θ)∆u(x)k + ∆tf(x), x ∈ Ω, k = 0, . . . , Nt. (5)

To obtain the variational formulation, let V = H1
0 (Ω) be the space of functions in the Sobolev

space H1(Ω) that vanish on the boundary ∂Ω. Equation (5) is multiplied with a test function
v ∈ V and the result is then integrated over the domain Ω:∫

Ω

(
uk+1v − κ∆tθ∆uk+1v

)
dΩ =

∫
Ω

(
ukv + κ∆t(1− θ)∆ukv + ∆tfv

)
dΩ. (6)
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Applying integration by parts on the second term on both sides of the equation results in∫
Ω

(
uk+1v + κ∆tθ∇uk+1 · ∇v

)
dΩ =

∫
Ω

(
uk+1v − κ∆t(1− θ)∇uk · ∇v + ∆tfv

)
dΩ, (7)

for x ∈ Ω, k = 0, . . . , Nt, where the boundary integral integral vanishes since v = 0 on ∂Ω.
To parameterize the physical domain Ω, a geometry function F is then defined, describing an
invertible mapping to connect the parameter domain Ω0 = (0, 1)2 with the physical domain Ω:

F : Ω0 → Ω, F(ξ) = x. (8)

Provided that the physical domain Ω is topologically equivalent to the unit square, the ge-
ometry can be described by a single geometry function F. In case of more complex geometries,
a family of functions F(m) (m = 1, . . . , K) is defined and we refer to Ω as a multipatch geom-
etry consisting of K patches. For a more detailed description of the spatial discretization in
Isogeometric Analysis and multipatch constructions, the authors refer to chapter 2 of [1].

Then, we express u at every time step by a linear combination of multivariate B-spline basis
functions. Multivariate B-spline basis functions are defined as the tensor product of univariate
B-spline basis functions φi,p (i = 1, . . . , N), which are uniquely defined on the parameter
domain (0, 1) by an underlying knot vector Ξ = {ξ1, ξ2, . . . , ξN+p, ξN+p+1}. Here, N denotes
the number of univariate B-spline basis functions and p the spline degree. Based on this knot
vector, the basis functions are defined recursively by the Cox-de Boor formula [11], starting
from the constant ones

φi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(9)

Higher-order B-spline basis functions of order p > 0 are then defined recursively

φi,p(ξ) =
ξ − ξi
ξi+p − ξi

φi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

φi+1,p−1(ξ). (10)

The resulting B-spline basis functions φi,p are non-zero on the interval [ξi, ξi+p+1) and possess
the partition of unity property. Furthermore, the basis functions are Cp−mi-continuous, where
mi denotes the multiplicity of knot ξi. Throughout this paper, we consider a uniform knot
vector with knot span size h, where the first and last knot are repeated p + 1 times. As a
consequence, the resulting B-spline basis functions are Cp−1 continuous and interpolatory at
both end points. Figure 2 illustrates both linear and quadratic B-spline basis functions based
on such a knot vector.

Denoting the total number of multivariate B-spline basis functions Φi,p by Ndof , the solution
u is thus approximated at every time step as follows:

u(x) ≈ uh,p(x) =

Ndof∑
i=1

uiΦi,p(x), uh,p ∈ Vh,p. (11)

Here, the spline space Vh,p is defined, using the inverse of the geometry mapping F−1 as
pull-back operator, as follows:

Vh,p := span
{

Φi,p ◦ F−1| Φi,p = 0 on ∂Ω0

}
i=1,...,Ndof

. (12)

By setting v = Φj,p, Equation (7) can be written as follows:

(M + κ∆tθK)uk+1 = (M− κ∆t(1− θ)K)uk + ∆tf , k = 0, . . . , Nt, (13)

where M and K denote the mass and stiffness matrix, respectively:

Mi,j =

∫
Ω

Φi,pΦj,p dΩ, Ki,j =

∫
Ω

∇Φi,p · ∇Φj,p dΩ, i, j = 1, . . . , Ndof . (14)
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Figure 2: Linear and quadratic B-spline basis functions based on the knot vectors (a) Ξ1 =
{0, 0, 1, 2, 3, 3} and (b) Ξ2 = {0, 0, 0, 1, 2, 3, 3, 3}, respectively.

3 MULTIGRID REDUCED IN TIME

Instead of solving Equation (13) step-by-step directly, we apply the Multigrid Reduced in
Time (MGRIT) method. For the ease of notation, we set θ = 1 throughout the remainder
of this section. Let Ψ = (M + κ∆tK)−1 denote the inverse of the left-hand side operator.
Equation (13) can then be written as follows:

uk+1 = ΨMuk + gk+1, k = 0, . . . , Nt, (15)

where gk+1 = Ψ∆tf . Setting g0 equal to the initial condition u0(x) projected on the spline
space Vh,p, the time integration method can be written as a linear system of equations:

Au =


I

−ΨM I
. . . . . .

−ΨM I



u0

u1

...
uNt

 =


g0

g1

...
gNt

 = g. (16)

The two-level MGRIT method combines the use of a cheap coarse-level time integration
method with an accurate more expensive fine-level one which can be performed in parallel.
That is, Equation (16) can be solved iteratively by introducing a coarse temporal mesh with
time step size ∆tC = m∆tF . Here, ∆tF coincides with the ∆t from the previous sections and
m denotes the coarsening factor. It can be observed that the solution of Equation (16) at the
coarse-level times T0, T1, . . . , TNt/m satisfies:

A∆u∆ =


I

−(ΨM)m I
. . . . . .

−(ΨM)m I




u0
∆

u1
∆
...

u
Nt/m
∆

 =


g0

∆

g1
∆
...

g
Nt/m
∆

 = g∆. (17)

Here, uj
∆ = ujm and the vector g∆ is given by the original vector g multiplied by a restriction

operator:

g∆ =


I

(ΨM)m−1 · · · ΨM I
. . .

(ΨM)m−1 · · · ΨM I



g0

g1

...
gNt

 . (18)
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A two-level MGRIT method solves the coarse system given by Equation (17) iteratively and
computes the fine-level values in parallel within each interval (tjm, tjm+m−1). The coarse system
is solved using the following residual correction scheme:

u
(n+1)
∆ = u

(n)
∆ + B−1

∆

(
g∆ −A∆u

(n)
∆

)
, (19)

where B∆ is the coarse-level equivalent of the matrix A based on ∆tC instead of ∆tF . More
precisely, solving for B∆ gives the solution on the coarse mesh by coarse time stepping (using
∆tC), while solving for A∆ results in the solution on the coarse mesh by fine time stepping
(using ∆tF ). Here, the fine-level values are computed in parallel, denoted by the action of
operator A∆. This is in contrast to the action of B∆ which typically is performed on a single
processor.

The two-level MGRIT algorithm can be seen as a multigrid reduction (MGR) method that
combines a coarse time stepping method with (parallel) fine time stepping within each coarse
time interval. Here, the time stepping from a coarse point C to all neighbouring fine points is
also referred to as F -relaxation [2]. On the other hand, time stepping to a C-point from the
previous F -point is referred to as C-relaxation. It should be noted that both types of relaxation
are highly parallel and can be combined leading to so-called CF - or FCF -relaxation.

3.1 Multilevel MGRIT method

Next, we consider the true multilevel MGRIT method. First, we define a hierarchy of L
temporal meshes, where the time step size for the discretization at level l (l = 0, 1, . . . , L) is
given by ∆tFm

l. The total number of levels L is related to the coarsening factor m and the
total number of fine steps ∆tF by L = logm(Nt). Let A(l)u(l) = g(l) denote the linear system
of equations based on the considered time step size at level l. The MGRIT method can then
be written as follows:

Algorithm 1 MGRIT

if l = L then
Solve A(L)u(L) = g(L)

else
Apply FCF-relaxation on A(l)u(l) = g(l)

Restrict the residual g(l) −A(l)u(l) using injection
Call MGRIT setting l→ l + 1
Update u(l) → u(l) + Pu(l+1)

end if

Here, the prolongation operator P is based on ordering the F -points and C-points, starting
with the F -points. The matrix A can then be written as follows:

A =

[
Aff Afc

Acf Acc

]
. (20)

and the operator P is then defined as the “ideal interpolation” [2]:

P =

[
−AffAfc

Ic

]
. (21)

The recursive algorithm described above leads to a so-called V -cycle. However, as with standard
multigrid methods, alternative cycle types (i.e., W -cycles, F -cycles) can be defined. At all levels
of the multigrid hierarchy, the operators are obtained by rediscretizing Equation (1) using a
different time step size.
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4 NUMERICAL RESULTS

To assess the effectiveness of the MGRIT method when applied in combination with Iso-
geometric Analysis, we solve Equation (1) on the time domain T = [0, 0.1], where the initial
condition is chosen equal to zero and a right-hand side equal to one. This initial condition is
adopted as well as initial guess at all times t > 0. The MGRIT method is said to have reached
convergence if the relative residual at the end of an iteration is smaller or equal to 10−10, unless
stated otherwise.

Throughout this section, the MGRIT hierarchy, the domain of interest Ω and the time
integration scheme are varied. The MGRIT hierarchies that will be adopted are two-level
methods, a V -cycle and an F -cycle. As a domain, we consider the unit square (i.e., Ω = [0, 1]2),
a quarter annulus defined in the first quadrant with inner radius of 1 and an outer radius of 2
and a multipatch geometry, see Figure 3. As a time integration scheme, we consider a value of
θ of 0, 0.5 and 1 for the θ-scheme throughout this section, which corresponds to forward Euler,
Crank-Nicolson and backward Euler, respectively.

Figure 3: Spatial domains Ω considered throughout this section.

4.1 MGRIT hierarchies

First, we consider the MGRIT method using different hierarchies for the implicit case (i.e.,
backward Euler). At each time step, the linear system (Equation (13)) is solved by the Conju-
gate Gradient method. Table 1 shows the number of MGRIT iterations for different values of
h and p when a two-level method, V -cycles or F -cycles are considered. Here, F -relaxation is
applied at all levels of the MGRIT hierarchy. The number of time steps Nt for all configurations
equals 100. For all three hierarchies, the number of MGRIT iterations needed to reach con-
vergence is independent of h and p. The results obtained with a two-level method or F -cycles
are identical and lead to a lower number of iterations compared to the use of V -cycles for all
configurations.

p = 2 p = 3 p = 4 p = 5
TL V F TL V F TL V F TL V F

h = 2−4 7 9 7 7 9 7 7 9 7 7 9 7
h = 2−5 7 9 7 7 9 7 7 9 7 7 9 8
h = 2−6 8 9 8 8 9 8 8 9 8 8 9 8
h = 2−7 8 9 8 8 9 8 8 9 8 8 9 8

Table 1: Number of MGRIT iterations for solving the model problem when adopting a two-level
(TL) method, V -cycles (V) or F -cycles (F).

Instead of varying the mesh width, the number of time steps can be increased as well. This is
particularly interesting as MGRIT is a parallel-in-time method, where speed-ups will primarily
come from parallelization in the temporal component. Table 2 shows the number of MGRIT
iterations adopting different hierarchies for different numbers of time steps, different values of p
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and h = 2−6. For all configurations, the use of a two-level method or F -cycles leads to a lower
number of iterations compared to the use of V -cycles. In particular, the number of iterations
are independent of the number of time steps for all MGRIT hierarchies and comparable to the
ones obtained when considering different values of the mesh width.

p = 2 p = 3 p = 4 p = 5
TL V F TL V F TL V F TL V F

Nt = 250 7 10 7 7 10 7 7 10 7 7 10 7
Nt = 500 7 10 7 7 10 7 7 10 7 7 10 7
Nt = 1000 7 11 7 7 11 7 7 11 7 7 11 7
Nt = 2000 7 11 7 7 11 7 7 11 7 7 11 7

Table 2: Number of MGRIT iterations for solving the model problem when adopting a two-level
(TL) method, V -cycles (V) or F -cycles (F).

4.2 Varying geometries

Next, we apply MGRIT on a curved and multipatch geometry, respectively. Table 3 shows
the number of V -cycles needed with MGRIT, using backward Euler for the time integration, for
both geometries. Results can be compared to the ones presented in Table 2, showing identical
iteration numbers for all geometries.

Quarter Annulus Multipatch
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11

Table 3: Number of MGRIT iterations for solving Equation (1) on a quarter annulus and
multipatch geometry when adopting V -cycles for varying time step sizes.

Table 4 shows the results when the number of time steps is kept constant (Nt = 100) for the
quarter annulus and multipatch geometry when adopting V -cycles. Results can be compared
to Table 1 and are (again) identical for all three geometries.

Quarter Annulus Multipatch
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−4 9 9 9 9 9 9 9 9
h = 2−5 9 9 9 9 9 9 9 9
h = 2−6 9 9 9 9 9 9 9 9
h = 2−7 9 9 9 9 9 9 9 9

Table 4: Number of MGRIT iterations for solving Equation (1) on a quarter annulus and
multipatch geometry when adopting V -cycles for varying mesh widths.

4.3 Time integration schemes

Next to the implicit backward Euler scheme, we have considered alternative time integration
schemes as well. In this subsection, we consider the forward Euler and (second-order accurate)
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Crank-Nicolson method. The use of explicit time integration schemes in the context of parallel-
in-time integration is on the one hand highly relevant, as the required number of time steps
needed to ensure stability is relatively high. On the other hand, coarsening with respect to
the time step size might still exhibit stability issues at coarser levels. Therefore, explicit-
implicit methods are often considered, where explicit time integration is applied on the fine
level problem, while implicit methods are adopted at the coarser levels. The question remains
to which extent the resulting MGRIT algorithm remains robust in the mesh width and/or spline
degree.

Table 5 shows the number of MGRIT iterations for different numbers of time steps when
adopting V -cycles and a mesh width of h = 2−4. Here, forward Euler/Crank-Nicolson is applied
at the fine level, while backward Euler is applied at the coarse levels. For some of the considered
configurations, the resulting MGRIT method does not converge for forward Euler (indicated
by ‘∗’). It should be noted, however, that for these configurations, forward Euler applied as a
sequential time integration scheme does not converge either, which is a direct consequence of
the CFL condition. When the Crank-Nicolson method is applied the resulting MGRIT method
converges in a relatively low number of iterations.

forward Euler Crank-Nicolson
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 ∗ ∗ ∗ ∗ 11 11 14 24
Nt = 500 13 ∗ ∗ ∗ 11 11 11 12
Nt = 1000 13 13 ∗ ∗ 11 11 11 11
Nt = 2000 13 13 13 ∗ 11 11 11 11

Table 5: Number of MGRIT iterations for solving Equation (1) on the unit square using forward
Euler and Crank-Nicolson when adopting V -cycles.

Table 6 shows the number of MGRIT iterations for a varying mesh width and 1000 time steps
for both time integration methods. For many configurations, MGRIT using forward Euler does
not convergence, while the Crank-Nicolson method converges for all configurations. A small
dependency on h and p is, however, visible.

forward Euler Crank-Nicolson
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−3 13 13 13 14 11 11 11 12
h = 2−4 13 13 ∗ ∗ 11 11 11 11
h = 2−5 ∗ ∗ ∗ ∗ 11 11 13 23
h = 2−6 ∗ ∗ ∗ ∗ 13 28 52 88

Table 6: Number of MGRIT iterations for solving Equation (1) on the unit square using forward
Euler and Crank-Nicolson when adopting V -cycles.

4.4 CPU timings

Next to investigating the iteration numbers needed with MGRIT to reach convergence, CPU
timings have been obtained as well. Here, we adopt V -cycles, a mesh width of h = 2−6 and the
unit square as our domain of interest. Note that the corresponding iteration numbers can be
found in Table 2. The computations are performed on three nodes, which consist each of an
Intel(R) i7-10700 (@ 2.90GHz) processor.
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As shown in Figure 4a, doubling the number of time steps roughly doubles the time needed
to reach convergence for all values of p. Furthermore, the CPU times significantly increase for
higher values of p which is related to the spatial solves at every time step. It is known from the
literature that standard iterative solvers have a detoriating performance for increasing values
of p, leading to an increased number of CG iterations and, hence, higher computational costs.

In Figure 4b, results obtained adopting six cores can be found. In general, the same behavior
can be observed with respect to the number of time steps and the spline degree. It should be
noted, however, that doubling the number of cores significantly reduces the CPU time needed
to reach convergence. More precisely, a reduction of 45− 50% can be observed when doubling
the number of cores, implying the MGRIT algorithm is highly parallelizable.
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Figure 4: CPU times for MGRIT using V -cycles and backward Euler on the unit square for
a fixed problem size (h = 2−6) adopting a different number of cores. The cores are evenly
distributed over the nodes.

5 CONCLUSIONS

In this paper, we successfully combined Isogeometric Analysis with the Multigrid Reduced
in Time (MGRIT) method to solve the time-dependent diffusion equation. Here, both (curved)
single patch and multipatch geometries have been considered. Furthermore, different time
integration methods and MGRIT hierarchies have been adopted. Numerical results show for
all considered benchmarks that the MGRIT method converges independent of the considered
mesh width h, spline degree p or time step size ∆t. Furthermore, the use of an implicit time
integration method has shown to be more robust compared to explicit time integration methods
when applied within MGRIT. In general, a two-level hierarchy as well as the use of F -cycles
leads to a slightly lower number of MGRIT cycles, but they are associated to higher costs per
iteration. CPU timings show that the time needed to reach convergence does not only dependent
on the number of time steps, but also on the spline degree of the B-spline basis functions when
a standard iterative method is considered for the spatial solves. Future work will therefore
focus on the use of state-of-the-art solvers for Isogeometric Analysis within MGRIT to mitigate
this dependency. As increasing the number of CPUs significantly decreases the computational
times, future research will focuss as well on the parallel performance of the MGRIT method and
its comparison to traditional sequential time integration methods for large-scale simulations.
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Abstract: In this work, we adapt a Total Reuse of Krylov Subspaces for usage in a GMRES-
solver and apply it to nonlinear structural-dynamics examples. These examples are then solved
by a multirate FETI-method, the nonlinear BGC-macro method, which allows local subcycling in
time within substructures, such that local time-stepping is performed between synchronization-
time-steps. In these proposed examples, we show that the reuse-method reduces the total number
of GMRES-iterations and shifts the eigenvalue-spectrum of the global system towards smaller
eigenvalues.

1 INTRODUCTION

Substructuring methods are widely valued for parallelizing large structural mechanics prob-
lems and a popular non-overlapping dual domain decomposition method is the Finite Elements
Tearing and Interconnecting (FETI) method [4]. In cases of local computationally expensive
dynamics in a substructure, e.g. due to local damage or contact, it might be favorable to adjust
the time-step-sizes locally. For such an asynchronous or multirate time-integration, domain-
decomposition-based methods have been developed, such as the linear subcycling-based GC-
method by Gravouil and Combescure [10]. However, this method suffers from energy-dissipation
and therefore the non-dissipative linear and nonlinear PH-methods by Prakash and Hjelmstad
[15] and the linear BGC-macro [3] have been developed. Recently a nonlinear version of the
BGC-macro method has been proposed [18] and applied to an iterative FETI-solver equipped
with a Dirichlet-like preconditioner [19]. Hence, the next natural step is to further improve
solver-efficiency by applying recycling-techniques to this new problem. In this work, we adapt
a Total Reuse of Krylov Subspaces (TRKS) approach [9], successfully applied to linear and
nonlinear structural dynamics in [12, 17], to a GMRES-solver and investigate its applicability
to the nonlinear BGC-macro method.

In Section 2.1, we introduce the applied multirate-method nonlinear BGC-macro and, in
Section 2.2, the TRKS and its application in a GMRES is described. Finally, we show in
Section 3 numerical examples with the described methods and conclusions in Section 4.

2 FETI for nonlinear structural dynamics

For the parallelization of a Finite Elements discretized structural dynamics problem, we
divide the structure spacially along the element’s edges in non-overlapping substructures Ω(s).
These substructures are connected with Lagrange-multipliers ~λ, that can be viewed as interface-
forces, as stated in the FETI method [4]. In Section 2.1, we give a brief introduction to the
governing equations and the multirate BGC-macro method and in Section 2.2, we describe the
application of a TRKS method to a GMRES solver.

https://doi.org/10.4995/YIC2021.2021.12306
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2.1 Multirate with nonlinear BGC-macro method

Throughout this work, we consider different time-step-sizes in each substructure, which is
referred to as multirate or asynchronous time-integration. As depicted in Figure 1 for two
substructures A and B, the global time-integration with time-steps n is sub-cycled with Nj

smaller time-steps with size ∆t(B) = ∆t(A)

Nj
on a micro-substructure.

0 T

0 T
Subs B

Subs A

∆t(B)

∆t(A)

~λn ~λn+1

t
(B)
j

t
(A)
n+1

Figure 1: Multirate time-discretization.

The global time-steps are also referred to as macro-time-steps and the Lagrange-multipliers
are interpolated linearly onto the local micro-timesteps

~λj =

(
1− j

Nj

)
~λn−1 +

j

Nj

~λn (1)

resulting in the local differential equations of motion, written as a force-residual f ~res
(s)
j here

f ~res
(s)
j = M(s)~̈q

(s)
j + ~fint(~q

(s)
j ) + B(s)T~λj − ~f

(s)
ext(tj) = ~0 (2)

at a discrete time-step j with a mass-matrix M(s), nonlinear internal forces ~fint and external
forces ~f

(s)
ext, as well as displacements ~q(s), velocities ~̇q(s) and accelerations ~̈q(s). The Lagrange-

multipliers ~λ are applied to the local degrees of freedom (dof) by a signed Boolean matrix
B(s). The local solutions are then synchronized at the macro-time-scale, which is formulated by
requiring the interface-velocities to coincide at the macro-timestep n in the interface-residual

I ~resn

I ~resn =
Ns∑
s=1

B(s)~̇q(s)
n = ~0. (3)

This approach is known from the linear BGC-macro method [3], which has been recently ex-
tended to nonlinear models [18]. To solve both equations (2) and (3), we choose as time-
integration scheme one of the most popular ones, namely the Newmark-β scheme [14]

a ~res
(s)
j = − 1

γ∆t
~̇q

(s)
j−1 −

1− γ
γ

~̈qj−1 +
1

γ∆t
~̇q

(s)
j − ~̈q

(s)
j = ~0

d ~res
(s)
j = ~q

(s)
j−1 +

(
1− β

γ

)
∆t~̇q

(s)
j−1 +

(
1

2
− β

γ

)
∆t2~̈q

(s)
j−1 +

β

γ
∆t~̇q

(s)
j − ~q

(s)
j = ~0,

with β ∈ [0, 1/4], γ ∈ [0, 1/2]. The equations have been reformulated in residual-form a ~res
(s)
j

and d ~res
(s)
j here. Analogously to the classical single-rate FETI in Farhat e.a. [6] and the
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PH-method [15], all these equations are linearized for ~̈q
(s)
j , ~̇q

(s)
j , ~q

(s)
j and ~λn, resulting in

M̃
(s)

=

 M(s) 0 K(s)

−γ∆t(s)I I 0

−β∆t(s)
2
I 0 I

 C̃
(s)

=

B(s)T

0
0

 ~̃r
(s)
j =

f ~res
(s)
j

a ~res
(s)
j

d ~res
(s)
j


N(s) =

 0 0 0
−∆t(s)(1− γ)I −I 0
−∆t(s)(1/2− β)I −∆t(s)I −I

 B̃
(s)T

=

 0

B(s)T

0

 ~̃q
(s)
j =

~̈q
(s)
j

~̇q
(s)
j

~q
(s)
j




M̃
(s)

1

N(s) M̃
(s)

2
. . . . . .

N(s) M̃
(s)

Nj


︸ ︷︷ ︸

A(s)


∆~̃q

(s)
1

∆~̃q
(s)
2

...

∆~̃q
(s)
Nj


︸ ︷︷ ︸

∆~̄q(s)

+


1
Nj

C̃
(s)

2
Nj

C̃
(s)

...
Nj

Nj
C̃

(s)


︸ ︷︷ ︸

C̄
(s)

∆~λn =


−~̃r(s)

1 (~̃q
(s)
0 , ~̃q

(s)
1 , ~λ1)

−~̃r(s)
2 (~̃q

(s)
1 , ~̃q

(s)
2 , ~λ2)

...

−~̃r(s)
Nj

(~̃q
(s)
Nj−1, ~̃q

(s)
Nj
, ~λn)


︸ ︷︷ ︸

~̄r(s)

This local problem is solved for the local states~̃q
(s)
j and inserted into the compatibility condition

B̄
(s)

∆~̄q(s) =
[
0 . . . 0 B̃

(s)
]

∆~̄q(s) = −I ~resn(~̃q
(s)
Nj

)

~rk =
Ns∑
s=1

B̄
(s)

A(s)−1

C̄
(s)

︸ ︷︷ ︸
F

∆~λn −

(
Ns∑
s=1

B̄
(s)

A(s)−1

~̄r(s) + I ~resn(~̃q
(s)
Nj

)

)
︸ ︷︷ ︸

~d

= ~0,

where A(s) is invertible due to the regularizing nature of the mass-matrix. This is the so-called
interface-problem and its only unknown are the global interface-forces. In contrast to the
classical FETI-method, the interface-operator F is non-symmetric, which implies that we have
to use a Generalized Minimal Residual (GMRES) method [16] here, as a Conjugate Gradient
requires the problem to be symmetric.

2.2 TRKS for GMRES

The general idea of recycling relies on constructing an auxiliary coarse-space C similarly to
the natural or kernel coarse space in FETI for statical problems. Hence, this is usually referred
to as two-level FETI [7]. This auxiliary coarse-space can be built on FETI-search-directions
from earlier solver-runs in which case these search-directions are projected out from the overall
interface-problem, resulting in the TRKS [9]. This would lead to a reduced solution space and
the iterative solver will not have to find the full set of search-directions every time anew. The
auxiliary coarse-space adds another constraint

CTFT~rk = ~0 (4)

to the interface-problem with search-space C and constraint-space FC according to Gaul [8],
where k is the GMRES-iteration counter. Here, C contains l2-orthonormal search-directions
from previous GMRES-solver-runs. This coarse-space C is filled up until a predefined coarse-
space-size NC is reached. To fulfill constraint (4) in each iteration, we construct an auxiliary

             59



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

coarse-grid projector PC . In the original TRKS for FETI, the projector was described for
symmetric systems and a Conjugate Gradient method [9]. In our case, the projector

PC = I− FC
(
CTFTFC

)−1
CTFT P̃C = I−C

(
CTFTFC

)−1
CTFTF

required some modifications for general matrices F, as it is described in [8]. The projector P̃C

is required here for correcting the deflated solution.
This projector is then incorporated into the non-preconditioned GMRES algorithm 1. So,

those search-directions, which are stored in C, are the first NC search-directions generated
in the first Newton-Raphson- and GMRES-iterations and reused in all subsequent Newton-
Raphson-iterations. From TRKS for the PCPG-algorithm it is known, that search-directions
corresponding to high convergence-inhibiting eigenmodes are usually generated in the first
iterations, which creates a suitable coarse-space [12]. A similar behavior is expected for the
GMRES algorithm.

Algorithm 1: Two-level GMRES

∆~λ0 = ~0, ∆λ̂0 = ~0

∆~λC = C
(
CTFTFC

)−1
CTFT

(
~d− F∆~λ0

)
~r0 = ~d− F∆~λC
~w0 = PC~r0

β = ‖~z0‖
V0 = ~w0/‖~w0‖
while ‖~rk‖ > εF,abs and ‖~rk‖/‖~r0‖ > εF,rel and k ← 0 to kend do

~qk = FVk

~wk = PC~qk
for l ← 0 to k do

Hl,k = ~wT
k Vl

~wk = ~wk −Hl,kVl

Hk+1,k = ‖~wk‖, ~e1 =
[
0 . . . 0 1

]
~uk =

(
HTH

)−1
HT (β~e1)T

~vk = P̃CV~uk
~rk = ~r0 − F~vk
Vk+1 = ~wk/‖~wk‖
k ← k + 1

∆~λ = ∆~λ0 + ∆~λC + ~vk
C =

[
C V

]
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∆t = 0.00002s

50mm

500mm

fext

(a) 10-substructure plate with the upper middle substructure exhibit-
ing a micro-time-stepsize with time-step-ratio 10. All surrounding sub-
structures exhibit ∆t = 0.0002s.

t0 ttmax

fmax

(b) Applied load over time.

Figure 2: 2D benchmark example with multirate time-integration.

displacement magnitude / mm
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.3

x

y

Figure 3: Displacements of converged solution at time 0.001s

3 Numerical Experiments

Here, we provide our numerical results. Section 3.1 describes the setup of the presented
bending-plate example. In Section 3.2, we investigate the solver’s convergence behavior and
the captured eigenmodes and in Section 3.3 the influence of the micro-time-scale.

3.1 Model setup

Throughout the following experiments, we used a 2D plate under impact-load as benchmark-
example, which is depicted in Fig. 2. This example is composed of 2D rectangular substructures
with Quad-4 elements and a geometrically nonlinear St. Venant-Kirchhoff material representing
an Aluminium beam (Young’s modulus E = 70 · 103N/mm2, Poisson’s ratio ν = 0.34, density
ρ = 2.7 · 10−6kg/mm3, thickness h = 5.0mm). The external load is applied as a ramped up
impact-like pressure applied on the middle substructure’s top edge, as shown in Fig. 2b with
fmax = 5.0 · 103N/mm, tmax = 0.001s. This model is created in our in-house Open-Source
Python-Fortran FE-code AMfe [1] and solved with our Python FETI-library AMfeti [2]. The
solvers were set up with absolute tolerances εN,abs = 1.0 ·10−6 and εF,abs = 1.0 ·10−7 and relative
tolerances εN,rel = 1.0 · 10−10 and εF,rel = 1.0 · 10−10, such that the Newton-solver is considered

converged if either max(‖~r(s)
i ‖) < εN,abs or max(‖~r(s)

i ‖)/max(‖~r(s)
0 ‖) < εN,rel and the GMRES

is converged if ‖~rk‖ < εF,abs or ‖~rk‖/‖~r0‖ < εF,rel. The resulting displacements of the solution
at time 0.001s are shown in Figure 3. There are some small incompatibilities visible on the
interfaces between the micro- and macro-substructures, resulting from intermediate oscillations
in the velocities [18, 15].

3.2 Convergence behavior and capturing eigenmodes

In singlerate dynamics, the PCPG solver’s convergence behavior is bounded by the condition-
number of the projected preconditioned interface-operator [12, 9]. A GMRES-solver’s conver-
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rank(F) F size F symmetry ‖FTF− FFT‖ condition number A(s) PCF symmetry
240 264 x 264 1.19 · 10−3 4.59 · 10−4 2.56 · 1019 6.83 · 10−2

‖FTPT
CPCF−PCFFTPT

C‖ condition number coarse problem
8, 51 · 10−3 7.33 · 102

Table 1: System’s average characteristic numbers for BGC-macro case with TRKS-projection.
Matrix symmetries are checked with ‖AT −A‖ for some square matrix A.

0 50 100 150 200 250

0.2

0.4

0.6

0.8

num.eigenvalue→

ei
g
en
v
a
lu
e
→

BGC-macro PCF-eigenvalue-spectrum

BGC BGC-TRKS

(a) Multirate case solved with GMRES

0 50 100 150 200 250

0.2

0.4

0.6

0.8

num.eigenvalue→

Singlerate PCF-eigenvalue-spectrum

SR macro SR macro TRKS

(b) Singlerate case solved with GMRES for
comparison

Figure 4: Eigenvalue-spectrum of the eigenvector-matrix of PCF for multirate and singlerate
cases in macro-timestep 1 and Newton-iteration 2.

gence behavior is only determined by this condition-number in case of normal matrices and not
necessarily for nonnormal matrices, as pointed out by Greenbaum e.a. [11]. As shown in Table
1, the F-operator is indeed a non-normal matrix, which is checked by evaluating ‖FTF−FFT‖:
if this norm is close to 0, F is considered normal. This also applies for the deflated case with
‖FTPT

CPCF−PCFFTPT
C‖. However, one can still formulate an upper bound for the residuals

by the condition-number of the eigenvector-matrix of PCF, as proposed by Gaul [8]. In Figure
4, the eigenvalue-spectra for the BGC-macro case and for the single-rate case (macro-time-step
in all substructures) are shown. Note that zero-eigenvalues have been removed in these plots
and the eigenvalues are sorted in ascending order. Two aspects arise from these spectra: the
eigenspectrum is very similar for both, the BGC-macro and the single-rate case. This implies,
that the convergence-behavior is not as much governed by the micro-time-step, but by the
macro-time-step. And the other aspect concerns differences in the captured eigenmodes associ-
ated to the removed eigenvalues by TRKS. In both cases, the coarse-space-size is limited to 50
and while in the single-rate case some high eigenvalues are kept, they are removed in the BGC-
macro case. Krylov solvers capture high eigenmodes first, which lets the TRKS gather these
high convergence inhibiting modes early [12]. Hence, a reason for this different behavior might
be the initial number of FETI-iterations, as depicted in Figure 5. While in the single-rate case
the GMRES-solver requires only 31 iterations in the first timestep and Newton-iteration, 55 are
required to solve the interface-problem in the BGC-macro case. This difference with respect
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(b) Singlerate case solved with GMRES for comparison

Figure 5: FETI iterations required to reach convergence for consecutive macro-timesteps and
Newton-iterations (see labels time-step|Newton-iteration).

to the similar eigenvalue-spectra again emphasizes the fact that the condition number alone
does not define the convergence behavior, but it provides a good estimate and describes the
behavior of deflation well. That also means that only 31 search-directions are available for the
coarse-space and, besides the large eigenvalues, smaller ones are captured in the singlerate-case
earlier as well and therefore the coarse-space is enriched with less effective modes. During the
subsequent Newton-iterations and time-steps the coarse-space is further filled up. In the BGC-
macro case, the coarse-space is completely filled up in the first Newton-iteration. This also
improves the relative reduction in the first Newton-iterations compared to the singlerate case.
We have to point out, that the GMRES-solver didn’t reach convergence in some nondeflated
BGC-macro cases, though. However, that is likely a numerical issue related to the bad local
conditioning, as the residuals stagnated at a low level, as depicted in Figure 6. Here, deflation

             63



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

0 20 40 60 80 100

10−7

10−4

10−1

102

iterations→

re
si
d
u
a
l
→

FETI-residuals

BGC BGC-TRKS

(a) Timestep 2, Newton-iteration 1

0 5 10 15 20 25 30

10−7

10−5

10−3

10−1

iterations→

FETI-residuals

BGC BGC-TRKS

(b) Timestep 1, Newton-iteration 2

Figure 6: FETI residuals during FETI-iterations of BGC-macro case.
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(a) Multirate case with micro-time-step-size
0.00001s at timestep 1 and Newton-iteration 2.
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Figure 7: Eigenvalue-spectrum of the eigenvector-matrix of PCF and required iterations for
multirate case with finer micro-time-scale.

also improved this stability.

3.3 Influence of the micro-time-scale

Finally, we further reduce the micro-time-step-size to 0.00001s, resulting in a time-step-ratio
of 20. The resulting eigenvalue-spectrum and required FETI-iterations are depicted in Figure
7a and Figure 7b. The eigenvalue spectrum remains very similar to the one with a coarse
micro-time-scale in Figure 4a. Hence, the micro-time-scale has limited influence on capturizing
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the high eigenvalues. The required iterations are slightly reduced, but show similar convergence
behavior as in Figure 5a apart from better stability in the nondeflated case.

4 CONCLUSIONS

The TRKS has been successfully applied to a GMRES-method for our multirate nonlinear
BGC-macro FETI-solver. In our examples, the total recycling approach selects the high con-
vergence inhibiting eigenmodes and therefore improves convergence. Of course, this does not
affect the FETI-solver in the first Newton-iteration in the first time-step, as the eigenmodes
are to be gathered in this step. With this reducing behavior of the recycling technique and
the characteristic deflation of the eigenvalue-spectrum, we can say that recycling is also well
applicable to a GMRES-solver and the nonlinear BGC-macro method. Moreover, we found,
that the choice of local time-step-sizes hardly affects the performance of the global iterative
GMRES-solver. The global Newton- and GMRES-solvers’ performances are more governed by
the synchronisation- or macro-timestep-size. We are currently working on the application of
more selective recycling approaches for multirate methods and the application of precondition-
ing. Our results in this work also imply, that due to the little interface-problem’s dependency
of the micro time-steps, reusing search-directions from the singlerate case might be beneficial
for a time-adaptive approach and will be investigated further in the future.

Acknowledgement: We thank the DFG for the funding of project RI2451/8-1, in which
context this work has been done.
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Abstract: The evolution of the neutronic power inside of a nuclear reactor core can be ap-
proximated by means of the diffusive time-dependent simplified spherical harmonics equations
(SPN). For the spatial discretization of these equations, a continuous Galerkin high order finite
element method is applied to obtain a semi-discrete system of equations that is usually stiff. A
semi-implicit time scheme is used for the time discretization and many linear systems are needed
to be solved and previously, preconditioned. The aim of this work is to speed up the convergence
of the linear systems solver with a multilevel preconditioner that uses different degrees of the
polynomials used in the finite element method. Furthermore, as the matrices that appear in this
type of system are very large and sparse, a matrix-free implementation of the preconditioner is
developed to avoid the full assembly of the matrices. A benchmark transient tests this method-
ology. Numerical results show, in comparison with the block Gauss-Seidel preconditioner, an
improvement in terms of number of iterations and the necessity of computational resources.

1 INTRODUCTION

Inside the reactor core, the evolution of the neutronic power can be modelled by means of
the multigroup simplified spherical harmonics equations (SPN). Different time formulations for
this approximation of the neutron transport equation can be developed [15]. This work uses
a formulation where the partial derivative of the even moments of the flux are neglected such
that it can be seen as a generalized diffusive system with derivatives of order two in the space.

Spatially, the problem is discretized by applying a continuous Galerkin high order finite
element method. Two sets of time-dependent differential equations are obtained, that for usual
reactor systems are stiff. One related to the neutron moments and other related to the delayed
neutron precursor concentrations. Therefore, implicit time schemes must be used [7] that
require to solve large linear systems at each time-step. Krylov solvers such as the Generalized
Minimal Residual (GMRES) [13] have been shown to be very efficient to solve such large sparse
linear systems, if they are applied with a reasonable preconditioner.

Different preconditioners can be applied to these linear systems. First, one can apply classical
preconditioners based on an incomplete matrix factorization, such as the ILU decomposition
or the ICC decomposition. The linear systems associated with the SPN equations have a block
structure that also permits to apply block preconditioners such as the block Jacobi or the
block Gauss-Seidel preconditioner [13]. Although these types of preconditioners are efficient,
its implementation implies to store the matrices, or one part of them, in memory, which is very
demanding.

https://doi.org/10.4995/YIC2021.2021.12510
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Recently, multilevel methods are successfully applied to a wide range of problems. The
levels are obtained either from different finite element discretizations on the original grid [5],
from a hierarchy of coarser meshes [14] or from several levels of energy groups [6]. In this
type of problems, the multigrid preconditioner can be applied, but the initial spatial meshes
used in the computation are taken as coarse meshes and homogenized cross-sections must be
redefined on each cell. That leads to an expensive application of the preconditioner [4]. Using
a preconditioner based on several levels of energy groups is good option to integrate problems
with a high number of energy groups. In this work, a two-level preconditioner based on different
degrees of the polynomials used in the finite element discretization is applied.

On the other hand, the spatial discretization of a realistic nuclear reactor system with a
high-order FEM produces huge algebraic matrices that require high demands of computational
memory. Thus, a matrix-free technique can be used where the matrices are not allocated in
memory and matrix-vector products are computed on the fly by using a cell-based interface.
This technique does not only reduce the computational memory, but also it can reduce the
matrix-vector multiplication runtimes in some computer architectures [10]. The main inconve-
nience of this technique is that algorithms to solve linear systems only can use matrix-vector
products, since it is very difficult to access to particular elements of the matrices. In this work,
a matrix-free implementation of the multilevel preconditioner is provided.

The rest of the paper is organized as follows. Section 2 presents the simplified spherical
harmonics equations. Section 3 briefly exposes the finite element method used for the spatial
discretization and the backward method used for the time-discretization. Section 4 explains
the multilevel preconditioner. Section 5 describes some details about the implementation, in
particular, about the matrix-free technique. Section 6 contains the numerical results obtained
to test the proposed methodology. Finally, Section 7 collects the main conclusions of this work.

2 SIMPLIFIED PN EQUATIONS

The diffusive time-dependent simplified harmonics (SPN) equations can be written as [15]

V ∂

∂t
φn − ~∇ ·

(
n (Sn−1)−1

(2n+ 1)(2n− 1)
~∇
(
(n− 1)φn−2 + nφn

)
+

(n+ 1)(Sn+1)−1

(2n+ 1)(2n+ 3)
~∇ ((n+ 1)φn

+ (n+ 2)φn+2
))

+ Snφn = δn0Fφn + δn0

K∑
k=1

MkCk , n = 0, 2, . . . , N − 1 ,

(1)

and the equations for delayed neutron precursor concentration are

∂

∂t
Ck = −λdkCk + Rkφ

0 , k = 1, . . . , K, (2)

where

Sn =


Σt1 − Σn

s11 . . . −Σn
sG1

...
. . .

...

−Σn
s1G . . . ΣtG − Σn

sGG

 , F =


χp
1(1− β1)ν1Σf1 . . . χp

1(1− βG)νGΣfG

...
. . .

...

χp
G(1− β1)ν1Σf1 . . . χp

G(1− βG)νGΣfG

 ,

V =


1/v1 . . . 0

...
. . .

...

0 . . . 1/vG

 , Mk =


λdkχ

d,k
1

...

λdkχ
d,k
G

 , Rk =


β1kν1Σf1

...

βGk νGΣfG


T

, φn =


φn1
...

φnG

 .

(3)
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The variable φn
g = φn

g (x, t) denotes the nth-moment of the neutron flux for the energy
group g (g = 1, . . . , G). Ck denotes the delayed neutron precursor concentration of group k
(k = 1, . . . , K). The value of Σt is the total cross-sections that is approximated by the transport
cross-section Σtr. Σf is the fission cross-section. The value of Σn

s is the nth-component of the
scattering cross section in the spherical harmonics expansion. In this work, Σn

s = 0,∀n > 0
because it is assumed that the scattering is isotropic. ν denotes the mean number of neutrons
produced by fission. vg are the neutron velocities. The spectrum of the prompt and the
delayed neutrons are denoted by χp

g and χd,k
g . The fraction of the delayed neutrons is βg

k such

that βg =
∑K

k=1 β
g
k . The neutron precursor delayed constants are λdk.

The linear change of variables proposed in [9] is applied to the Equation (1). In the case of
the SP3 equations, the change of variables is

U1 = φ0 + 2φ2 , U2 = 3φ2 , (4)

to obtain a system of the form

VVV
∂

∂t
U − ~∇ ·

(
DDD~∇U

)
+ SSSU = FFFU +CCC , U =

(
U1, U2

)T
, (5)

where

DDD =

(
1
3
(S1)−1 0

0 1
7
(S3)−1

)
, SSSij =

2∑
m=1

c
(m)
ij Sm, (6)

VVVij =
2∑

m=1

c
(m)
ij V , FFFij = c

(1)
ij F , CCCi = di

K∑
k=1

MkCk, (7)

and the coefficients matrix, c(m) and vector d are

c(1) =

(
1 −2

3

−2
3

4
9

)
, c(2) =

(
0 0

0 5
9

)
, d =

(
1

−2
3

)
. (8)

3 SPATIAL AND TIME DISCRETIZATIONS

A high-order continuous Galerkin Finite Element Method (FEM) for the spatial discretiza-
tion of the problem (5) is used. The discretization yields an semi-discrete time-dependent
problem of the form

V
d

dt
Ũ + TŨ = FŨ + d

K∑
k=1

MkCk , (9)

d

dt
PCk = −LkCk + Rkφ̃

0, (10)

where V, T, F, Mk, Lk and Rk are the discretized operator of the VVV, −~∇ ·DDD~∇ + SSS, FFF, Mk,
Lk and Rk, respectively. The form of these operators will depend on the formulation. The
mass matrix P is not the identity matrix because the basis of the FEM, that is composed of
Lagrange polynomials, is not orthonormal. Vectors Ũ and Ck contain the discrete version of the
moments U and the delayed neutron precursor concentration CCCk. The finite element method
is implemented using deal.II library [3] and its structures. More details about FEM can be
found in [19, 18]. Generally, these matrices are not symmetric, but they have a block structure
provided by the different energy groups and neutronic field moments.

70



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Given a configuration of a nuclear reactor, the time-dependent semi-discrete system (9) is
generally stiff. Thus, implicit methods are used for its time discretization. In this work, a
semi-implicit scheme is used where each type of equation is integrated independently.

The time interval [0, T ] is divided into several subintervals [th, th+1] where ∆th = th+1 − th.
The equation for the moments at t = th+1 (Equation (9)) is integrated by applying a backward
difference of first order to the time derivative. The other magnitudes are substituted by its
value at time th+1, excluding the concentration of neutron precursors that is substituted by its
value at th. In this way, the solution of the linear system(

1

∆th
Vh+1 + Th+1 − Fh+1

)
Uh+1 =

1

∆th
VhUh + d

K∑
k=1

Mh+1
k Ch

k , (11)

gives an approximation of the moments at time th+1.
This linear system has a size of (N+1)×Ndofs×G/2, where Ndofs are the degrees of freedom

of the FEM. It is solved with the GMRES method provided by the PETSc library [2]. This
work is devoted to study a multilevel preconditioner (described in Section 4) to precondition
this system.

The concentration of delayed precursors equation is also integrated by using a one-step
implicit scheme. The rest of the magnitudes are substituted by its value at th+1. Thus, the
concentration of precursors can be approximated by solving the linear system(

1

∆th
P + Lh

k

)
Ch+1 =

1

∆th
PCh + Rh

kφ̃
0,h+1 . (12)

The matrices of this system are much smaller than the previous ones with a size equal to
Ndofs. Thus, it is simply solved with the GMRES method and the ILU(0) preconditioner from
the PETSc library [2].

4 MULTILEVEL PRECONDITIONER

The linear systems of Equation (11) need to be preconditioned to integrate the SPN equations
with a reasonable CPU demand. In this work, we study a multilevel preconditioner based on
the finite element method. This multilevel preconditioner is based on the classical V-cycle
multigrid method [8]. In general, multigrid methods are designed to accelerate the convergence
of a simple iterative method (known as smoothing, which reduces the short frequencies error)
by a correction obtained when a coarse problem is solved (which is cheaper to solve). To
solve this coarse problem, also a smoother and a coarser problem can be used, obtaining in
this way a hierarchy of problems, known as levels of the multigrid method [14]. For nuclear
reactor computations, using different meshes is not feasible because it does not require very
refine meshes, and constructing coarse meshes implies homogenizing the reactor materials at
each level. To avoid this problem, smaller problems are defined by considering a degree of
the polynomial in the FEM, p∗, smaller than the original value p. The same spatial mesh is
considered, but the simplified problem associated has a smaller number of degrees of freedom.
This method only makes sense if p > 1. For these applications, we use a two-level method with
one problem associated with each level because a degree in the FEM equal to 3 is enough to
obtain accurate results. However, in other applications where higher degrees in FEM would
be necessary, a multilevel preconditioner with more than two levels can be applied following a
similar process than the multigrid method.

It is assumed that we want to define a preconditioner to solve the discrete SPN problem
using a degree p in the FEM (first level),

Ax = b , (13)

             71



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

and we define the smaller problem with degree p∗ in the FEM (second level)

A∗x∗ = b∗ . (14)

The two-level preconditioner smooths the iteration error on the original level and correct the
iterate by a second level correction in a two-level setting. Recurrent applications on a sequence
of levels lead to a multilevel procedure. The multilevel preconditioner can be used without
smoothing [12]. In that case, the coarse level solve damps the low-frequency error of the fine
problem, but not high-frequency errors. In a more physically sense, the smoother is applied to
approximate the finer details.

To apply the multilevel preconditioner, we need to define a restriction operator, R, that in-
terpolates vectors defined on the problem of FEM with degree p into a smaller vector associated
with the problem with degree p∗. The values at the nodes of the FEM with degree p (original
problem) are interpolated into the nodes associated with FEM with low degree of polynomial.
This interpolation is made element by element through a transfer matrix, tres, between the
nodes associated with degree p of one element and the nodes associated with degree p∗ of such
element. The elements of such transfer matrix are given by

tresij = N p
j (η∗i ), j = 1, . . . , p+ 1, i = 1, . . . , p∗ + 1, (15)

where N p
j are the Lagrange shape functions of the expansion which characterize the finite

element method of degree p such that N p
j (ηk) = δjk, k = 1, . . . , p+1, being δjk the Kronecker

delta function and ηk the position of the k-th node in the element associated with a degree p.
η∗i denotes the position of the i-th node in the element of the FEM with degree p∗.

In the other way, one can define the prolongation operator, P , also through a interpolation
process. However, in this case, the elements of the transfer matrix, tpr, that interpolates the
nodes of one element associated with degree p∗ into the ones associated with degree p, are given
by

tprij = N p∗

j (ηi), j = 1, . . . , p∗ + 1, i = 1, . . . , p+ 1, (16)

where N p∗

i are the Lagrange shape functions of the expansion which characterize the finite
element method of degree p∗ and ηi is the position of the i-th node in the element associated
with a degree p. Figure 1 shows a scheme of these operators for a two-dimensional problem.

p = 3 p
∗
= 2

Restriction

Prolongation

Figure 1: Restriction and prolongation operator of a element associated with degree p = 3 and p∗ = 2 in the
FEM.

The smoothing can be done with a Gauss-Seidel iterative method, but it needs to access
to the matrix elements [4]. Therefore, Chebyshev polynomial smoothers are recommended for
parallel computations and matrix-free implementations [1]. In particular, the implementation
of the deal.II library is used [3]. The number of iterations for the smoother, itsch, is set to
itsch = 5. To estimate the largest eigenvalue to apply the Chebyshev polynomial, ten iterations
of the GMRES method preconditioned with the inverse diagonal of A are used.
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To solve the small problem (14), the GMRES method is applied of the PETSc library [2]. To
precondition the coarse problem, two type of strategies are tested. First, the coarse problem is
assembled with a semi-matrix-free allocation and the block Gauss-Seidel preconditioner is used
to solve this ‘small’ problem. Second, the matrix of the coarse problem is not assembled and
the inverse of the diagonal elements is used to preconditioner the ‘small’ linear system. Note
that to solve this small problem, if p∗ > 1, we can also use a smaller degree to construct a
smaller problem and repeat the process to obtain a three-level preconditioner.

The implementation of the particular case of two-level preconditioner is described in Algo-
rithm 1.

Algorithm 1 Two-level preconditioner

Input: Vector x, matrices A and A∗.
Output: Vector y = Px with P ≈ A−1 preconditioner of A.

1: Pre-smooth Ay = x with itsch = 5 (Initialize the iterative method with y0 = 0)
2: Restrict the residual r = Ay − x to the second level by r∗ = R(r)
3: Solve A∗e∗ = r∗

4: Prolongate e∗ by e = P(e∗)
5: Correct y = y + e
6: Post-smooth Ay = x with itsch = 5 (Initialize the iterative method with y0 = y)

The multilevel preconditioner is compared with the block Gauss-Seidel preconditioning
(BGS). The number of moments and energy groups of the equations lead to a block struc-
ture of the matrices of the linear systems. In the block Gauss-Seidel preconditioner (BGS),
each diagonal block is (approximately) solved with the conjugate gradient method and the in-
complete Cholesky preconditioner. This preconditioner allows to save only the diagonal blocks
and to use a semi-matrix-free implementation of the matrices [17].

5 MATRIX-FREE STRATEGY

A matrix-free strategy for the matrix A is applied to remove the computational cost of saving
the matrices in memory. Nowadays, there are supercomputers without computational memory
problems of capacity to solve this type of problem. In practice, they are available for some
researching groups. In industrial sectors, such as nuclear engineering, there is a great interest
in simulating the behaviour of the reactor without requiring high computational demands. On
the other hand, this technique does not only reduce the computational memory, but also it can
reduce the matrix-vector multiplication runtimes in some computer architectures [10]. Matrix-
vector products are computed on the fly in a cell-based interface. For instance, we can consider
a finite element Galerkin approximation, that leads to the matrix A, that takes a vector u as
input and computes the integrals of the operator multiplied by trial functions to obtain the
output vector is v. The operation can be expressed as a sum of Nc cell-based operations,

v = Au =
Nc∑
c=1

PT
c AcPcu, (17)

where Pc denotes the matrix that defines the location of cell-related degrees of freedom in the
global vector and Ac denotes the submatrix of A on cell c. This sum is optimized through
sum-factorization. Details about the implementation are explained in [10].

This type of implementation does not permit access to the matrix elements, which inabilities
to use typical preconditioners such as ILU preconditioner. In this work, two types of alloca-
tions are used. First, the full matrix-free implementation (Full-MF) where any element of the

             73



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

matrices are saved in memory. Second, a semi-matrix-free implementation (Semi-MF) where
only the diagonal blocks of the matrices are assembled. The rest are implemented with the
matrix-free technique.

6 NUMERICAL RESULTS

This Section tests the performance of the multilevel preconditioner in a transient defined
from the movement of two banks of control rods in the tridimensional Langenbuch benchmark
reactor [11]. The geometry of the reactor is modelled with 1170 cells. The transient is followed
during 30 s.

The methodology has been implemented in C++ based on data structures provided by the
libraries deal.II [3] and PETSc [2]. It has been incorporated to the open-source neutronic
code FEMFFUSION [16]. For the computations, a computer with an Intel R© CoreTM i7-4790
@3.60GHz×8 processor with 32Gb of RAM running on Ubuntu 18.04 has been used.

Numerical results are presented to obtain the solution of the SP1 and the SP3 equations.
Degree p = 3 in the polynomial of the FEM is used for the spatial discretization. Time-step
for the backward method is set to ∆tn = 0.1 s to obtain a sequence of 300 linear systems. The
two-level preconditioners are defined from small problems obtained by considering a degree in
the FEM of the coarse problem (FEDC) equal to p∗ = 1 and p∗ = 2.

Table 1 shows the size of the matrices (Size(A)) for the different type of equations and
degrees in the finite element method (FED). This Table shows as the full matrix-free imple-
mentation largely reduces the CPU memory required by the matrices. This property becomes
more relevant as the problem is larger.

Table 1: Size of matrices associated with the linear systems and computational memory for the Full and Semi
matrix-free implementations.

FED=1 FED=2 FED=3

Equations Size (A) CPU Memory Size (A) CPU Memory Size (A) CPU Memory

Full-MF Semi-MF Full-MF Semi-MF Full-MF Semi-MF
SP1 3080 0.07 MB 1 MB 21 546 0.16 MB 18 MB 69 440 0.34 MB 115 MB
SP3 6160 0.14 MB 2 MB 43 092 0.23 MB 33 MB 138 880 0.40 MB 214 MB

First, we test the preconditioner used to solve the coarse problem in the multilevel precon-
ditioner. Two types of implementation are compared: the BGS preconditioner with Semi-MF
allocation and the inverse diagonal preconditioner with Full-MF allocation. Table 2 shows the
mean number of iterations to solve the coarse problems with each preconditioner and the total
CPU Time. The results are displayed to compute the sequence associated with the SP1 equa-
tions if FEDC is equal to p∗ = 1 and p∗ = 2. Table 2 shows that the application of the BGS
preconditioner solves the linear systems with much less iterations than using the inverse of the
diagonal as preconditioner. However this preconditioner requires the assembly of the matrices
and preconditioner. Numerical results shows that if FEDC is p∗ = 1, the total CPU time of
both implementations is similar. The CPU time of iterations is compensated by the assembling
time. However, if FEDC is p∗ = 2, the CPU time with the inverse diagonal is a bit higher,
because in this last case the number of iterations needed by the inverse diagonal is 3 times
higher than if BGS preconditioner is applied.
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Table 2: Performance of the multilevel preconditioner to compute the sequence associated with the SP1

equations.

FEDC (p∗) Type of preconditioner Mean Number of Iterations Total CPU time

1 BGS 8.12 1108 s
1 Inverse Diagonal 14.49 1096 s

2 BGS 19.31 1367 s
2 Inverse Diagonal 73.87 1602 s

Now, the multilevel preconditioner is compared with the BGS to solve the sequence of linear
systems associated with the SP1 and SP3 equations. To apply the BGS and the multilevel
preconditioner, the semi-matrix-free implementation and the full matrix-free implementation
are used, respectively. The coarse problems in the multilevel preconditioner are solved with a full
matrix-free implementation of the matrices and the inverse diagonal to have a full matrix-free
implementation for the integration of the equations. Figure 2 shows the number of iterations
(left) and the CPU time (right) needed by each type of preconditioner for every system in the
sequence of the SP1 equations. One can observe that the multilevel preconditioner reduces
considerably the number of iterations required by the BGS, especially if the coarse problem
is defined from a p∗ = 2. However, in the CPU time, the most efficient preconditioner is
the multilevel preconditioner with FEDC equal to p∗ = 1, because the coarse problems are
much smaller than the coarse problems with FEDC equal to p∗ = 2 (Table 1). Figure 3
displays the results obtained in the sequence of systems associated with the SP3 equations.
Similar conclusions as the ones obtained for the SP1 equations are obtained, even though the
differences between the multilevel and FEDC equal to p∗ = 1 and the BGS are not as high.
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Figure 2: Comparison of the multilevel preconditioner where the second level is obtained from p∗ = 1 (MUL-
FE1) and p∗ = 2 (MUL-FE2), and the BGS preconditioner for the solution of the time-dependent SP1 equations.
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Figure 3: Comparison of the multilevel preconditioner where the second level is obtained from p∗ = 1 (MUL-
FE1) and p∗ = 2 (MUL-FE2), and the BGS preconditioner for the solution of the time-dependent SP3 equations.

7 CONCLUSIONS

This work has proposed a two-level preconditioner based on different degrees in the polyno-
mials of the finite element method to integrate the SPN equations.

Numerical results have been shown the competitiveness of this multilevel preconditioner
when it is compared with the block Gauss-Seidel preconditioner. Different coarse problems
with degree p∗ = 1 and p∗ = 2 in the FEM are tested. Coarse problems with degree p∗ = 2 are
more convenient to reduce the number of iterations needed for the linear solver to converge.
However, from a CPU time point of view, it is recommended to define the coarse problem from
degree equal to p∗ = 1. On the other hand, this two-level preconditioner can be applied by
only using matrix-vector products allowing a full matrix-free implementation that removes the
time to assembly the sparse matrices involved in the linear systems and reducing the necessary
memory to allocate the matrices.
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Abstract: We revisit the well-known three-field formulation introduced by Simo and Taylor,
[5]. However, while in [5] a semi-discretization is used to eliminate the additional primary
unknowns before the problem is linearized in terms of the not yet discretized displacement field,
we introduce hybrid/mixed elements based directly on the consistent linearization of the three-
field formulation on the continuum-level. In the latter case, static condensation is used to
eliminate the additional unknowns on the element-level after the linearization of the continuum
formulation in order to derive discontinuous hybrid-elements.

A family of Simo-Taylor-Pister (STP) elements, as well as a family of elements based on the
continuum-level linearization (CL3F), designed to coincide in terms of the interpolation schemes,
the number of assembled degrees of freedom and the number of integration points with the Abaqus
hybrid-elements (C3D8H,C3D20H,C3D10H) are compared to those elements by benchmark tests.
Material parameters were obtained by least-square fitting to experimental data of an industrial
NR/IR-blend (natural rubber / isoprene rubber) used for damping applications.

All tested elements are free of volumetric locking. The STP-elements show severe stability
issues. In general the maximum stable step-width of the Abaqus hybrid-elements is higher in
comparison to the STP-elements. However, the CL3F-elements outperform the Abaqus elements
in general without the usage of numerical stabilization. Especially in combination with strongly
nonlinear compression models, the advantage of the CL3F-elements is huge – here the stable
step-width is up to 22 times larger. Details can be found in a contribution which is currently
under review, [7].

1 INTRODUCTION

Irreducible (purely displacement-based) finite element formulations are ill-posed for quasi-
incompressible materials. In addition, these elements tend to be overly stiff which is an effect
known as volumetric locking. To overcome these deficiencies, several so-called mixed and hy-
brid element formulations were developed. Simo-Taylor-Pister (STP) elements were originally
introduced in [4, 5] and played a key role in the history of hybrid-element formulations. Usu-
ally this formulation is augmented in order to overcome numerical stability issues. Recent
hybrid-element formulations often rely heavily on matching numerical stabilization techniques

https://doi.org/10.4995/YIC2021.2021.12174

             79



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

as well.

2 STP-ELEMENTS

Simo-Taylor-Pister (STP) are based on the modified potential

Πmod(ϕ, Θ, p) :=

∫
Ω

W̊ (ϕ, Θ) dV +

∫
Ω

p (J(ϕ)−Θ) dV + Πext(ϕ), (1)

where the three (primary) unknown tensor fields are: the configuration ϕ (or alternatively the
displacement U), the dilation Θ and the hydrostatic pressure p. Here J = det(F ) denotes the
Jacobian and W̊ refers to the modified strain-energy density, where the displacement gradient
F is replaced by its modified counterpart F̊ := (Θ/J)1/3F . The associated weak form, i.e.
Gateaux derivative at the current state (ϕ̂, Θ̂, p̂) in the direction (η, ψ, q) (virtual state) is

G
((
ϕ̂, Θ̂, p̂

)
, (η, ψ, q)

)
:=

∫
Ω

2
∂W̊

(
ϕ̂, Θ̂

)
∂C̊IJ

ˆ̊
FiI

ˆ̊
FjJ dev

(
ηsym
i,j

)
dV

+

∫
Ω

2ψ

3Θ̂

∂W̊
(
ϕ̂, Θ̂

)
∂C̊IJ

ˆ̊
FiI

ˆ̊
FjJ δij dV +

∫
Ω

p̂ J (ϕ̂) ηi,i − p̂ψ + q
(
J (ϕ̂)− Θ̂

)
dV + δΠext(ϕ̂,η).

(2)

Here, the modified strain-energy density W̊ can still be an arbitrary function of the modified
right Cauchy-Green tensor C̊. After the treatment of the weak form, Simo and Taylor assume
an additive split of W̊ into an isochoric and volumetric part, cf. [5], section 3.3. The imple-
mentation of STP-elements is based on the approach originally sketched in section 4.1 of [5],
here referred to as “semi-discretization approach” and recapped below.

The same inter-element discontinuous interpolation for the dilation and the pressure and
their virtual counterparts is utilized, using the same shape functions

Θe ≈
ne Γ∑
l=1

Γe,l (ξ) Θ̂e,l , pe ≈
ne Γ∑
l=1

Γe,l (ξ) p̂e,l . (3)

Regarding just the additive term of the weak form (2) that incorporates the virtual pressure q
and only the contribution of a single finite element Ωe , insertion of the interpolations (3) and

factoring out the coefficients of the virtual pressure q̂e,k leads to a matrix-vector equation that
has to equate to zero. By inversion of the matrix this equation can be solved for the nodal

values of the dilation Θ̂e,l , leading finally to an intra-element interpolation for the dilation

Θ̂e ≈
ne Γ∑
k=1

ne Γ∑
l=1

He −1
lk

∫
Ωe

Γe,k (ξ) Je (ϕ̂) dV with He kl :=

∫
Ωe

Γe,k (ξ) Γe,l (ξ) dV, (4)

that only depends on the current configuration ϕ̂. Hence, (4) can be used to eliminate the
primary unknown Θ on element level. Applying the same procedure on the additive part of
(2) incorporating the virtual dilation ψ, we also obtain an intra-element interpolation for the
pressure

p̂e ≈
ne Γ∑
k=1

ne Γ∑
l=1

He −1
lk

∫
Ωe

Γe,k (ξ)
2

3Θ̂

∂W̊
(
ϕ̂e , Θ̂e

)
∂C̊IJ

ˆ̊
Fe iI

ˆ̊
Fe jJ δij dV, (5)
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that only depends on the current configuration ϕ̂ by the use of (4). The elimination of the
independent pressure and the independent dilation in the remainder of (2) by insertion of the
intra-element interpolations (4) and (5) leads to a variant of the weak form depending solely
on the current configuration ϕ̂

ge (ϕ̂,η) ≈
∫
ϕ( Ωe )

{
σ̂e iso
ij + p̂e δij

}
ηsym
i,j dv + ϕ∗ {δΠext(ϕ̂,η)} . (6)

(Here it is crucial to note that p̂e is not the independent pressure anymore, but instead a
shorthand notation for the insertion of (5), which also applies for Θ̂e below.) Since (6) only
depends on the current configuration ϕ̂, i.e. not on the independent dilation and pressure
anymore, it can be linearized by derivation of the Gateaux derivative in the direction of the
displacement increment u only. The final spatial representation of the linearization reads

δ ge ((ϕ̂,η) ,u) =

∫
ϕ( Ωe )

ui,j σ̂
e
ijηi,l

+ ui,jηk,l
[
p̂e
(
δijδkl − δilδjk − δikδjl

)
+ ĉe iso

ijkl

]
+
∂2W̊

(
ϕ̂e , Θ̂e

)
∂Θ2

Θ̂e 2

Ĵe
div η divu dv, (7)

where

divu =
1

Θ̂e (ϕ̂)

ne Γ∑
k=1

ne Γ∑
l=1

He −1
lk

∫
Ωe

Γe,k (ξ) Je (ϕ̂)ui,i dV (8)

is the so-called “discrete divergence operator”, cf. [5]. Finally, the introduction of an inter-
element continuous interpolation for the not yet discretized displacement field leads to STP-
elements. Since only the remaining displacement degrees of freedom are assembled, the im-
plementation is very similar to the procedure for purely displacement-based elements. Due to
the used inter-element discontinuous pressure and dilation interpolation (3) STP-elements are
classified as “discontinuous-type” hybrid elements.

3 CL3F-ELEMENTS

We propose hybrid/mixed elements – closely related to STP-elements – we call CL3F-elements,
which can be of either the discontinuous or the continuous type. A detailed contribution
including the full length derivation is currently under review, cf. [7]. The elements are based
on the continuum-level linearization of the three-field potentials weak form (2) rather than the
semi-discretization approach used for STP-elements recapped above.

We assume an isotropic, hyperelastic, quasi-incompressible, material of type

W̊ = W̊iso

(
¯̊
I1,

¯̊
I2

)
+ W̊vol (Θ) , (9)

where
¯̊
I1 and

¯̊
I2 refer to the first two isotropic invariants of C̊. The isochoric and volumetric

part of the stress are given by

σiso
ij = 2 J−1 ∂W̊iso

∂C̊IJ
F̊iI F̊jJ , σvol

ij (Θ) = 2Θ−1 ∂W̊vol

∂C̊IJ
F̊iI F̊jJ =

∂W̊vol

∂Θ
δij , (10)

and the (isochoric) stiffness is given by

ciso
ijkl = 4 J−1 ∂2W̊iso

∂C̊IJ ∂C̊KL
F̊iI F̊jJ F̊kK F̊lL. (11)
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With (10) and (11) the weak form (2) pushed to the spatial configuration reads

g
((
ϕ̂, Θ̂, p̂

)
, (η, ψ, q)

)
=

∫
ϕ(Ω)

(
σ̂iso
ij + p̂ δij

)
ηsym
i,j dv

+

∫
ϕ(Ω)

ψ

Ĵ

(
1

3
σ̂vol
ij

(
Θ̂
)
δij − p̂

)
dv

+

∫
ϕ(Ω)

q

(
1− Θ̂

Ĵ

)
dv + ϕ∗ {δΠext(ϕ̂,η)} . (12)

Computing the Gateaux derivative of the weak form (2) for a material of type (9) at the current
state (ϕ̂, Θ̂, p̂) in the direction (u, ω, γ) (state increment), we obtain the consistent (continuum-
level) linearization of the weak form, which reads pushed to the spatial configuration

δg

(((
ϕ̂, Θ̂, p̂

)
,
(
η, ψ, q

))
,
(
u, ω, γ

))
=

∫
ϕ(Ω)

{
ĉiso
ijkl I

sym,dev
ijab Isym,dev

klcd ηa,b uc,d

+σ̂iso
jl

(
2 Isym,dev

ijab Idev
ilcd − I

sym,dev
jlad δbc

)
ηa,b uc,d

+p̂ (δab δcd − δcbδad) ηa,b uc,d

+
ω ψ

Ĵ

∂2 ˆ̊
Wvol

∂Θ2
+ γ ηi,i −

γ ψ

Ĵ
+ q

(
ui,i −

ω

Ĵ

)}
dv

+ ϕ∗ {δ (δΠext(ϕ̂,η),u)} , (13)

where we introduced

Idev
ijab := δiaδjb −

1

3
δijδab ⇒ dev(tij) = Idev

ijab tab,

Isym,dev
ijab :=

1

2
δiaδjb +

1

2
δibδja −

1

3
δijδab ⇒ dev(tsym

ij ) = Isym,dev
ijab tab.

Note that already the mathematical structure of (7) differs from (13): In the STP-linearization
the dilation increment ω and pressure increment γ are missing by design, since the independent
dilation and pressure variables were removed from the weak form before the linearization.
The linearization (7) of the semi-discretization approach used for the STP-elements is not the
consistent (continuum-level) linearization of the three-field potentials weak form (2) – it is the
consistent linearization of (6).

The linearized problem of finding an incremented equilibrium state is

0
!

= g
((
ϕ̂+ u, Θ̂ + ω, p̂+ γ

)
, (η, ψ, q)

)
≈ g

((
ϕ̂, Θ̂, p̂

)
, (η, ψ, q)

)
+ δg

(((
ϕ̂, Θ̂, p̂

)
,
(
η, ψ, q

))
,
(
u, ω, γ

))
. (14)

Choosing the displacement field U as the first primary unknown (rather than the configuration
ϕ) and introducing a standard Lagrange interpolation

Ue i ≈
ne k∑
k=1

Ne,k i(ξ) ê,k,iU (15)
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for U as well as different (potentially non Lagrange-type) interpolations for the dilation and
pressure (3) with matching interpolations for all of the associated virtual quantities η, ψ, q and
introducing a quadrature scheme for a specific element Ωe , allows us to factor out the nodal
values of the virtual quantities as usual to obtain the linear equation system


u
↓

ω
↓

γ

↓

η→ Ke uu 0 Ke up

ψ→ 0 Ke ΘΘ Ke Θp

q→ Ke pu Ke pΘ 0

 ·
 ue

ωe

γe

+

 Re u − Pe u

Re Θ

Re p

 = 0, (16)

on the element level from (14). By selecting (different) inter-element continuous interpolation
schemes (3) and (15), we obtain continuous-type mixed elements by assembling all state vari-
ables (displacement, dilation and pressure). Although the element tangent stiffness matrix in
(16) is singular (due to the diagonal element which is zero) the global tangent stiffness matrix
assembled from (16) is regular.

To obtain discontinuous-type hybrid elements that are comparable to the original STP-
elements, we choose an inter-element discontinuous interpolation scheme (3) for the dilation
and pressure and an inter-element continuous one for the displacement (15). Eliminating the
dilation and pressure increments from (16) (static condensation) leads to the equation system(

Ke uu + Ke up

[
Ke Θp

]−1
Ke ΘΘ

[
Ke pΘ

]−1
Ke pu

)
ue

+ Re u − Pe u + Ke up

[
Ke Θp

]−1
Ke ΘΘ

[
Ke pΘ

]−1
Re p − Ke up

[
Ke Θp

]−1
Re Θ = 0, (17)

ωe = −
[
Ke pΘ

]−1 (
Ke pu u

e + Re p

)
, (18)

γe = −
[
Ke Θp

]−1
( Ke ΘΘ ωe + Re Θ) . (19)

Only the displacement degrees of freedom (DOFs) are assembled to the global system using the
element tangent stiffness contributions and residual vector contributions according to (17). In
contrast to the STP-approach, the current state values of the independent dilation Θ̂ and the
pressure p̂ are needed in order to compute the element stiffness and residual vector contributions.
Hence, we need to keep track of these quantities, and it is mandatory that every instance of a
finite element has internal state variables for the eliminated dilation and pressure DOFs. Once
the global equation system – assembled from (17) – is solved, the nodal displacement increments
for every element are known and the dilation and pressure increments are computed from (18)
and (19) on element level. There is no need for such a secondary variable update scheme in the
original STP-approach, since – in contrast to the increment-to-increment relations (18) and (19)
used in the CL3F-approach – the current states dilation and pressure follow directly from the
current displacement, cf. (4) and (5), and thus we have a purely displacement-based approach.
The differences in the update schemes are illustrated by the algorithms 1 and 2.
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repeat

assemble KT from Ke T

(
Ûe , Θ̂e , p̂e

)
, cf. (13), (17)

solve KT u = λPu −R
(
Ru,RΘ,Rp

)
for u, cf. (17)

foreach element e do
compute ωe ( ue ) , γe ( ue ), cf. (18), (19)

update Θ̂e := Θ̂e + ωe , p̂e := p̂e + γe

end

update Û := Û + u

assemble R from Re u

(
Ûe , p̂e

)
, Re Θ

(
Ûe , Θ̂e , p̂e

)
, Re p

(
Ûe , Θ̂e

)
, cf. (12), (17)

until ‖λPu −R‖ ≤ tol

Algorithm 1: CL3F equilibrium iterations at load level λ ∈ [0, 1]

repeat

assemble KT from Ke T

(
Ûe
)

, cf. (4), (5), (7)

solve KT u = λPu −Ru for u

update Û := Û + u

assemble Ru from Re u

(
Ûe
)

, cf. (4), (5), (6)

until ‖λPu −Ru‖ ≤ tol

Algorithm 2: STP equilibrium iterations at load level λ ∈ [0, 1]

Since the equation systems of both approaches differ from each other, the discontinuous
type CL3F-elements differ from the original STP-elements, even if we choose the exact same
interpolation schemes (3) and (15) in order to achieve a fair comparison. Comparing the
equation systems on an element-level, it is interesting to observe that the element residual of
the STP-approach equals the term Re u− Pe u in the CL3F-approach (compare (6) and the first line
of (12)), if we ignore the differences between the pressures in both approaches stemming from
the secondary variable update scheme. The additional summands of the vector residual of (17)
stemming from Re Θ and Re p are missing in the STP-approach due to the semi-discretization. On
the other hand, the transformation from the system (17), (19), (18) used by the discontinuous
CL3F-elements to the discretized consistent linearization (16) (used for the continuous type
CL3F-elements) is an equivalence transformation on element level.

4 NUMERICAL BENCHMARK

We implemented several types of discontinuous hybrid elements in a finite element program
build from scratch following the CL3F as well as the original STP approach. In order to compare
the formulations all elements are implemented without extrapolation or any numerical stabiliza-
tion. We always combine a Lagrange-type displacement interpolation with a polynomial-type
dilation/pressure interpolation. The prefixes in the element names below indicate which ap-
proach was used. The interpolation schemes are selected to match the ones used for the Abaqus
hybrid elements, cf. [6], whose names always start with C3D and end with H. In turn the num-
ber of assembled DOFs coincide. Also the quadrature schemes for STP and CL3F-elements are
selected to match the number of integration points of the Abaqus elements. The Abaqus hybrid
elements are used with default parameters, which includes the per default extrapolation.

In particular, we compare the following discontinuous hybrid elements:

• Hexahedral elements with linear Lagrange-type (8 node) displacement interpolation and
constant dilation/pressure ansatz, 24 assembled DOFs: C3D8H, STP-H1G8-P0, CL3F-H1G8-P0
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• Hexahedral elements with quadratic, serendipity-type Lagrange (20 node) displacement
interpolation and linear dilation/pressure ansatz, 60 assembled DOFs: C3D20H, STP-H2sG27-P1,
CL3F-H2sG27-P1

• Tetrahedral elements with quadratic Lagrange-type (10 node) displacement interpola-
tion and constant dilation/pressure ansatz, 30 assembled DOFs: C3D10H, STP-T2G4-P0,
CL3F-T2G4-P0

Also we implemented the following continuous type CL3F-elements for a comparison:

• CL3F-H2sG27-L1: A hexahedral element with quadratic, serendipity-type Lagrange (20
node) displacement interpolation and linear Lagrange-type (8 node) dilation/pressure
ansatz, 76 assembled DOFs

• CL3F-T2G4-L1: A tetrahedral element with quadratic Lagrange-type (10 node) displace-
ment interpolation and linear Lagrange-type (4 node) dilation/pressure ansatz, 38 assem-
bled DOFs

To benchmark the influence of the strength of the nonlinearity in the material model, we com-
bine the Neo-Hooke model for the isochoric part of the strain energy density (µ0 = 1.0316 MPa)
with three different compression models. Sorted by the strength of the uplift from weakest to
strongest nonlinearity, the compression models are:

• Ogden compression model, cf. [2], W̊vol = K0

β2

(
β lnΘ +Θ−β − 1

)
, K0 = 2781 MPa, β =

−2

• Standard compression model, W̊vol = 1
2
K0 (Θ − 1)2, K0 = 2816 MPa

• Hartmann-Neff model, cf. [1], W̊vol = K0

2β2

(
Θβ +Θ−β − 2

)
, K0 = 2290 MPa, β = 41

All compression models are (least-square) fitted to the same experimental data obtained by
confined axial compression testing of an industrial NR/IR-blend (natural rubber / isoprene
rubber) with strongly nonlinear compression behavior used for damping applications, cf. [3].

The benchmark geometry, boundary conditions and the load-case are adapted from the well
known block locking test, described in detail in [8, pp. 458].

Standard tests for finite element performance are usually mesh convergence studies: To asses
an elements stiffness, the load-case is fixed and the mesh is refined in several steps towards the
point where the solution does not change anymore within a certain tolerance. Usually one plots
the maximum displacement vs. the mesh size for illustration. For each of the three groups of
comparable discontinuous hybrid elements (and for each compression model), we see the same
mesh convergence behavior. Here we only provide the plot for quadratic hexahedral elements
for brevity, cf. Figure 1. The displacements fields coincide beside small round-off errors for
different, comparable elements – even in the regime where the displacement is still mesh de-
pendent. Especially all tested discontinuous elements are free of volumetric locking, like the
original STP-elements, judged by the displacement-field. The continuous CL3F-elements have
a different mesh convergence behavior, if compared to discontinuous elements with the same
displacement ansatz. They need a slightly finer mesh to converge, but still the elements are free
of volumetric locking. Their convergence is non-monotonic in contrast to the discontinuous ele-
ments. Also it is noteworthy that each equilibrium iteration is computationally more expensive
than for comparable discontinuous elements due to the increased number of DOFs for a fixed
mesh size. These disadvantages are however to some extent counterbalanced by the fact that
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Figure 1: Mesh convergence study: quadratic hexahedral elements

the continuous elements need significantly less equilibrium iterations than the discontinuous
elements in general.

The similarity in the mesh convergence behavior for the discontinuous STP- and CL3F-
elements was expected since the semi-discretization approach eliminates variables from the
weak form so that we did not expect pronounced differences for converged (i.e. equilibrium)
states. However, due to the differences in the tangent stiffness matrix and right-hand side the
elements differ in terms of the numerical stability. Under numerical stability (or robustness)
we understand the maximum load-step size that can be applied (for a specific combination
of hybrid-element and material model) so that the (only locally converging) Newton-Raphson
scheme still converges. As a benchmark test we increase the total load, which is always applied
in five equidistant steps, until for one of the five load steps the equilibrium iterations diverge.
The maximum load for each combination of hybrid element and material model is displayed
in Figure 2. It should be mentioned at this point, that a stability benchmark like this is in
contrast to mesh convergence studies not at all a standard test in the literature, although the
ability to apply large load-steps is obviously a desirable property.

In Abaqus only the standard compression model is readily available. Therefore, in combi-
nation with the standard compression model we tested the Abaqus elements (in red) twice: In
combination with the internal material model and with the same material model implemented
by a UMAT. (The nonstandard models are both implemented by UMATs for the testing of the
Abaqus hybrid elements.) Interestingly, the internal standard model performs slightly better
than the UMAT implementation. Comparing only UMAT implementations, the Abaqus elements
perform worse for compression models with stronger nonlinearity. Especially for the Hartmann-
Neff model, the stable step-width of the Abaqus elements is significantly reduced. The original
(not augmented) STP-elements (in gray) perform worse than the Abaqus elements and suffer
from severe stability issues in general. In contrast, the (not augmented) CL3F-elements (in
blue) perform better than the Abaqus hybrid elements in general. Furthermore, in contrast to
the Abaqus elements, all CL3F-elements achieve the same stable step-width (within the margin
of error of the test) independent of the used compression model. In turn, the advantage of
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Figure 2: Numerical stability benchmark

the CL3F-elements is huge for the strongly nonlinear Hartmann-Neff model. (Here, the stable
step-width is up to 22 times larger.) Another observation is that within the margin of error,
we observe no difference in terms of the numerical stability between continuous CL3F-elements
and comparable discontinuous CL3F-elements.

5 CONCLUSIONS

Comparing the Abaqus hybrid elements to the STP- and CL3F-elements it should be emphaz-
ized that the Abaqus/Standard default settings, especially the default extrapolation was used
for the Abaqus hybrid elements, i.e. a method to determine the first guess to the incremental
solution. In contrast the initial value of the incremental solution for the implementation of the
STP- and CL3F-elements was simply zero. Also, no stabilization techniques were used for the
STP- and CL3F-elements. Hence, the Abaqus hybrid elements (which are used as provided) have
a huge advantage in the stability benchmark. Therefore, it is remarkable that the CL3F-elements
overcome the stability issues of the STP-elements to an extend that they outperform the pro-
duction stage Abaqus elements, especially since recent hybrid-element formulations often rely
heavily on matching numerical stabilization techniques.
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Abstract: For our research, we are motivated by dynamic simulations of 3D fiber-reinforced mate-
rials in lightweight structures. In such materials, the material reinforcement is performed by fiber
rovings with a separate bending stiffness, which can be modelled by a second-order gradient of the
deformation mapping (see Reference [1]). Therefore, we extend a thermo-viscoelastic Cauchy con-
tinuum for fiber-matrix composites with single fibers by an independent field for the gradient of the
right Cauchy-Green tensor. On the other hand, we focus on numerically stable dynamic long-time
simulations with locking free meshes, and thus use higher-order accurate energy-momentum schemes
emanating from mixed finite element methods. Hence, we adapt the variational-based space-time
finite element method in Reference [2] to the new material formulation, and additionally include in-
dependent fields to obtain well-known mixed finite elements [3, 4, 5]. As representative numerical
example, Cook’s cantilever beam is considered. We primarily analyze the influence of the fiber bend-
ing stiffness, as well as the spatial and time convergence up to cubic order. Furthermore, we look at
the influence of the physical dissipation in the material.

1 INTRODUCTION

We consider an anisotropic material with the fiber roving direction aaa0, moving in the Euclidean space
Rndim with the constant ambient temperature Θ∞. The strain energy function of the material with a
thermo-viscoelastic matrix and a thermoelastic fiber roving is given by

Ψ(CCC,CCCv,Θ,aaa0) = ΨM(CCC,CCCv,Θ)+ΨF(CCC,Θ,aaa0)+Ψ
X
HOG(. . . ,aaa0), (1)

which is split into a matrix part ΨM a fiber roving part ΨF and a higher-order gradient part ΨX
HOG.

Here FFF = ∇qqq define the deformation gradient by the position qqq, CCC = FFFT FFF define the right Cauchy-
Green tensor, CCCv define the viscous right Cauchy-Green tensor and Θ define the absolute temperature.
The specific dependencies are given by

ΨM(CCC,CCCv,J,Θ) = Ψ
iso
M (CCC,J)+Ψ

vol
M (J)+Ψ

cap
M (Θ)+Ψ

coup
M (Θ,J)+Ψ

vis
M (CCCCCC−1

v ) (2)

ΨF(CCC,Θ,aaa0, . . .) = Ψ
ela
F (CCC,aaa0)+Ψ

cap
F (Θ)+Ψ

coup
F (Θ,CCC) (3)

with the volume dilatation J(CCC) = det[FFF ] =
√

det[CCC]. The elastic part of the matrix function ΨM is
split into an isochoric part Ψiso

M , a volumetric part Ψvol
M , a heat capacity part Ψ

cap
M , a part of the thermo-

mechanical coupling effect Ψ
coup
M and the viscoelastic free energy function of the matrix Ψvis

M . The
parts of the fiber free energy is separated in the same manner. It is split into an elastic part Ψela

F , a heat
capacity part Ψ

cap
F and a part of the thermo-mechanical coupling effect Ψ

coup
F . The functions of the

https://doi.org/10.4995/YIC2021.2021.12358
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thermo-mechanical coupling Ψ
coup
X with the coefficients of linear thermal expansion βX, the structural

tensor MMM = aaa0⊗aaa0 and the fourth invariant I4 = tr[CCCMMM] are given by

Ψ
coup
M =−2ndimβM(Θ−Θ∞)J

∂Ψvol
M (J)
∂J

Ψ
coup
F =−2βF(Θ−Θ∞)

√
I4

∂Ψela
F (I4, . . .)

∂I4
(4)

We distinguish between two different variants for the higher-order gradient part ΨX
HOG. One concern-

ing the gradient of the deformation gradient FFF and one concerning the gradient of the right Cauchy-
Green tensor CCC. In comparison with Ψela

F which considers the fiber roving stretch, this part capture
the bending of the fiber roving. The formulation regarding FFF is shown in Reference [1]. Here the
sixth and seventh invariants are given by

IF
6 (FFF ,∇FFF) = κκκ

F
0 ·κκκF

0 IF
7 (FFF ,∇FFF ,CCC) = κκκ

F
0 ·CCC ·κκκF

0 κκκ
F
0 = ΛΛΛ

F ·aaa0 (5)

with the referential representation

ΛΛΛ
F(FFF ,∇FFF) = FFFT ·aaa0 ·∇FFFT (6)

It is important to note here, that I7 is depend on CCC as well as ΛΛΛ. Thus, for the strain energy function
of the higher-order gradient, the dependencies are

Ψ
F
HOG(ΛΛΛ

F,CCC,aaa0) = f̂ (IF
6 (ΛΛΛ

F), IF
7 (ΛΛΛ

F,CCC)) (7)

A variant of the higher-order gradient formulation in CCC is shown in Reference [6]. From this we derive
the following formula for the sixth invariant

IC
6 (∇CCC) = (aaa0 ·∇CCC ·aaa0) · (aaa0 ·∇CCC ·aaa0) (8)

If we now set

ΛΛΛ
C(∇CCC) = aaa0 ·∇CCC (9)

we get the same expressions for the invariants as for FFF , given by

IC
6 (∇CCC) = κκκ

C
0 ·κκκC

0 IC
7 (CCC,∇CCC) = κκκ

C
0 ·CCC ·κκκC

0 κκκ
C
0 = ΛΛΛ

C ·aaa0 (10)

and the final dependencies read

Ψ
C
HOG(∇CCC,CCC,aaa0) = f (IC

6 (∇CCC), IC
7 (∇CCC,CCC)) (11)

2 FINITE ELEMENT FORMULATION

The finite element discretization follows from the mixed principle of virtual power (see Reference [5,
2]). Here, we need the complete internal energy, which consists of the assumed temperature field
Θ̃, the entropy density field η as the corresponding Lagrange multiplier, the superimposed stress
tensor S̃SS to derive an energy–momentum scheme, an independent mixed field C̃CC and the corresponding
Lagrange multiplier SSS. The internal energy functional reads

Π
int =

∫
B0

ΨM(C̃CC, J̃,Θ)dV +
∫

B0

ΨF(C̃CCA,Θ)dV +
∫

B0

1
2

SSS : (CCC(qqq)−C̃CC)dV +
∫

B0

S̃SS : C̃CCdV

+
∫

B0

η (Θ− Θ̃)+
∫

B0

p (J(C̃CC)− J̃)dV +
∫

B0

p̃J̃dV +
∫

B0

1
2

SSSA : (C̃CC−C̃CCA)dV

+
∫

B0

S̃SSA : C̃CCAdV +Π
X
HOG (12)
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We introduce an independent volume dilatation J̃ (see Reference [3]) and the field C̃CCA (see Refer-
ence [4]) for the anisotropic part ΨF to avoid locking effects. Here, the Lagrange multiplier p plays
the role of the hydrostatic pressure and the Lagrange multiplier SSSA represents the stress tensor of the
anisotropic part. To obtain an energy–momentum scheme, we also introduce the superimposed pres-
sure p̃ and superimposed stress tensor S̃SSA. For the higher-order gradient fomulation with respect to FFF
(HF), we introduce an independent field for FFF , for ∇FFF and for ΛΛΛ

F

Π
F
HOG =

∫
B0

P̃PP : (FFF− F̃FF)dV +
∫

B0

BBB�3 (∇(F̃FF)− Γ̃ΓΓ)dV +
∫

B0

HHH : (ΛΛΛF(F̃FF , Γ̃ΓΓ)− Λ̃ΛΛ)dV

+
∫

B0

Ψ
F
HOG(Λ̃ΛΛ,C̃CCA,aaa0)dV +

∫
B0

H̃HH : Λ̃ΛΛdV (13)

By the independent definition of F̃FF and Γ̃ΓΓ it is later in the discrete setting not necessary to construct a
double gradient of the spatial shape functions. The introduction of Λ̃ΛΛ is necessary to have an objective
quantity for the construction of an energy–momentum scheme with the superimposed field H̃HH. For
the higher-order gradient fomulation with respect to CCC (HC), we build the functional in a similar way

Π
C
HOG =

∫
B0

1
2

SSSG : (CCC−C̃CCG)+
∫

B0

BBB�3 (∇(C̃CCG)− Γ̃ΓΓ)dV +
∫

B0

Ψ
C
HOG(Γ̃ΓΓ,C̃CCA,aaa0)dV

+
∫

B0

B̃BB�3 Γ̃ΓΓdV (14)

We introduce an independent field for CCC and ∇CCC. The further field with respect to CCC is introduced
because SSSG is assumed to be asymmetric, and therefore no symmetries in the Voigt notation are used
later in the programming. Compared to the formulation in FFF (HF), we build the superimposed field
based on Γ̃ΓΓ. Furthermore, this leads to a less complex weak form. The superimposed fields (see
Reference [2] and [5]), which have both variants in common, are given by

S̃SS =
Ψ̃(1)− Ψ̃(0)−

∫ ∂Ψiso
M

∂C̃CC
: ˙̃CCC−

∫ ∂(Ψ
cap
M +Ψ

cap
F )

∂Θ
Θ̇−

∫ ∂Ψvis
M

∂CCCv
: ĊCCv

˙̃CCC : ˙̃CCC
˙̃CCC (15)

p̃ =
Ψ̃(1)− Ψ̃(0)−

∫ ∂(Ψiso
M +Ψvol

M )

∂J̃
˙̃J−

∫ ∂Ψ
coup
M

∂Θ
Θ̇

˙̃J ˙̃J
˙̃J (16)

S̃SSA =
Ψ̃(1)− Ψ̃(0)−

∫ ∂Ψela
F

∂C̃CCA
: ˙̃CCCA−

∫ ∂Ψ
coup
F

∂Θ
Θ̇

˙̃CCCA : ˙̃CCCA

˙̃CCCA (17)

and the superimposed fields regarding the different higher-order gradient formulations read

H̃HH =
Ψ̃(1)− Ψ̃(0)−

∫ ∂ΨF
HOG

∂Λ̃ΛΛ
: ˙̃

ΛΛΛ

˙̃
ΛΛΛ : ˙̃

ΛΛΛ

˙̃
ΛΛΛ B̃BB =

Ψ̃(1)− Ψ̃(0)−
∫ ∂ΨC

HOG
∂Γ̃ΓΓ
�3

˙̃
ΓΓΓ

˙̃
ΓΓΓ�3

˙̃
ΓΓΓ

˙̃
ΓΓΓ (18)

For the mixed principle of virtual power, we also need the kinetic power, given by

Ṫ =
∫

B0

(ρ0vvv− ppp) · v̇vvdV +
∫

B0

ṗpp · (q̇qq− vvv)dV +
∫

B0

ppp · q̈qqdV (19)

with the velocity vvv, the linear momentum ppp and the mass density ρ0. As external power, we assume

Π̇
ext =−

∫
B0

ρ0ggg · q̇qqdV −
∫

∂B0

λλλq · (q̇qq− q̇qqref)dA+
∫

B0

∇

(
Θ̃

Θ

)
·QQQdV +

∫
B0

Θ̃

Θ
DintdV

+
∫

B0

ĊCCv : V(CCCv) : ĊCCvdV QQQ =−
[

J(C̃CCA)
kF− kM

C̃CCA : MMM
MMM+ kJ(C̃CC)C̃CC−1

]
∇Θ (20)
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Here, we have the Piola heat flux vector QQQ derived from Duhamel’s law (see Reference [2]), where kM
and kF denotes the material conductivity coefficients for matrix and fiber roving. The time evolution
of a prescribed boundary displacement is given by q̇qqref with the Lagrange multiplier λλλq. The vector ggg
denotes the gravitational force. The non-negative internal viscous dissipation Dint is given by

Dint = ĊCCv : V(CCCv) : ĊCCv V(CCCv) =
1
4

(
Vvol−

Vdev

ndim

)
CCC−1

v ⊗CCC−1
v +

Vdev

4
Is : CCC−1

v ⊗CCC−1
v , (21)

with the viscosity constants Vvol and Vdev, which represent the volumetric and deviatoric viscosity
constants and the fourth-order symmetric projection tensor Is. The operator⊗ represents the standard
dyadic product.

The total energy balance Ḣ thus reads

Ḣ = Ṫ (q̇qq, v̇vv, ṗpp)+ Π̇
ext(q̇qq,λλλq,ĊCCv,Θ̃,Θ̇)+ Π̇

int(q̇qq,Θ̃, η̇,ĊCCv,
˙̃CCC, ˙̃J, ˙̃CCCA,SSS, p,SSSA, . . .) (22)

Note, that we define the superimposed fields (S̃SS,p̃,S̃SSA,H̃HH,B̃BB), the viscous dissipation Dint as well as the
Piola heat flux vector QQQ as parameters not as arguments. We obtain the total weak forms by variation
with respect to the variables in the argument of Eqn. (22). With

∫
T δ∗Ḣ dt ≡

∫
T [δ∗Ṫ + δ∗Π̇

ext +
δ∗Π̇

int]dt = 0, the weak forms which occur in both variants of the higher-order gradient formulation
read ∫

T

∫
B0

[
1
ρ0

ppp− q̇qq
]
·δv̇vvdV dt = 0

∫
T

∫
∂B0

[
−λλλq

]
·δq̇qqdAdt = 0∫

T

∫
B0

[
η+

∂Ψ

∂Θ

]
δΘ̇dV dt = 0

∫
T

∫
B0

[
Div[QQQ]

Θ
+

Dint

Θ
+ η̇

]
δΘ̃dV dt = 0∫

T

∫
B0

1
2

[
˙̃CCC−ĊCC

]
: δSSSdV dt = 0

∫
T

∫
B0

[
Θ− Θ̃

]
δη̇dV dt = 0∫

T

∫
B0

[
∂Ψ

∂CCCv
+ĊCCv : V(CCCv)

]
: δĊCCvdV dt = 0

∫
T

∫
∂B0

[
˙̃qqq− q̇qqref(t)

]
·δλλλqdAdt = 0∫

T

∫
B0

[
˙̃J− J̇

]
δpdV dt = 0

∫
T

∫
B0

[
p−
[

∂Ψ

∂J̃
+ p̃
]]

δ
˙̃JdV dt = 0∫

T

∫
B0

1
2

[
˙̃CCCA− ˙̃CCC

]
: δSSSAdV dt = 0

∫
T

∫
B0

[
1
2

SSSA−
[

∂Ψ

∂C̃CCA
+ S̃SSA

]]
: δ

˙̃CCCAdV dt = 0∫
T

∫
B0

[
1
2

SSS−
(

∂Ψ

∂C̃CC
+

p
2J(C̃CC)

cof[C̃CC]+
1
2

SSSA + S̃SS
)]

: δ
˙̃CCCdV dt = 0

The weak forms associated with the higher-order gradient formulation in FFF (HF) are given by∫
T

∫
B0

[
SSS :

1
2

∂ĊCC
∂q̇qq

+PPP :
∂ḞFF
∂q̇qq
− ṗpp
]
·δ∗q̇qqdV dt = 0

∫
T

∫
B0

[
˙̃FFF− ḞFF

]
: δ∗PPPdV dt = 0

∫
T

∫
B0

[
PPP−

(
HHH :

∂ΛΛΛ
F

∂
˙̃FFF

+BBB�3
∂∇

˙̃FFF

∂
˙̃FFF

)]
: δ∗

˙̃FFFdV dt
∫

T

∫
B0

[
∇( ˙̃FFF)− ˙̃

ΓΓΓ

]
�3 δ∗BBBdV dt = 0

∫
T

∫
B0

[
ΛΛΛ

F− Λ̃ΛΛ

]
: δ∗HHHdV dt = 0

∫
T

∫
B0

[
HHH−

[
∂Ψ

∂Λ̃
+ H̃HH

]]
: δ∗

˙̃
ΛΛΛdV dt = 0

∫
T

∫
B0

[
BBB−HHH :

∂ΛΛΛ
F

∂
˙̃
ΓΓΓ

]
�3 δ∗

˙̃
ΓΓΓdV dt = 0
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and the weak forms associated with the higher-order gradient formulation in CCC (HC) take the form∫
T

∫
B0

[
SSS :

1
2

∂ĊCC
∂q̇qq

+SSSG :
1
2

∂ĊCC
∂q̇qq
− ṗpp
]
·δ∗q̇qqdV dt = 0

∫
T

∫
B0

[
˙̃CCC− ˙̃CCCG

]
: δ∗SSSGdV dt = 0

∫
T

∫
B0

[
1
2

SSSG−BBB�3
∂∇

˙̃CCCG

∂
˙̃CCCG

]
: δ∗

˙̃CCCGdV dt
∫

T

∫
B0

[
∇( ˙̃CCCG)− ˙̃

ΓΓΓ

]
�3 δ∗BBBdV dt = 0

∫
T

∫
B0

[
BBB−

[
∂Ψ

∂Γ̃
+ B̃BB
]]
�3 δ∗

˙̃
ΓΓΓdV dt = 0

The operator�3 represents the triple construction of two tensors. Obviously, for the higher-order gra-
dient formulation in CCC, we have less weak forms and thus the tangent becomes substantially simpler.

In the next step, we discretize all quantities over the elements in space and time and transform the
integrals to reference elements. For the shape functions in space, N, we use Lagrangian shape func-
tions (see Reference [7]) and approximate the different mixed fields independently. Also we use the
same shape functions for the Lagrangian multipliers as for their corresponding mixed fields. We use
Lagrangian shape functions in time as well (see Reference [2]), given by

Mi(α) =
k+1

∏
j=1
j 6=i

α−α j

αi−α j
, 1≤ i≤ k+1 M̃i(α) =

k

∏
j=1
j 6=i

α−α j

αi−α j
,1≤ i≤ k (23)

The time rate variables and mixed fields (qqq,vvv,ppp,Θ̃,Θ,η,CCCv,C̃CC,C̃CCA,J̃,Γ̃ΓΓ,Λ̃ΛΛ,F̃FF ,C̃CCG) are approximated by

(•)e,h =
k+1

∑
I=1

nno

∑
A=1

MI(α)NA(ξξξ)(•)eA
I (24)

and the approximation of Lagrangian multipliers and variation fields (λλλq,SSS,SSSA,p,BBB,HHH,PPP,SSSG,δ∗•) takes
the form

(•)e,h =
k

∑
I=1

nno

∑
A=1

M̃INA(•)eA
I (25)

Here, k is the polynomial degree in time and nno is the number of nodes of the spatial discretization.
We approximate each integral with the corresponding Gaussian quadrature rule and condense out
the resulting formulation at the element level to a displacement and temperature formulation (see
Reference [4]), after eliminating ppp and η. Note, all mixed fields, except qqq and Θ, are discontinuous
at the boundaries of spatial elements. The internal variable CCCv is solved on the element level using
the Newton-Raphson method, not at each spatial quadrature point. Since the higher-order gradient
formulation results in internal torques, the conservation of angular momentum must be corrected. For
the procedure which is described in Reference [11], we obtain for the formulation in FFF

J n+1− J n =
∫ tn+1

tn

∫
B0

[(
HHH :

∂ΛΛΛ
F

∂
˙̃FFF

+BBB�3
∂∇

˙̃FFF

∂
˙̃FFF

)
× F̃FF

]
dV dt +

∫ tn+1

tn

∫
∂B0

[qqq×λλλq]dAdt

+
∫ tn+1

tn

∫
B0

[qqq×ρ0ggg]dV dt (26)

and for the formulation in CCC

J n+1− J n =
∫ tn+1

tn

∫
B0

[
BBB�3

∂∇
˙̃CCCG

∂
˙̃CCCG
× F̃FF

]
dV dt +

∫ tn+1

tn

∫
∂B0

[qqq×λλλq]dAdt

+
∫ tn+1

tn

∫
B0

[qqq×ρ0ggg]dV dt (27)
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We use our In-House Matlab code fEMcon based on the implementation and ideas shown in Ref-
erence [7]. To solve the linear systems of equations we use the Pardiso solver from Reference [8].
For the assembly procedure of all nel finite elements, we use the fast sparse routine shown in Refer-
ence [9].

3 NUMERICAL EXAMPLES

x

y

z

0.15

0.02

0.01

A

ε1 = 0.1e6 βF = 1e−6
ε2 = 100e6 c0

F = 200
kM = 0.1 c1

F = 0.0002
βM = 1e−6 ρ0 = 1000
c0

M = 800 Θ∞ = 300
c1

M = 0.0008 T = 1
ε3 = 0 TOL = 1e−4
kF = 100 g = [0 −2 0]

Figure 1: Geometry, configuration and simulation parameters of the cantilever beam for nel = 24.

As numerical example serves a simple cantilever beam which oscillates in a gravitational field. The
geometry, configuration and simulation parameters can be found in Figure 1. The corresponding
strain energy functions are

Ψ
iso
M =

ε1

2
(tr[CCC]−3−2ln(J)) Ψ

vol
M =

ε2

2

(
ln(J)2 +(J−1)2

)
Ψ

cap
X = c0

X(1−Θ∞c1
X)(Θ−Θ∞−Θ ln

Θ

Θ∞

)− 1
2

c0
X c1

X(Θ−Θ∞)
2

Ψ
ela
F =

ε3

2
(tr[CCCMMM]−1)2

Ψ
X
HOG = l2 (IX

6
)2

The elastic part of the fiber roving Ψela
F can be found in [10] and for the capacitive part the function

Ψ
cap
X in Reference [2] . We use a quadratic serendipity mesh (20 nodes) with nel = 24 and approximate

J̃ linear and C̃CCA constant to avoid potential locking effect. We introduce a length scale parameter l2

with c = ε1l2 for the material parameters of ΨX
HOG. Futhermore, the strain energy function of the

viscous matrix part is given by Ψvis
M = Ψiso

M (CCCCCC−1
v )+Ψvol

M (CCCCCC−1
v ).

First, we compare the stiffening behavior of the different higher-order gradient fomulations. In Fig-
ure 2 we can see that both formulations stiffen the bending behavior of the beam (HF and HC).
However, it can also be done by the ∇CCC formulation, although not to the same level (green). By
adjusting the material parameters, we obtain a similar behavior here, too (blue). When we look at
the angular momentum in Figure 3, we can see it is perfectly preserved for the different formulations.
This also shows that the correction of the internal moments as a result of the gradient formulations.
In Figure 4 we can see the increasing temperature by the viscous dissipation. As expected, the major
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Figure 2: Trajectory of point A for the parameters shown in Figure 1 and the different formulations and (aaa0)
T = [1 0 0].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

l2 = 0
∇FFF l2 = 10−5

∇CCC l2 = 10−5

∇CCC l2 = 10−4

t

E
rr

or
J/

T
O

L

Figure 3: Error of angular momentum J for the parameters shown in Figure 1 and the different formulations and (aaa0)
T =

[1 0 0].

increase in temperature is found at the mounting where the largest deformations occur. Next we
check the objectivity of the new superimposed fields of the higher-order gradient formulation on the
basis of a free-flying beam. Therefore, we set the initial rotational speed to ωωωT = [2π 2π 2π] and sim-
ulate until T = 10. In Figure 6-10 we can see that each higher-order gradient formulation and length
scale parameter conserve the total energy. For the high l2, a slightly higher energy error is observed,
but this is also within the tolerance. For example, this can be explained by the fact that although the
higher stiffness, we keep the time step size constant. In Figure 5 we show the current configuration
and v. Mises equivalent stress σV M for t = 10. As expected, the beam is deformed by the rotation and
shows the larger stresses at larger deformations.

4 CONCLUSIONS

We have shown that it is possible to formulate a higher-order gradient material formulation in terms
of the right Cauchy-Green tensor. This is a remarkable result, because this formulation requires
considerably less numerical effort and we can formulate the superimposed field directly in terms
of ∇CCC and thus achieve a roving direction independence. Also, both formulations work in a thermo-
visoelastic context. And we have also shown that the higher-order energy-momentum time integrators
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Figure 4: Configuration and temperature distribution Θ for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], t = 0.24,

∇CCC and l2 = 10−4.

Figure 5: Configuration and v. Mises equivalent stress σV M for the parameters shown in Figure 1, (aaa0)
T = [1 0 0],

ωωωT = [2π 2π 2π], t = 10, ∇CCC and l2 = 10−4.

conserve energy in all cases. In the next step, we want to investigate other material formulation and
will look on potential locking effects.
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Figure 6: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10 and l2 = 0.
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Figure 7: Error of energy E for the parameters shown in Figure 1, (aaa0)
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Figure 8: Error of energy E for the parameters shown in Figure 1, (aaa0)
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Figure 9: Error of energy E for the parameters shown in Figure 1, (aaa0)
T = [1 0 0], ωωωT = [2π 2π 2π], T = 10, ∇CCC (HC)

and l2 = 10−4.
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Abstract: Hierarchic shear deformable structural element formulations possess the advantage
of being intrinsically free from transverse shear locking, that is they avoid transverse shear
locking a priori through reparametrization of the kinematic variables. This reparametrization
results in shear deformable beam, plate and shell formulations with distinct transverse shear
degrees of freedom. The basic idea of selective mass scaling within explicit dynamic analyses is
to scale down the highest frequencies in order to increase the critical time step size, while keeping
the low frequency modes mostly unaffected. In most concepts, this comes at the cost of non-
diagonal mass matrices. In this contribution, we present first investigations on selective mass
scaling for hierarchic formulations. Since hierarchic structural formulations possess distinct
transverse shear degrees of freedom, they offer the intrinsic ability for selective scaling of the
high frequency shear modes, while keeping the bending dominated low frequency modes mostly
unaffected. The proposed instrinsically selective mass scaling concept achieves high accuracy,
which is typical for selective mass scaling schemes, but in contrast to existing concepts it retains
the simplicity of a conventianl mass scaling method and preserves the diagonal structure of a
lumped mass matrix. As model problem, we study frequency spectra of different isogeometric
Timoshenko beam formulations for a simply supported beam. We discuss the effects of transverse
shear parametrization, locking and mass lumping on the accuracy of results.

1 INTRODUCTION

Finite element solution schemes in the context of structural dynamics can be classified as
explicit and implicit methods. Explicit algorithms are particularly popular for highly non-
linear and non-smooth problems, since they do not require any iterative solution of the balance
equations on the global level. In specific applications, like car crash or deep drawing simulations,
they may be more robust than implicit methods. But due to the conditional stability of explicit
methods, the admissible time step size is limited. The so-called critical time step ∆tcrit crucially
depends on the highest frequency ωmax of the discrete system

∆tcrit =
2

ωmax

. (1)

Several approaches to reduce computational cost are available and it is common to use a com-
bination of various approaches simultaneously. First, locking-free and accurate finite element
formulations can be used to achieve satisfactory results for coarse meshes, since mesh refinement
indirectly increases computational cost for time integration. Second, adaptive mesh control on
the basis of error estimators can be used, which is a standard approach for deep drawing sim-
ulations. Third, different time steps may be used in areas with different mesh density, which

https://doi.org/10.4995/YIC2021.2021.12418
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Figure 1: Schematic diagram of the ratio of the scaled eigenfrequencies to the original frequencies of a system
for CMS and SMS.

is known as subcycling or asynchronous time integration. Fourth, reduced order modeling may
increase efficiency. Fifth, mass scaling may increase the stable critical time step size and thus
reduces the number of time steps and the total computational cost.

In the present contribution, we focus on innovative versions and a straight-forward com-
bination of the first and the fifth approach. The outline is as follows. A short overview on
established mass scaling concepts is presented in Section 2, before the novel, intrinsically se-
lective mass scaling concept for hierarchic formulations is presented in Section 3. In Section 4,
we study frequency spectra of different isogeometric Timoshenko beam formulations for a sim-
ply supported beam. We discuss effects of transverse shear parametrization, locking and mass
lumping on the accuracy of results. Section 5 concludes our findings and provides an outlook
on future work.

2 MASS SCALING

In the research field of mass scaling, it can be distinguished between conventional mass scaling
(CMS) and selective mass scaling (SMS). All mass scaling techniques add artificial inertia to
the global mass matrix. CMS adds inertia only on the diagonal entries, thus preserving the
diagonal structure of the lumped mass matrix (LMM). When applied to translational inertia,
as in case of continuum or solid shell element formulations with solely displacement degrees
of freedom, translational inertia of the structure is increased. Uniform mass scaling for all
elements significantly modifies the linear momentum of the entire structure and thus also affects
the lowest, structurally relevant modes, see Figure 1. Therefore, application of CMS is usually
limited to a small number of short and stiff elements that limit the critical time step size ∆tcrit.

In the context of solid finite elements, the basic idea of selective mass scaling (SMS) is to add
artificial contributions to both diagonal and off-diagonal entries of the mass matrix in order
to preserve translational inertia. This results in a significant reduction of the highest eigenfre-
quencies, which are often irrelevant for structural response but limit the critical time step size.
Manipulation of the low frequencies, which are essential for structural response, is reduced to
a minimum. The qualitative picture of the desired ratio between scaled eigenfrequencies ω◦

and the unscaled eigenfrequencies ω, typically obtained with a LMM, is shown in Figure 1,
comparing results obtained with SMS and CMS. The concept of SMS can provide a very good
compromise between accuracy and critical time step size, but comes at the cost of non-diagonal
mass matrices and thus the need to solve a linear system of equations at each time step. There
exist a number of algebraic and variational SMS schemes, see for instance [1, 2, 3], but all of
them are designed for continuum or solid shell elements with displacement degrees of freedom.

In case of structural element formulations with rotational degrees of freedom, the aforemen-
tioned SMS schemes are not extendable to rotational inertia in a straightforward manner. In
fact, naively extending the SMS concept by Olovsson et al. [1] to the rotational part of the mass
matrix is not capable of reducing the highest frequency and thus no benefit can be achieved
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Figure 2: Geometrically linear kinematics of a planar, straight Timoshenko beam.

w.r.t. to increasing the critical time step size. But since in shear deformable structural element
formulations the translational and the rotational part of the mass matrix can be computed
separately, CMS of the rotational part may lead to some sort of semi-selective mass scaling.
CMS of the rotational inertia is used in commercial explicit codes in dayly practice, as can
be seen for instance in [4] in the context of isogeometric shell analysis in LS-DYNA. However,
since the entire rotational inertia is increased by this concept, also rigid body rotations and
the bending dominated modes are severely affected. In case of structural element formulations
based on so-called first order shear defomation theory, that is Timoshenko or Reissner-Mindlin
theory, the highest frequencies of the discretized system are typically related to transverse shear
modes. The direct and isolated access of these high frequency shear modes by a simple and
efficient concept is described in the following section.

3 HIERARCHIC REPARAMETRIZATION AND INTRINSICALLY SELECTIVE
MASS SCALING

Hierarchic shear deformable structural element formulations are intrinsically free from trans-
verse shear locking, that is they avoid transverse shear locking a priori through reparametrization
of the kinematic variables. Although there already exist shear deformable beam, plate and shell
formulations, we restrict ourselves to planar straight shear deformable Timoshenko beams with
linearized kinematics within this study. In this chapter, different parametrizations of the Tim-
oshenko beam model are briefly summarized and discussed. For further details we refer to [5]
or [6]. Figure 2 shows the kinematics of a planar, straight Timoshenko beam, where v describes
the mid-line displacement in z-direction, ϕ and γ are the total and the shear rotation of the
beam’s cross section. As a general rule in subsequent derivations, equal order interpolation of
all involved primary fields is assumed.

The standard formulation of the Timoshenko model (T-st) introduces the total vertical
displacement v and the total cross-sectional rotation ϕ as primary variables. The shear rotation
γ and the curvature κ can be expressed as

γ = v,x + ϕ and κ = ϕ,x, (2)

where (•),x = d(•)
dx

describes the derivative with respect to the spatial x-coordinate. When the
discrete primary parameters vh and ϕh are discretized via any equal order interpolation, pure
bending with γh = 0, cannot be fulfilled. The imbalance of the shape functions vh,x and ϕh leads
to the well-known phenomenon of transverse shear locking.

Following the idea from [7], [8] and [9], the shear rotation γ may be introduced directly as
primary variable instead of the total rotation ϕ. Accordingly, ϕ has to be expressed in terms
of the two primary variables, that is

ϕ = −v,x + γ. (3)
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formulation displacement total rotation shear rotation curvature
T-st (v-ϕ) v ϕ = ϕ γ = v,x + ϕ κ = ϕ,x

T-hr (v-γ) v ϕ = −v,x + γ γ = γ κ = −v,xx + γ,x
T-hd (v-vs) v ϕ = −v,x + vs,x γ = vs,x κ = −v,xx + vs,xx

Table 1: Comparison of different Timoshenko beam formulations with different parametrizations of the kine-
matic variables.

The combination of Equations (2) and (3) yields the modified kinematics

γ = γ and κ = ϕ,x = −v,xx + γ,x. (4)

From Equation (4), the hierarchic structure of the kinematics is visible, since the formulation
includes the Euler-Bernoulli beam model for vanishing shear strain γ. Since γ represents the
shear rotation, which is superimposed on the rotated cross section according to the Euler-
Bernoulli model, this formulation is denoted as Timoshenko beam formulation with hierarchic
rotation (T-hr).

An alternative reparametrization is introduced in Timoshenko beam formulations with hi-
erarchic displacements (T-hd). In contrast to the previously presented hierarchic split of the
total rotation, the basic idea is the hierarchic split of the displacements into parts resulting
from bending and shear, i. e.

v = vb + vs. (5)

This idea is not new, in fact closed form solutions for static and dynamic problems can be
found for instance in [10], finite element formulations to solve dynamic problems are presented
in [11], among others. Based on Equation (5), a single-variable isogeometric formulation for
shear deformable beams is presented in [12].

The following derivations are based on the notation of [5] and a practical modification of the
initial concept presented in [13]. Starting from Equation (5), the reparametrized rotation can
be written as

ϕ = −v,x + γ = −(vb + vs),x + vs,x = −vb,x. (6)

In general, three different T-hd formulations can be derived by using two out of three displac-
ment parameters v, vb and vs. The present study is restricted to the parametrization utilizing
v and vs as primary paramters, which is probably the most practical one, see also [13]. The
Timoshenko beam formulations used herein are summarized in Table 1. For detailed interpre-
tations and result w.r.t. locking in the context of static analyses, we refer to [5, 13, 6]. Some
remarkable features of hierarchic formulations are:

1. The variational index is equal to two, thus consistency requires at least quadratic C1-
continuous shape functions. Thus, the smooth discretization schemes of isogeometric
analysis [14] are well-suited for discretization.

2. Both T-hr and T-hd are free from transverse shear locking as the thin limit constraint
γ = 0 can be trivially satisfied by the related degree of freedom being zero. T-hd has
fully balanced kinematics, whereas in T-hr, the imbalance is shifted from γ to κ.

3. In the case of beams, shear is completely decoupled from bending.

4. Both formulations possess distinct shear degrees of freedom.
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Starting from this point of departure, we introduce the novel idea of a selective and effective
mass scaling strategy in the context of hierarchic structural element formulations. As introduced
in Section 2, the idea of SMS adresses the effective reduction of the highest frequencies, while
keeping the more relevant low frequency modes mostly unaffected. In case of shear deformable
structural element formulations based on Timoshenko or Reissner-Mindlin theory, the highest
frequencies of the discretized system are typically related to transverse shear modes. A deeper
look at features 3 and 4 leads to the following hypotheses for a novel mass scaling strategy in
the context of hierarchic formulations:

• The shear frequencies and corresponding modes can be directly accessed by the distinct
shear degrees of freedom.

• Decoupling bending and shear facilitates selective scaling of high shear frequencies.

• Both aspects lead to a mass scaling strategy being as effective as a SMS strategy, while
retaining the simplicity of a CMS scheme.

Starting point for the following derivations is d’Alembert’s principle, specified for Timo-
shenko beam theory

δW =

∫ L

0

(δγGAγ + δκEIκ) dx+

∫ L

0

(δvρAv̈ + δϕρIϕ̈) dx− δW ext = 0, (7)

where E und G denote Young’s modulus and shear modulus. The cross-sectional area, the
second moment of inertia and the density are denoted byA, I und ρ, respectively. The consistent
mass matrix (CMM) MC is computed as

MC =

∫ L

0

NT

[
ρA 0
0 ρI

]
N dx, (8)

with N being the matrix of shape functions w.r.t. displacement v and total rotation ϕ. The
matrix N depends on the kinematic description of the chosen beam formulation, that is T-st, T-
hr or T-hd, summarized in Table 1. Since for explicit dynamic simulations LMMs are desirable
for efficiency reasons, they are of high interest. Cottrell et al. [15] showed for isogeometric
analysis that a LMM obtained by row-sum lumping is only second order accurate, independent
of the polynomial order. Nevertheless, row-sum lumping for isogeometric elements is still the
state of the art in commercial software like LS-DYNA, see for instance [4]. Since the present
contribution focuses on mass scaling and not mass lumping, we further consider traditional row-
sum lumping and subsequent CMS of the rotational inertia by a scaling parameter α. In case
of T-st the rotational part is related to the total rotation ϕ of the beam’s cross section. Thus,
any value α > 1 for the scaling parameter leads to artificial rotational inertia and thus angular
momentum is not preserved. How significantly the bending modes of the T-st formulation are
influenced by α > 1 is studied in the next section. For the T-hr formulation the rotational
entries in the LMM are associated with the shear rotation γ, representing only the shear part of
the total rotation ϕ, but not the rigid body part. Thus, it is expected that a scaling parameter
α > 1 mainly influences the shear modes, while keeping the bending modes significantly less
affected.

For the second hierarchic Timoshenko beam formulation T-hd standard row-sum lumping
leads to singular LMMs. In fact, the rotational entries vanish, since the parametrization of the
rotation ϕ is fully balanced, as can be seen in Table 1. In the lumping process each contribution
from v is canceled by the corresponding contribution from vs. This issue is not addressed herein,
but deserves further consideration in future work, for instance by a detailed study of alternative
lumping schemes, as presented for instance in [16] or [17]. The development of accurate mass
lumping schemes in general is still an open research topic in the context of isogeometric analysis.
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L = 10 m

z

x
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ν = 0.3

ρ = 7800 kg/m3

Figure 3: Simply supported beam, problem setup.

4 NUMERICAL EXAMPLE

As model problem, we study frequency spectra of various isogeometric Timoshenko beam
formulations for the case of a simply supported beam, as shown in Figure 3. In all cases, the
beam is discretized by 50 elements using quadratic, C1-continuous B-splines, constructed from
an open knot vector. The studied combinations of beam formulations and technologies to tackle
transverse shear locking are listed as follows:

• T-st: standard Timoshenko beam formulation with displacment v and total rotation ϕ
as primary variables.

• T-st-low: as T-st, but the shape functions for ϕ are one order lower to overcome trans-
verse shear locking, as presented in [18] and [19] for isogeometric elements.

• T-st-SRI: As T-st, with selective reduced integration for the shear strain contributions
to the stiffness matrix in order to remove transverse shear locking, as shown in [20].

• T-hr: Hierarchic Timoshenko beam formulation with hierarchic rotation with displace-
ment v and shear rotation γ as primary fields.

• T-hr-low: As T-hr, but the shape functions for γ are one order lower to overcome the
imbalance in the kinematic equations, which can be seen in Table 1.

• T-hd: Hierarchic Timoshenko beam formulation with hierarchic displacement, with total
displacement v and shear displacement vs as primary fields.

First, we study the accuracy of frequency spectra obtained by CMM and LMM with respect
to analytical solutions from Cazzani et al. [21]. Figure 4 shows the results for the three T-st
formulations, where in the top row of diagrams the frequency spectra are plotted and the bottom
row of diagrams displays the ratio of numerical to analytical frequencies. As expected, the CMM
provides more accurate results than the LMM in all cases. The T-st formulation suffers from
shear locking, as can be seen from the very high frequencies in the bending dominated branch.
The selective reduced integrated version T-st-SRI is locking-free, but exhibits low accuracy in
the bending dominated branch of the spectrum. The most accurate results of all three standard
formulations are obtained by T-st-low.

Figure 5 shows the results for the hierarchic formulations. The imbalance in the kinematic
equations of the T-hr formulation leads to slightly increased frequencies in the right part of
the bending dominated branch. This is surprising, since this element formulation has proven
to be free from transverse shear locking for the static case. But the shifted imbalance from
γ to κ theoretically leads to a locking effect in the very thick regime, although we have not
observed any relevance of such a locking effect in static analyses. For this problem setup with
this relatively fine discretization, the actual element slenderness ratio is Le/t = 2. For more
slender elements, this effect vanishes also in the frequency spectra. Theoretically, T-hr-low and
T-hd should achieve the same accuracy, which is clearly visible for the spectra obtained by a
CMM. But, as already mentioned, the expression ϕ = −v,x+vs,x is perfectly balanced in case of
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Figure 4: Simply supported beam: Standard formulations T-st, T-st-low and T-st-SRI, top: discrete spectra,
bottom: ratio of numerical frequencies to analytical frequencies.
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Figure 5: Simply supported beam: Hierarchic formulations T-hr, T-hr-low and T-hd, top: discrete spectra,
bottom: ratio of numerical frequencies to analytical frequencies.
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Figure 6: Simply supported beam: T-hr-low and T-st-low, left: scaled spectra in comparison to LMM (un-
scaled), right: ratio of scaled frequencies to unscaled frequencies for LMM.

T-hd, which leads to zero rotational mass in the LMM obtained by standard row-sum lumping.
Alternative lumping strategies are subject of recent investigations, but not discussed herein.
The results for T-hr-low are the most accurate ones from Figure 5 and they are practically
identical to the results obtained by T-st-low. In fact, the maximum relative difference between
both spectra obtained by LMM is 1.51%, while the highest frequency of ωmax = 101435.07 is
identical.

Due to practically identical spectra, the two formulations T-st-low and T-hr-low are the
optimal starting point for studying the accuracy of mass scaling and the corresponding accuracy
of the scaled eigenfrequencies ω◦. As stated in the previous section, in case of T-st or T-st-low
the rotational part is related to the total rotation ϕ. Thus, any value for the scaling parameter
α > 1 leads to artificial rotational inertia and an influence of the bending dominated modes
is expected. In contrast to T-st-low, for the T-hr-low formulation the rotational entries in the
LMM are solely associated with the shear rotation γ.

Figure 6 compares the accuracy of the scaled eigenfrequencies ω◦ on the basis of LMMs and
a simple CMS of the rotational masses by a scaling parameter α, as explained in Section 3.
For both formulations α is chosen such that the maximum eigenfrequncy ωmax = 101435.07
is reduced by 75%. For T-st-low a scaling parameter of α = 28.52 is needed to reduce the
maximum frequency to ω◦max = 25358.84, while the bending dominated frequencies are affected
by up to 35% w.r.t. to the unscaled solution obtained by a LMM. In case of T-hr-low α = 16.0
yields ω◦max = 25358.77 and the highest deviation from LMM in the bending branch is only
14%. The largest deviation in the first quarter of the spectrum is only 1%. This highlights
the significant influence of hierarchic parametrization on the selective scalability of the shear
dominated frequencies and shows the high potential of the proposed instrinsically selective mass
scaling, namely possessing high accuracy while preserving the diagonal structure of a lumped
mass matrix.

5 CONCLUSIONS AND OUTLOOK

The concept of instrinsically selective mass scaling (ISMS) has been proposed. The key
idea is to make use of the distinct shear degrees of freedom of shear deformable, hierarchic
structural element formulations in the context of an efficient and effective mass scaling strategy.
As a model problem, we studied frequency spectra of various isogeometric Timoshenko beam
formulations. The results indicate that the proposed ISMS scheme is able to effectively reduce
the highest shear frequencies, while keeping the low bending dominated frequencies mostly
unaffected. This property is typical for SMS schemes, but, in contrast to standard SMS schemes,
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the ISMS scheme proposed herein is as simple as a CMS scheme and preserves the diagonal
structure of LMMs.

Further developments address the extension to other smooth discretization schemes, to hi-
erarchic shell formulations and to nonlinear transient analyses. In addition, the studies on
optimal scaling parameters and developments of time step estimates and more accurate mass
lumping schemes are of high interest.
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Abstract: Isogeometric analysis and mixed finite element methods offer promising opportuni-
ties to enhance analysis results for complex problems like incompressible elasticity and are able
to cope with different locking phenomena. In this contribution, a mixed two-field isogeometric
formulation with independent approximations for displacements and stresses is derived, and its
ability to counteract different types of locking is investigated using two examples. Furthermore,
the influence of the continuity of the stress shape functions on the accurancy of results and
convergence behaviour is shown.

1 INTRODUCTION

Whilst finite element methods have become a common analysis method in engineering, more
recent approaches involve Isogeometric Analysis (IGA), which was founded by Hughes et al. [1]
and tries to unify computer aided design (CAD) and finite element analysis (FEA) by using the
same model for geometry representation and analysis. Therefore, in contrast to common finite
element analysis, non-uniform rational B-splines (NURBS) and other kinds of splines are used
as shape functions of the finite elements instead of the usual polynomials. Due to the exact
representation of the geometry, analysis results can be improved [1, 2]. Furthermore, many fast
and numerically stable algorithms have been developed that exhibit favourable mathematical
properties [3]. Other investigations examine the use of different kinds of splines as well [2, 4, 5].
In linear elasticity, different locking phenomena can occur while solving incompressible elastic-
ity problems or dealing with very slender structures for instance. Mixed formulations, where
stresses and/or strains or pressures are approximated independently in addition to the usual
displacement approximation, can counteract these effects and lead to more accurate results
[6]. Recent investigations have already combined isogeometric analysis and mixed formulations
in order to benefit from the advantages of both methods [7, 8, 9, 10, 11]. Furthermore, the
continuity can have a decisive influence on the accuracy of results [12]. In this contribution, a
mixed isogeometric method is proposed in order to improve the analysis results and to coun-
teract locking. Therefore, spline basis functions are used and the displacement shape functions
of a two-dimensional isogeometric plane stress and plane strain element are supplemented by
independent stress shape functions. These additional stress shape functions are chosen to be
of one order lower compared to the displacement shape functions, but with adapted continu-
ity. Evaluating the errors for several examples, it is shown that the proposed mixed method
can lead to improved accuracy of results compared to a standard isogeometric formulation and
ensures convergence even for very slender geometries and very fine and distorted meshes. Fur-
thermore, the influence of different continuities on the convergence behavior and the accuracy
of the results is investigated.

https://doi.org/10.4995/YIC2021.2021.12554
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2 MIXED FINITE ELEMENT METHODS

Mixed (or hybrid) formulations approximate primary and secondary variables independently
and can be derived, e.g., from weak forms [13]. The resulting finite elements can be employed
to reduce locking or cope with incompressible elasticity problems [6]. A starting point for the
derivation of a mixed formulation is the following three-field functional

ΠHW (u, ε,σ) =

∫
Ω

1

2
εTDε− σT (ε−Gu)− uTb dΩ−

∫
Γt

uT t dΓ −
∫

Γu

σT (u− u) dΓ , (1)

also known as Hu-Washizu functional. In this equation, u, ε, σ, b, t and u represent the
displacements, strains, stresses, body forces, boundary tractions and boundary displacements,
respectively. G is a suitable differential operator. Using the constitutive equation

ε = D−1σ , (2)

we can derive the two-field functional

ΠHR(u,σ) =

∫
Ω

−1

2
σTD−1σ + σTGu− uTb dΩ−

∫
Γt

uT t dΓ −
∫

Γu

σT (u− u) dΓ , (3)

which is known as the Hellinger-Reissner functional. The variation thereof reads

δΠHR(u,σ) =

∫
Ω

−δσTD−1σ + δσTGu+ σT δGu− δuTb dΩ−
∫

Γt

δuT t dΓ = 0 (4)

for strongly fulfilled boundary conditions u = u on Γu and is known as the Hellinger-Reissner
principle. In order to distinguish plane stress and plane strain formulations, the corresponding
material matrix D is used. For more details, see [6, 14].

3 SPLINE BASIS FUNCTIONS

3.1 Construction

Basing on a non-decreasing knot vector

Ξ = {ξ1, . . . , ξn+p+1} , ξi ≤ ξi+1 , i = 1, . . . , n+ p (5)

and a predefined degree p, the construction of spline basis functions follows the following re-
currence algorithm taken from [3]:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
, Ni,p(ξ) =

ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ) (6)

The corresponding derivatives of the B-spline basis function are calculated by

N
′

i,p =
p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1

Ni+1,p−1(ξ) . (7)

A NURBS surface S can then be represented by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ri,j(ξ, η)P i,j (8)

where Ri,j are the piece-wise rational basis functions defined by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)ωi,j∑n

k=1

∑m
l=1 Nk,p(ξ)Nl,q(η)ωk,l

. (9)

In these formulas, P i,j denotes the control points building up the control net of the surface
and ωi,j represents their corresponding weights. In the following chapters the number of local
basis functions will be referred to by nen = (p+ 1)(q + 1) and the total number of global basis
functions is denoted by nnp = n ·m.
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3.2 Refinement and continuity

There are two refinement methods for B-Splines, which are recalled according to [2]:
The first refinement method increases the number of basis functions by inserting additional
knots (knot insertion). Thereby, the insertion of one knot leads to an increase in the number
of basis functions by 1. As this is equal to dividing an element, this method is often called
h-refinement in comparison to standard finite element methods. The second refinement method
elevates the polynomial order by 1 (order elevation). As both methods are hierarchical refine-
ment methods, each of the original basis function can be expressed as linear combination of the
refined basis functions.
Based on these two refinement methods, two combined refinement procedures can be derived
for isogeometric analysis. If knot insertion is performed before order elevation, this is called
p-refinement. In this way, one basis function is added for each element. Using k-refinement,
the spline order is elevated first and subsequently knot insertion is performed. In contrast to
p-refinement, this method inserts less basis functions. Furthermore, maximal continuity is ob-
tained, while p-refinement yields meshes with limited continuity. Figure 1 depicts the influence
of the continuity on the shape functions for p = 3:

(a) discontinuity (C−1) (b) C1 - continuity

Figure 1: Influence of the continuity on the shape functions for p = 3

4 MIXED ISOGEOMETRIC ELEMENTS WITH TWO UNKNOWN FIELDS

Depending on which unknown fields are chosen, different mixed isogeometric finite elements
can be developed from the corresponding variational principle. In this publication the u-σ-
mixed formulation, that was derived in [15] for instance, shall be used and adapted to isogeo-
metric analysis.
The chosen fields are approximated by independent shape functions as follows:

uh =

nuen∑
I=1

Nu
I uI and σh =

nσen∑
I=1

Nσ
I σI (10)

with

uI =

(
uI1
uI2

)
and σI =

 σI1
σI2
τI12

 . (11)

Thus, the strain-displacement relation becomes:

εh =

 εh11

εh22

2γh12

 = Guh =

nuen∑
I=1

Bu
IuI , (12)
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where

Bu
I =

 Nu
I,1 0
0 Nu

I,2

Nu
I,2 Nu

I,1

 (13)

contains the partial derivatives of the displacement shape functions in the first and second
direction (Nu

I,1 and Nu
I,2). The interpolation of the variations of u, ε and σ read

δuh =

nuen∑
I=1

Nu
I δuI , δεh =

nuen∑
I=1

Bu
I δuI and δσh =

nσen∑
I=1

Nσ
I δσI . (14)

Inserting these relations into equation (4) leads to

δΠh
HR(uh,σh) =

nσen∑
I=1

nuen∑
J=1

δσTI

∫
Ω

Nσ
I B

u
J dΩ uJ

+

nuen∑
I=1

nσen∑
J=1

δuTI

∫
Ω

Bu
I
TNσ

J dΩ σJ

−
nσen∑
I=1

nσen∑
J=1

δσTI

∫
Ω

Nσ
ID

−1Nσ
J dΩ σJ

−
nuen∑
I=1

δuTI

[∫
Ω

Nu
I b dΩ +

∫
Γt

Nu
I t dΓ

]
= 0 .

(15)

The control point displacements uI can now be assembled in the vector

û =
(
uT1 ,u

T
2 , . . . ,u

T
nunp

)T
, (16)

where nunp denotes the number of control points in the displacement mesh. The control point
stresses are assembled analogously in

σ̂ =
(
σT1 ,σ

T
2 , . . . ,σ

T
nσnp

)T
, (17)

where nσnp denotes the number of control points in the stress mesh. The virtual displacements
and virtual stresses δû and δσ̂ are interpolated akin. Replacing the summations in equation
(15) by matrix multiplications leads to:

δΠh
HR(uh,σh) = δσ̂T Ĉû+ δûT Ĉ

T
σ̂ + δσ̂T Âσ̂ − δûT f̂u = 0 (18)

This equation needs to be fulfilled for every arbitrary test function δσ̂ and δû and can hence be
splitted in two parts, which can be written in standard matrix form. This leads to the following
global system of equations [

Â Ĉ

Ĉ
T

0

](
σ̂
û

)
=

(
0

f̂
u

)
. (19)

In a standard manner, these matrices are calculated at the element level and later assembled
to the global system. Thus, using the nuen and nσen shape functions which have influence in the
respective element e, equation (15) results in:

δΠHR(uh,σh) =

nel⋃
e=1

[
δσ̂e

T

Ĉ
e
ûe + δûe

T

Ĉ
eT

σ̂e + δσ̂e
T

Â
e
σ̂e − δûeT f̂u

e]
= 0 (20)
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Defining

v̂e =

(
σ̂e

ûe

)
and δv̂e =

(
δσ̂e

δûe

)
(21)

results in the more comprehensive form

δΠHR(uh,σh) =

nel⋃
e=1

[
δv̂eTK̂

e
v̂e − δv̂eT f̂ e

]
= 0 , (22)

where

K̂
e

=

[
Â
e
Ĉ
e

Ĉ
eT

0

]
(23)

is the system matrix at element level and

f̂
e

=

(
0

f̂
ue

)
(24)

is the element load vector. The submatrices are computed by:

Â
e

= −
∫

Ωe
NσTD−1Nσ dΩ (25)

Ĉ
e

=

∫
Ωe
NσTBu dΩ

f̂
ue

=

∫
Ωe
NuT b dΩ +

∫
Γet

NuT t dΓ .

The displacement shape functions Nu
I , which are assembled in

Nu =
[
Nu

1 1 Nu
2 1 · · · Nu

nuen
1
]

, (26)

are determined as described in chapter 3.1. The stress shape functions Nσ
I are assembled

analogously in Nσ, where 1 is the identity matrix of the dimension 2 and 3, respectively. In
standard finite element formulations, the number of necessary additional stress variables has
to fulfill the stability condition

nσ ≥ nu (27)

for a two field approach, where σ is the primary variable and u is the constraint variable [6].
In this formula n denotes the number of degrees of freedom of the respective variable. Whether
this condition is sufficient in Isogeometric Analysis as well has to be investigated in further
studies. The additionally introduced stress variables can be condensed out, resulting in the
final equation

Ĉ
T
Â

−1
Ĉû = −f̂u . (28)

In the next section, the procedure leading to the shape functions for the two chosen fields is
described.

5 DETERMINATION OF THE REQUIRED BASIS FUNCTIONS

For the presented mixed isogeometric method, displacements and stresses are chosen as two
unknown fields and approximated independently. Thereby, the stress shape functions are chosen
to be of one order lower than the displacement shape functions. Furthermore, the continuity
of the stress shape functions can be adapted to study the effect on the analysis results. This is
implemented in MATLAB [16] by using different refinement procedures on the original surface
geometry, yielding two different meshes used for the displacements and the stresses, respectively.
This procedure is depicted in Figure 2. The resulting meshes are exemplified in Figure 3. The
corresponding shape functions can be seen in Figure 4.
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Figure 2: Refinement procedure for the generation of the two different meshes for the displace-
ment and the stress shape functions using k-refinement for different degrees

(a) mesh for stress shape functions
(C0 - continuity)

(b) mesh for displacement shape functions
(C2 - continuity)

Figure 3: Resulting meshes for a rectangular domain divided into 10 elements per direction
with their respective control points using pu = 3 and pσ = 2

(a) stress shape functions (b) displacement shape functions

Figure 4: Resulting shape functions for the meshes depicted in Figure 3

6 NUMERICAL EXAMPLES

In this section, the ability of the proposed mixed formulation to counteract different types of
locking and the influence of the continuity of the stress shape functions is investigated. There-
fore, the results of the proposed mixed isogeometric formulation are compared to the results of a
standard (pure displacement based) isogeometric formulation. Within these investigations, for
the mixed approach, the continuity of the stress shape functions is varied, whereas the continu-
ity of the displacement shape functions is set to maximal continuity Cpu−1 using k-refinement,
according to the procedure depicted in Figure 2. The continuity of the shape functions for
the standard formulation is varied between C0 and maximal continuity Cp−1 by using p- and
k-refinement, respectively. Starting with the initial geometry, all meshes are refined regularly
and equally in both directions using quadrilateral elements.
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6.1 Beam subjected to pure bending

Firstly, a beam under pure bending is investigated. The initial distorted geometry including
its control points (red) and relevant material and loading data is indicated in Figure 5.

Figure 5: Initial geometry, material and loading data of beam subjected to pure bending

In order to investigate the ability of the formulation to counteract in-plane shear locking,
a linearly varying load is applied on both vertical edges for the depicted distorted mesh and
the results of the proposed mixed formulation are compared to the analytical solution given in
equation (29) using the L2-error norm of the stresses as indicated in equation (30).

σx(z) = 2 · p0 ·
z

h
, σz = 0 kN/m , τxz = 0 kN/m (29)

||∆σ||2 =
√

(σx − σhx)2 + (σy − σhy )2 + (τxy − τhxy)2 (30)

10
−10

10
−8

10
−6

10
−4

10
−2

 0.1 1 10

G
lo

b
al

 L
2
 e

rr
o
r 

n
o
rm

Maximal element diagonal

Standard IGA (p=3) C
0

Standard IGA (p=3) C
2

O(h
3
)

O(h
4
)

Mixed IGA (p
u
 = 3, p

σ
 = 2) C

−1

Mixed IGA (p
u
 = 3, p

σ
 = 2) C

0

Mixed IGA (p
u
 = 3, p

σ
 = 2) C

1

(a) dependent on the maximal element diagonal

10
−10

10
−8

10
−6

10
−4

10
−2

10
1

10
2

10
3

10
4

10
5

G
lo

b
al

 L
2
 e

rr
o
r 

n
o
rm

Total number of degrees of freedom

Standard IGA (p=3) C
0

Standard IGA (p=3) C
2

Mixed IGA (p
u
 = 3, p

σ
 = 2) C

−1

Mixed IGA (p
u
 = 3, p

σ
 = 2) C

0

Mixed IGA (p
u
 = 3, p

σ
 = 2) C

1

(b) dependent on the number of degrees of freedom

Figure 6: Comparison of the L2 error norm of stresses for the beam subjected to pure bending

As can be seen in Figure 6(a), the proposed mixed isogeometric formulation yields better
results compared to a standard isogeometric formulation, for which only a minor difference be-
tween C0- and C2- continuity can be recognized for this example. Whereas no significant benefit
can be achieved by the mixed formulation using discontinuous (C−1) stress shape functions,
the use of C0- continuity offers a better convergence rate (O(h4)) than the standard formula-
tion (O(h3)). Particularly interesting is the behavior for C1- continuous stress shape functions,
since proper convergence behavior begins later as in the other graphs, while constantly offering
a much better result. This only holds if the L2- error norm is calculated using the results of
the introduced stress parameters (eq.(17)). If the stresses used for the calculation of the L2-
error norm are directly recalculated from the displacement parameters (eq.(16)), no benefit
of the introduced mixed formulation can be observed compared to the standard formulation,
and even partly worse results are achieved for C1- continuity of the stress shape functions of

             115



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

the mixed formulation. In order to maintain the benefits resulting from the introduced stress
parameters if static condensation is used for the proposed mixed formulation, the stresses need
to be recalculated using the equation

σ̂ = −Â
−1
Ĉû . (31)

Taking into account the number of degrees of freedom (cf. 6(b)), the benefits of the mixed
formulation only hold for C1- continuous stress shape functions. Lower continuities offer worse
results for the same number of degrees of freedom compared to the standard formulation, for
which the benefit of C2- continuity is the lower number of degrees of freedom.

Figure 6 depicts the results for a slenderness ratio of 10. Varying the slenderness of the
beam as the critical parameter (by reducing its height), the results of the mixed formulation
are constantly better as those of the standard formulation. If the height is reduced to 0.001 m
(increasing the slenderness ratio to 10000), the standard formulation diverges, whereas the
proposed mixed formulation ensures convergence even for very slender structures.

6.2 Cook’s Membrane

The Cook’s Membrane is a standard problem to examine the robustness of finite element
formulations. The initial geometry and a sample mesh are depicted in Figure 7.

(a) Geometry, material and loading (b) Sample mesh with 5x5 elements

Figure 7: Data of Cook’s Membrane problem

The relevant material and loading parameters were chosen to enable the comparison to the
results presented in [17] and in order to investigate the ability of the presented formulation to
cope with an incompressible elasticity problem and the resulting locking effects. Therefore, the
vertical displacement of point A is compared to the reference solution (black lines in Figure 8
and Figure 9) taken from [17]. As can be observed in Figure 8, the mixed formulation offers
better results in comparison to the standard formulation with maximal continuity. Using C0-
continuous shape functions, much better results can be obtained by the standard formulation
for this example. Compared to this, the mixed formulation is only beneficial using stress shape
functions with maximal continuity Cpσ−1. However, in this case, the results oscillate between
even and odd numbers of elements per direction. Hence, the stability of the mixed method
obviously depends on the continuity of the stress shape functions. Examining the eigenvalues
of the system matrix for this example, spurious zero eigenvalues occurred for maximal continuity
of the stress shape functions, which may cause this instability. This issue will be investigated
in detail in further studies. Considering only the results for even numbers of elements (dashed
lines), the convergence behavior is superior compared to all graphs. The lower the degree of the
shape functions is, the more locking occurs. Thus, the mixed formulation offers a higher benefit
for the lowest possible degree of shape functions (cf. Figure 8 (a), (b)). Taking into account the
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number of degrees of freedom resulting from the chosen continuity (cf. Figure 9), the benefit
of the mixed formulation for maximal continuity of the stress shape functions becomes obvious
(considering only even numbers of elements per direction). Especially for higher degrees, the
use of C0- continuous shape functions for the standard formulation looses its benefit in this
context.
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Figure 8: Comparison of the resulting vertical displacement of point A in dependence of the
number of elements per direction
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Figure 9: Comparison of the resulting vertical displacement of point A in dependence of the
total number of degrees of freedom

7 CONCLUSIONS

In this contribution, a mixed isogeometric method is derived and its ability to counteract
different locking effects is studied for a plane stress and a plane strain example. Furthermore,
the influence of the continuity of the stress shape functions is investigated. It is shown that a
mixed isogeometric formulation can yield results with a higher convergence rate compared to
a standard formulation and is able to counteract different locking phenomena. Additionally,
increasing the continuity of the stress shape functions yields better results of the proposed
mixed formulation but can yield instabilities due to spurious zero eigenvalues for maximal
continuity, despite offering the best results. Further research will focus on the stability for
maximal continuity of the stress shape functions. Furthermore, different ansatz spaces for the
stress shape functions should be investigated.
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Abstract: Curved tapered beams have been widely used in many engineering applications.
Their complex geometries pose challenges to the development of robust approaches for the nu-
merical modelling of their mechanical behaviour. The aim of the present contribution is to
introduce a novel, simple and effective, finite element formulation for the quasi-static analysis
of Timoshenko curved tapered beams. This formulation relies on a complementary variational
approach based on a set of approximations that satisfy in strong form all equilibrium condi-
tions of the boundary-value problem, resulting thus in a formulation that is free from both shear
and membrane locking phenomena. The effectiveness of the formulation is numerically demon-
strated through its application to different beam problems and the obtained results are analysed
and discussed.

1 INTRODUCTION

Due to their excellent mechanical performance and structural efficiency, curved beams have
been widely used in many engineering applications, such as: bridge structures, piping systems,
biomedical devices, aerospace and aeronautical structures, etc. Their complex geometries pose
challenges to the development of robust approaches for the modelling of their mechanical be-
haviour.

Among the various approaches available in the literature for their analysis, those that are
based on the finite element method have been the most successful. The simplest finite element
modeling strategy for curved beams is an assembly of relatively short straight beam elements [1].
However, such an approach generally requires a large number of elements to obtain converged
solutions. Furthermore, when applied to Timoshenko based structural models, some of these
finite element approaches, in particular those that rely on the approximation of the displament
fields based on lower-order shape functions, are prone to shear locking when the beam elements
become slender and to membrane locking when their curvature increases [2]. Hybrid-mixed
formulations, in which both displacement and force/bending moment fields are approximated,
with the goal of avoiding the locking phenomena, were also explored [3]. However, most of the
formulations that have been developed for the analysis of curved beams are limited to uniform
cross-section cases. There are a few exceptions in which finite element formulations for curved
beams with non-uniform cross-sections can be found in the literature, see e.g. [4, 5].

The aim of the present contribution is to introduce a novel, simple and effective, finite ele-
ment formulation for the quasi-static analysis of Timoshenko curved tapered beams. Following
the methodology adopted in [6, 7, 8], the proposed formulation relies on a complementary
variational approach, only requiring the approximation of the internal force/bending moment
fields. Such approximations are selected such that they satisfy in strong form all equilibrium
conditions of the boundary-value problem. The formulation is naturally free from both shear
and membrane locking phenomena. The effectiveness of the formulation is numerically demon-

https://doi.org/10.4995/YIC2021.2021.12567
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strated through its application to different beam problems and the obtained results are analysed
and discussed.

2 BOUNDARY-VALUE PROBLEM

Consider a two-dimensional curved beam whose geometry is described by its centroidal axis
denoted by C. The centroidal axis C is parameterized by s ∈ [0, L], with L denoting the length
of the beam in its reference configuration. C is decomposed into an internal part, represented
by Ω =]0, L[, and a boundary part, identified by Γ = ΓN ∪ ΓD = {0, L}, where ΓN and ΓD
correspond to the Neumann and Dirichlet boundaries, respectively, such that ΓN ∩ ΓD = ∅.

Let the beam be subjected to: distributed loads defined per unit length, denoted by p and q,
and bending moments, denoted by m, applied in Ω and assumed to depend on s, concentrated
loads N̄ and V̄ and a concentrated moment M̄ applied on ΓN ; prescribed displacements, ū and
w̄, and a prescribed rotation φ̄ defined on ΓD. While p, N̄ and ū represent axial quantities,
q, V̄ and w̄ represent transverse quantities. m, M̄ and φ̄ represent rotational quantities. The
loads are assumed to act at the centroidal axis of the beam.

The kinematical differential equations of the beam model under consideration are given in
Ω as

εss =
1

1 + z
R

(ε+ zχ) (1a)

γsz =
1

1 + z
R

γ (1b)

in which

ε = u′ − w

R
(2a)

γ = w′ +
u

R
− φ (2b)

χ = φ′ (2c)

with ε being the axial deformation, γ the shear deformation and χ the bending curvature of
the beam. R stands for the radius of curvature of the beam centroidal axis, which, in general,
may depend on s. As the shear deformation γ is not disregarded, the adopted model is based
on Timoshenko’s beam theory.

The Dirichlet (kinematical) boundary conditions of the problem are given as follows

u− ū = 0, on ΓD (3a)

w − w̄ = 0, on ΓD (3b)

φ− φ̄ = 0, on ΓD (3c)

where u and w are the axial and transverse displacements of the beam axis, respectively, and
φ the rotation of the beam cross-section.

The equilibrium of an infinitesimal beam element can be expressed by the following set of
differential equations in Ω

N ′ − V

R(s)
+ p(s) = 0 (4a)

V ′ +
N

R(s)
+ q(s) = 0 (4b)

−M ′ + V +m(s) = 0 (4c)
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representing equilibrium of axial forces, shear forces and bending moments, respectively, where
(·)′ stands for the derivative of (·) with respect to s.

The Neumann (or static) boundary conditions of the problem are

nN − N̄ = 0, on ΓN (5a)

nV − V̄ = 0, on ΓN (5b)

nM + M̄ = 0, on ΓN (5c)

with

n =

{
1 if x = L
−1 if x = 0

The constitutive equations are taken as the following relationships defined in Ω

σss = Eεss (6a)

τsz = Gγsz (6b)

with E and G denoting Young’s modulus and shear modulus, respectively, of the beam, such
that

G =
E

2(1 + ν)
(7)

with ν standing for Poisson’s coefficient. A linear elastic material behavior is, thus, assumed
in this study. The material properties E and ν are taken as constants in Ω.

The internal forces and bending moment fields correspond to the following stress resultants
on a beam cross-section

N =

∫
A

σssdA (8a)

V =

∫
A

τszdA (8b)

M =

∫
A

σsszdA (8c)

with dA an infinitesimal area element of the beam cross-section. Making use of these definitions,
and upon substitution of (1) and (6), leads to

N = C11ε+ C12χ (9a)

V = C33γ (9b)

M = C12ε+ C22χ (9c)

with

C11 =

∫
A

E

1 + z
R

dA

C12 =

∫
A

Ez

1 + z
R

dA

C22 =

∫
A

Ez2

1 + z
R

dA

C33 =

∫
A

fsG

1 + z
R

dA

where fs stands for the shear correction factor. It is worth noting the coupling between N and
M . Notably, if h

R
� 1, then this coupling disappears.
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3 VARIATIONAL BASIS

The strain energy functional of a beam element assumes the following form

U =
1

2

∫
V

(
Eε2

ss + fsGγ
2
sz

)
dV (11)

with dV an infinitesimal volume element of the beam. Upon substitution of equations (2) and
(6), the strain energy can be recast as

U =
1

2

∫
V

(
E(

1 + z
R

)2 (ε+ zχ)2 +
fsG(

1 + z
R

)2γ
2

)
dV

=
1

2

∫
V

(
E(

1 + z
R

)2

(
ε2 + 2zχε+ z2χ2

)
+

fsG(
1 + z

R

)2γ
2

)
dV

Since dV =
(
1 + z

R

)
dAdΩ, with 1 + z

R
the Jacobian of the transformation, and since the

deformations ε, χ and γ only depend on the curvilinear coordinate s, the strain energy can be
rewritten as

U =
1

2

∫
Ω

((C11ε+ C12χ) ε+ (C12ε+ C22χ)χ+ (C33γ) γ) dΩ (13)

or, making use of (9), as

U =
1

2

∫
Ω

(Nε+Mχ+ V γ) dΩ (14)

The total potential energy of the boundary-value problem under study is, thus, the functional
Πp : Uk(Ω)→ R given by

Πp(u,w, φ) = U(ε(u,w), χ(φ), γ(u,w, φ)) + F (u,w, φ) (15)

where U is the strain energy functional defined in (14) and F represents the external potential
energy given by

F (u,w, φ) = −
∫

Ω

(pu+ qw +mφ) dΩ− [N̄u]ΓN
− [V̄ w]ΓN

− [M̄φ]ΓN
(16)

Uk is the kinematically admissible space defined as

Uk = {(u,w, φ) ∈ H1(Ω)×H1(Ω)×H1(Ω)| u = ū, w = w̄, φ = φ̄ on ΓD} (17)

where H1(Ω) represents a standard Sobolev space.
Inverting relations (9) gives

ε =
C22N − C12M

C11C22 − C2
12

(18a)

γ =
V

C33

(18b)

χ =
C11M − C12N

C11C22 − C2
12

(18c)

On insertion of (18) into the strain energy functional (14) leads to the following complemen-
tary strain energy functional

Uc =
1

2

∫
Ω

(
C22N

2 − 2C12NM + C11M
2

C11C22 − C2
12

+
V 2

C33

)
dΩ (19)
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which only involves the internal forces/bending moment fields.
The associated total complementary energy Πc : Us(Ω)→ R comes out as

Πc(N, V,M) = −Uc(N, V,M) + Πc,ext(N, V,M) (20)

in which Πc,ext represents the external complementary energy given as follows

Πc,ext(N, V,M) = [nNū]ΓD
+ [nV w̄]ΓD

+ [nMφ̄]ΓD
(21)

and Us stands for the statically admissible space defined as

Us = {(N, V,M) ∈ H1(Ω)×H1(Ω)×H1(Ω)|

N ′ − V

R(s)
+ p(s) = 0, V ′ +

N

R(s)
+ q(s) = 0, −M ′ + V +m(s) = 0 in Ω;

nN − N̄ = 0, nV − V̄ = 0, nM + M̄ = 0 on ΓN}

(N, V,M) is said to be a stationary point of Πc if, and only if, the following condition holds

δΠc = 0, ∀ (δN, δV, δM) ∈ Vs (22)

where Vs represents the homogeneous statically admissible space defined as

Vs = {(δN, δV, δM) ∈ H1(Ω)×H1(Ω)×H1(Ω)| δN ′ − δV

R(s)
= 0, δV ′ +

δN

R(s)
= 0,

− δM ′ + δV = 0, in Ω;nδN = 0, nδV = 0, nδM = 0, on ΓN}

A novel finite element formulation for the quasi-static analysis of Timoshenko curved tapered
beams will be developed in the following on the basis of the complementary variational approach
introduced above.

4 FINITE ELEMENT FORMULATION

As a starting point, let us define H0
h and H1

h as families of closed finite-dimensional sub-
spaces of H0 and H1, respectively. A finite element approximation of (22) consists of seeking
(Nh,Mh, V h) ∈ Uhs such that (22) holds for all (δNh, δMh, δV h) ∈ Vhs , where Uhs ⊂ Us and
Vhs ⊂ Vs represent the discretized statically admissible spaces.

Let us assume that the entire domain Ω is partitioned in subdomains Ωe ⊂ Ω, such that
Ω = ∪ne

e=1Ωe in which ne represents the number of beam elements. If the inter-element equi-
librium conditions and Neumann boundary conditions are relaxed within the framework of the
complementary energy principle, then, the following augmented Lagrangian, or hybrid comple-
mentary energy, has to be considered

Lc =
ne∑
e=1

Πc,e +

nint∑
i=1

(
λNi [[N ]]Γi

+ λVi [[V ]]Γi
+ λMi [[M ]]Γi

)
(23)

where nint represents the number of inter-element boundaries and Γi stands for the inter-element
boundary i. [[(·)]] stands for the jump of (·) on Γi. λ

N
i , λVi and λMi are the Lagrange multipliers,

defined on Γi, that are energy-conjugate of N , V and M , respectively.
Without loss of generality, and only for the sake of simplicity, let us consider the case of

beams with zero distributed loads, i.e., p(s) = q(s) = 0 and m(s) = 0. Then, the solutions to
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the equilibrium differential equations (4) are as follows

N(s) = c2 sin(k(s)) + c1 cos(k(s)) (24a)

V (s) = c2 cos(k(s))− c1 sin(k(s)) (24b)

M(s) = c3 + c2

∫
cos(k(s)) ds− c1

∫
sin(k(s)) ds (24c)

where c1, c2 and c3 are constants and k(s) is defined as

k(s) =

∫
1

R(s)
ds (25)

It is worth noting that, if, additionally, the beam radius of curvature R is constant, then
k(s) results as

k(s) =
s

R
(26)

and, therefore, the internal forces/bending moment functions (24) come out as

N(s) = c2 sin
( s
R

)
+ c1 cos

( s
R

)
(27a)

V (s) = c2 cos
( s
R

)
− c1 sin

( s
R

)
(27b)

M(s) = c3 + c2R sin
( s
R

)
+ c1R cos

( s
R

)
(27c)

These functions are taken as the trial finite element approximations and a Galerkin approach
is adopted, i.e., the problem is numerically approached assuming the same trial and test ap-
proximation function spaces within the framework of the augmented Lagrangian given by (23).
The involved integrals are numerically computed using a 5-point Gaussian quadrature rule.

Differentiation of Lhc with respect to all the unknown parameters gives rise to a governing
system of linear equations that involve the element constants ci and the Lagrange multipliers
as fundamental unknowns.

5 NUMERICAL TESTS

5.1 Quarter-Circular Cantilver Uniform Beam Under Shear Force at its Free End
- Shear and Membrane Locking Tests

Figure 1: Quarter-Circular Cantilver Uniform Beam Under a Shear Force at its Free End

The classical problem of a quarter-circular uniform cantilever beam subjected to a shear force
at its the free end as is illustrated in Figure 1 is analyzed first in order to test the capability
of the proposed formulation to overcome the shear- and membrane-locking phenomena. The
applied shear force, the cross-section width and the beam curvature radius were set to V̄ = 1kN ,
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Figure 2: Quarter-Circular Cantilver Uniform Beam Under a Shear Force at its Free End - Shear and Membrane
Locking Tests

b = 0.4m and R = 4m. The analysis was carried out varying the slenderness ratio R/h of the
beam. The beam was modeled using only one finite element. It is worth mentioning that
finer finite element discretizations would exactly lead to the same results. The transverse
displacements of the free end of the beam were computed and normalized with respect to their
corresponding Euler-Bernoulli solutions, wEBf , for different values of the slenderness ratio, where

wEBf =
πV̄ R3

4EI
+
πV̄ R

4EA
(28)

The obtained results are shown in Figure 2. As it can be seen, as the slenderness ratio R/h
increases, or, in other words, as the beam becomes thinner, the transverse tip displacements
tend to the Euler-Bernoulli solutions. This shows that the proposed formulation does not suffer
from either shear or membrane locking.

5.2 Clamped-Clamped Circular Beam with Tip Load

To validate and assess the accuracy and effectiveness of the proposed finite element for-
mulation, a clamped-clamped circular beam with rectangular cross-section under tip loads as
depicted in Figure 3 is herein analyzed. A uniform (constant h) beam is considered first and,
afterwards, a tapered beam is studied. The following numerical parameters were considered for
both situations: radius of curvature R = 4m, cross-section width b = 0.4m, shear correction
factor fs = 5/6 and opening angle θo = 2π/3.

Figure 3: Clamped-Clamped Circular Beam
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5.2.1 Clamped-Clamped Circular Uniform Beam with Tip Load - Accuracy test

In order to assess the accuracy of the proposed formulation, a uniform beam with a tip load
is herein analysed. In this case, the cross-section height was set to h = 0.6m and the Young’s
modulus and Poisson’s ratio were set to E = 30GPa and ν = 0.17. The tip loads were assumed
as N̄ = V̄ = 1kN and M̄ = 1kNm. The beam was modeled using two finite elements. The
accuracy of the proposed formulation is assessed by comparing the obtained results with the
reference ones given in [4].

As it can be seen from the analysis of Table 1, the results produced by the proposed formu-
lation are essentially the same as the reference ones.

Load Case ×10−6 Ref. Sol. [4] Present Study

N̄ = 0, V̄ 6= 0, M̄ = 0 w
Rθo

0.248781 0.248781

N̄ 6= 0, V̄ = 0, M̄ = 0
u
Rθo

0.12522 0.125221
φ
θo

-0.379642 -0.379642

N̄ = 0, V̄ = 0, M̄ 6= 0
u
Rθo

-0.09491 -0.094910
φ
θo

1.08224 1.082238

Table 1: Clamped-Clamped Circular Uniform Beam with Tip Load - Accuracy test

5.2.2 Clamped-Clamped Circular Tapered Beam with Tip Load

A tapered beam with a transverse tip load as illustrated in Figure 4 is now analysed. In this
case, the initial cross-section height was set to h0 = h(0) = 0.6m and the Young’s modulus and
Poisson’s ratio were set to E = 70GPa and ν = 0.3. The tip load was set to V̄ = 1kN . The
beam was modeled firstly using two finite elements. The variation of the cross-section height
was taken as h(s) = h0

(
1− s

1.1L

)
, which corresponds to a beam with a cross-section height at

s = L given by h(L) = h0
11

.
The obtained diagrams of axial force, shear force and bending moment are shown in Figures

5, 6 and 7, respectively. As expected, neither the axial force nor the bending moment diagrams
exhibit symmetry with respect to a vertical axis crossing the mid-span of the beam. Likewise,
the shear force diagram is not anti-symmetric with respect to the mentioned axis. This is in
opposition to what would be obtained if a uniform beam would have been considered. It is
also interesting to note that the bending moment at s = L is considerably lower than that at
s = 0. This is clearly a consequence of the lower bending stiffness of the beam at s = L when
compared to that at s = 0.

Finally, a mesh convergence study was performed, in which the tip transverse displacement
was computed using 2, 4, 8 and 16 finite elements. The obtained results are provided in Table
2, showing that the finite element formulation converges to a solution.

6 CONCLUSIONS

• A novel finite element formulation for the quasi-static analysis of Timoshenko curved
tapered beams was proposed.

• The formulation relies on a hybrid complementary energy variational principle leading to
statically admissible solutions.

• The formulation proved to be effective and naturally insensitive to the shear and mem-
brane locking phenomena.
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Figure 4: Clamped-Clamped Circular Tapered Beam with Tip Load

Figure 5: Clamped-Clamped Circular Tapered Beam with Tip Load - Axial Force Diagram

Figure 6: Clamped-Clamped Circular Tapered Beam with Tip Load - Shear Force Diagram

Figure 7: Clamped-Clamped Circular Tapered Beam with Tip Load - Bending Moment Diagram
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ne
w×10−6

Rθo

2 0.904064
4 0.938990
8 0.941257
16 0.941300

Table 2: Clamped-Clamped Circular Tapered Beam with Tip Load - Mesh Convergence Study
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Abstract: The aim of this work is to derive a formulation for linear two-dimensional elasticity
using just one degree of freedom. This degree of freedom is used to directly discretize the Airy
bipotential equation, which requires higher order basis functions. Isogeometric structural analy-
sis is based on shape functions of the geometry description in Computer-Aided design software.
These shape functions can easily fulfill the continuity requirement of the bipotential equation.
Thus, an Airy element formulation can be obtained through isogeometric methods. In this con-
tribution Non-Uniform Rational B-splines are used to discretize the domain and to solve the
occurring differential equations. Numerical examples demonstrate the accuracy of the evolved
formulation for a quadratic plate under different load situations.

1 INTRODUCTION

In 2005 Hughes et. al [1] introduced isogeometric analysis (IGA). The basic idea of IGA
is to use one common geometry model for design in Computer-Aided design (CAD) software
and analysis with the finite element method (FEM) to overcome model conversions between
design and analysis. Therefore the basis functions, commonly Non-Uniform Rational B-splines
(NURBS) basis functions, from CAD models are also utilized as the basis for the FEM. Besides
the exact description of the geometry, NURBS can also provide high inter-element continuity.
That is why results of equal accuracy to standard FEM can be achieved using less elements.
That points out the huge potential of IGA also for complex geometries. For further information
on basics of NURBS, see [2, 3].

Compared to classical FEM, the numerical effort in IGA is slightly shifted from solving to
assembly. Thus, currently a strong focus in IGA research is set on efficient integration rules,
since the total number of integration points scales very well with the assembly costs. Initially,
the use of full and reduced Gauss integration was proposed in [1, 4]. Currently, integration rules
which are computed from moment fitting equations for specific problems have shown highly
improved efficiency [5, 6, 7]. A very different idea to lower the computational effort for two-
dimensional linear elasticity might be to further make use of the high continuity and choose to
discretize not the standard weak form of equilibrium, but rather the well-known Airy equation,
which is able to describe two-dimensional linear elasticity with only one unknown. This partial
differential equation (PDE) combines the set of PDEs of the classical two-dimensional linear
elasticity formulation approach. Instead of the two unknown displacements per control point of
a standard two-dimensional elasticity formulation, with the discretized Airy formula only one
degree of freedom per control point is obtained.

2 BASIC NURBS TERMINOLOGY FOR 2D ELASTICITY

The considered parameter space is subdivided into knot spans, denoted as elements. The
knots are arranged as a non-decreasing array, the knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}. Here, n

https://doi.org/10.4995/YIC2021.2021.12598
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is the number of basis functions of polynomial order p needed for the B-spline construction. A
B-spline curve C(ξ) is constructed through control points Bi using a set of polynomial basis
functions Np

i (ξ) by

C(ξ) =
n∑
i=1

Np
i (ξ) Bi . (1)

The underlying p-th order basis functions Np
i (ξ) are defined as follows.

N0
i (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 else
(2a)

p > 0 : Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ) (2b)

The derivatives of the basis functions are always a combination of lower order basis functions.
The k-th derivative of the i-th basis function can be generalized to

dk

dkξ
Np
i (ξ) =

p!

(p− k)!

k∑
j=0

αk,j N
p−k
i+j (ξ) (3)

with α0,0 = 1, αk,0 =
αk−1,0

ξi+p−k+1−ξi
, αk,k =

−αk−1,k−1

ξi+p+1−ξi+k
αk,j =

αk−1,j−αk−1,j−1

ξi+p+j−k+1−ξi+j
, j = 1, ..., k − 1.

Only a small step is necessary to transform the B-splines Np
i to NURBS Rp

i . Every control

point Bi =
[
XT
i , wi

]T
contains in addition to its coordinates Xi also a weight factor wi. The

B-spline basis has to be divided through the weighting function W (ξ) =
∑n

i=1N
p
i (ξ) wi.

Rp
i (ξ) =

Np
i (ξ) wi
W (ξ)

. (4)

For the two-dimensional case the parameter space is spanned by a tensor product of knot vectors
Ξ1 and Ξ2 in two directions which leads to the shape functions

NI(ξ
1, ξ2) = Rij(ξ

1, ξ2) =
Np1
i (ξ1)Np2

j (ξ2)wij∑n1

î=1

∑n2

ĵ=1
Np1
î

(ξ1)Np2
ĵ

(ξ2)wîĵ
. (5)

Thus, the parametric coordinates of a surface point can be interpolated as

X(ξ1, ξ2) =
nen∑
I=1

NI(ξ
1, ξ2)XI , (6)

where nen = (p1 +1)(p2 +1) is the number of control points per element. To obtain the element
formulation using the solution method of Airy, derivatives up to the 4th order are required. For
shape functions of two-dimensional spaces, partial derivatives have to be computed according
to [2, pp. 136-138].

3 CONTINUUM MECHANICAL FORMULATION

In a two-dimensional space only displacements in two directions exist. Let u1 = u(x, y)
be the displacement in x-direction and u2 = v(x, y) the displacement in y-direction. The
underlying mechanics for a two-dimensional body in this space are described through the three
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main conditions of kinematics, material and equilibrium. The kinematic relations state normal
strains and shear strains as derivatives of the displacements

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂v

∂x
+
∂u

∂y
. (7)

The two mentioned displacements u and v cause normal stresses σxx and σyy in the directions
x and y and shear stresses τxy or τyx. Although we presupposed only displacements in two
directions and assume plane stress (σzz, τxz, τzx = 0), normal strains do also appear in the third
direction. These correlations between stresses and strains are covered by the following material
law for linear elasticity of a two-dimensional body

εx =
1

E
(σx − νσy), εy =

1

E
(σy − νσx), εz = − ν

E
(σx + σy) (8a)

γxy =
2(1 + ν)

E
τxy, γxz = γyz = 0 , (8b)

where Young’s modulus E and Poisson ratio ν are the material parameters. For applied loads
fx and fy, equilibrium is given in x-direction and in y-direction by

∂σxx
∂x

+
∂τxy
∂y

+ fx = 0 and
∂σyy
∂y

+
∂τyx
∂x

+ fy = 0 , (9)

respectively. In order to ensure a steady and cohesive displacement, also the compatibility
condition

∂2εx
∂y2

+
∂2εy
∂x2

− ∂2γxy
∂x∂y

= 0 (10)

between the single strain components has to be fulfilled. Combining Eqs. (7) to (10), a bihar-
monic equation is received. For fx = fy = 0, we obtain the Airy-equation

∆∆F = 0 , (11)

where F denotes the Airy stress function, a measure without a further physical meaning.
However, its second derivatives directly deliver the stresses

σxx =
∂2F

∂y2
, σyy =

∂2F

∂x2
, τxy = − ∂2F

∂x∂y
. (12)

Taking into account the definition of the Laplace operator ∆, Eq. (11) is extended to

F,xxxx + 2F,xxyy + F,yyyy = 0 (13)

with F,ijkl = ∂
∂i

∂
∂j

∂
∂k

∂
∂l
F . This equation marks the starting point for developing the element

formulation in the subsequent section.

4 NURBS-BASED ISOGEOMETRIC DISCRETIZATION

We suppose F to be a scalar field F ∈ S with S = {F ∈ H4(Ω)|F = 0 on δΩD} in the area
of Ω. The corresponding test function is chosen as δF ∈ S. Eq. (13) is multiplied with the test
function which yields three similar integrals of the type

∫
Ω
F,ijkl δFda. Partial integration is

applied two times and leads to:∫
Ω

F,ijkl δF da =

∫
Ω

(F,ijk δF ),l da−
∫

Ω

(F,ij δF,l),k da +

∫
Ω

F,ij δF,kl da (14)
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Using the divergence theorem for scalar values
∫

Ω
f,i da =

∫
∂Ω
f · ni ds, the integration space is

reduced to the boundaries ∂Ω and the associated normal vector ni is multiplied to the integral.
For a rectangular domain these boundary integrals are treated separately for each boundary.
At x-boundaries nx = 1, ny = 0 is valid and prescribed stresses σxx = σxx and τxy = τxy are
considered. Equally at y-boundaries nx = 0, ny = 1 is valid and σyy = σyy and τyx = τ yx are
possible prescribed stresses. The divergence theorem is applied to Eq. (14) and the boundary
terms are evaluated as mentioned. Thus, the final continuous element formulation is received:∫

Ω

F,xxxx δF da +

∫
Ω

F,yyyy δF da +
1

2

∫
Ω

F,xx δF,yy da

+
1

2

∫
Ω

F,yy δF,xx da +
1

2

∫
Ω

F,xy δF,yx da +
1

2

∫
Ω

F,yx δF,xy da

=

+
1

2

∫
∂Ωx

σxx δF,x ds +
1

2

∫
∂Ωy

σyy δF,y ds− 1

2

∫
∂Ωx

τxy δF,y ds

−1

2

∫
∂Ωy

τ yx δF,x ds +
1

2

∫
∂Ωx

τxy,y δF ds +
1

2

∫
∂Ωy

τ yx,x δF ds

(15)

4.1 Interpolation of geometry, unknowns and test functions

The geometry is interpolated as in Eq. (6). To solve the continuum formulation given in
Eq. (15), next to geometry also all other expressions in the function space are discretized as
an interpolation over all control points. The approximations F h and δF h of the unknown Airy
function and the corresponding test function are interpolated as follows:

F h =

nnp∑
I=1

NI FI , δF h =

nnp∑
J=1

NJ δFJ (16)

Eq. (15) requires up to the fourth derivative of the Airy function and up to the second derivative
of the test function. They are easily derived from Eq. (16) since FI and ∂FI are discrete values.
This leads to the following general derivatives with respect to global coordinates (x, y):

F h
,i =

nnp∑
I=1

NI,i FI , F h
,ij =

nnp∑
I=1

NI,ij FI , F h
,ijk =

nnp∑
I=1

NI,ijk FI , F h
,ijkl =

nnp∑
I=1

NI,ijkl FI (17)

δF h
,i =

nnp∑
J=1

NJ,i δFJ , δF h
,ij =

nnp∑
J=1

NJ,ij δFJ (18)

Later on, integration will be performed as Gaussian quadrature on a bi-unit parent element
using classical change of variables formulation taking into account the Jacobian determinant.
Computation rules of NURBS shape functions and their derivatives in Sec. 2 are based on the
(ξ1, ξ2) coordinate system as needed in the integration process. Thus a transformation rule for
the first, second and fourth derivatives of shape functions appearing on the left side in Eq. (15)
is required between (x, y) and (ξ1, ξ2) coordinate system. As shown in [3] it is useful to apply
the chain rule

∂N

∂xi
=
∂N

∂ξα
∂ξα

∂xi
. (19a)

The gradient of this mapping ∂xi
∂ξα

is computed as part of the Jacobian. To keep it simple yet
exact for our purposes which only include rectangular domains, higher order derivatives are
calculated as follows:

∂2N

∂xi ∂xj
=

∂2N

∂ξα ∂ξβ
∂ξα

∂xi

∂ξβ

∂xj
(19b)
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∂4N

∂xi ∂xj ∂xk ∂xl
=

∂4N

∂ξα ∂ξβ ∂ξγ ∂ξδ
∂ξα

∂xi

∂ξβ

∂xj

∂ξγ

∂xk

∂ξδ

∂xl
(19c)

4.2 Formulation of the condition matrix and final system of equations

Implementing the discretizations and moving the discrete values of Airy and test function
out of the integrals in Eq. (15) leads to

nnp∑
I

nnp∑
J

[(∫
Ω

NI,xxxx NJ da +

∫
Ω

NI,yyyy NJ da +
1

2

∫
Ω

NI,xx NJ,yy da

+
1

2

∫
Ω

NI,yy NJ,xx da +
1

2

∫
Ω

NI,xy NJ,yx da +
1

2

∫
Ω

NI,yx NJ,xx da

)
FI δFJ

]
=

nnp∑
J

[(
1

2

∫
∂Ωx

σxx NJ,x ds +
1

2

∫
∂Ωy

σyy NJ,y ds− 1

2

∫
∂Ωx

τxy NJ,y ds− 1

2

∫
∂Ωy

τ yx NJ,x ds

+

∫
∂Ωx

τxy,y NJ ds +

∫
∂Ωy

τ yx,x NJ ds

)
δFJ

]
.

(20)

The left side of Eq. (20) represents the system ”stiffness” B and as in most cases the right side
includes the loading. To avoid mistakes in the usage of F as Airy stress function, the loads are
marked as L. A loop over all nel elements will sum up the individual parts Be

IJ of the condition
matrix and load components LeJ . This changes Eq. (20) to

nel⋃
e=1

nnen∑
I=1

nnen∑
J=1

Be
IJ FI δFJ =

nel⋃
e=1

nnen∑
J=1

LeJ δFJ . (21)

For an efficient computation of results, Eq. (21) has to be brought into a system of equations.
Therefore, the element condition matrix and the load vector can be arranged as

Be =

 Be
11 . . . Be

1nen
...

. . .
...

Be
nen1 . . . Be

nennen

 , Le =

 Le1
...

Lenen

 . (22)

To solve the global system of equations all element matrices and load vectors have to be mapped
to a global condition matrix B and the global load vector L, respectively. In addition to that,

the discrete solution values are arranged in a vector F̂ =
[
F1, . . . , Fnnp

]T
, where nnp is the

number of global degrees of freedom. After converting Eq. (21) such that the test function is
dropped, the final system of equations

B F̂ = L (23)

can be solved for F̂ with standard routines.

4.3 Treatment of boundary conditions

The right side of the derived element formulation in Eq. (20) involves already prescribed
stresses. These stresses are handed in the process of computation as specified neumann bound-
ary conditions. They can be treated easily as they are well known. But it is much more of
interest how to prescribe dirichlet boundary conditions. They do not directly enter the formula-
tiom, but are necessary to receive full rank for the condition matrix. Without them a too wide
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solution space of possible stress functions, leading all to the correct stress state, is spanned. As
in all FEM formulations dirichlet boundary conditions are imposed for the unknown degrees
of freedom. For the presented element formulation this means some values for F have to be
prescribed without knowing the correct mechanical interpretation. Since within this work only
stress boundary conditions are treated, any dirichlet conditions can be set which yields a stable
computation. It is important that there are enough, yet not too many independent prescribed
values in order to obtain a stable solution. As in standard two-dimensional plane stress FEM,
it is required to set at least three nodal dirichlet conditions in order to prevent the three rigid
body modes. More boundary conditions should not be set in order to not overconstrain the
solution. As displacement boundary conditions are usually the dirichlet conditions in stan-
dard FEM formulations, it has to be stated out that displacements are not concerned and this
procedure does only guarantee accuracy for the stress state.

5 NUMERICAL EXAMPLES

For the following numerical examples, the derived element formulation was embedded in
a matlab working routine for IGA. The expressions τxy,y and τ yx,x are neglected since the
examples include only constant or even no shear. The formulation is tested on a quadratic
plate with the dimensions 2 × 2. As dirichlet condition, F was fixed in both bottom corners
and the upper left corner of the plate.

5.1 Quadratic plate under linearly varying uniaxial tension

A linearly varying tension along the vertical boundaries is applied in x-direction. At the
upper boundary a positive and at the lower boundary a negative stress of 10 is prescribed.
The exact solution for σxx is constant in x-direction and varies linearly in y-direction as the

Figure 1: System sketch for quadratic plate under uniaxial tension

prescribed stresses. σyy and τxy are equal to zero. The stress results using the developed element
formulation are provided in Figs. 2 to 4.

Figure 2: Stress σxx for quadratic
plate under uniaxial tension

Figure 3: Stress σyy for quadratic
plate under uniaxial tension

Figure 4: Stress τxy for quadratic
plate under uniaxial tension
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The mentioned exact analytic stress distribution can be found in all three stress plots. The
values of τxy and σyy are actually numerical zero, only small computing errors in the range
of the employed numerical precision appear. All discretizations yield the exact solution. This
was also tested by the L2-error norm. A negligible error in the range of 10−14 appeared for all
refinement steps. To fulfill the condition of a full rank matrix three nodal dirichlet conditions
have to be set.

5.2 Quadratic plate under pure shear

For the example of pure shear only shear stresses were prescribed at every boundary. As it
is shown in the system sketch in Fig. 5, the unit square is constantly loaded with shear stresses
of 10. The exact solution for τxy is constantly 10 over the whole plate while σxx and σyy are

Figure 5: System sketch for quadratic plate under pure shear

equal to zero. For all three stresses the results are shown in Figs. 6 to 8. In the case of pure

Figure 6: Stress τxy for
quadratic plate under pure shear

Figure 7: Stress σxx for quadratic
plate under pure shear

Figure 8: Stress σyy for quadratic
plate under pure shear

shear the L2-error norm is in the range of 10−13, see Figs. 6 to 8. Under pure shear, as shown
before under uniaxial tension, the exact solution can be obtained using just one element.

5.3 Quadratic plate under complex loads

A rectangular plate with the dimensions −b ≤ x ≤ b and −a ≤ y ≤ a is subjected to a
complex load, which is derived from a chosen load function. This procedure is analogous to
the method of manufactured solutions [8]. Here, a solution F is chosen, which is a simplified
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version of the Fourier solution

F =
∞∑
n=1

cos βnx [Bn cosh βny + Cnβny sinh βny]

+
∞∑
m=1

cosαmy [Dm coshαmx+ Emαmx sinhαmx]

(24)

for uniaxial loading in y-direction with arbitrary shape but opposite sign on top and bottom,
which is provided, e.g., in [9, pp. 175-178]. Since the complete Fourier solution is hard to
compute with high precision, we simply use the solution with one Fourier term only. The
stresses at the boundary are computed from this truncated solution and are applied as loading
at the boundaries. Thus, we have loading functions at the boundary and at the same time
we know the exact stress solution in every point within the domain. Since the occurring
trigonometric functions and hyperbolic functions cannot be exactly described by NURBS basis
functions, it is possible to study the convergence rates of the formulation.

The Airy function for this example is

F = cos βx [B cosh βy + Cβy sinh βy]

+ cosαy [D coshαx+ Eαx sinhαx] ,
(25)

where the constants are chosen in a way that the shear stresses τxy are zero along all boundaries.
This yields α = π/a, β = π/b,

D = −E(1 + αb coth
πb

a
) and B = −C(1 + βa coth

πa

b
) . (26)

Introducing Eq. (26) into Eq. (25) and using the required derivatives, the exact stresses are
given by

σxx = β2C cos βx
[
cosh βy + βy sinh βy − βa coth

πa

b
cosh βy

]
− α2E cosαy

[
αx sinhαx− coshαx− αb coth

πb

a
coshαx

]
σyy = −β2C cos βx

[
− cosh βy + βy sinh βy − βa coth

πa

b
cosh βy

]
+ α2E cosαy

[
αx sinhαx+ coshαx− αb coth

πb

a
coshαx

]
τxy = β2C sin βx

[
βy cosh βy − βa coth

πa

b
sinh βy

]
+ α2E sinαy

[
αx coshαx− αb coth

πb

a
sinhαx

]
(27)

and can directly be used for the validation of the presented element formulation.
For the chosen domain it holds a = 1 and b = 1. The constants C and E, which basically

govern the size of the load at the boundaries, are chosen to be C = 10 and E = 1. The resulting
(Neumann) boundary condition are

σ̄xx = ∓10β2 [cosh βy + βy sinh βy − π coth π cosh βy]

± α2 cosαy [π sinh π − cosh π − π coth π coshπ]
(28)

at x = ±b and

σ̄yy = ±10β2 cos βx [− cosh π + π sinh π − π cothπ cosh π]

± α2 [αx sinhαx+ coshαx− π coth π coshαx]
(29)
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at y = ±a. At all boundaries τ̄xy = 0 holds.
The following results in Figs. 9 to 11 are obtained from NURBS of order p = 8 using 50×50

elements within the patch. The error of the plotted stresses is in the range of 10−6.

Figure 9: Stress σxx for quadratic
plate under complex load

Figure 10: Stress σyy for quadratic
plate under complex load

Figure 11: Stress τxy for quadratic
plate under complex load

Figure 12: Convergence behaviour for the quadratic plate under complex load using orders p = 4, .., 8 for the
discretization. The slopes can be seen to be around p− 2 for each curve.

Using the plot of the L2-error norm in Fig. 12, the convergence behaviour of the proposed
element formulation is assessed. To receive maximum Cp−1 continuity, k-refinement is used.
After some refinement steps a proper convergence behavior is obtained. All considered orders
converge to the exact solution. The slope of the L2 error norm of the stresses for a computation
using basis functions of order p can be seen to be approximately equal to p− 2.

6 CONCLUSION

Within this work a one-degree of freedom formulation for two-dimensional linear elasticity
problems has been obtained. It is based on the Airy equation and allows to compute stresses
as direct solution of the underlying system of equations. Situations where only stress boundary
conditions are relevant can be computed without defining suitable displacement boundary con-
ditions. Thus, computations of that kind are strongly simplified. Possible applications could be
the analysis on the micro level in an FE2 formulation [10]. However, for that kind of applica-
tions it might be required to extend the formulation to handle non-rectangular meshes, which
will be subject of future research. Within the described method the need for higher derivatives
yields a more costly computation of the condition matrix, but the effort for the solution of the
global system of equations will be significantly lower since just one degree of freedom per con-
trol point is required. Thus, the method can be competitive to a standard displacement-based
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two-dimensional elasticity formulation. Future research will try to quantify this exactly. The
presented formulation yields the exact solution in the first two simple examples as expected and
shows proper convergence behavior in the third example with a very complex state of stress.
Future work will focus on a mathematical proof of the convergence rates, on the imposition of
displacement boundary conditions and the computation of arbitrarily shaped patches.
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Abstract: At present, Finite Element Analysis (FEA) is indispensable in the field of simula-
tion technology, as this kind of numerical analysis method can help engineers to predict results
difficult to obtain from experimental tests. However, the mesh generation process in FEA is
time-consuming. It is estimated that about 80 percent of analysis time is devoted to mesh gen-
eration in some fields, such as automotive or shipbuilding industries. On the other hand, the
imperfections of mesh models can lead to inaccurate results. In this study, we adopted a new
numerical analysis method, Isogeometric Analysis (IGA) to develop a random vibration fatigue
analysis on a wind turbine tower model. From the mesh generation process, it can be observed
that the NURBS mesh creation is far more convenient and time-efficient than the finite element
counterparts. From fatigue analysis results, we can conclude that IGA can predict fatigue dam-
age using fewer mesh elements and integration points, corresponding very well with the finite
element results.

1 Introduction

It is necessary to predict the fatigue life of a structure during the design stage. In the
numerical simulation, the fatigue analysis can be developed both in the time and frequency
domain. However, compared with frequency domain fatigue analysis, the time domain fatigue
analysis is computationally expensive. So, in this studying, we adopted the frequency domain
fatigue analysis method to calculate the cumulative damage ratio based on Dirlik’s approach,
in which the input random vibration load and output stress are described by Power Spectrum
Density functions (PSD).

At present, there are several disadvantages to FEA. The most significant one is to spend a
long time in mesh generation. For example, it is estimated that about 80% of overall analysis
time has been applied to the mesh creation process in automotive, aerospace, and shipbuilding
industries [1]. In 2005, T.J.R. Hughes proposed a method, which is named Isogeometric analysis
(IGA) to mainly solve the problems derived from the classical FEA.

IGA with NURBS basis function has been applied in various engineering problems, including
contact mechanics [2, 3, 4], fluid mechanics [5, 6, 7], structural optimization [8, 9, 10, 11], shell
analysis [12, 13, 14, 15], beam analysis [20, 16, 17] damage and fracture mechanics [18, 19],
and structural vibration analysis [16, 20, 21], etc. In this paper, we mainly investigate the
performance of the NURBS-based IGA LS-DYNA on a wind turbine tower model. Results are
verified by classical FEA and matlab code.

The originality of this paper is that the isogeometric random vibration fatigue analysis is
firstly employed on an industrial model. The structure of this article is as follows. In section
2, we briefly review some theoretical backgrounds. In section 3, isogeometric random vibration

https://doi.org/10.4995/YIC2021.2021.13262
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fatigue analysis is applied on a wind turbine tower model and the results are verified by the
FEA and own developed Matlab programming. In section 4, we conclude on the present studies.

2 IGA modelling

At present, most IGA is developed, based on NURBS basis function, as it not only has a
wide application in CAD systems but also possesses powerful capability in describing complex
geometric models. The NURBS basis functions are defined by the B-spline basis function built
from knot vectors. Details can be found in [1].

2.1 Some basic concepts of IGA

• I) Different spaces

The index space in two dimensions is an equally divided domain, no matter with the knot
values of knot vectors. For example, in the case where the knot vectors are respectively Ξ =
{0, 0, 0, 0.5, 1, 1, 1} and η = {0, 0, 0, 0.5, 1, 1, 1}, the index space ranges from [0, 1] (figure 1 (a)).
The parameter space in two dimensions is the [0, 1] ⊗ [0, 1] domain where the NURBS basis
functions are defined (figure 1 (b)). And the control points, physical mesh, and control mesh
are defined in physical space (figure 1 (c)).

(a) Index space (b) Parameter space

(c) Physical space

Figure 1: Schematic illustration of different spaces

• II) Knot vector

A knot vector in one dimension is defined as a series of non-decreasing coordinates in the
parametric space, denoted by Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the ith knot (or coordi-
nate), and i is the knot index from 1, 2, . . . , n + p + 1, in which n is the number of B-spline
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basis function along ξ parametric direction, and p is the polynomial order of B-spline basis
function. In the construction of B-spline surface and solid, it is necessary to use 2 and 3-knot
vectors, which are respectively directed along ξ and η directions. Each knot or coordinate of a
knot vector is used to divide the parametric space of a geometrical model to obtain elements,
meaning that all of the mesh elements can be selected by knot values of the knot vectors. In
terms of the space between different knots, a knot vector can be referred to as a uniform or
non-uniform knot vector. In a uniform knot vector, the knots are equally spaced in the para-
metric space, such as Ξ = {1, 2, 3, . . . , ξn+p+1}. Similarly, in a non-uniform knot vector, the
knots are unequally spaced in the parametric space, such as Ξ = {1, 1.5, 2.5, 3, . . . , ξn+p+1}. In
a knot vector, there can be repeated knots, and a knot vector is said to be open if its first and
last knots repetition are equal to the p + 1, in which p is the polynomial order of the basis
function. In one dimension, the basis functions constructed by an open knot vector interpolate
the ends of parametric space.

• III) B-spline basis function and B-spline curve

The B-spline basis functions are defined by the following equation 1 and 2.
For p = 0, it is defined by:

Ni,0(ξ) =

{
1 if ξi <6 ξ < ξi+1

0 otherwise
(1)

For p = 1, 2, 3,..., they are defined by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2)

B-spline curves are defined by the linear combination of B-spline basis functions and the
corresponding control points, the vector - valued coefficients of the basis function Pi ∈ R,
i = 1, 2, ..., n, as in equation 3.

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi (3)

• Non-Uniform Rational B-Spline (NURBS) basis function, NURBS curve, and NURBS
surface

The univariate NURBS basis function is described by the rationale of weighted B-spline basis
functions as:

Ri,p(ξ) =
ωiNi,p(ξ)

W (ξ)
=

ωiNi,p(ξ)∑ncp

i=1 ωiNi,p (ξ)
1 ≤ i ≤ p+ 1 (4)

Where ωi denotes the weight value of the control point Pi, and W (ξ) is the weighted linear
combination of B-spline basis functions. Here, n denotes the total number of NURBS control
points. The NURBS curve is defined by the linear combination of univariate NURBS basis
function Ri,p(ξ) and control point Pi by the following expression [1]:

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi (5)

And the NURBS surafce is defined by:
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C(ξ, η) =
n∑

i=1

m∑
j=1

Rp,q
i,j (ξ, η)Pi,j (6)

where Rp,q
i,j (ξ, η) is bivariate NURBS basis functions, which are defined by:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(7)

where Ni,p(ξ) and Mj,q(ξ) are pth and qth order B-spline basis function, which are defined
in ξ and η parametric directions, respectively.

3 The IGA and FEA on a wind turbine tower model

In this section, isogeometric and finite element random vibration fatigue analysis are devel-
oped on a wind turbine tower model created based on the reference[22].

3.1 The analysis preparation

3.1.1 The geometric model, material properties

As shown in figure 2, the wind turbine tower model is assembled by a series of different
thickness cylinders and conical shell sections, in which the geometry parameters like the height,
thickness, etc are displayed in the form of mm. The tower model consists of 3 flange connections,
whose base, middle and top flange thicknesses are respectively 300, 200 and 200 mm.

Figure 2: geometry model of the tower

The material properties are shown in table 1. And the material constants of the S-N curve
are respectively β = 9.82 and C = 4.0641× 1088 [23].

Table 1: Material properties

Mass density Young’s modulus poisson’s ratio

3.81e-3 g/mm3 3.1e+11 Pa 0.33
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3.1.2 Mesh models and boundary condition

The isogeometric and finite element mesh models are presented in figure 3, in which the
number of control points and nodes are respectively 7639 and 12969. The finite element mesh
model is created by quadrilateral 4 nodes mesh elements, and the shell element formulation
of Belytschko-Tsay is chosen to develop fatigue analysis. For IGA, we used the isogeometric
NURBS element, and adopted Hughes-Liu with rotational DOFs shell formulation; the poly-
nomial order of univariate shape functions in s and r-directions in the parametric space are
respectively 2, and in LS-DYNA, the mesh refinement method, SUBDIVISION, is used to cre-
ate more isogeometric mesh elements. After mesh generation on each section, the keyword,
NODE DUPLICATION, is used to merge duplicate control points (nodes for FEA) to assemble
the different sections.

To simulate the weight effects of blades, turbines, and other parts on the top of the wind
turbine tower, at the height of Z = 26460 and X= -750, Y = 0 mm, a node is created to
substitute the concentrated mass element of 4.023e+7 g. Then the node is connected with all
control points of the top flange edge, and the weight direction is set to in negative z-direction.
During analysis, the base flange of the tower model is clamped in the translational and rotational
local x, y, z-directions.

(a) (b)

Figure 3: Mesh models (a) IGA (b) FEA

3.2 Analysis results

3.2.1 Modal analysis results: the first five natural frequencies and vibration mode

Table 2, figure 4 and 5 respectively show the first five natural frequencies and correspond-
ing vibration modes obtained from IGA and FEA, from which it can be observed that the
frequencies and the vibration modes have a good agreement.
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Table 2: The first five natural frequencies(Hz)

Method 1 2 3 4 5

IGA 4.47 4.55 26.83 27.26 30.47
FEA 4.47 4.54 27.15 27.21 30.48

(a) (b) (c)

(d) (e)

Figure 4: Isogeometric first five vibration mode

(a) (b) (c)
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(d) (e)

Figure 5: Finite element first five vibration mode

3.2.2 Fatigue analysis results: effective stress PSD, RMS and cumulative damage
ratio

The force PSD load, as shown in figure 6 is applied on the node substituting the element
concentrated mass in the x-direction. The random vibration fatigue analysis of unit second,
in which the damping ratio is set to 0.01, is developed to calculate the effective stress PSD,
RMS, and cumulative damage ratio in Ls Dyna. Then based on obtained PSD, the cumulative
damage ratio is validated in Matlab using Matlab program.

Figure 6: Applied load PSD

Figure 7, and 8 show the calculated isogeometric and finite element effective stress PSD and
RMS, in which only the first natural frequency is excited by the applied force PSD. It is observed
that isogeometric and finite element PSD and RMS display a good agreement, in which the
maximum effective stress RMS from IGA and FEA is 3.151e+8 and 3.125e+8 pa respectively,
leading to the relative error of 0.83%, based on the equation 8. From figure 9, it can be seen
that the obtained isogeometric and finite element cumulative damage ratios are respectively
2.678e-4 and 2.638e-4, with a relative error of 1.52%, and the maximum damage ratios are
located on similar elements close to the door edge. According to the equation 9, the expected
isogeometric and finite element fatigue life E[Tf ] are 3.7341e+04, and 3.7908e+04 seconds
respectively. Based on the Matlab program, the isogeometric and finite element damage ratios
are respectively 2.6204e-04 and 2.6406e-04, which are in a good accordance with the damage
ratios computed from Ls Dyna.

Relative error =
IGAresult− FEAresult

FEAresult
(8)
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E[Tf ] =
T

E[D]
(9)

Where T is the duration time (1 seconds in these analyses), E[D] is the obtained cumulative
damage ratio.

Figure 7: The effective stress PSD

(a) IGA (b) FEA

Figure 8: The effective stress RMS

4 Conclusion

In this studying, we considered random vibration fatigue analysis on a tower model using
IGA and FEA, in which the isogeometric and finite element damage results are validated by
the Matlab program.

During the analysis, the tower model is clamped on the base flange, and random force PSD
in a vertical direction to the tower surface is applied to the concentrated mass element. From
modal analysis, it can be found that the obtained first five natural frequencies and vibration
modes from IGA and FEA have a good agreement. Fatigue analyses show that the obtained
isogeometric and finite element maximum effective stress RMS are 3.151e+8 and 3.125e+8 pa
with a relative error of 0.83%, and cumulative damage ratios are 2.678e-4 and 2.638e-4 with
a relative error of 1.52%. Based on the Matlab program, the isogeometric and finite element
damage are respectively 2.62e-4 and 2.64e-4, leading to the relative error of -0.76%.

On the other hand, in the aspect of the mesh refinement process, for IGA, it is not necessary
to create mesh elements on the original geometry model. it is sufficient to develop mesh elements
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(a) IGA (b) FEA

Figure 9: The cumulative damage ratio

on the previous mesh model, and so the mesh refinement time can be largely saved. However,
for the FEA, the refinement process is mandatory to communicate with the original geometric
model, and so this process is more time-consuming in LS Dyna software.

In addition, IGA can predict the fatigue life using fewer NURBS elements and integration
points in the thickness direction, which correspond very well to the fatigue life computed by
FEA, with the relative errors of 0.68% . Through the comparison of numerical analysis results,
it can be observed that the obtained isogeometric, finite element PSD and RMS have a good
agreement, leading to conclude that IGA is suitable for the random vibration fatigue analysis.
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Abstract: In this work, we have derived explicit expressions to estimate the orthotropic elastic
constants of lamellar tissue as a function of the porosity at tissue level (microporosity) and the
bone mineral density. Our results reveal that the terms of the main diagonal of the stiffness
matrix fit an exponential equation, while the cross terms of the matrix fit a polynomial expres-
sion. Regarding to bone damage, failure onset assessed by Hashin criterion is mainly due to
matrix elements failure. Finally, a linear relationship was found between bone mineral density
(BMD) and cancellous bone stiffness at the macro scale.

1 INTRODUCTION

Bone is a biological material with a hierarchical structure that develops in an optimal con-
dition, supporting the loads to which it is subjected using the minimum material. Specifically,
cancellous bone is a highly porous and heterogeneous material whose structure is mainly struts
and plates framework. This type of bone is laminated at the microscale and the tissue arranged
at these layers is called lamellar bone tissue.

At tissue level, collagen fibrils are known to be oriented in the direction of the strut on
the most external surface [1]. However, as we move deeper into the strut towards the inside,
the collagen is more randomly distributed. For this reason, the need to orient the material
properties arises because the behaviour will not be the same in each direction. This non-
isotropic nature of lamellar tissue must be considered in the quantification of bone mechanical
properties.

On the other hand, porosity at lamellar tissue (microporosity) and bone mineral content
are two relevant parameters related to bone mechanics. It is known that an increase of bone
mineral density (BMD) implies a stiffness rise, but an excessive increase will make the lamellar
tissue more brittle. Microporosity contributes in the bone loss mechanical response. Porosity
exerts strong influences on mechanical properties in structural materials [2, 3]. Similar depen-
dencies exist for bone, its strength and stiffness vary inversely with increasing porosity [4, 5].
Bone porosity has two possible sources, natural porosity and pathological such as osteoporo-
sis. Natural porosity is mainly due to canaliculi, lacunae and vascular porosity. Pathological
porosity causes a widening of vascularisation channels, increase of empty lacunae due to death
of osteocytes and degradation in bone architecture.

As regards bone damage assessment, some researchers have defined isotropic failure criteria
for assessing bone failure. In line with the previous comments, lamellar tissue has a non-isotropic
behaviour, so we may need a more complex failure criterion. In composite materials, interactive
failure criteria are usually used to model damage initiation in a composite layer. In 1980 Hashin

https://doi.org/10.4995/YIC2021.2021.12442
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[6] proposed two failure mechanisms based on the matrix and fiber failure respectively and
distinguished between tension and compression for unidirectional fiber composites. Failure of
these type of material fits with the lamellar tissue failure, so we will study bone damage by
Hashin’s orthotropic failure criterion.

Finally, failure analysis requires the strength limits of the material. Ascenzi and Bonucci
conducted several studies of different osteon types in order to define their strength limits [7,
8, 9]. They carried out tensile tests and they concluded that the osteons with longitudinal
arrangement in the consecutive lamellae are the stiffest ones [7]. Under compression, osteons
with a transverse arrangement of the collagen fibrils are the stiffest [8]. Under shear loads [9],
osteons with some transverse collagen fibril arrangement were found to be stiffer in relation to
the other types, such as longitudinal osteons.

In this work, we have estimated expressions for the orthotropic elastic constants of lamellar
tissue as a function of the porosity at the tissue level and the bone mineral density. For this task,
we have developed finite element models in which porosity is explicitly modelled as ellipsoids
and spheres. Moreover, bone failure onset has been modeled by Hashin criterion, while damage
evolution has been assessed through the material property degradation method (MPD).

2 MATERIALS AND METHODS

2.1 Specimen description, scanning and numerical modelling

A swine lumbar trabecular bone sample will be modelled for assessing bone damage. The
trabecular bone sample was prepared in Instituto de Biomecnica de Valencia (IBV) from a
lumbar vertebrae of a mature skeletal swine. The specimen was cut in parallelepiped-shaped
sample with 10 mm length side. The sample was scanned by µ-CT in Estacin de Bioloxa
Maria from A Graa (Universidad de Santiago de Compostela), whose scanner is Skyscan1172
(Bruker, Kontig, Belgium) achieving images with an isotropic resolution of 13.58 µm (voltage
100 kV, intensity 100 µA, Al/Cu filter). The µ-CT images were segmented using a manual
global thresholding procedure (ScanIP, Simpleware, UK). From the set of µ-CT images of
the scanned sample, a 2 mm cube-shaped region of interest was digitally extracted for the
subsequent numerical model generation.

Numerical simulations of tension and compression load cases will be conducted. We consider
three values of bone mineral density (BMD) in this study, 0.653 g/cm3, 0.85 g/cm3 and 1.16
g/cm3, in order to evaluate BMD influence in the mechanical response. BMD and porosity will
be implicitly considered using explicit expressions for the stiffness matrix at bone tissue level,
derived in this work. For damage bone assessment, the strength limits, shown in Table 1, were
inferred from [8, 10]. In the simulations, the main growth direction of bone is defined as the
longitudinal direction of the sample where plates structure dominate, while the remaining two
directions are defined as transverse directions where struts prevail.

Table 1: Strength limit values (MPa) for lamellar tissue. The subscript t, c and s denote tension, compression
and shear, respectively.

S1t S1c S2t = S3t S2c = S3c S12s = S13s S23s

120 -115 50 -160 46 38

2.2 Modelling porosity in lamellar tissue

We have modelled the two types of porosity: natural (due to lacunae) and pathological. In
order to mimic natural porosity we have modelled ellipsoids, which represent the empty lacunae
after osteocytes death. On the other hand, we have used spheres for mimicking lamellar tissue
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holes due to osteoporosis. Natural porosity represents up to a 10% of the total bone porosity
[11]. Therefore, we assume ellipsoid voids up to a 5% porosity and spherical voids for the whole
range of porosities.

We have studied six percentages of porosity (1%, 5%, 10%, 15%, 20% and 25%) according to
Martnez-Reina [11] and twelve levels of bone mineral density. The minimum value we consider
for the BMD at tissue level is 0.653 g/cm3 from Koller [12], while the maximum value is 1.50
g/cm3 from [13].

Porosity does not appear with any pattern neither with a specific arrangement in bone tissue.
For this reason, we have generated ten models with a random distribution of non-overlapping
spheres to represent pores at tissue level while we used ellipsoids to mimic lacunae, see Figure
1. An average stiffness matrix is assessed for the ten random models of each pair of porosity
and BMD values.
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Figure 1: a) Random models with sphere-shaped pores and b) random models with ellipsoids

The reason why we have studied porosity with ellipsoids only until 5% is because they rep-
resent the lacunae which appear after osteocytes death. This type of porosity is due to natural
bone porosity and it only represents at most the 5% of the total bone porosity. Regarding to
sphere-shaped voids, we can model the whole range of porosity with them because with a little
radius they represent natural bone porosity and with a larger radius they represent the holes
that osteoporosis let at lamellar tissue.

The starting point of the current numerical model is considering the equations for estimating
the elastic constants of a healthy bone as a function of the trabecular bone mineral density
(BMD) in a multiscale approach [14].

                                                                                

z (longitudinal, l)

x (transversal, t)
y (transversal, t)

Mineralized fibre bundles

X Y

Z

                                                                                

   Non porous lamellar tissue

Extra-fibrilar matrix
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Figure 2: a) Transversely isotropic elastic properties of lamellar tissue as a function of BMD at tissue level
[14]. b) Numerical model of the representative elementary volume of porous lamellar tissue. c) Trabecular bone
numerical model at microscale.
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Vercher et al. [14] assumed the lamellar tissue as a transversely isotropic material (Figure
2a). The elastic constants of the lamellar bone are given in [14].

The geometry of the numerical model is a region of interest of trabecular bone and is cube-
shaped. We have modelled a representative periodically repeated volume called unit cell (Figure
2b). For this reason, we have applied periodic boundary conditions to guarantee that the
analyzed hexahedron behaves as a continuous domain. Owing to the non-isotropic behaviour
of lamellar tissue, the element coordinate system in the numerical model must be conveniently
aligned with lamellar tissue properties. Regarding to the mesh, it is an important point of the
numerical model due to the necessity of having a mirror mesh at each opposite faces of the
model. Finally, a direct homogenization technique has been applied for estimating the average
apparent stiffness of porous lamellar tissue.

2.3 Bone damage modeling

In this work, independent quasi-static load cases are numerically simulated. Bone failure
onset has been modelled by Hashin’s orthotropic failure criterion. On the other hand, bone
damage evolution has been assessed through the material property degradation (MPD) method.

Hashin failure criterion is widely used to predict intralaminar failure in orthotropic materials.
It assumes different failure mechanisms for tension and compression, both in the fiber and
transverse directions. The formulation is the following [6]:

ff =

(
σ11
Xt

)2

+
1

S2

(
τ 212 + τ 213

)
; σ11 > 0 (1)

ff =
σ11
Xc

; σ11 < 0 (2)

fm =
(σ22 + σ33)

2

Y 2
t

+
(τ 223 − σ22σ33)

Q2
+

(τ 212 + τ 213)

S2
; σ22 + σ33 > 0 (3)

fm =
(σ22 + σ33)

Yc

[(
Yc
2Q

)2

− 1

]
+

(σ22 + σ33)
2

4Q2
+

(τ 223 − σ22σ33)

Q2
+

(τ 212 + τ 213)

S2
; σ22 + σ33 < 0

(4)
where X and Y are axial strength limits in longitudinal direction and transverse to the fiber,

respectively (Xt = S1t, Xc = S1c, Yt = S2t, Yc = S2c). Subscripts f and m denote fiber and
matrix while subscripts t and c denote tension and compression. Furthermore, S and Q are
shear strength limits in 12 and 23 planes respectively, being 1 the longitudinal direction of the
fiber, normal direction to 23 plane (S = Ss12, Q = Ss23).

We evaluate failure using the safety factor f, given by equation 5. Failure occurs for f values
are greater than one.

f = max(ff , fm) (5)

On the other hand, damage evolution is modelled through material property degradation.
The load is progressively applied in quasi-static step increments until failure conditions are
reached. Then the Young’s modulus of the damaged elements is reduced.

In this work, the stiffness penalty for fiber and matrix failure is reduced differently. Fibers
are stiffer and more resistant than matrix, so they transfer more load. If fibers fail, their
stiffness is reduced in a 90%. On the other hand, if matrix fails, its stiffness is reduced to 50%.
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3 RESULTS AND DISCUSSION

3.1 Expressions for the terms of the stiffness matrix as a function of porosity and
bone mineral density

A non-linear multivariable regression by means of the least square fitting has been performed
to adjust explicit expressions for the elastic constants of lamellar tissue as a function of the
volumetric bone mineral density and porosity. For both porosity geometries, spheres and ellip-
soids, the expressions estimated for the main diagonal of the stiffness matrix fit an exponential
expression, equation 6.

y = aeb·pec·BMD (6)

Table 2: Values a, b and c for fitting the expression for the main diagonal for the stiffness matrix [C]. All the
terms are expressed in GPa, BMD in g/cm3 and porosity in %.

Spheres Ellipsoids
a b c a b c

C11 5.847 -0.02173 0.5817 5.757 -0.03656 0.5986
C22 5.839 -0.02181 0.5830 5.784 -0.02004 0.6017
C33 7.388 -0.02223 0.8213 7.119 -0.01527 0.8718
C44 1.467 -0.02058 0.8123 1.336 -0.01318 0.8980
C55 1.468 -0.02060 0.8119 1.334 -0.02199 0.8985
C66 1.348 -0.02013 0.7298 1.254 -0.02277 0.7945

The exponential equation terms that fit equation 6 for each type of porosity are given in Table
2. The values which multiply the porosity are negative while those which multiply BMD are
positive. Therefore, an increment of porosity in lamellar tissue causes a reduction of stiffness,
while in bone mineral density leads to a stiffer material.

Figure 3 shows the terms of the main diagonal of the stiffness matrix for several bone
mineral densities obtained with the estimated expressions for ellipsoids (cross markers) and
sphere-shaped pores (circle markers). As can be seen, results for both expressions are really
close between them, so we can use both indifferently. Moreover, the results for the term C33

are the highest in agreement with the most stiffest direction of the sample, the fibers direction.
Besides, the terms C11 and C22 are almost identical according to the definition of the material
which is transversely isotropic. Furthermore, it can be noticed that there is not a wide variation
between the terms C44, C55 and C66 of the main diagonal of the stiffness matrix.

The terms of the stiffness matrix [C] related to mutual influence and Chentsov coefficients
are negligible in comparison with the rest of the terms and they only have a slightly variation
with porosity and BMD. In order to complete the terms of the stiffness matrix we have to fit
expressions for C12, C13 and C23 terms. A polynomial function is the best fit for the numerical
results obtained, but with slightly differences between spheres and ellipsoids holes. Equation 7
shows the fitting expression used for spheres-shaped pores, while equation 8 the corresponding
for ellipsoids pores. Table 3 summarizes the values which correspond with each term of the
fitting equation.

y = a+ b · p+ c · p2 + d · p3 + e ·BMD + f ·BMD2 + g ·BMD3 (7)

y = a+ b · p+ c · p2 + d · p ·BMD + e ·BMD + f ·BMD2 (8)
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Figure 3: Comparison between the expressions estimated for the terms of the main diagonal of the stiffness
matrix for mimicking porosity by ellipsoids and sphere-shaped holes.

Table 3: Values for the parameters a, b, c, d, e, f and g for fitting the polynomial expressions. All the terms
are expressed in GPa, BMD in g/cm3 and porosity in %. Subscript s denotes the spheres terms and subscript
e denotes ellipsoids terms.

a b c d e f g
C12,s 2.1878 -0.12627 8.402210−4 0 4.0292 -1.1405 0
C13,s -3.6721 -0.10889 −6.156610−4 3.635010−5 19.131 -10.812 0.58818
C23,s -6.6623 -0.11082 −3.934510−4 3.022710−5 30.459 -25.596 7.0279
C12,e 0.7633 -0.1727 0.004519 -0.03203 6.949 -2.633 -
C13,e -1.261 -0.2131 0.004492 0.005465 12.67 -6.059 -
C23,e -1.486 -0.1581 0.002377 0.01366 13.15 -6.305 -

Figure 4 plots the results for the cross terms of the stiffness matrix. Both C13 and C23 terms
show the same trend for the results. For these terms, the function has a maximum and then
falls again, hence, the results for 0.95 g/cm3 are greater than the ones for 1.25 g/cm3. On the
other hand, the equation followed for C13 is a polynomial that for all the studied values always
grows. Therefore, as BMD increases the results increase as well.

3.2 Failure modeling results for tension and compression load cases

In this section, we have studied the failure behaviour of a vertebral trabecular swine bone
numerical model. Figure 5 shows the results considering a 0.85 g/cm3 bone mineral density
and 5% of porosity. Tension load case is represented in blue whereas orange corresponds to
the compression load case. Dashed lines represent the hypothetical linear behaviour of the
sample in order to identify failure onset. The sample has a similar behaviour under tension and
compression loads. However, the failure onset begins a bit earlier in tension than in compression.
Moreover, the maximum stress is higher for compression than for tension.

The elements that fail under compression load at yielding and complete failure are repre-
sented in red in Figure 5. It can be noted that few elements failed at yielding, mainly due
to matrix failure. After several load steps, the material collapses and several elements failed.
Their stiffness has been reduced as compression has progressed. At this point, the component
is not able to bear greater strains and collapses.

Three different values of BMD have been chosen for evaluating its influence on the failure
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Figure 4: Comparison between the expressions estimated for the cross terms of the stiffness matrix for mim-
icking porosity by ellipsoids and sphere-shaped holes.
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Figure 5: Tension and compression curves for the longitudinal direction (bone growth main direction) for a
vertebral trabecular swine bone numerical model with 0.85 g/cm3 bone mineral density and 5% of porosity.

of the vertebral trabecular swine bone. Porosity has been set for all cases in 5% because this
percentage corresponds to a healthy bone, and there was no evidence about the presence of any
disease or pathology in the animal.
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Figure 6: Tension and compression behaviour curves for three values of bone mineral density.
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Figure 6 shows the tension-compression response of the cancellous bone specimen for three
BMD values. As can be seen in the reported results, as BMD increases, the apparent stress
that sample can withstand is greater. The reason is due to the fact that bone mineral density
contributes to a higher stiffness in bone. It can be observed that as bone mineral density
increases, yield strain is lower, but the apparent stress that each sample can withstand at the
yield point is greater as stiffness increases.

4 CONCLUSIONS

In this work, we provide explicit expressions for the terms of the stiffness matrix as a function
of porosity and bone mineral density. We have mimicked natural porosity at tissue level using
ellipsoids due to the lacunae voids after osteocytes death and spheres for both sources of
porosity, natural and pathological. The terms of the main diagonal of the stiffness matrix follow
an exponential equation, whereas the cross terms fit a polynomial law. The results obtained
indicate that an increment of porosity in lamellar tissue causes a reduction of stiffness, while
in bone mineral density leads to a stiffer material.

We have detected that the importance of orientating the lamellar tissue in the numerical
models is essential for obtaining results closely to an experimental test. The structure of
the vertebral trabecular swine bone sample has dominant struts structure in the transverse
directions, while plates prevail in the main growth direction of bone. For this reason, we have
oriented the fibers vertically in plate directions and flat for transverse directions where struts
exist.

Finally, we have proved that an orthotropic failure criterion can be used in order to analyse
bone failure onset considering bone tissue as a composite material. Moreover, elastic property
degradation method is an efficient procedure to analyse the failure propagation in a 3D nu-
merical model due to its computational cost. Stress - strain curves for the trabecular bone
numerical model show a similar behaviour both in tension and compression. Furthermore, the
influence of BMD on the stiffness of the trabecular bone has been studied and we have seen
that as BMD increase the apparent stiffness of the sample is greater.
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Abstract: A system simulation method based on the Finite-Element Method (FEM) is applied
to simulate a bimorph piezoelectric vibration-based energy harvester (PVEH) with different elec-
tric circuits: The standard circuit, the synchronized switch harvesting on inductor (SSHI) cir-
cuit and the synchronized electric charge extraction (SECE) circuit are considered. Moreover,
nonlinear elasticity of the piezoelectric material is taken into account and different magnitudes
of base excitations are applied. The holistic FEM-based system simulation approach allows the
detailed evaluation of the influences of the considered electric circuits on the vibrational behavior
of the PVEH. Furthermore, the harvested energy of the different applied electric circuits with
respect to the magnitude of base excitation is compared and results from literature regarding the
efficiency of electric circuits are confirmed.

1 INTRODUCTION

A piezoelectric vibration-based energy harvester (PVEH) is composed of an electromechani-
cal structure along with an electric circuit to extract the energy. The objective of such a device
is converting otherwise unused mechanical energy to electrical energy to power e.g. wireless sen-
sors. The piezoelectric effect, used as the energy conversion principle, describes the generation
of electrical voltage when the piezoelectric material is mechanically deformed and vice versa.

The applied electric circuit significantly influences the energy output of a PVEH. The choice
of the electric circuit depends on the electromechanical coupling of the harvesting structure,
the excitation signal and the electric load among others. Therefore, numerous electric circuits
have been introduced in the literature to improve the performance of PVEHs. The passive
standard circuit is the simplest electric circuit and it was reported, that active circuits like
the synchronized switch harvesting on inductor (SSHI) circuit and the synchronized electric
charge extraction (SECE) circuit can increase the efficiency of a PVEH significantly compared
to the standard circuit [1, 2]. The aim of this contribution is to simulate and compare the
energy output of a PVEH with the standard circuit, the SSHI circuit and the SECE circuit
for different magnitudes of base excitations. Nonlinear elasticity becomes important for large
magnitudes of base excitation, thus, it has to be taken into account in the simulations [3].
Because the electric circuit and the electromechanical structure influence each other, an accurate
simulation of a PVEH requires accurate modelling of both the electromechanical structure and
the electric circuit. Analytical solutions are restricted to relatively simple geometries of the
electromechanical structure and simple electrical loads. Equivalent circuit models describe
only the electric behavior of PVEHs and important quantities like the stresses in the material

https://doi.org/10.4995/YIC2021.2021.12177
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can not be evaluated. Simulations of PVEHs based on the Finite-Element Method (FEM)
have been introduced and allow for arbitrarily shaped geometries and for modeling nonlinear
material behavior. Recently, the authors presented a simulation method using only the FEM
and allowing for nonlinear electromechanical structures and nonlinear electric circuits [4]. The
influence of the electric circuit on the electromechanical structure is considered via the vector
of external forces and an implicit time integration scheme is used. Because this method allows
for efficient simulations of PVEHs considering nonlinearities of both the electric circuit and the
structure, this simulation method is applied within this contribution.

2 GOVERNING EQUATIONS OF PIEZOELECTRICITY

Within this contribution index notation in accordance to [5] is applied. A piezoelectric body
is characterized by the help of the linear strain tensor Sij and the electric field Ei

Sij,i =
1

2
[ui,j + uj,i] and Ei = −ϕ,i (1)

Here, ui is the mechanical displacement and ϕ is the electric voltage. The mechanical and the
electric equations for a piezoelectric body Ω are given by the balance of linear momentum and
Gauss’ law considering that piezoelectric materials are insulating

Tij,i = ρüj and Di,i = 0 (2)

Here, ρ is the material density, Di is the dielectric displacement and Tij are the components
of the mechancial stress. A constitutive law that specifies the material behavior must be
introduced. In [3] nonlinear elasticity was identified as the primary source of nonlinearity and
a nonlinear elastic constitutive law for a 1D setting was introduced, which is here extended to
3D

Tij=c
E
ijklSkl − ekijEk + [c4S

3
11 + c6S

5
11]δ1iδ1j (3)

Di=eiklSkl + εSijEj (4)

Here, cEijkl are the components of the elasticity tensor at constant electric field, eikl is the
piezoelectric constant tensor, εSij is the dielectric constant at constant electric field and δij is
the Kronecker delta. Nonlinear elastic behavior is thus only introduced in 1-direction, which
is a reasonable approach since this is the direction of the largest stresses and strains. The
piezoelectric problem can be solved with appropriate boundary conditions

ui = ūi on ∂ΩDu ϕ = ϕ̄ on ∂ΩDϕ Tijnj = t̄i on ∂ΩNu Dini = −Q̄ on ∂ΩNϕ (5)

The prescribed surface traction t̄i and the free surface charge density Q̄ are introduced. The
boundary ∂Ω of Ω consists of subsets that do not overlap, such that ∂ΩD ∪ ∂ΩN = ∂Ω and
∂ΩD ∩ ∂ΩN = ∅.

3 DISCRETIZATION OF THE EQUATIONS

A fundamental step of the FEM is to transform the partial differential equations from their
strong formulation into their weak formulation. To obtain the weak formulation, equations (3)
and (4) are essentially multiplied by test functions ηj and ξ and subsequently, integration by
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parts is applied and the boundary conditions are introduced. The weak form results as∫
Ω

ρηjüj dV︸ ︷︷ ︸
→fdyn,u

+

∫
Ω

ηj,iTij dV︸ ︷︷ ︸
→f int,u

−
∫
∂ΩNu

ηj t̄j dA︸ ︷︷ ︸
→fext,u

=0 (6)

∫
Ω

ξ,iDi dV︸ ︷︷ ︸
→f int,ϕ

+

∫
∂ΩNϕ

ξQ̄ dA︸ ︷︷ ︸
→fext,ϕ

=0 (7)

The particular integral terms of the weak form result after the FE discretization in the force
terms specified under the brackets. Thereby, f dyn,u is the mechanical inertial force, f int,u is the
internal mechanical force, f ext,u is the mechanical external force, f int,ϕ is the electric internal
force and f ext,ϕ is the electric external force. The FEM subdivides the domain Ω into small
discrete elements and approximates the unknown solutions namely the mechanical displacement
and the electric voltage elementwise by means of polynomial ansatz functions and nodal degrees
of freedom. Thus, two coupled vector-valued equations for the unknown nodal displacements
and electric voltage values result as

f dyn,u + f int,u − f ext,u = 0 (8)

f int,ϕ + f ext,ϕ = 0 (9)

The coupling to an electric circuit is easier if the electric surface current − ˙̄Q appears in the
equation. Therefore, the time derivative of equation (9) is used for the system simulations. Fur-
thermore, a mechanical damping force f damp,u is introduced. The resulting system of equations
thus becomes

f dyn,u + f damp,u + f int,u − f ext,u = 0 (10)

ḟ int,ϕ − ḟ ext,ϕ = 0 (11)

By means of f damp,u, a Rayleigh-type damping is modelled. For solving equations (10) and (11)
the implicit Bossak-Newmark method is applied for direct time integration. In each time step
the nonlinear system of equations is iteratively solved with Newton’s method.

4 ELECTRIC CIRCUITS

In this contribution, the standard circuit, the SSHI and the SECE circuit are considered as
electric circuits for a PVEH. In the following, the different electric circuits are presented along
with a bimorph electromechanical structure introduced in [6].

4.1 Standard Circuit

The simplest way of an AC-DC converter is to use a diode bridge and supply the rectified
voltage to an energy storage element. Figure 1 presents this standard circuit coupled with a

bimorph electromechanical structure along with the typical waveforms of ϕel and ˙̄Qel under

a harmonic excitation. ϕel and ˙̄Qel are the voltage and current values at the electrode of the
electromechanical structure. They are available from the FEM simulation as decribed in section
5. If the absolute value of the piezoelectric voltage |ϕel| is smaller than the conductive voltage
VC , the electromechanical structure is in open circuit mode and the current flowing out of the

electrode ˙̄Qel vanishes. The conductive voltage results from the drop voltage of the diodes VD
and the constant voltage VDC . When |ϕel| reaches VC the diode bridge conducts and an electric

current ˙̄Qel charges the battery.
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Figure 1: Bimorph electromechanical structure coupled to a standard circuit. The typical waveforms of ϕel

and ˙̄Qel arising from the standard circuit under a harmonic base excitation of the electromechancial structure
are provided.

4.2 SSHI Circuit

The SSHI circuit was introduced in [1] and adds a switch and an inductor (L) to the standard
circuit. Figure 2 presents the SSHI circuit coupled to a bimorph electromechanical structure

along with the typical waveforms of ϕel and ˙̄Qel under harmonic excitation of the structure.
When |ϕel| starts to decrease, the switch is closed, and only the inductor is connected to
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Figure 2: Bimorph electromechanical structure coupled to an SSHI circuit. The typical waveforms of ϕel

and ˙̄Qel arising from the SSHI circuit under a harmonic base excitation of the electromechancial structure are
provided.

the electromechanical structure. Since closing the switch creates an electric resonant circuit
consisting of the piezoelectric capacitance and the inductor, the voltage is inverted. When the
electric current in the inductor is zero-crossing, the switch is opened again.

4.3 SECE circuit

The SECE circuit was introduced in [2] and consists of a diode rectifier bridge and a buck-
boost DCDC converter circuit composed of a switch, an inductor and a diode. To emulate an
ideal energy storage device a constant voltage VDC is assumed. During operation of the SECE
circuit different phases can be distinguished [7]:

• Extraction phase. When the electric voltage ϕel reaches its maximum value, the switch
is closed and thus only the inductance is connected to the electromechanical structure.
Because the piezoelectric capacitance and the inductor form an electric resonance circuit,
the electric voltage and the electric current start to oscillate as soon as the switch is closed.
When the electric current in the inductance reaches its maximum value, the switch is
opened again. When the switch is closed, energy stored in the piezoelectric capacitance
is transferred to the inductor. During the extraction phase the absolute value of the

             163



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

piezoelectric voltage |ϕel| drops to ±2VD. Because the electrical frequencies are usually
by orders higher than the mechanical frequencies, the extraction process happens almost
instantaneously.

• Open circuit and freewheeling phase. The energy stored in the inductor is transferred via
the freewheeling diode to the battery. Because the switch is opened, the electromechanical

structure is in open circuit mode and the electric current ˙̄Qel vanishes.

The inductor is connected either to the electromechanical structure or to the battery, therefore,
the electromechanical structure is decoupled from the battery. Figure 3 presents the SECE
circuit coupled to a bimorph electromechanical structure along with the typical waveforms of

ϕel,
˙̄Qel and Q̇c under harmonic excitation of the structure.
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Figure 3: Bimorph electromechanical structure coupled to an SECE circuit. The typical waveforms of ϕel,
˙̄Qel

and Q̇c arising from the SECE circuit under a harmonic base excitation of the electromechanical structure are
provided.

5 FEM SYSTEM SIMULATION

The system simulation method introduced in [4] is applied to simulate a PVEH with a
standard, an SSHI and an SECE circuit. Applying the FEM to model an electrode on a surface
means to prescribe that all voltage degrees of freedom have the same value ϕel on this surface.
One reference degree of freedom F is introduced for the voltage of the electrode. Furthermore,
one electrode is assumed to be grounded. Hence, the voltage difference between the electrodes of
a PVEH is just the electrical voltage ϕel of the non-grounded electrode with the corresponding
degree of freedom F . The electric boundary conditions for the grounded electrode is therefore
a homogeneous Dirichlet boundary condition with ϕ̄ = 0. The electric circuit is coupled to
the electromechanical structure via the boundary condition of the non-grounded electrode. To
account for the influence of the electric circuit on the electromechanical structure, the surface

current ˙̄Qel leaving the electrode is prescribed. It can be constructed via an inhomogenous
Neumann boundary condition

˙̄Qel =

∫
∂ΩElectrode

Ḋini dA (12)

Both, ϕel and ˙̄Qel correspond to the same reference degree of freedom F of the non-grounded

electrode. The electric current ˙̄Qel appears in equation (11) and is introduced in ḟ ext,ϕ in the
entry for the reference degree of freedom F as

ḟ ext,ϕ =

{
˙̄Qel for degree of freedom = F

0 for degree of freedom 6= F
(13)
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To consider the coupling of various electric circuits with the FE simulation, the relation between

the electric current ˙̄Qel and the voltage of the non-grounded electrode ϕel has to be specified.
The implementation of the standard and SSHI circuits are described in detail in [4]. In the
following, only the implementation of the SECE circuit is specified.
During operation of the SECE circuit two cases are possible:
Case 1: This is the open circuit case when the switch is opened, and the inductor is not

connected to the electromechanical structure. Hence, the electric current ˙̄Qel vanishes and thus
can be modeled via a homogenous Neumann boundary condition in the FE simulation

˙̄Qel = 0 (14)

Case 2: In this case the switch is closed, and the inductor is connected to the electromechanical
structure. The influence of the inductor on the electromechanical structure is considered via
an inhomogeneous Neumann boundary condition. Depending on the sign of ϕel the relation is
specified as

¨̄Qel =

{
ϕel−2VD

L
if ϕel > 0

ϕel+2VD

L
if ϕel < 0

(15)

In figure 4 the logic of the SECE circuit, i.e. the conditions how to switch between cases 1 and
2, is described.

Figure 4: Logic for the definition of boundary conditions for the FE simulation of an electromechanical structure
with an SECE circuit.

It has to be prevented in the simulation that the switch is triggered at inappropriate times.
After closing the switch, ϕel decreases rapidly because the electrical oscillation frequency is
usually by orders higher than the mechanical excitation frequency. The rapid decrease of ϕel

after closing the switch acts like an actuation to the structure, which leads to oscillations of
ϕel and the electromechanical structure. To prevent that the switch is triggered due to higher
order oscillations of ϕel caused by its rapid decrease, a time span tns is introduced during which
closing the switch is prohibited. Moreover, ϕel flutters during the instationary settling process
when the mechanical excitation starts. Therefore, a time span tswitch is defined during which
closing of the switch is prohibited at the beginning of the simulation.

The harvested energy E of the SECE circuit can be obtained as

E(t) =

∫ t

0

VDCQ̇c dτ (16)
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whereby Q̇c depends on the maximum of ˙̄Qel when the switch is opened. In the computation
of the harvested energy the dissipation of the diodes is considered, for details please see [7].

6 APPLICATION EXAMPLE

As an application example the bimorph electromechanical structure with a tip mass mt

introduced in [6] coupled to the three different electric circuits is simulated. The bimorph
cantilever has a mass mounted on its tip and consists of two layers of PZT-5A bracketing
a layer of a passive substructure. The piezoceramic layers are poled in opposite directions.
For the substructure, a linear elastic material behavior is assumed and for the PZT-5A the
nonlinear piezoelectric constitutive law is applied. Figure 3 presents the considered PVEH and
the appendix provides its parameters. A harmonic base acceleration a(t) with a frequency of
47.8 Hz and with three different magnitudes of 0.5, 1 and 9.81 m/s2 excites the PVEH. The
harvested energy and the electric voltage are compared for the standard, the SSHI and the
SECE circuit. Some of these results for the standard and SSHI circuits have already been
discussed in [4], but here, for the first time, the results for all three circuits are carefully
analyzed and compared for different excitation amplitudes.

To prohibit triggering the switch at inappropriate times tns = 4 ms and tswitch = 10.8 ms
are chosen. The bimorph PVEH is discretized with 90 quadratic hexahedral elements. During
the extraction phase when the switch is closed the time step size of the Bossak-Newmark time
integration scheme is set to 10−5 ms since it happens almost instantaneously. After the switch
is opened the time step size is set to 10−3 ms within a time span tosc = 2 ms to precisely capture
the higher order oscillation of the electromechanical structure. For the remaining time period
a time step size of 10−1 ms is used.

Firstly, a magnitude of 0.5 m/s2 of the harmonic base acceleration is applied. Figure 5
presents the results for ϕel and the harvested energy of the standard , the SSHI and the SECE
circuit from [4]. The considered time period is 0 to 200 ms. The standard circuit harvests
around 0.0014 mJ which is approximately 125% of the energy harvested by the SECE circuit
and around 300% of the amount of energy harvested by the SSHI circuit. As shown in figure
5, left, the SSHI circuit rapidly changes the potential when the switch is closed by a much
larger amount than the SECE circuit. Therefore, the excitation of high frequency vibration
modes is more significant for the SSHI circuit and the energy dissipation is higher than for the
SECE circuit. Moreover, the advantage of the SSHI circuit is usually to extend the time during
which the diode rectifier is conducting. But in this case, due to the higher order vibration
modes, the conduction time is actually shorter than for the standard circuit which can be seen
in the zoom-in of the diagram in figure 5, left. Because of the higher dissipation due to the
high frequency vibrations and the short conduction time, the SSHI circuit is the least effective
here and harvests the least amount of energy. For a base acceleration of 0.5 m/s2 the passive
standard circuit, that does not excite high frequency vibration modes, is more efficient than
the SSHI circuit and SECE circuit.

Figure 6 presents the results for ϕel and the harvested energy when a magnitude of 1 m/s2 of
harmonic base acceleration is applied. The considered electric circuits harvest nearly the same
amount of energy within a time period of 200 ms namely around 0.006-0.007 mJ. The change of
ϕel caused by the switching events of the SSHI and the SECE circuit are in the same order and
therefore approximately an equal amount of energy is dissipated by the high frequency vibration
modes. Furthermore, when a magnitude of 1 m/s2 of harmonic base excitation is applied, the
SSHI circuit extends the time fraction during which the diode bridge conducts compared to
the standard circuit, as shown in the zoom-in in figure 6, left. The standard circuit does not
excite high frequency vibration modes and has the same efficiency for the considered PVEH
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Figure 5: Electrode voltage ϕel and harvested energy E of the bimorph PVEH with standard, SSHI and SECE
circuit under a harmonic base acceleration of 0.5 m/s2 and a frequency of 48.7 Hz.

like the SSHI and SECE circuit for the considered time period. While the standard circuit and
the SSHI circuit limit the piezoelectric voltage ϕel to ±VC , the SECE circuit does not limit ϕel

and therefore the highest values of ϕel are reached.
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Figure 6: Electrode voltage ϕel and harvested energy E of the bimorph PVEH with standard, SSHI and SECE
circuit under a harmonic base acceleration of 1 m/s2 and a frequency of 48.7 Hz.

Figure 7 presents the results for ϕel and the harvested energy for the standard circuit, the
SSHI circuit and the SECE circuit when a harmonic base acceleration with a magnitude of
9.81 m/s2 is applied. The SECE circuit harvests approximately 0.3 mJ during 200 ms, which
is around three times the amount of energy harvested by the standard circuit or the SSHI
circuit. The high level of applied base acceleration would lead to high open circuit piezoelectric
voltages compared to the conductive voltage VC of the standard circuit and the SSHI circuit,
which limit ϕel to ±VC . Therefore, the actuation of the electromechanical structure caused by
voltage inversion for the SSHI circuit and, thus, the related dissipation of energy, are relatively
small. However, because of the high level of mechanical base acceleration the advantage of the
SSHI circuit, namely to extend the conduction time of the diode bridge, does not significantly
improve the efficiency compared to the standard circuit, as is shown in the zoom-in in figure 7,
left. Therefore, both the standard circuit and SSHI circuit harvest nearly the same amount of
energy, namely around 0.09 mJ. In contrast, the harvested energy is independent of the applied
electric load when the SECE circuit is used. Therefore, the SECE circuit is more efficient than
the standard circuit and the SSHI circuit for this high level of base acceleration. To optimize
the harvested energy of the standard circuit and the SSHI circuit for this setting a DC-DC
converter must be applied after the diode bridge to regulate the conductive voltage VC . This
flexible adjustment of VC to the current conditions would allow to harvest significantly more
energy with the standard circuit and the SSHI circuit than for a constant conductive voltage
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VC [8].
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Figure 7: Electrode voltage ϕel and harvested energy E of the bimorph PVEH with standard, SSHI and SECE
circuit under a harmonic base acceleration of 9.81 m/s2 and a frequency of 48.7 Hz.

To sum up the simulation results, the drawback of the SSHI and the SECE circuit compared
to the standard circuit is additional dissipation because of higher order vibration modes excited
by switching events. This observation is consistent with the literature [9]. Furthermore, the
simulation results confirm the advantage of the SECE circuit namely the independence of the
harvested energy on the electric load. The efficiency of the standard and the SSHI circuit
decreases compared to the SECE circuit for high levels of base acceleration. To improve the
efficiency of the standard and the SSHI circuit a flexible adaption of the conductive voltage VC
to the current harvesting conditions would be necessary.

7 CONCLUSION

The FEM based system simulation method introduced in [4] is here applied to simulate a
PVEH with three different circuits, a standard, an SSHI and an SECE circuit, and to compare
their efficiency. Nonlinear elasticity of the electromechanical structure is taken into account
and different magnitudes of a harmonic base acceleration are considered. Consistently with the
literature, the SECE circuit and the SSHI circuit dissipate energy compared to the standard
circuit through higher order vibration modes caused by switching events. This additional dis-
sipated energy reduces the efficiency of the respective electric circuits. Because the harvested
energy is independent of the electric load, the SECE circuit is more efficient than the consid-
ered standard circuit and the SSHI circuit without an additional DC voltage regulation stage
for high levels of base accelerations. These results demonstrate the applicability of the system
simulation method of [4] to develop or improve PVEHs.
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APPENDIX

In the following, material parameters for PZT-5A used in this contribution are provided and
both the parameters of the bimorph electromechanical structure from [6] and the parameters
of the application example (Figure 3) are listed.

Width of the beam [mm] 31.8
Length of the beam [mm] 50.8
E modulus substructure [GPa] 105
Thickness substructure [mm] 0.14
Thickness PZT [mm] 0.26 (each)
Density substructure [kg/m3] 9000
Tip mass mt [kg] 0.012
Inductivity [mH] 0.1
VD [V] 0.6
VDC [V ] 1.8

cE=


120.3 75.2 75.1 0 0 0
75.2 120.3 75.1 0 0 0
75.1 75.1 110.9 0 0 0

0 0 0 21.1 0 0
0 0 0 0 21.1 0
0 0 0 0 0 22.6

GPa

e=

 0 0 0 0 12.3 0
0 0 0 12.3 0 0
−5.4−5.4 15.8 0 0 0

 C

m2

εS =

813.7 0 0
0 813.7 0
0 0 731.9

× 10−11 F

m

The nonlinear coefficients in equation (3) for the nonlinear piezoelectric constitutive law were
identified in [3] as c4 = −9.7727×1017 Pa and c6 = 1.4700×1026 Pa for the considered PZT-5A
material.
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Abstract: This note is concerned with the application of Finite Element Method (FEM) and Newton-
Multigrid solver to simulate thixo-viscoplastic flows. The thixo-viscoplastic stress dependent on ma-
terial microstructure is incorporated via viscosity approach into generalized Navier-Stokes equations.
The full system of equations is solved in a monolithic framework based on Newton-Multigrid FEM
Solver. The developed solver is used to analyze the thixo-viscoplastic flow problem in a Lid-driven
cavity configuration.

1 INTRODUCTION

The thixo-viscoplastic flows are introduced into yield stress flows by taking in consideration the inter-
nal material micro-structure using a structure parameter λ. Firstly, the viscoplastic stress is modified
to include the thixotropic stress dependent on the structure parameterσ(λ) = 2η(λ)D(u)+ τ(λ)

D(u)
||D(u)||

, if ||D(u)|| 6= 0,

||σ(λ)|| ≤ τ(λ), if ||D(u)||= 0,
(1)

where D(u) denotes the strain rate tensor. The norm for a tensor Λ is given by ||Λ|| =
√

Tr(Λ2).
We use ||D(u)|| and ||D|| alternately. η denotes plastic viscosity, and τ defines a yield stress that is a
threshold parameter from which the material starts yielding. The shear stress has two contributions:
a viscous part, and a strain rate independent part. Secondly, an evolution equation for the structure
parameter is introduced to induce the time-dependent process of competition between the destruction
(breakdown) and the construction (buildup) inhabited in the material(

∂

∂t
+u ·∇

)
λ = F −G , (2)

where, F and G are two nonlinear functions representing the buildup and breakdown of material
micro-structure. A collection of thixotropic models with various choices of η, τ, F and G is given in
Table 1;

Table 1: Thixotropic models

η τ F G
Worrall & Tulliani [16] λη0 τ0 a(1−λ) ||D|| bλ ||D||
Coussot et al.[4] λg η0 a bλ ||D||
Hous̆ka [6] (η0 +η1λ) ||D||n−1 (τ0 + τ1λ) a(1−λ) bλm ||D||
Mujumbar et al. [9] (η0 +η1λ) ||D||n−1

λg+1G0Λc a(1−λ) bλ ||D||
Dullaert & Mewis [3] λη0 λG0(λ ||D||)Λc (a1 +a2 ||D||)(1−λ)t p bλ ||D|| t−p

where η0 and τ0 are initial plastic viscosity and yield stress resp. in the absence of any thixotropic
phenomena, η1 and τ1 are thixotropic plastic viscosity and yield stress. Λc is the critical elastic strain,

https://doi.org/10.4995/YIC2021.2021.12250
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and G0 is the elastic modulus of unyielded material. a and b are buildup and breakage constants, and
g, p,m,n are rate indices.

In quasi-Newtonian modeling approach for thixo-viscoplastic flows, an extended viscosity µ(·, ·) is
used for the generalized Navier-Stokes equations [10]. As for instance [13]:

µ(DII ,λ) = η(DII ,λ)+ τ(DII ,λ)

√
2

2
1√
DII

(
1− e−k

√
DII

)
, (3)

where k is the regularization parameter. The generalized Navier-Stokes equations and the evolution
equation for the structure parameter constitute the full set of modeling equations which is given as
follows: 

(
∂

∂t
+u ·∇

)
u−∇ ·

(
2µ(DII ,λ)D(u)

)
+∇p = 0, in Ω,

∇ ·u = 0, in Ω,(
∂

∂t
+u ·∇

)
λ−F (DII ,λ)+G(DII ,λ) = 0, in Ω,

(4)

where u denotes velocity, p the pressure, λ the structure parameter, F and G the nonlinear functions
for buildup and breakdown of material micro-structure. DII =

1
2

(
D(u) : D(u)

)
is the second invariant

of the strain rate tensor D(u).

2 FINITE ELEMENT DISCRETIZATION

To derive the variational form for thixo-viscoplastic flows, we consider the spaces T := L2(Ω),V :=
(H1

0 (Ω))2, and Q := L2
0(Ω) associated, respectively, with the corresponding L2-norm, ||·||0, H1-norm,

||·||1, and L2-norm, ||·||0. Let ũ := (λ,u, p) ∈
(
T∩ H1(Ω)

)
×V×Q, and ṽ := (ξ,v,q) ∈ T×V×Q be

a test function. The weak formulation for the thixo-viscoplastic flows reads: Find ũ∈
(
T∩ H1(Ω)

)
×

V×Q s. t.
aλ(ũ)(λ,ξ)+au(ũ)(u,v)+b(v, p)−b(u,q) = 0, ∀ṽ ∈ T×V×Q, (5)

where aλ(ũ)(·, ·), au(ũ)(·, ·), and b(·, ·) are given as follows

aλ(ũ)(λ,ξ) =
∫

Ω

(
−F (DII ,λ)+G(DII ,λ)

)
ξdΩ+

∫
Ω

u ·∇λξdΩ, (6)

au(ũ)(u,v) =
∫

Ω

2µ(DII ,λ)D(u) : D(v)dΩ+
∫

Ω

u ·∇uvdΩ, (7)

b(v,q) =−
∫

Ω

∇ · vqdΩ. (8)

The finite element approximations of the problem (5) have to take care of its saddle point character,
due to the bilinear form (8). Furthermore, since thixo-viscoplastic flows are usually slow, the only
remaining issue is the control/continuity of the bilinear form (6) in the norm of space T. We opt for
higher order stable pair bi-quadratic for velocity and piece-wise linear discontinuous for the pressure,
Q2/Pdisc

1 , and higher order quadratic for structure parameter Q2 with the appropriate stabilization
terms [10, 15]. Indeed, let the domain Ω be partitioned by a grid K ∈ Th which are assumed to be
open quadrilaterals such that Ω = int

(⋃
k∈Th

K
)
. For an element K ∈ Th, we denote by E(K) the set

of all 1-dimensional edges of K. Let Ei :=
⋃

k∈Th
E(K) be the set of all interior element edges of the

grid Th.

We define the conforming finite element spaces Th ⊂ T, Vh ⊂ V, and Q⊂Qh such that:
Th =

{
ξh ∈ T,ξh|K ∈ Q2(K)∀ K ∈ Th

}
, (9)

Vh =
{

vh ∈ V,vh|K ∈ (Q2(K))2∀ K ∈ Th, vh = 0 on ∂Ωh
}
, (10)

Qh =
{

qh ∈Q,qh|K ∈ Pdisc
1 (K)∀ K ∈ Th

}
. (11)
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The approximate problem reads: Find ũ ∈ Th×Vh×Qh s. t.

aλ(ũ)(λ,ξ)+ jũ(ũ, ṽ)+au(ũ)(u,v)+b(v, p)−b(u,q) = 0, ∀ṽ ∈ Th×Vh×Qh. (12)

The stabilization term jũ(·, ·) is given as follows

j(·, ·) := ju(·, ·)+ jλ(·, ·), (13)

ju(u,v) = ∑
E∈Ei

γu|E|2
∫

E
[∇u] [∇v]dσ, (14)

jλ(λ,ξ) = ∑
E∈Ei

γλ|E|2
∫

E
[∇λ] [∇ξ]dσ. (15)

The stabilization (13) is consistent, control the convective terms and makes the coercivity and conti-
nuity match in Th associated with the norm |||·|||, where

|||ξ|||2 = ||ξ||20 + jλ(ξ,ξ). (16)

3 GENERALIZED DISCRETE NEWTON

We use the Newton method to approximate the nonlinear residuals. Let R (ũ)= (Rλ(ũ),Ru(ũ),Rp(ũ))=(
R(λ,u)(ũ),Rp(ũ)

)
denote the residuals for the system (12). The nonlinear iteration is updated with

the correction δũ, ũk+1 = ũk +δũ. Then, the Newton linearization gives the following approximation
for the residuals:

R (ũl+1) = R (ũl +δũ)' R (ũl)+

[
∂R (ũl)

∂ũ

]
δũ. (17)

The Newton’s method iterations, assuming invertible Jacobians, are given as follows:

ũl+1 = ũl−ωl

[
∂R (ũl)

∂ũ

]−1

R (ũl). (18)

The damping parameter ωl ∈ (0,1) is chosen such that∣∣∣∣∣∣R (ũl+1)
∣∣∣∣∣∣≤ ∣∣∣∣∣∣R (ũl)

∣∣∣∣∣∣ . (19)

The damping parameter is not sufficient for the convergence of this type of highly nonlinear problem,
mainly due to the presence of Jacobian’s singularities related to the problem or simply by being
out of the domain of Newton’s convergence [8, 10]. We use a generalized Newton’s method which
consists of using approximate Jacobians far away from the quadratic convergence range or close to
singularities and accurate Jacobians in the quadratic region of convergence in an adaptive way [8].
Indeed, based on a priori analysis of Jacobians property. Let the Jacobian be written as follows:(

∂R (ũl)

∂ũ

)
=

(
∂R̃ (ũl)

∂ũ

)
+δl

(
∂R̂ (ũl)

∂ũ

)
. (20)

The Jacobian (20) is splitted into a direct sum of corresponding operators with different properties.
The parameter δl ∈ (0,1) is solely dependent on the rate of actual residual convergence [8]. It is
worth mentioning that the operator-related damped Jacobian method (20) is related to the continuous
Newton’s method. The Jacobian approximation is only dependent on the rate of the actual residual
convergence

(∣∣∣∣R l
∣∣∣∣/∣∣∣∣R l−1

∣∣∣∣). This generalized Newton’s method assures a global nonlinear conver-
gence [8].
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4 MONOLITHIC MULTIGRID LINEAR SOLVER

To develop an appropriate linear solver, we segregate the Jacobian as follows

(
∂R (ũ)

∂ũ

)
=


∂R(λ,u)(ũ)

∂(λ,u)
∂Ru(ũ)

∂p
∂Rp(ũ)

∂u
0

 , (21)

which is a saddle point problem. Then, the resulting linear system is treated with a Multilevel Pressure
Schur Complement (MPSC) approach with Vanka-like smoother i.e.

ũk+1 = ũk−ωk ∑
K∈Th

((
∂R (ũl)

∂ũ

)
|K

)−1

R (ũl)|K. (22)

In (22), we solve exactly on real element, K, and perform an outer Gau-Seidel iteration [5]. We
use standard geometric multigrid solver for linearized system with standard Q2 and Pdisc

1 restriction
and prolongation operators. The combination of a stable finite element approximations, Q2/Pdisc

1 , for
Stokes problem together with multigrid results in a high numerically accurate, flexible, and efficient
FEM-multigrid solver.

5 THIXO-VISCOPLASTIC FLOW IN LID-DRIVEN CAVITY

Lid-driven cavity flows represent an academic common standard benchmark for incompressible CFD
codes. Therefore, we present the corresponding results for Newtonian, viscoplastic, and thixo-
viscoplastic flows. Furthermore, this problem is accepted as a test configuration to check points
wise mesh convergences despite the lack of regularity due to the pressure singularity in the corners
of upper-lid. From thixotropic collection models given in Table 1, we use Hous̆ka’s material model
(m = 1).

5.1 Newtonian flow in lid-driven cavity

The global accuracy of the approximation which consist of the L2-norm of the velocity is investigated
using the kinetic energy. On the other hand, the point wise accuracy is investigated using the velocity
magnitude at vertical center-line beside the primary vortex and the lower left secondary vortex. In
order to check the solver convergence, we list in Table 2 the kinetic energy, 1

2
∫

Ω
||u||2 dx, and Newton-

multigrid iterations, the number of nonlinear iteration versus the average number of multigrid sweeps
(N/M), w.r.t. mesh refinement for an increased Reynolds numbers Re = 1000, Re = 5000, and Re =
10000. The starting solution for any level is the interpolated one from one level coarser. Table 3 shows
the primary vortex and lower left secondary vortex w.r.t. mesh refinement for Reynolds numbers
Re = 1000, Re = 5000, and Re = 10000. Moreover, we provide in Figure 1 the stream function
contours for the mesh refinement level 9 and the velocity magnitude at vertical center-line w.r.t. mesh
refinement for Reynolds numbers Re = 1000, Re = 5000, and Re = 10000.
As can be seen in Table 2, grid independent results are achieved for the kinetic energy, as well as
for Newton-multigrid solver. It is worth mentioning that for the coarser levels few extra nonlinear
iterations are required in contrast to finer mesh due to the decrease of interpolation error in the starting
solutions.
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Table 2: Newtonian flow in lid-driven cavity: The kinetic energy and the number of Newton-multigrid iterations,
nonlinear number of iterations and the average number of multigrid iterations (N/M), for different mesh refinement at
Reynolds numbers Re = 1000, Re = 5000, and Re = 10000.

Re 1000 5000 10000

Level cells Energy×102 N/M Energy×102 N/M Energy×102 N/M
7 16384 4.452357 3/1 4.768669 4/1 4.868399 5/1
8 65536 4.451904 3/1 4.744815 3/2 4.783917 4/2
9 262144 4.451846 3/1 4.742921 3/1 4.773500 3/2
10 1048576 4.451834 2/1 4.742815 3/1 4.772692 3/1

Re f .values ≈ 4.45 4.74 4.77

Table 3: Newtonian flow in lid-driven cavity: The primary vortex and the lower left secondary vortex at Re = 1000,
Re = 5000, and Re = 10000.

Re 1000 5000 10000

Level ψmax ψmin×103 ψmax ψmin×103 ψmax ψmin×103

7 0.1189360 −1.72649 0.1225439 −3.077555 0.1236127 −3.2070181
8 0.1189361 −1.72851 0.1222499 −3.072411 0.1225210 −3.1831353
9 0.1189362 −1.72963 0.1222269 −3.073524 0.1224097 −3.1910101

10 0.1189366 −1.72965 0.1222259 −3.073589 0.1223892 −3.1797390
Ref. 0.1189[1] −1.729[1] 0.1221[7] −3.070[1]

Figure 1: Newtonian flow in lid-driven cavity: The stream-function’s contours at mesh refinement level 9 (TOP) and
velocity magnitude at vertical centerline w.r.t. mesh refinement (BOTTOM) computed for Reynolds numbers Re = 1000,
Re = 5000, and Re = 10000 resp. (LEFT to RIGHT).
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5.2 Viscoplastic flow in lid-driven cavity flow

We acheived point wise convergence under mesh refinement for Newtonian flow. Moreover, no fur-
ther improvement by increasing the resolution beyond mesh refinement level 8. Now, we investigate
the impact of the regularization parameter in quasi-Newtonian modeling approach for viscoplastic
flow. Figure 2 shows the boundary limit of the numerical approximation of the rigid zone w.r.t. regu-
larization parameter k. Clearly, the relative convergence of the boundary limit of the rigid zone w.r.t.
regularization parameter k is obtained. Furthermore, there is an optimal regularization KL≈ 2L8≈ 103

from from which there is no further accuracy improvement in capturing the rigid zone by increasing
the regularization parameter k. In Figure 3, we use the optimal choice of the regularization parameter

(a) τ0 = 1.0 (b) τ0 = 20 (c) τ0 = 50

Figure 2: Non-thixotropic (Bingham plastic) flow in lid-driven cavity: The boundary limit of the numerical approx-
imation of the plastic/rigid zone w.r.t. regularization parameter k, k = 102 (blue), k = 103 (red) and k = 104 (black), for
different non-thixotropic yield stress parameter τ0. The other parameters are set to η0 = 1.0, η1 = 0.0, and τ1 = 0.0. The
solutions are calculated at mesh-refinement level 8.

and mesh refinement level to predict the relative position of the rigid zone to stream function contours
for an increased non-thixotropic yield stress parameter τ0 = 1, τ0 = 2, τ0 = 5, τ0 = 10, τ0 = 20, and
τ0 = 50. Furthermore, we provide the corresponding Newton-multigid data in Table 4 which depicts
the number of Newton-multigrid iterations, i.e. the nonlinear number of iterations and the average
number of multigrid iterations (N/M), w.r.t. different regularization parameters k and mesh refine-
ment levels L. The solutions are calculated using the continuations process w.r.t. regularization k.
From Table 4, we conclude the Newton-multigrid solver is mesh refinement independent. Clearly, the
nonlinearity of the problem is increased by increasing the non-thixotropic yield stress parameter τ0,
But, the slightly increases in the nonlinearity w.r.t. mesh refinement is due to the continuation process
w.r.t. regularization parameter k used to obtain the solutions.
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(a) τ0 = 1 (b) τ0 = 2 (c) τ0 = 5

(d) τ0 = 10 (e) τ0 = 20 (f) τ0 = 50

Figure 3: Non-thixotropic (Bingham plastic) flow in lid-driven cavity: The relative position of the plastic/rigid zone to
streamline contours for an increased non-thixotropic yield stress parameter τ0. The other parameters are set to η0 = 1.0,
η1 = 0.0, and τ1 = 0.0. The Papanastasiou regularization parameter is set to k = 104. The solutions are calculated at
mesh-refinement level 8.

Table 4: Non-thixotropic (Bingham plastic) flow in lid-driven cavity: The number of Newton-multigrid iterations,
nonlinear number of iterations and the average number of multigrid iterations (N/M), w.r.t. different regularization pa-
rameters k and mesh refinement levels L for Bingham viscoplastic flow for different values of non-thixotropic yield stress
parameters τ0.

k\L 5 6 7 5 6 7 5 6 7
τ0 = 1 τ0 = 2 τ0 = 5

1×101 3/1 3/1 3/1 3/1 3/1 3/1 4/1 4/1 4/1
1×102 3/1 3/1 3/1 3/1 3/1 3/1 4/1 4/1 4/1
1×103 2/2 3/2 3/1 3/1 3/1 4/1 4/1 5/2 5/2
1×104 2/1 2/2 5/1 3/1 3/1 6/1 4/1 5/4 6/3

τ0 = 10 τ0 = 20 τ0 = 50
1×101 5/1 5/1 5/1 6/1 6/1 6/1 5/1 7/1 7/1
1×102 5/2 4/1 4/1 5/2 5/2 5/1 6/5 5/4 5/1
1×103 5/2 7/4 9/1 5/5 7/2 8/1 5/5 9/2 9/2
1×104 6/1 7/2 8/3 6/3 5/5 7/3 6/3 7/3 8/2
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5.3 Thixo-viscoplastic flow in lid-driven cavity flow

Armed with the knowledge of the point wise mesh convergence of viscoplastic driven cavity flow.
Indeed, we obtained the point wise convergence of the boundary limit of the rigid zone w.r.t. the
regularization parameter k. Furthermore, there is pair (K,L) ≈ (2L8,L8) regularization and mesh
refinement level beyond which no further resolution improvement is possible. Now, we are ready the
investigate thixo-viscoplastic driven cavity. Figure 4 sets out the relative position of the rigid zone
to stream function contours for an increased thixotropic yield stress parameter τ1. The solutions are
calculated with the resolution barrier pair (K,L).

(a) τ1 = 0.5 (b) τ1 = 1.0 (c) τ1 = 2.0

(d) τ1 = 5.0 (e) τ1 = 10.0 (f) τ1 = 20.0

Figure 4: Thixo-viscoplastic flow in lid-driven cavity: The relative position of the plastic/rigid zone to streamline
contours for an increased thixotropic yield stress parameter τ1. The other parameters are set to η0 = 1.0, η1 = 0.0,
τ0 = 1.0, a = 1.0 and b = 0.1. The Papanastasiou regularization parameter is set to k = 104. The solutions are calculated
at mesh-refinement level 8.

In Table 5, we summarize the number of Newton-multigrid iterations, nonlinear number of iterations
and the average number of multigrid iterations (N/M), w.r.t. different regularization parameters k and
mesh refinement levels L for thixo-viscoplastic flow for different values of thixotropic yield stress
parameters τ1. The solutions are calculated using the continuations process w.r.t. regularization k.

Table 5 shows the mesh refinement independent of Newton-multigrid solver. Indeed, the nonlinearity
of the problem is increased by increasing the thixotropic yield stress parameter τ1, But, the slightly
increases in the nonlinearity w.r.t. mesh refinement is due to the continuation process w.r.t. regular-
ization parameter k used to obtain the solutions.
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Table 5: Thixo-viscoplastic flow in lid-driven cavity: The number of Newton-multigrid iterations, nonlinear number
of iterations and the average number of multigrid iterations (N/M), w.r.t. different regularization parameters k and mesh
refinement levels L for thixo-viscoplastic flow for different values of thixotropic yield stress parameters τ1. The solutions
are calculated using the continuations process w.r.t. regularization k.

k\L 5 6 7 5 6 7 5 6 7
τ1 = 0.5 τ1 = 1 τ1 = 2

1×101 5/2 5/3 6/2 5/2 5/2 9/1 5/2 5/2 9/1
1×102 4/1 4/2 5/1 4/1 4/2 7/1 4/2 4/2 8/1
1×103 4/1 4/1 4/1 4/2 4/2 8/1 4/4 6/1 7/1
1×104 4/1 4/2 4/2 5/1 7/1 4/1 7/1 10/1 8/2

τ1 = 5.0 τ1 = 10.0 τ1 = 20.0
1×101 6/2 6/2 10/1 11/1 8/2 11/1 10/1 9/2 11/1
1×102 4/2 5/2 11/1 10/1 5/3 8/1 12/1 6/3 10/1
1×103 5/2 9/1 10/1 10/1 9/1 7/1 8/2 9/1 9/2
1×104 5/1 5/2 5/1 8/3 7/1 5/1 8/2 7/1 9/1

6 SUMMARY

We presented a Newton-multigrid FEM solver for the quasi-Newtonian modeling approach for thixotropic
flows. Based on a two-fields Stokes solver, we used higher order stable Q2/Pdisc

1 FE approximations
for velocity and pressure and higher order Q2 FE approximation for the structure parameter field with
appropriate stabilization term. The combination of a stable finite element approximations, Q2/Pdisc

1 ,
for Stokes problem together with multigrid results in high numerically accurate, flexible and efficient
FEM-multigrid solver. The nonlinearity is handled with generalized Newton’s method w.r.t. the Jaco-
bian’s singularities having a global convergence property. For the numerical investigations; we used
lid-driven cavity benchmark to find out the optimal setting, mesh refinement, and regularization. In-
deed, we achieved a point-wise mesh convergence as well as a resolution barrier, (k,L) regularization
mesh refinement level, beyond which no further resolution’s improvement is possible. Furthermore,
the solver shows a mesh refinement independency. For viscoplastic and thixo-viscoplastic solutions,
we used the discrete continuation process w.r.t. regularization which might be integrated continuously
within the solver in a black box manner.
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Abstract: Developing a numerical and algorithmic tool which correctly identifies unyielded
regions in yield stress fluid flow is a challenging task. Two approaches are commonly used to
handle the singular behaviour at the yield surface, i.e. the Augmented Lagrangian approach and
the regularization approach, respectively. Generally in the regularization approach, solvers do
not perform efficiently when the regularization parameter gets very small. In this work, we use
a formulation introducing a new auxiliary stress. The three field formulation of the yield stress
fluid corresponds to a regularization-free Bingham formulation. The resulting set of equations
arising from the three field formulation is solved efficiently and accurately by a monolithic finite
element method. The velocity and pressure are discretized by the higher order stable FEM pair
Q2/P

disc
1 and the auxiliary stress is discretized by the Q2 element.

Furthermore, this problem is highly nonlinear and presents a big challenge to any nonlinear
solver. Therefore, we developed a new adaptive discrete Newton method, which evaluates the
Jacobian with the divided difference approach. We relate the step length to the rate of the actual
nonlinear reduction for achieving a robust adaptive Newton method. We analyse the solvability
of the problem along with the adaptive Newton method for Bingham fluids by doing numerical
studies for a prototypical configuration ”viscoplastic fluid flow in a channel”.

1 INTRODUCTION

A viscoplastic fluid is a viscous fluid with yield stress: a fluid that requires the applied stress
above a certain non-zero limit of the yield stress to deform and to start flowing like a fluid.
Below this non-zero limit of the yield stress the fluid behaves like a solid. The difference of this
behaviour can be seen from the constitutive law of Bingham viscoplastic fluids.

τ =

2ηD(u) + τs
D(u)

||D(u)||
if ||D(u)|| 6= 0

||τ || ≤ τs if ||D(u)|| = 0

(1)

where D(u) = 1
2
(∇u + (∇u)T ) denotes the strain rate tensor, and τs denotes the yield

stress. τ is the stress tensor and η is the viscosity of the fluid. The Bingham model describes
the nature of the viscoplastic fluids. These fluids are found in many practical applications, for
example health/cosmetics (gels, creams, etc.), foods (yoghurt, butter, etc.), industrial (cement
slurries, drilling mud, co-extrusion operations, etc.). One direct application is viscoplastic
lubrication (hydraulic fracturing) and macro encapsulation [15]: heavy crude oil transportation
along pipelines, coal-water slurry transportation and co-extrusion operations are examples of
such lubrication. In this process, the stabilization of the interfaces in multi-layer shear flows
[24] by means of viscoplastic fluids is the main interest. However, the accurate determination
of yield surfaces is required. Developing a numerical and algorithmic tool which correctly

https://doi.org/10.4995/YIC2021.2021.12389
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identifies unyielded regions in the flow is a challenging task. Indeed, to handle the singular
behaviour at the yield surface leads researchers in the viscoplastic community to adopt two
approaches. Firstly, the regularization approach [25, 11, 8] where the potentially ”infinite”
viscosity is replaced by a large finite effective viscosity making the yield surfaces dependent on
the regularization. Secondly, the Augmented Lagrangian approach [12, 23] which is based on the
exact yield stress model via a non-differential functional which is augmented with stabilization
terms and typically solved iteratively using an Uzawa-type algorithm [7].

Generally in the regularization approach, solvers do not perform efficiently when the reg-
ularization parameter gets very small. In this work, we use a formulation introducing a new
auxiliary stress [2]. The corresponding three-field formulation of yield stress fluids corresponds
to a regularization-free Bingham model. The resulting saddle-point problem is solved efficiently
and accurately by a monolithic finite element method.

2 GOVERNING EQUATIONS

It is difficult to model mathematically the Bingham constitutive law for viscoplastic fluids.
The problem arises due to the non-differentiability of the viscosity in the constitutive law and
needs to be treated in a special way. The Bingham constitutive law is given as follows

τ =


(

2η +
τs

||D(u)||

)
D(u) if ||D(u)|| 6= 0

||τ || ≤ τs if ||D(u)|| = 0

(2)

with non-linear viscosity:

η(||D(u)||) = 2η +
τs

||D(u)|| (3)

The problem of differentiability arises when the viscosity becomes infinite in the rigid zone, i.e.
||D(u)|| = 0. Therefore, one approach is to use regularization to overcome this problem. The
purpose is to make the viscosity smooth and differentiable over the whole domain. There are
various regularization models in the literature. Allouche et al. [1] introduced a regularization
parameter simply added in the denominator. Bercovier and Engelman [3] and Tanner et al.
[19] proposed different regularization functions. Papanastasiou [21] introduced an exponential
expression in the regularization model to hold for any shear rate by adding a small parameter.
The corresponding Navier-Stokes equations for the steady incompressible flow reads

−∇ · τ +∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(4)

where τ is stress tensor from (2) with regularized viscosity. We have already discussed above
that the rigid zone produces a singularity and to overcome this problem, we use the Bercovier
and Engelman regularization in this work. The real viscoplastic solution can only be achieved
when the regularization parameter is very small (ε → 0) but this situation is difficult for
the numerical solver. We proceed within the framework of a three-field Stokes problem, by
introducing a new auxiliary stress [2] as follows:

σ =
D(u)

||D(u)||ε
(5)
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Then, the three-field (u,σ, p) system of Bingham fluid flow equations is given as follows:
||D(u)||ε σ −D(u) = 0 in Ω

−∇ · (2ηD(u) + τsσ) +∇p = 0 in Ω

∇ · u = 0 in Ω

u = gD on ΓD

(6)

System (6) represents the mixed formulation, which solves the regularized as well as the
regularization-free Bingham problem, i.e. for ε = 0. The numerical studies shown in the next
sections describe the advantages of the formulation, particularly that we can achieve a true
viscoplastic solution by solving a regularization-free Bingham model.

3 FINITE ELEMENT METHOD

The finite element method is chosen for the discretization in space. The strong form of the
system of equations in (6) is converted into the weak formulation by multiplying it with the
test functions and integrated over the whole domain. We consider three test functions v, q and
τ , and multiply then with the system of equations (6). The resulting weak forms reads after
partial integration: ∫

Ω

(
||D(u)||ε σ : τ

)
dx−

∫
Ω

(
D(u) : τ

)
dx = 0 in Ω∫

Ω

(
2ηD(u) : D(v)

)
dx+

∫
Ω

τs

(
σ : D(v)

)
dx−

∫
Ω

p ∇ · v dx = 0 in Ω∫
Ω

q ∇ · u dx = 0 in Ω

(7)

Let V = H1
0(Ω) := (H1

0 (Ω))
2
, Q = L2

0(Ω), and M = (L2(Ω))
2×2
sym be the spaces for the velocity,

pressure and stress, respectively, associated with ||.||1,Ω and ||.||0,Ω. Let V′, Q′, and M′ be their
corresponding dual spaces:

We introduce the approximation spaces:

Vh =
{
vh ∈ V,vh|K ∈ (Q2(K))2

}
Mh =

{
τ h ∈M,σh|K ∈ (Q2(K))2×2

}
Qh =

{
qh ∈ Q, qh|K ∈ P disc

1 (K)
} (8)

Velocity, stress and pressure are discretized using Q2, Q2, P
disc
1 finite elements [4], respectively,

as shown in Figure 1.

u σ p

Figure 1: Finite elements Q2, Q2, P
disc
1 for velocity, stress and pressure, respectively, on each

quadrilateral
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However, in the rigid zone ||D|| = 0, the finite element space Vh and Mh do not satisfy the
LBB condition, the remedy is an apropriate stabilization technique. The following jump term
might be added [20, 26]

ju(uh,vh) =
∑
E∈Ei

γuh

∫
E

[∇uh] : [∇vh] dΩ (9)

where γu is a constant parameter and h is the mesh size.

4 ADAPTIVE DISCRETE NEWTON

The problem (6) is highly nonlinear and presents a big challenge to any nonlinear solver.
Iterative solvers, e.g. Newton and the fixed point iteration method, are used to solve such
nonlinear problems in fluid dynamics. Since the Newton method usually has a faster conver-
gence rate than the fixed point method, it is preferred in most of the cases but it is also very
sensitive regarding the initial guess of the solution and depends strongly on the properties of
the Jacobian matrices during the iterations. The Newton method solves the nonlinear steady
system from (6) by the following steps:

Algorithm 1: Newton method solver

• Provide the input parameters, e.g. tolerance, parameters of the non linear solver, initial
guess and the iteration number n

• Repeat until the tolerance is achieved

• Calculate the residual R(Un) = A Un − b

• Build the Jacobian J(Un) = ∂R(Un)
∂Un

• Solve J(Un) δUn = R(Un)

• Find the optimal value of the damping factor ωn ∈ (−1, 0]

• Approximate Un+1 = Un − ωn δUn

The initial guess should be close to the final solution for achieving faster convergence. There
are also some other factors in the Newton method which should be taken into account for the
numerical stability, e.g. a damping factor when the solution is non-smooth. In our work, this
factor is calculated by a root finding technique called line search method [9, 22]. First, the
system of nonlinear equations is linearised using the Newton method, where U = (u,σ, p) and
RU denote the discrete residuals. One Newton iteration reads:


un+1

σn+1

pn+1

=


un

σn

pn

− ωn


∂Ru(Un)

∂u

∂Ru(Un)

∂σ

∂Ru(Un)

∂p

∂Rσ(Un)

∂u

∂Rσ(Un)

∂σ

∂Rσ(Un)

∂p

∂Rp(Un)

∂u

∂Rp(Un)

∂σ

∂Rp(Un)

∂p



−1
Ru(Un)

Rσ(Un)

Rp(Un)

 (10)

In the Newton method, first derivatives of the residual are needed in every nonlinear iteration
called Jacobian matrix. The Jacobian is either calculated analytically or approximated by the
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divided difference method. The advantage of the approximation of the Jacobian is that this
method acts in a black box manner so that it allows any nonlinear equations to be handled
automatically without having to derive the corresponding calculations [5, 6]. In this work the
Jacobian matrix is not computed exactly, instead its approximation is computed using divided
differences and the corresponding j-th column is given as follows[

∂R(Un)

∂Un

]
j

≈ R(Un + χδj)−R(Un − χδj)
2χ

(11)

where δj is the vector with unit j-th component and zero otherwise. The parameter χ can
be fixed or can be modified according to some norm of the solution ||Un|| or the norm of the
update in the previous step, i.e., ||δUn−1||. The advantage of this approximation is that we
don’t need any knowledge of the Jacobian a priori. However, in this method, the step-length χ
is a ”free” parameter and the right choice might be a delicate task. Based on the perturbation
analysis for the residum, it is often chosen according to the machine precision [14]. On the
other hand, the sensitivity study of the nonlinear behavior of power law models w.r.t. the step-
length parameter χ, the mesh width h and the strength of the nonlinearity suggest an adaptive
choice [13, 18]. Indeed, choosing χ too big leads to the loss of the advantageous quasi-quadratic
convergence behaviour, while very small parameter values for χ can lead to divergence, due
to numerical instabilities. So, a process allowing for bigger step-length parameter χ is worthy
for removing numerical instability. Loosely speaking, bigger step-length parameter χ increases
the set of admissible Jacobian for nonregular solutions. As a result, there are thresholds of
the residuum’s norm which can be used for the choice of the step-length parameter χ as a
step function. In order to relate continuously these thresholds of the residuum’s norm to the
successive nonlinear reduction

rn =
||R(Un)||
||R(Un−1)||

(12)

we use the characteristic function introduced in [17]

f(rn) = 0.2 +
0.4

0.7 + exp (1.5rn)
(13)

or the slightly modified ones introduced in [16]. A new adaptive step-length strategy is consid-
ered as follows

χn+1 = f−1(rn)χn (14)

5 NUMERICAL RESULTS

We analyse the solvability of the problem along with the adaptive Newton method for Bing-
ham fluids by doing numerical studies for a prototypical configuration, i.e. ”viscoplastic fluid
flow in a channel”.

5.1 Bingham viscoplastic fluid flow in channel

The two dimensional channel domain is considered as a domain between two parallel plates
with h length apart and long. The problem is solved under the assumption of Dirichlet boundary
conditions on the domain Ω = [0, h]2 according to following analytical solution:

u1 =



1

8

[
(h− 2τs)

2 − (h− 2τs − 2y)2
]

0 ≤ y <
h

2
− τs

1

8
(h− 2τs)

2 h

2
− τs ≤ y ≤ h

2
+ τs

1

8

[
(h− 2τs)

2 − (2y − 2τs − h)2
] h

2
+ τs < y ≤ h

(15)
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u2 = 0 and p = −x + c [10]. The viscosity is set to be η = 1, the body force is f = 0 and
h = 1 is considered. The rigid zone is the region of constant velocity, i.e.

h

2
− τs ≤ y ≤ h

2
+ τs (16)

A comparison study is carried out between the new discrete adaptive Newton strategy and
the classical Newton for the primitive variable formulation of a Bingham fluid in a channel
flow. Applying both methods the number of nonlinear iterations is presented in Table 1. For
the coarse refinement level (L=2 in the present case), starting with the zero solution as an
initial guess, we perform Newton iterations until the tolerance is achieved. However, the next
refinement level takes the solution from the previous refinement level as an initial solution. For
the first test, we choose the yield stress value to be τs = 0.23 because this value is aligned with
the coarse mesh. It is observed that the primitive variable formulation along with the classical
Newton method faces difficulties in convergence when the regularization parameter ε→ 0. On
the other hand, the adaptive Newton solver is able to converge even for very small values of
ε, exhibiting the advantages of our newly developed solver. Moreover, it shows a good speed
of convergence for all cases of regularized Bingham fluid. Testing the efficiency of the three-

Table 1: Regularized viscosity approach in primitive variable (u, p): Number of itera-
tions of the nonlinear solver in a channel flow at yield stress τs = 0.23 for the adaptive Newton
and the classical Newton at different mesh refinement level L, the stopping criterion is 10−6,
”-” indicates that the simulation did not converged.

↓ L/ε → 10−1 10−2 10−3 10−4 10−5 0 10−1 10−2 10−3 10−4 10−5 0

Newton Adaptive Newton

3 2 3 - - - - 4 4 5 5 9 -

4 2 3 - - - - 4 4 5 5 9 -

5 2 3 - - - - 4 4 6 5 9 -

Table 2: Regularization-free three-field formulation: Number of iterations of the nonlin-
ear solver in a channel flow at yield stress τs = 0.23 for the adaptive Newton and the classical
Newton at different mesh refinement level L, the stopping criterion is 10−6.

↓ L/ε → 10−1 10−2 10−3 10−4 10−5 0 10−1 10−2 10−3 10−4 10−5 0

Newton Adaptive Newton

3 2 3 4 6 9 1 2 2 2 5 1 2

4 2 3 4 8 9 1 1 2 2 4 2 2

5 1 2 3 9 5 2 1 1 1 1 3 1

field formulation for the unregularized Bingham problem, a numerical study is carried out for
both of the Newton strategies shown in Table 2. The efficiency of the three-field formulation
and the robustness of the adaptive strategy for the discrete Newton is showcased successfully.
The yield stress value is kept similar, i.e. τs = 0.23 as in Table 1. Simulations are performed
for different values of regularization parameter ε starting from 10−1 to 10−5 and then also for
regularization-free Bingham ε = 0. Figure 2 shows the velocity, pressure and norm of the strain
rate tensor ||D(u)|| contours at refinement level L=5 (hx = 1/32, hy = 1/96) for regularization-
free Bingham. The pressure distribution is different inside and outside of the rigid zone. It
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shows a discontinuity near the interface and the distribution mainly depends on the yield stress
value τs [10].

Figure 2: Visualization of the velocity contours, pressure and ||D(u)|| for the non-regularized
Bingham fluid flow in a channel with τs = 0.23 at refinement level L=5 (hx = 1/32, hy = 1/96).

It can be seen from the figure that the three-field formulation accurately predicts the division
of the rigid and fluid zone and provides the true solutions of the problem. Moreover, the
formulation can be solved exactly irrespective of the Newton solver type (classical or adaptive).
Figure 3 plots the comparison of the presented discrete adaptive Newton with the classical
approach. When the length χ of the Jacobian approximation in the Newton method is chosen
as constant the solver either converges very slowly or it starts to oscillate. In our adaptive
Newton, χ changes dynamically between the iterations. Initially it is relaxed and once the
solution enters the radius of convergence then χ gets smaller to achieve the accuracy of the
solution. To highlight the efficiency and robustness of our newly developed solver, the yield
stress value is increased from τs = 0.23 to 0.3, 0.35 and τs = 0.4. All of these tests are carried out
for the regularization-free Bingham case and the solver shows fast convergence by dynamically
adapting the step-length during the iterations.

6 CONCLUSIONS

A new adaptive Newton and regularization-free solver for yield stress fluids is developed.
Firstly, by introducing a new auxiliary stress in a three-field formulation. The resulting saddle-
point problem is solved with a monolithic finite element method to simulate viscoplastic flows
for the correct prediction of the yielded surfaces. The advantage of this formulation is achieving
a true non-regularized viscoplastic solution, i.e. ε = 0, efficiently and accurately. The method
does not effect the shape of the yield surfaces. Secondly, a robust and accurate new adaptive
discrete Newton method is developed, which evaluates the Jacobian matrix with the divided
difference approach and converges faster as compared to classical Newton. We have carried
out several numerical experiments for a benchmark problem. This experiment shows that the
number of nonlinear iterations is significantly reduced for the three-field formulation with the
combination of our newly developed adaptive discrete Newton method.
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Figure 3: Nonlinear convergence w.r.t χ for adaptive-Newton method: The norm of the
residual versus number of iterations w.r.t two strategies (constant and adaptive) at refinement
level L=2 (hx = 1/4, hy = 1/12) with the constant χ strategy (set as χc1 = 10−1, χc2 = 10−2,...,
χc7 = 10−7) and the adaptive strategy (χa changing w.r.t non linear residuum reduction).
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Abstract: We have developed a monolithic Newton-multigrid solver for multiphase flow prob-
lems which solves velocity, pressure and interface position simultaneously. The main idea of our
work is based on the formulations discussed in [14], where it points out the feasibility of a fully
implicit monolithic solver for multiphase flow problems via two formulations, a curvature free
level set approach and a curvature free cut-off material function approach. Both formulations
are fully implicit and have the advantages of requiring less regularity, since neither normals nor
curvature are explicitly calculated, and no capillary time restriction has to be respected. Fur-
thermore, standard Navier-Stokes solvers might be used, which do not have to take into account
inhomogeneous force terms. The reinitialization issue is integrated within the formulations.
The nonlinearity is treated with a Newton-type solver with divided difference evaluation of the
Jacobian matrices. The resulting linearized system inside of the outer Newton solver is a typi-
cal saddle point problem which is solved using a geometrical multigrid method with Vanka-like
smoother using higher order stable Q2/P

disc
1 FEM for velocity and pressure and Q2 for all other

variables. The method is implemented into an existing software package for the numerical sim-
ulation of multiphase flows (FeatFlow). The robustness and accuracy of this solver is tested for
two different test cases, static bubble and oscillating bubble, respectively.

1 INTRODUCTION

Multiphase flows are of great interest in different industrial and engineering applications.
The simplest example of multiphase flow is two-phase flow [6], two fluids/phases are separated
by an interface, where surface tension forces are applied. If the fluids have different densities
and viscosities, then a discontinuous pressure jump is observed near the interface. The interface
moves/deforms due to the flow movement, and to capture this behaviour, an efficient track-
ing/capturing method should be applied. There are two main methods for interface modeling
in the multiphase flow problems, i.e. Lagrangian and Eulerian methods. The volume of fluid
(VOF) [8], phase field [1, 2] and level set [13, 15] are among the most famous Eulerian interface
capturing methods, which are very favourable for the computational and implementation point
of view.

In the present work, numerical methods based on the level set and material cut-off function
for two-dimensional incompressible two phase flow are implemented. The approximation of
the surface tension force does not require the calculation of the curvature, normals and the
delta function. However, the level set method requires some sort of redistancing [17]. In our
improved fully implicit level set method, the explicit redistancing is removed by integrating the
reinitialization term within the formulations [14]. Moreover, the advantage of this approach is
that there is no capillary time restriction and the standard Navier-Stokes solver can simulate

https://doi.org/10.4995/YIC2021.2021.12390
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the multiphase problems with homogeneous force terms. The numerical studies are carried
out for two different test cases, static bubble and oscillating bubble, which show the accuracy
and robustness of these formulations in the context of FEM. The system of equations in each
formulation is solved monolithically (in a fully coupled manner).

2 GOVERNING EQUATIONS

In the methodology of our work, first the Continuum Surface Force (CSF) [5] is introduced
and then it is linked to the classical Continuum Surface Stress (CSS) [10]. In the CSF approach,
the interface between the fluids is not considered as a sharp discontinuity but as a smooth
transition. As a result, the surface tension is also assumed to be continuous everywhere in
the transition regime. A detailed discussion of this approach can be found in [4]. In the CSS
approach, a stress tensor is introduced and the surface force term is written as the divergence
of the stress tensor [4]. The following formulations in section (2.1) and (2.2) are based on the
CSS approach.

2.1 Curvature free level set approach

The curvature free level set formulation [14] is introduced by adding a tensor field in the
Navier-Stokes equations. The system of equations is defined as:

ρ(ψ)
(∂u
∂t

+ u · ∇u
)
− divτ +∇p = 0, in Ω,

∇ · u = 0, in Ω,

∂φ

∂t
+ u · ∇φ = 0, in Ω,

ψ −
( −1

1 + exp( φ
εψ

)
+ 0.5

)
= 0, in Ω.

(1)

Here, ρ is the density, u is the velocity, τ = (τ s + τm) is the full stress tensor, p is the
pressure, φ is the level set function, ψ is the cut-off function and εψ is the parameter for the
interface thickness. The standard stress tensor τ s and the modified stress τm (derived in [14])
are defined as

τ s = 2µ(ψ)D(u), τm = −σ
(∇ψ ⊗∇ψ
||∇ψ||

)
, (2)

where µ is the viscosity, D(u) = 1
2
(∇u + ∇uT ) is the deformation stress tensor and σ is

the surface tension coefficient. The modified pressure pm balances the pressure peaks at the
interface. The mathematical expression is defined as

∇pm = ∇p−∇(σ||∇ψ||). (3)

In order to circumvent the explicit reinitialization, the additional normal diffusion term can
be integrated into the level set equation (1). The complete system of equations is defined as
follows:

ρ(ψ)
(∂u
∂t

+ u · ∇u
)
−∇ ·

(
2µ(ψ)D(u) + σ

(∇ψ ⊗∇ψ
||∇ψ||

))
+∇p = 0, in Ω,

∇ · u = 0, in Ω,

∂φ

∂t
+ u · ∇φ−∇ ·

(
γnd

( ∇φ
||∇φ||

· ∇φ− 1
) ∇φ
||∇φ||

)
= 0, in Ω,

ψ −
( −1

1 + exp( φ
εψ

)
+ 0.5

)
= 0, in Ω.

(4)
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Here, γnd is the relaxation parameter for normal diffusion and this term has the forward and
backward diffusion property [11]. The system of equations (4) is a four field system with the
unknowns (u, φ, ψ, p)T . The two main advantages of this formulation are that neither normals
nor curvature have to be explicitly computed, which are the sources of numerical errors.

2.2 Curvature free cut-off material function approach

In this approach, we are no longer in the need of the level set function, instead we use a new
equation for the cut-off material function. Olsson and Kreiss [12] have introduced the equation
for the material cut-off function with fictitious time as

∂ψ

∂τ
+∇ ·

(
γncψ(1− ψ)n

)
−∇ ·

(
γnd(∇ψ · n)n

)
= 0, (5)

where γnc and γnd are the relaxation parameters for the nonlinear convection in the normal
direction and the normal diffusion, respectively. The nonlinear convection in the direction of
the normal has the tendency to build the Heaviside step function, without depending on the
convective parameter. Whereas, the sharpness of the interface is controlled by the normal
diffusion. The full set of equations including the material cut-off function in physical time is
defined as follows:

ρ(ψ)
(∂u
∂t

+ u · ∇u
)
−∇ ·

(
2µ(ψ)D(u) + σ

(∇ψ ⊗∇ψ
||∇ψ||

))
+∇p = 0, in Ω,

∇ · u = 0, in Ω,

∂ψ

∂t
+ u · ∇ψ +∇ ·

(
γncψ(1− ψ)

∇ψ
||∇ψ||

)
−∇ ·

(
γnd

(
∇ψ · ∇ψ

||∇ψ||

) ∇ψ
||∇ψ||

)
= 0, in Ω.

(6)

The system of equations (6) is a three field system with the unknowns (u, ψ, p)T . The
momentum equation has homogeneous force terms. We are solving the systems in a fully
coupled manner with our monolithic multiphase flow solver.

3 NUMERICAL METHOD

For solving the system of equations (4) and (6), first we discretize in time with a fully
implicit 2nd order time stepping scheme, i.e. Crank Nicolson. For the space discretization,
the velocity and pressure fields are discretized using higher order stable Q2/P

disc
1 FEM [3] and

Q2 for the level set function as well as for the cut-off material function, presented in Fig. 1.
The nonlinearity in the system of equations (4) and (6) is treated by Newton solver and the
resulting linear system is then solved using multigrid solver. Our Newton-multigrid solver is
fully monolithic, which means it solves all the variables (u, φ, ψ, p) simultaneously.

u φ/ψ p

Figure 1: Higher order finite element Q2, Q2, P
disc
1 on quadrilaterals.

192



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

4 NUMERICAL RESULTS

Two numerical studies are performed to assess the accuracy and robustness of the solver. The
static and the oscillating bubble are the prototypical configurations and present the behaviour
of two phase flows.

4.1 Static bubble

A static bubble in a two-dimensional incompressible two phase flow is considered [18, 7, 16, 9].
This is a simple example for demonstrating the prototypical behaviour of multiphase flows. For
simplicity, we consider a stationary bubble at equilibrium. Since the bubble is at rest inside
the domain so it should show a zero velocity field but unfortunately spurious velocity/currents
are observed near the interface [18, 7, 16, 9]. Moreover, flows involving interfaces lead to
large pressure jumps. Approximation of the incompressibility constraints, the interface and
the local external force are three different responsible sources for these phenomena [7]. The
flow dynamics depends strongly on the magnitude of the spurious velocities. A non-physical
movement of the interface might also be observed due to this spurious velocity.

4.1.1 Geometrical configuration

Both fluids are immiscible and separated by an interface Γ. The first fluid Ω1 is completely
inside of the second fluid Ω2 as shown in Fig. 2 (left). A circular static bubble of radius
r = 0.25 is placed at the center [0.5, 0.5] of a unit square Ω = [0, 1]2. The surface tension
coefficient, viscosities and densities are set to unity in the absence of the gravitational force.
The relation between the pressure (inside and outside of the static bubble) should satisfies
Laplace Young law:

pi = po +
σ

r
. (7)

Here, pi is the pressure inside the bubble, po is the pressure outside the bubble and σ is the
surface tension coefficient. The numerical studies for the systems of equations (4) and (6) are
performed with a fixed time step ∆t = 10−2 until t = 10. The interface thickness is controlled
by the parameter εψ in both formulations. The spurious velocity/currents are observed and
visually represented in Fig. 3 (a,b) and Fig. 4 (a,b). It can be seen in Fig. 3 (c,d) and Fig. 4
(c,d) that the pressure difference inside and outside of the bubble converges to the magnitude
4. Hence, the pressure jump across the interface successfully satisfies the Laplace Young law.
By decreasing the value of interface thickness parameter εψ, the surface tension force becomes
sharp, resulting in a sharp pressure jump. The graphical representation of the pressure can be
seen by a cross section through y = 0 in Fig. 3 (c,d) and Fig. 4 (c,d). Moreover, the cut-off
function exhibits the same behaviour w.r.t. the interface thickness parameter εψ in Fig. 3 (e,f)
and 4 (e,f).

4.2 Oscillating bubble

A two-dimensional unsteady incompressible two phase flow is considered. These fluids are
immiscible and separated by an interface Γ. The first fluid Ω1 is completely inside the second
fluid Ω2 as shown in Fig. 2 (right).

4.2.1 Geometrical configuration

The circle is initially perturbed to an elliptical shape with the semi-axis 0.25 in the x-
direction and 0.125 in the y-direction. The ellipse is placed at the center [0.5, 0.5] of a unit
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square Ω = [0, 1]2. The surface tension coefficient, viscosities and densities are set to unity.
The gravitational force is neglected.

The numerical studies for the systems of equations (4) and (6) are performed with a fixed time
step ∆t = 10−2 until t = 100. The transition of the radius (rx, ry) to a steady state with respect
to time, is presented in Fig. 5. This study is performed for three different mesh refinement
levels, i.e. h = 1/16, 1/32 and 1/64. As the mesh is refined, the smooth transition from
oscillating to steady state is illustrated in Fig. 5. It is observed that after certain oscillations
the bubble reached the steady state, with no mass loss. It can be observed that the numerical
instability arising from the interface capturing in the level set method vanishes in formulation
(6), so the oscillating bubble reaches the steady state with much less oscillations. To analyse
the temporal development of the interface, the bubble shapes are extracted at different time
intervals, for mesh refinement level 6 (h = 1/64) in Fig. 6. At the final time, the ellipse
is expected to reach an equilibrium state, that is a stable circular shape. As expected, the
oscillating bubble is transformed into a stable circular shape.

Figure 2: Computational domain of static bubble (left) and oscillating bubble (right).
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(a) Spurious velocity (b) Spurious velocity

(c) Cross section through y = 0 (d) Cross section through y = 0

(e) Cross section through y = 0 (f) Cross section through y = 0

Figure 3: Results for the system of equations (4): The magnitude of the spurious currents
(a, b), cross section of the pressure (c, d) through y = 0 and the cross section of the cut-off
material function (e, f) through y = 0 for two different interface thickness εψ = 1.5h (Left)
and 0.7h (Right), with h = 1/64 at time t = 10, ∆t = 10−2.
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(a) Spurious velocity (b) Spurious velocity

(c) Cross section through y = 0 (d) Cross section through y = 0

(e) Cross section through y = 0 (f) Cross section through y = 0

Figure 4: Results for the system of equations (6): The magnitude of the spurious currents
(a, b), cross section of the pressure (c, d) through y = 0 and the cross section of the cut-off
material function (e, f) through y = 0 for two different interface thickness εψ = 1.5h (Left)
and 0.7h (Right), with h = 1/64 at time t = 10, ∆t = 10−2.
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(c) Refinement level 5 (h=1/32), log scale
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(d) Refinement level 5 (h=1/32), log scale
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(e) Refinement level 6 (h=1/64), log scale
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Figure 5: Results for the system of equations (4(left), 6(right)): The radius (rx, ry) of os-
cillating bubble using Crank Nicolson time stepping scheme for three different mesh refinement
levels, ∆t = 10−2.
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Figure 6: Results for the system of equations (4(left), 6(right)): Oscillating bubble
shape with respect to time t, ∆t = 10−2.

5 CONCLUSIONS

In this work, we have developed a monolithic Newton-multigrid solver for multiphase flow
problems which solves velocity, pressure and interface position simultaneously. There are three
main advantages of these formulations. Firstly, no explicit computation of the curvature and
normals are required. Secondly, the explicit redistancing is removed by integrating the reinitial-
ization term within the formulations. Thirdly, there is no capillary time restriction. In order
to investigate the accuracy and robustness of the solver, numerical studies are performed for
two-dimensional static and oscillating bubble. The results expectedly confirms the accuracy
of the solution approximation as the magnitude of the pressure across the interface satisfy the
Laplace Young’s law. In both test cases, the bubble reached its steady state satisfying the
theoretical predictions.
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Abstract: The presented paper deals with an inverse problem in nanoscale heat transfer simu-
lation. A thin metal film irradiated by the ultrashort laser pulse is modeled using the Boltzmann
transport equation. Heat transfer parameters of the model arheat transfer, Boltzmann transport
equation, identification, evolutionary algorithme identified using evolutionary algorithm an op-
timization algorithm inspired on biological evolution of species, where the difference between
obtained and expected results is minimized.

1 INTRODUCTION

In the presented research, identification of short-pulse laser parameters was carried out. In
the discussed example thin metal film was influenced by a laser beam. The process was modelled
numerically. In the identification, experimental data was used, in order to minimize the error
between numerical and experimental results.

Heat flow in solids can be modelled using various models. When dealing with objects of
small dimensions, of the order of nanometres, and with fast heating processes, comparable to
relaxation times, then it is reasonable to use molecular dynamics or the Boltzmann transport
equation (BTE). The presented coupled system of Boltzmann transport equations has the
advantage over molecular dynamics that it has a less complicated mathematical apparatus
and calculations proceed faster. This is an important advantage considering inverse problems,
where computations are performed repeatedly for different possible combinations of identified
parameters.

The goal of the identification presented in this paper is to obtain three parameters of the laser
irradiation, such as the laser intensity, the optical penetration depth, the reflectivity and the
laser pulse duration. The base of result evaluation is the outcome of the experiment described
in [3] where experimental data are shown for electron temperatures in chosen node in a function
of time. Proposed identification finds parameters of a numerical model that would recreate the
real process flow as exactly as possible.

2 THE BOLTZMANN TRANSPORT EQUATION

In the presented problem as the governing equation is used the Boltzmann transport equa-
tion (BTE). According to the Debye simplifications the equivalent transformed form of energy
density equation is analysed. This paper considers the one-dimensional heat transfer model
in metals. As it is a coupled problem, then both types of energy carriers must be taken into
account. The coupled system of equations can be written using the differential equation (sub-
script: e-electrons and ph-phonons) [4]

∂ee
∂t

+ ce
∂ee
∂x

= −ee − e0e
τe

+Qe (1)
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∂eph
∂t

+ cph
∂eph
∂x

= −
eph − e0ph
τph

+Qph (2)

where ee = ee (t, x), eph = eph (t, x) are the energy densities, e0e = ee
2

, e0ph =
eph
2

are the
equilibrium energies densities, ce, cph are the propagation speed, τe, τph are the relaxation
times, t is the time and Qe = Qe (t, x), Qph = Qph (t, x) are the energies sources for electrons
and lattice respectively.

Since the system of governing equations is formulated for energy densities there is a need
for formulas that allow to recalculate energy density to temperature and vice versa. Such
conversion can be made using presented formulas [2]

ee (Te) =

(
ne
π2

2

k2b
εF

)
T 2
e (3)

eph (Tph) =

9ηphkb
Θ3
D

∫ ΘD
Tph

0

x3

exp(x) − 1
dx

T 4
ph (4)

where kb is the Boltzmann constant, ΘD is the Debye temperature of the metal, Te, Tph are
the temperatures for electrons and phonons respectively, while ne and ηph are densities of these
carriers. The electrons and the phonons energy sources depend on temperature of both carriers,
the electron-phonon coupling factor which vary for deferent materials and can be calculated
using the following expressions [1, 5]

Qe (t, x) = Q (t, x) −G (Te (t, x) − Tph (t, x)) (5)

Qph (t, x) = G (Te (t, x) − Tph (t, x)) (6)

The electron-phonon coupling factor is a coefficient which characterizes the energy exchange
between both carriers. To make model complete the equations (1) and (2), should be supple-
mented by the boundary-initial conditions. In the paper are considered the 2nd type of the
boundary conditions (BC) on both edges, particularly adiabatic condition, because the laser
heating lasts for a short period and then the heat losses from the both surfaces of the thin
film can be neglected. To solve direct problem based on presented system of equations (1)
and (2) the lattice Boltzmann method (LBM) was applied. For D1Q2 model in the LBM the
discrete set of two propagation directions with appropriate velocities for electrons and phonons
(Figure 1) are defined.

2 1

Figure 1: Directions of propagation energy carriers

Moreover, in the mathematical model the internal heat source Q (t, x) is applied. It takes
into account the temporal variation of the laser pulse approximated by a form of exponential
function

Q (t, x) =

√
β

π

1 −R

tpδs
I0e

−x
δs
−β t−2tp

tp (7)

where I0 is the laser intensity, R the reflectivity, tp the laser pulse duration defined as full width
at half maximum of the laser pulse, δs the optical penetration depth, x the depth measured
from the front surface, β = 4 ln (2).
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3 INVERSE PROBLEM SOLUTION

The considered inverse problem consists of identification of four model parameters, describing
the laser irradiation. The performed identification is defined as an optimization problem where
the goal is to minimize the differences between the results obtained from model with given
parameters, and the expected values. The problem is solved using an evolutionary algorithm.

3.1 Evolutionary algorithm

Evolutionary algorithm (Figure 2) is a metaheuristic optimization algorithm that is inspired
by the mechanisms of biological evolution of species. It operates on a set (population) of po-
tential solutions (individuals) to a given problem. The quality of each individual is evaluated
by the minimized goal function, that determines the adaptation of the individual to the envi-
ronment. The higher the adaptation is, the bigger are the chances of the individual to survive.
Genetic operators such as crossover (mixing genes from more than one individual) or mutation
(random changes in genes) are applied in order to create populations for subsequent generations
[6][8].

START

Create initial population

Evaluate the adaptation of individuals

Is the stop
condition met?

STOP

Select individuals

Apply genetic operators

Create new population

YES

NO

Figure 2: Evolutionary algorithm

3.2 Identification problem parameters

The goal is to adjust the numerical model, described using BTE, to fit experimental results
published in [1], as accurate as possible. The considered results are electron temperatures in a
chosen node in the function of time. The identified model parameters are: (a) laser intensity
I0, (b) optical penetration depth δs, (c) reflectivity R, and (d) laser pulse duration tp. The
boundaries of the parameters’ values assumed in the identification are presented in Table 1.

Table 1: Boundaries of the identified parameters

Parameter Lower bound Upper bound Unit
I0 5 100 J/m2

δs 10−11 50 × 10−9 m
R 0.01 1 -
tp 10−14 10−12 ps
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The goal (fitness) function F in the identification (optimization) problem was formulated as
follows:

F (I0, δs, R, tp) =
n∑
i=1

(T expi − T numi )2 (8)

where T expi and T numi are the experimentally measured and numerically computed nodal electron
temperatures at time sample i.

The parameters of the evolutionary algorithm were adapted as follows: population size 50,
scattered crossover with probability of 0.8, and Gaussian mutation. The stop conditions were
maximum number of generations 400 and 50 stall generations.

3.3 Obtained results

The convergence of the algorithm can be observed in Figure 3 as the mean fitness function
value F of the population, over subsequent generations. The algorithm converged in 218 gen-
eration, after 50 stall generations. The fitness function value F for the best individual was
6.9964 × 104, while the mean value for whole final population was 7.0549 × 104.

Figure 3: Convergence of the evolutionary algorithm

The identified parameters of the model are: I0 = 18.8843J/m2, δs = 18.386 × 10−9m,
R = 0.9619 and tp = 0.0259 × 10−12s. The time plot of the electron temperature of the source
experimental data and that obtained from the identified numerical model are compared in
Figure 4.

4 CONCLUSIONS

In the presented identification problem, the values of four model parameters (laser intensity
I0, optical penetration depth δs, reflectivity R, and laser pulse duration tp) were searched.
These parameter values introduced to the numerical model based on BTE were supposed to
give electron temperature distribution that fit experimental results. Evolutionary algorithm
was implemented to the identification problem. As indicated by Figure 3, the convergence
process was successful, minimum value of fitness function was reached in 218 generations, after
50 stall generations. The accuracy of the BTE model with identified parameters values can be
considered as satisfying, as can be observed in Figure 4 where comparison with experimental
data is presented.
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Figure 4: Comparison of experimental and numerical results
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Abstract: Phase-transition processes have great relevance for both engineering and scientific
applications. In production engineering, for instance, metal welding and alloy solidification
are topics of ongoing research, whereas understanding the melting of ice and permafrost is at
the centre of many geoscience research questions. In this contribution we focus on one spe-
cific phase-change process, namely the convection-coupled solid-liquid phase change of a single
species, e.g. water. The material is assumed to be incompressible within the two phases, but
we account for density changes across the phase interface. To describe the process, we need
to solve the incompressible Navier-Stokes equations and the heat equation for both phases over
time. The position of the phase interface is tracked with a level-set method [1]. The level-set
function is advected according to the phase interface’s propagation speed. Such speed depends
on local energy balance across the interface and it is determined through a heat-flux jump con-
dition referred to as the Stefan condition [2]. One of the challenges of this method lies in the
approximation of the heat-flux discontinuity at the interface based on the evolving temperature
and velocity fields.

To model the temperature and velocity fields within each phase, we employ the space-time
finite element method. However, commonly used interpolation functions, such as piecewise-
linear functions, fail to capture discontinuous derivatives over one element that are needed to
assess the level-set’s transport term. Available solutions to this matter, such as local enrichment
with extended finite elements [3], are often not compatible with existing space-time finite element
codes and require extensive implementation work. Instead, we consider a different method and
we decide to extend the ghost-cell technique to finite element meshes [4]. The idea is that we can
separate the two subdomains associated with each phase and solve two independent temperature
problems. We prescribe the melting temperature at an additional node close to the interface
and we retrieve the required heat flux on each side of the interface. This allows us to locally
evaluate the heat-flux jump.

In this work we describe the ghost-cell method applied to our space-time finite element solver
[5]. Then, we demonstrate test cases in 3D in view of future applications.

https://doi.org/10.4995/YIC2021.2021.12329
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1 INTRODUCTION

In this paper we propose a numerical strategy to simulate convection-coupled solidification
and melting processes. Many approaches to track the phase-change interface (PCI) are avail-
able [6], but we focus on the level-set method [1]. In our formulation we need to retrieve
discontinuities in the first derivatives at the PCI. Extended finite elements solve the problem
by locally enriching the basis functions [3], but this changes the number of degrees of freedom
over time. Instead, we decide to build upon existing work from Gibou et Al. and extend the
ghost-cell approach to our space-time finite element framework [4, 7, 8].

2 NUMERICAL MODELLING

We consider a domain of interest Ω ⊂ Rd, where d is the number of space dimensions, that
consists of a solid region and a liquid region. The two phases are separated by a distinct PCI.
The goal of the model is to determine the evolving velocity, pressure and temperature fields in
both phases and over time.

2.1 Governing equations for flow and temperature

Let t ∈ (0, T ) be a time instant. We call Ω1(t), Ω2(t) the two time-dependent subdomains
associated with the liquid region and the solid region, respectively, such that Ω1(t)∪Ω2(t) = Ω
for each t. We describe the flow problem with the incompressible Navier-Stokes equations for
a Newtonian fluid

ρ∗

(
∂u

∂t
+ u · ∇u− f

)
+∇p− µ∗∆u = 0 in Ω× (0, T ), (1)

∇ · u = 0 in Ω× (0, T ), (2)

where ρ∗ and µ∗ denote the density and the dynamic viscosity. To model the temperature field
we consider the transient heat equation

ρ∗(cp)∗

(
∂T

∂t
+ u · ∇T

)
= κ∗∆T in Ω× (0, T ), (3)

where (cp)∗ is the heat capacity and κ∗ is the thermal conductivity. The subscript ∗ in Eqs. (1)-
(3) indicates the phase-dependent material properties, such that ρ∗(x, t) = ρ1 if x ∈ Ω1(t) and
ρ∗(x, t) = ρ2 if x ∈ Ω2(t). Note that such properties are phase-wise constant. The advective
term u in Eq. (3) gives rise to a one-way coupling with the Navier-Stokes Equations (1), (2).

We solve both problems with our in-house space-time finite element solver [5, 9]. The sta-
bilised space-time formulation can be found in [10], together with the values for the stabilisation
terms.

2.2 Tracking the phase-change interface: Level-set method

We now introduce the level-set formulation to track the evolving PCI. Let Φ : Ω×(0, T )→ R
be a scalar, continuous function such that Φ(x, t) < 0 in Ω1(t) and Φ(x, t) > 0 in Ω2(t). The
phase interface is the zero level set of Φ, that is every x ∈ Ω : Φ(x, t) = 0,∀t ∈ (0, T ) [11].
Thus, Φ gives information on which subdomain a point x is located. We then describe the
material properties as function of Φ, e.g. ρ∗ = ρ1 + (ρ2 − ρ1)Hε(Φ). The function Hε(·) is the
smoothed Heaviside function introduced in [12], which alleviates numerical difficulties.
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(a) Complete domain (b) Left phase (c) Right phase

Figure 1: 1D example of ghost split. Fig. 1a shows a fictitious temperature field computed
on the whole domain. Note that the solution is differentiable across one element and we do
not retrieve the heat-flux jump at the PCI. Figs. 1b, 1c show the independent temperature
problems solved for each phase after the ghost split. The melting temperature Tm is imposed
at the ghost nodes n1 and n2.

The evolution of the PCI is described by the level-set equations

∂Φ

∂t
+ v · ∇Φ = 0 in Ω× (0, T ),

Φ(x, 0) = Φ0(x) in Ω,
(4)

where v denotes the local propagation velocity of the interface. We select the initial condition
Φ0(x) such that Φ(x, t) is the signed distance function from the PCI. Problem (4) is a scalar
advection problem that shares many similarities with Eq. (3). More details on its space-time
formulation are available in Section 3.10 of [13].

Note that the transport term v in Eq. (4) is not known, so that we need an additional relation
to close the problem. Localized at the zero set of the level-set function, the propagation velocity
v(x, t) needs to match the local phase-change rate and can be modelled as the Stefan condition
[2]. Thus, v is proportional to the heat-flux jump at the interface

ρ hmv(x, t) = −κL∇T
∣∣
X− + κS∇T

∣∣
X+ = [κ∇T ]SL = qL − qS, ∀x : Φ(x, t) = 0, (5)

where hm is the latent heat of melting, ρ denotes the material’s density, κ the material’s
conductivity, X± denote the limits taken from either side of the PCI and [·]SL refers to the
liquid and solid regions. Note that we have closed the problem by coupling the level-set Eq.
(4) with the temperature Eq. (3). However, we need to accurately retrieve the discontinuity of
the heat flux within our numerical framework, which we will address in the next section.

3 HEAT-FLUX DISCONTINUITY AT THE PHASE INTERFACE

In the previous section we have described our numerical model for melting and solidification
problems. What we need is a method to recover the heat-flux jump in Eq. (5) when using finite
elements with element-wise continuously differentiable shape functions.

3.1 Evaluation points for the heat fluxes

First, we select evaluation points for the representative fluxes qL, qS in Eq. (5). The intuitive
approach would be to choose points normal to the PCI, but this presents issues since the normal
is not well-defined at the intersections with the mesh. Thus we adopt a different approach based
on three assertions:
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(a) t = 1s (b) t = 15s

Figure 2: Phase-change coupled 3D lid-driven cavity. The temperature profile is shown at
two different time instants. The yellow surface denotes the phase-change interface. The black
arrows represent the velocity vectors at each point, their size is proportional to the velocity
magnitude. The domain is transparent for y > 0.5.

1. If an element face is cut by the PCI, we consider the nodes that belong to the face as
flux nodes. We use the numerical gradients at these nodes as representative fluxes in Eq.
(5). The sign of the level-set function carries information on the corresponding phase qL
or qS;

2. Each nodal gradient is computed as the arithmetic average of the gradients on all the
elements that surround the node;

3. If the PCI intersects a mesh node, we consider the average of all the nodes in the adjacent
faces.

3.2 The ghost-split method

The second issue comes from the computation of the numerical gradient, since its mathe-
matical properties depend on the properties of the basis functions. In particular, we employ
piecewise linear shape functions that can show discontinuities in the heat flux only at element
nodes. This is where the ghost split comes into play. Since we know that the temperature
solution at the PCI must equal the melting temperature Tm at each time instant, the PCI
can be viewed as a Dirichlet type boundary for each phase. Then, we solve two independent
temperature problems in each subdomain and retrieve the representative fluxes to compute
the interface propagation velocity as in Eq. (5). However boundary conditions can be imposed
only on mesh nodes, so we have to consider additional nodes for each subdomain to enforce
the melting temperature at the approximate position of the PCI. These extra nodes are called
ghost nodes. Figure 1 shows an example of ghost split for a 1D temperature profile. By solving
two separate problems on each subdomain, we can retrieve the heat-flux jump at the PCI.

Now we can compute the interface velocity at the intersections with the mesh. As a last
step we need to define the transport term v of Eq. (4) on all the mesh nodes. Given the Stefan
velocity computed on a crossing, we extend such velocity to all the nodes that are closest to
the crossing. Note that we do not need an additional search to find the nearest neighbours of
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(a) Top view of the domain (b) Close-up of the inflow

Figure 3: Phase-change coupled 3D corner flow. We show the computational domain of the
second test case (not drawn to scale). On the left, a top view section is displayed. On the
right, we show a close-up of the inflow to call attention to the boundary condition. Note that
the parabolic velocity profile is imposed only on the part highlighted in orange.

the mesh nodes, as reinitialising the level-set function entails this information.
Recall that with the ghost split the melting temperature is assigned at an additional node

close to the PCI. By doing so, we introduce an error in the interface location computed at the
subsequent time step. Note, however, that the error depends on the mesh resolution and the
position of the ghost node converges to the correct location of the PCI for finer grids [4]. Higher
order schemes for the temperature extrapolation are available and can be investigated in the
future [7].

4 NUMERICAL EXAMPLES

In the last section we show two different numerical cases in 3D. A detailed verification of the
numerical method against the one-phase Stefan problem can be found in [14], together with
additional 2D examples. In this work we focus only on tridimensional problems in view of more
complex applications.

Recall that the presented numerical method is not bound to the number of spatial dimensions.
We have described the 1D ghost split in Fig. 1 for the sake of clarity, but a more detailed
graphical description on a 2D mesh is available in [14]. Thus, the space-time finite element
solver can handle 3D phase-change processes. Performance issues might arise with very fine
meshes, for instance in the reinitialisation of the level-set function. However different strategies
are available, e.g. the fast marching method [15], that can be investigated in the future.

4.1 Phase-change coupled 3D lid-driven cavity

We consider a 1 × 1 × 1 domain, i.e. a unit cube, which is initially solid for z < 0.5 and
liquid for z > 0.5. At the lateral and bottom boundaries we impose homogeneous Dirichlet
boundary conditions for the velocity and homogeneous Neumann conditions for temperature.
At the top edge we impose the temperature T = 1 and the velocity in x direction u = [1, 0, 0]ᵀ.
The initial temperature is Tm = 0. We select the parameters for the two phases ρ1 =2, ρ2 =1,
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(a) t = 50s (b) t = 2500s

Figure 4: Phase-change coupled 3D corner flow. The temperature profile is shown at two
different time instants. The yellow surface denotes the phase-change interface. The black
arrows represent the velocity vectors at each point, their size is proportional to the second
component of velocity. The domain is transparent for z > 0.05.

(cp)1 =1e3, (cp)2 =1, κ1 =1, κ2 =1, µ1=1, µ2=1e4 and hm =1, where all the values are in SI
units. We simulate 500 time steps with ∆t = 0.1s on a uniform structured grid that comprises
35152 nodes.

Figure 2 shows the computed temperature profile at two time instants. After 10 time steps
the PCI has not moved yet, but we retrieve the expected anti-clockwise circulation in the liquid
region (2a). After 150 time steps the PCI has moved downwards (2b). Note that the left side
of the domain melts faster, since the temperature propagation is driven by the convection of
the flow field.

4.2 Phase-change coupled 3D corner flow

For the second example we consider a recent research topic, namely the flow that develops
around a thermal melting cryorobot that descents into the ice [16]. Figure 3 shows the geometry
of the test case, which resembles an idealised probe moving to the right. The inflow channel
turns 90 degrees into a wider outflow channel. The latter contains two different phases that are
separated by an evolving PCI. We impose a parabolic velocity profile at the inflow such that
uin = [5000y (0.01− y), 0, 0]ᵀ if 0.05 < z < 0.15. Furthermore, we impose no-slip conditions at
each boundary except for the inflow and the outflow. We have Dirichlet temperature conditions
on Γright and Γtop, T = 353 K and T = 278 K respectively. On Γleft we prescribe T = 273 K if
x < 0.25, T = 268 K if x > 0.25. The initial conditions are u(x, 0) = 0, T (x, 0) = 273 K in
Ω1,0, T (x, 0) = 268 K in Ω2,0. The material properties are selected according to water ice [17].
We simulate 500 time steps with ∆t = 5s.

Figure 4 shows the computed temperature profile at two time instants. At the final time
step a bulge is visible in the PCI. As expected, the ice melts as we introduce heat into the
system and we can see the effect right after the 90 degree turn. We recall that this setup is
not reproducible in 2D as heat and flow are applied only on a portion of the inflow, which
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underlines the need for a numerical method that can represent 3D physical phenomena.
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Abstract: Rotor-dynamical systems made of 3D-fiber-reinforced composites which are subjected
to dynamical loads exhibit an increased fiber bending stiffness in numerical simulations. We
propose a numerical modeling approach of fiber-reinforced composites that treats this behavior
accurately. Our model uses a multi-field mixed finite element formulation based on a dynamic
variational approach, as demonstrated in [4], to perform long-term dynamic simulations that
yield numerical solutions with increased accuracy in efficient CPU-time.

We extend a Cauchy continuum with higher-order gradients of the deformation mapping as
an independent field in the functional formulation, as suggested in [2], to model the bending
stiffness of fibers accurately. This extended continuum also takes into account the higher-order
energy contributions including the fiber curvature along with popular proven approaches that
avoid the numerical locking effect of the fibers efficiently.

We apply the proposed approach on a cantilever beam with a hyperelastic, transversely isotropic,
polyconvex material behavior in a transient dynamic analysis. The beam is subjected to a bend-
ing load with a strong dependence of the overall stiffness on the fiber orientation. The spatial
and temporal convergence as well as the conservation properties are analyzed. It is observed
that the model needs an improved numerical treatment to conserve total momenta as well as
total energy.

1 INTRODUCTION

The finite element method for dynamical problems has received much attention over the
last two decades, and approaches to solve them are still computationally demanding and time-
consuming. The extensive development of new materials like fiber-reinforced composites con-
stantly creates a need for more generalized algorithms for numerical simulations. The approach
to avoid locking behavior in finite elements has significantly improved the accuracy and effi-
ciency of almost any modern finite element code. Nevertheless, the usage of the same is not
widely understood in the dynamic regime. Moreover, any modification of the standard con-
tinuum to better the accuracy of the numerical solution has to satisfy corresponding physical
balance laws. Recent developments in the energy-momentum scheme provide a better oppor-
tunity to address these problems in a dynamic regime. The motivation of this work is to
enhance the application of the lightweight design of rotating systems made of fiber-reinforced
composites by taking advantage of the outcomes of the research mentioned above. In [1], the
authors investigated the deformation patterns on mesoscopic level induced by the fibers in
fiber-reinforced composites. Their results from the three-point bending test point out that
these deformations eventually influence the bending stiffness of the composite material on the
macroscopic level. Unfortunately, a standard Cauchy continuum is not well suited to capture

https://doi.org/10.4995/YIC2021.2021.12367
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F̃
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Figure 1: Transversely isotropic continuum with fibers oriented in direction of a0 and element-wise independent
deformation gradient (cp. [3]).

these effects in fiber-reinforced models in numerical terms. Various approaches that have been
proposed to solve this issue are limited to static problems [2, 8]. These drew our attention
to capture the fiber bending stiffness in dynamical problems, which would help us reduce the
unaccounted out-of-plane bending rigidity of an arbitrary geometry.

As a first step, to capture the fiber bending stiffness, we begin with assuming a constitutive
model, where the strain energy function takes not only the strain and fiber direction vector
into account, but also the information of fiber-curvature. A transversely isotropic continuum
B0 is considered with fibers at each point of the continuum oriented in direction of vector a0

in material configuration. In contrast to [2], we introduced a deformation gradient F̃ as an
element-wise independent field in our Hu-Washizu based internal energy functional in [7]. Sim-

ilarly, Γ̃ is introduced as an independent mixed field for ∇X [F̃ ] to capture the fiber curvature

effects. In this work, we propose an additive split of strain energy function in terms of C̃ and
Λ̃ as (see Figure 1),

Ψtotal(Ii(C̃, Λ̃)) = Ψiso(I1(C̃), I2(C̃), I3(C̃)) + Ψaniso(I4, I5) + Ψhg(I6(Λ̃)), (1)

which is in line with the variation of [2], where I6 := k0 · k0, k0 := (Λ̃ · a0) and Λ̃ is an

independent mixed field for Λ := F̃
t
·G which is the pure referential representation of G. G

is defined as the referential gradient of the spatial fiber direction vector at = λ̃F̃ āt and λ̃F̃ is
the fiber stretch. Thus,

Λ = F̃
t
·
[
a0 · ∇X [F̃

t
] + F̃ · ∇Xa0

]
. (2)

I1, I2, I3, and I4, I5 are the usual isotropic and anisotropic principal invariants based on the
right Cauchy green tensor C̃, which is a mixed field variable for C = [F̃ ]t · F̃ . For simplicity,
anisotropic part of the strain energy due to I4, I5 is assumed to be constant and its effects
are neglected within the framework of this work. In this way, we frame our new extended
continuum.
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2 PRINCIPLE OF VIRTUAL POWER

In the second step, we formulate the power functional for the extended continuum. The
Equation (3) shows the internal power functional with new independent mixed field variables

F̃ and C̃, energetically conjugated with independent first Piola-Kirchhoff stress tensor P̃ and
second Piola-Kirchhoff stress tensor S̃, respectively. Similarly, Γ̃ and Λ̃ are energetically
conjugated with independent B̃ and Λ̃, respectively.

Π̇int :=

∫
B0

[
∂Ψela(C̃)

∂C̃

˙̃
C

]
dV +

∫
B0

[
∂Ψhg(Λ̃)

∂Λ̃

˙̃
Λ

]
dV −

∫
B0

P̃ :
[

˙̃
F −∇ϕ̇

]
dV

−
∫
B0

B̃�3

[
˙̃
Γ−∇ ˙̃

F
]
dV −

∫
B0

Ã :

[
˙̃
Λ− ∂Λ

∂F̃
:

˙̃
F − ∂Λ

∂Γ̃
�3

˙̃
Γ

]
dV

−
∫
B0

1

2
S̃ :

[
˙̃
C −

˙
F̃
t
F̃

]
dV. (3)

Here we represent triple contraction of tensors by �3.
The mass-specific body load B and a traction load T̄ on the Neumann boundary ∂TB0 are

considered as external forces. Further, algorithmic stress tensors S̄ and Ā are introduced in
the external power functional to derive energy-momentum time integration. More details on
this topic can be found in [5]. ϕ̄ denotes the prescribed boundary displacement with respect
to the reaction force R as its associated Lagrange multiplier in the Dirichlet boundary ∂ϕB0.
These yield to the following external power functional,

Π̇ext := −
∫
B0

ρ0B · ϕ̇ dV −
∫
∂TB0

T̄ · ϕ̇ dA−
∫
∂ϕB0

R · (ϕ̇− ˙̄ϕ) dA

+

∫
B0

Ā :
˙̃
Λ dV +

∫
B0

1

2
S̄ :

˙̃
C dV. (4)

The algorithmic stress tensors are defined as,

Ā :=
Ψ(Λ̃n+1)−Ψ(Λ̃n)−

∫ 1

0
∂Ψ(Λ̃)

∂Λ̃
:

˙̃
Λ∫ 1

0

˙̃
Λ :

˙̃
Λ

˙̃
Λ, (5)

S̄ :=
Ψ(C̃n+1)−Ψ(C̃n)−

∫ 1

0
∂Ψ(C̃)

∂C̃
:

˙̃
C∫ 1

0

˙̃
C :

˙̃
C

˙̃
C. (6)

And finally, the kinetic power functional with mass density ρ0, velocity v and linear momen-
tum p is defined by,

Ṫkin :=

∫
B0

ρ0v v̇ dV −
∫
B0

p(v̇ − ϕ̈) dV −
∫
B0

ṗ(v − ϕ̇) dV. (7)
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3 WEAK FORMULATION

In the next step, to derive a weak formulation for extended continuum, we apply virtual
power principle to the total energy balance of the system leading to the following equation,∫ tn+1

tn

[
δ∗Ṫkin (ϕ̇, v̇, ṗ) + δ∗Π̇ext (ϕ̇,R) + δ∗Π̇int

(
ϕ̇,

˙̃
F , P̃ ,

˙̃
C, S̃,

˙̃
Γ, B̃,

˙̃
Λ, Ã

)]
dt = 0. (8)

The variation of all power functionals is performed with respect to their dependencies to derive
weak forms from the corresponding virtual powers. As in [4], the symbol δ∗ is used in the
sense of variation performed with respect to both temporally continuous time rate fields and
temporally discontinuous Lagrange multiplier fields.

The resulting integrals of the weak forms of the extended Cauchy–Boltzmann continuum
with fiber curvature is expressed in their continuous form in this paper for simplicity. The
weak mechanical momentum equation is obtained as,∫ tn+1

tn

∫
B0

[ṗ− ρ0B] · δ∗ϕ̇ dV dt−
∫ tn+1

tn

∫
∂TB0

T̄ · δ∗ϕ̇ dAdt

−
∫ tn+1

tn

∫
∂ϕB0

R · δ∗ϕ̇ dAdt+

∫ tn+1

tn

∫
B0

P̃ : ∇[δ∗ϕ̇] dV dt = 0. (9)

To solve equation (9), the first Piola-Kirchhoff stress is required and determined from its
weak form,∫ tn+1

tn

∫
B0

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
+

1

2
S̃ ·
(
F̃
t
+ F̃

)
− P̃

]
: δ∗

˙̃
F dV dt = 0. (10)

Similarly, to solve the above equation, independent strains tensors are obtained from their
corresponding weak strain equations:∫ tn+1

tn

∫
B0

[
˙̃
F −∇ϕ̇

]
: δ∗P̃ dV dt = 0,

∫ tn+1

tn

∫
B0

[
˙̃
C −

˙
F̃
t
F̃

]
: δ∗S̃ dV dt = 0, (11)

and stress tensors from their corresponding weak stress equations:∫ tn+1

tn

∫
B0

[
2
∂Ψela

∂C̃
+ S̄ − S̃

]
: δ∗

˙̃
CdV dt = 0,

∫ tn+1

tn

∫
B0

[
∂Ψhg

∂Λ̃
+ Ā− Ã

]
: δ∗

˙̃
ΛdV dt = 0.

(12)

Weak curvature-strain equations are expressed as,∫ tn+1

tn

∫
B0

[
˙̃
Γ−∇ ˙̃

F
]
�3 δ∗B̃dV dt = 0,

∫ tn+1

tn

∫
B0

[
˙̃
Λ− ∂Λ

∂F̃
:

˙̃
F − ∂Λ

∂Γ̃
�3

˙̃
Γ

]
: δ∗ÃdV dt = 0.

(13)
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Linear momentum needed in the weak mechanical momentum equation (9) can be obtained
by dissolving weak velocity equation into weak momentum equation,∫ tn+1

tn

∫
B0

[v − ϕ̇] · δ∗ṗ dV dt = 0,

∫ tn+1

tn

∫
B0

[ρ0v − p] · δ∗v̇ dV dt = 0. (14)

We discretize the weak forms spatially and temporally on the elemental level by Gaussian
quadrature using Lagrangian ansatz funtions. The time rate variable fields (•̇)e,ni are approx-
imated on the n-th time step by k + 1-th order Lagrange polynomials corresponding to the
normalized time α ∈ [0, 1] on each time step [tn, tn+1] by

(•)h,n =
k+1∑
i=1

Mi(α)(•)e,ni , (•̇)h,n =
k+1∑
i=1

Ṁi(α)(•)e,ni , (15)

and the stress fields as well as Lagrange multiplier fields are (•̃)e,ni are approximated on the
n-th time step by k-th order Lagrange polynomials by

(•̃)h,n =
k∑
i=1

M̃i(α)(•̃)e,ni , Mi(α) =
k+1∏
j=1
j 6=i

α− αj
αi − αj

, 1 ≤ i ≤ k + 1. (16)

Similarly e-th finite element are approximated in space using standard local shape functions
NA(ξ), A = 1, · · · , nnode defined on the reference domain. The resulting tangent matrix is
condensated to pure displacement form by staggering the solution of globally discontinuous
mixed fields on the elemental level. We implement this in our In-house finite element code
‘fEMcon’ and the resulting linear systems of equations are solved using PARDISO solver [6].

4 BALANCE LAWS

With the introduction of new independent field variables, the extended standard Cauchy
continuum has to fulfill physical balance laws. To conserve total momentum and energy at
every discrete time step entails doing a special numerical treatment.

Following the steps in [5], suitable test functions δ∗ϕ̇, δ∗
˙̃
F and δ∗P̃ are employed in (9) for

an arbitrary axial vector c = constant and eliminating the first Piola-Kirchhoff tensor yields a
time-integrator that eventually conserves total angular momentum,

J n+1 − J n =

∫ tn+1

tn

∫
B0

[ϕ× ρ0B] dV dt+

∫ tn+1

tn

∫
∂TB0

[
ϕ× T̄

]
dA dt

+

∫ tn+1

tn

∫
B0

ε :

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
+

1

2
S̃ ·
(
F̃
t
+ F̃

)]
F̃
t
dV dt. (17)
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Similarly, employing different choice of suitable test functions for δ∗ϕ̇, δ∗
˙̃
F and δ∗P̃ and elim-

inating the first Piola-Kirchhoff tensor, we derive the total energy conserving time-integrator
as below,

Kn+1 − Kn =

∫ tn+1

tn

∫
B0

ϕ̇ · ρ0B dV dt +

∫ tn+1

tn

∫
∂B0

ϕ̇ · (T̄ +R) dA dt

−
∫ tn+1

tn

∫
B0

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
+

1

2
S̃ ·
(
F̃
t
+ F̃

)]
:

˙̃
F
t

dV dt. (18)

5 NUMERICAL EXAMPLE

In order to understand the anisotropic behavior exhibited by the fibers, we apply our pro-
posed approach on a simple cantilever beam of length 15cm, width 2cm, and height 1cm. The
numerical model is assumed to be reinforced with a single family of extensible fibers submerged
in the matrix material and exhibiting resistance to bending. 20-noded tri-quadratic serendip-
ity elements are used to discretize the beam into 24 finite elements. A Gaussian quadrature
scheme with 27 quadrature points is employed to evaluate the integrals numerically. The left
end is chosen as the Dirichlet boundary, such that the displacement of nodes at this boundary
are fixed in all three directions e1, e2, e3. As a Neumann boundary condition, on the opposite

Figure 2: Dimensions and boundary conditions for the simply
supported beam subject to bending load.

Figure 3: Assumed initial fiber orientation along the length of
the beam (a0 = e1) shown in 2D.

free end of the beam, a deformation-dependent transient pressure load p̂ = 200f̂ is prescribed,
which always creates traction in the direction parallel to this surface. Standard Neo-Hookean
type material ansatz is chosen for the isotropic part of the strain energy function and cI6 for
the higher-order gradient energy part as in [2],

Ψtotal(I1, I3, I6;λ, µ, c) = λ
I3 − 1

4
−
[
λ

2
+ µ

]
ln
(√

I3

)
+

µ

2
[I1 − 3] + c I6. (19)

For this setup, the simulation is performed for following test cases:

1. the fiber bending stiffness material parameter c is varied assuming the fibers are oriented
with beam’s axis, i.e. a0 = e1

2. the fiber orientation a0 is varied for a constant value of the fiber bending stiffness material
parameter c

The material and simulation parameters chosen as per the table above are in SI units.
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Table 1: Simulation parameters for the choice of initial fiber orientation and bending stiffness parameter

Ψela Ψk0 Temporal parameters
λ µ c α ϕ0 v0 T hn Tol ρ0

100× 106 0.1× 106 [0.08, 12] · 106 [0, π/2] 0 0 [0, 1] 0.002 10−4 103

Remark 1. Note that in this article, we consider fiber bundles called rovings. Therefore the
fiber bending stiffness parameter c with the unit N = Pa ·m2 is calculated with respect to the
average diameter l ≈ [0.9, 11] ·10−3 of the fiber bundle using the relation c = µl2. Consequently,
the average diameter l represents the length scale of the material.

5.1 Influence of the fiber bending stiffness

For c = 0, the numerical model exhibits the behavior of a non-reinforced beam. As expected,
our results show that increasing the stiffness parameter value stiffens the overall response of
the composite material. With the increasing values of c, the onset of the higher-gradient part
of the energy function is more pronounced. However, fiber stiffness has no significant influence
beyond a certain range of c for a chosen load. Figure 4 presents the trend of displacement of a
point P at the top edge of the Neumann boundary in e2 direction.

105 106 107

0.04

0.05

0.06

0.07

c in N

qp y
in

m

ρ0 = 1000

Figure 4: Displacement of a point P at the free end of
the beam for varying fiber bending stiffness parameter
c, with fibers oriented along e1.

0 20 40 60 80

0.048

0.054

0.06

0.066

α in degrees

qp y
in

m

ρ0 = 500 ρ0 = 1000
ρ0 = 1500 ρ0 = 2000

Figure 5: Displacement of a point P at the free end
of the beam for varying fiber orientations α with fiber
bending stiffness parameter c = 106.

5.2 Influence of the fiber orientation

For c = 106, the orientations of the fiber reinforcements are varied to understand the behavior
of the beam. The fiber angle takes values between α = 0 and α = π/2. It is observed in Figure
5 that the cantilever is less stiffer for the fiber orientation a0 = [1 1 1]t, and as expected, the
composite is out of its longitudinal plane. What is surprising is the fact that the degree of
stiffening achieved for α = π/6 and α = π/4 is more than for the orientation α = 0, which
is counter-intuitive. However, from Figure 5 we can understand that the trend of the plot
is independent of inertia. Despite this, we can still state that our proposed time integrator
conserves total momenta and total energy.
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Figure 6: Total energy error plot for c = 107 with fibers oriented in the direction of e1 and a Newton-Raphson
tolerance TOL = 10−4.

5.3 Different type of energy function

Complementing the above fact on total energy conservation in previous test cases, we also
studied the effect of the time integrator with a non-linear energy function based on the quadratic
of curvature measure cI2

6 . It is evident from Figure 6 that for the chosen linear and non-linear
type of anisotropic energy functions with respect to higher-order gradient of the deformation
gradient, the total energy is conserved.

6 CONCLUSIONS

To sum up our work, we demonstrated the influence of fiber curvature on the bending
stiffness of the cantilever beam as a numerical example. We introduced an independent field
variable for spatial fiber direction vector in the continuum using Hu-Washizu’s principle to
capture the curvature effect. We have succeeded in combining an energy-momentum scheme
with the principle of virtual power for the proposed mixed element formulation to preserve
the time evolution of energy functions. In this way, the spurious errors arising from fibers
are significantly reduced in numerical simulations. In addition to that, our energy-momentum
scheme guarantees to obtain the desired accuracy with larger time steps and therefore reduced
total CPU time.

The presented contribution has highlighted the importance of the curvature measure through
the invariant I6 in bending-dominated problems in dynamic scenarios. The maximum bending
stiffness has been obtained with increased fiber bending stiffness parameter. For the simulated
coarse mesh, it is observed that the bending stiffness is maximum when the fibers tend to align
with the beam’s axis except for smaller angles. To further our research, we intend to extend
our formulations to thermomechanical problems.
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Abstract: One approach with rising popularity in analyzing time-dependent problems in sci-
ence and engineering is the so-called space-time finite element method that utilizes finite ele-
ments in both space and time. A common ansatz in this context is to divide the mesh in temporal
direction into so-called space-time slabs, which are subsequently weakly connected in time with a
discontinuous galerkin approach. The corresponding jump-term, which is responsible for impos-
ing the weak continuity across space-time slabs, can be challenging to compute, in particular in
the context of deforming domains. Ensuring a conforming discretization of the space-time slab
at the top and bottom in time direction simplifies the handling of this term immensely. Other-
wise, a computationally expensive and error prone projection of the solution from one time-level
to another is necessary. However, when it comes to simulations with deformable domains, e.g.
for free-surface flows, ensuring conforming meshes is quite laborious. A possible solution to this
challenge is to extrude a spatial mesh in time at each time-step resulting in the so-called time-
discontinuous prismatic space-time (D-PST) method [1]. However, this procedure is restricted
to finite-elements of 1st order in time. We present a novel algorithmic approach for arbitrarily
discretized meshes by flipping the mesh in time-direction for each time-step. This ansatz allows
for a simple evaluation of the jump-term as the mesh is always conforming. The cost of flipping
the mesh around its symmetry plane in time scales with the number of nodes, which makes it
computationally cheaper than an additional update of the mesh to enforce conformity or the
evaluation of a projection. We validate the approach on various physical problems with and
without deforming domains.

1 INTRODUCTION

Space-time is the extension of the finite element concept in time. It was first introduced in
1988 by Thomas J.R. Hughes for classical elastodynamics with a proven convergence theorem
[2]. Nowadays, it is more commonly used in fluid problems, especially since the introduction of
the deformable-spatial-domain/space-time (DSD/SST) method [1, 3]. DSD/SST is beneficial
for free-surface-flows, where the computational domain is unknown as they allow for a conve-
nient way to track the boundary [4]. The initial version of space-time, as well as many other
adaptations, involves a discontinuous galerkin approach in time that leads to an additional
jump term between so-called space-time slabs. The evaluation of this term can be challenging.
Therefore we present an algorithmic approach for a more straightforward implementation of
this term.

https://doi.org/10.4995/YIC2021.2021.12588
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2 METHOD

In this section, we present our approach to the jump term in DG-Space-time methods. The
section is structured as follows. First, we recap the basics of space-time methods, including
the treatment of deforming domains. The next part focuses on possible treatments of the
jump-term, including the flipping ansatz.

2.1 SPACE-TIME

Space-time methods utilize finite elements in space and time rather than finite differences
as in semi-discrete settings, resulting in a finite element analysis of the full space-time domain.
There are various space-time methods that can be categorized with respect to the employed
element type as well as the time continuity. In this work, we choose prismatic elements and a
discontinuous galerkin approach in time, resulting in an analysis of so-called space-time slabs
illustrated in Fig. 2.1. These slabs can consist of one or multiple elements in time and can

Ωn+1

Ωn

P n

Γn+1

Γn
x1

x2

t

Qn

Qn
e

t = tn

t = tn+1

Figure 1: Illustration of a space-time-slab Qn and an exemplary single element Qe.

be considered an extension of a spatial mesh in time-direction. A jump-term, as typical for
DG methods, weakly enforces continuity in time direction over multiple slabs. In this context,
the weak form of a transient heat conduction equation reads: find T ∈ Sa (Qn) such that
∀w ∈ St (Qn): ∫

Qn

w
∂T

∂t
dx =

∫
Qn

wα4T dx +

∫
Ωn

w
(
T |+tn − T |

−
tn

)
dx. (1)

Where Qn = Ω × [tn, tn+1] , T |±tn = lim
ε→0

T (tn ± ε), α =̂ thermal diffusivity and Sa, St are the

appropriate ansatz and testing spaces on Qn. Problems involving deforming domains can profit
from space-time methods despite introducing additional complexity or restrictions. One benefit
is incorporating deformation by formulating the weak form over the deforming or deformed
domain. That way, the movement or deformation is considered in the solution procedure
without modifying governing equations. When the movement is known, this can be particularly
useful as the solution could be found over the entire time interval in one step. In problems
where the deformation of a spatial domain is unknown beforehand, space-time methods with
DG in time face a challenge concerning the jump term. The solution at the top of the slab from
the previous time-step has to be projected to the bottom of the slab in the current time-step,
which is easy when the mesh is conforming. In that case, there is a direct relation between
the degrees of freedom. For non-conforming meshes, it is more challenging, and one possible
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solution namely a projection introduces an additional error. Furthermore, the domain itself
may deform, resulting in entirely non-matching domains. This can be avoided by (1) mesh
update schemes that ensure mesh conformity or (2) a restriction to single-element layers in
time.

2.2 MESH INVERSION/FLIPPING

We propose an alternative algorithmic approach, where the evaluation of the jump-term is
easy to implement and works for arbitrary discretizations. Let us first focus on the implemen-
tation of the space-time method itself. Consider a 3D semi-discrete domain as compared to
a 2D+time domain. Even though geometrically identical, algorithmically, one observes differ-
ences. These lie in the underlying operators in the PDE as well as the additional jump term.
In terms of differential operators, in space-time approaches, the temporal derivative needs to
be evaluated in a finite element sense whereas spatial derivatives need to be restricted to the
spatial dimension only and can no longer be evaluated on the full domain. We adapt the FE
mapping between the reference and physical space to consider the changes in the spatial dif-
ferential operator and to scale the input mesh with the time-step size. As a result, within the
computational mesh, the time coordinates are usually contained in [0, 1] and the physical time
is considered only through the mapping. Furthermore, for every space-time slab, the initial
solution, from where the iterative solution scheme commences, is set to zero. Note that this
entails that one can manipulate mesh coordinates without disturbing the solution process. We
make use of this and invert the time coordinates. For every new time-step, before the iterative
solution process starts, for every mesh node, we set the new t-coordinate t∗ as

t∗ = tmax − t+ tmin. (2)

Here, tmax/min is the maximum/minimum value for t in the slab, which are commonly 1 and 0.
As a result, the vertices and corresponding degrees of freedom move from the bottom to the
top and vice versa without moving in space, ensuring conformity at the slab interface.

3 NUMERICAL STUDIES

This section aims to validate the presented approach. We focus on transient heat conduction
problems and complement our test cases with a hyperplastic solid mechanical bending problem.
For showing that the approach is valid for moving domains, we present a test case with a
prescribed motion.

3.1 TRANSIENT HEAT ANALYSIS

In our first test case, we follow [6] and analyze heat conduction in a 2D rod. The rod is a
rectangular domain and adiabatic everywhere except on the left side, where a fixed heat flux of
1 W is prescribed. Tab. 1 contains the geometry and simulation parameters for this test case.

Table 1: Parameters for transient heat conduction analysis of a 2D rod.

Parameter Value Unit

Length 20 m
Width 1 m

Thermal diffusivity (α = κ
ρcp

) 1 m2

s

Reference time 1 s
Reference length 2 m

Reference time and length refer to the values at which we compare with the exact solution.

             225



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Despite the 2D geometry, the problem reduces to a 1D phenomenon as the heat propagates
equally over the width. An analytical solution is given by

T (x, t) = 2

√
t

π

[
e

−x2

4t − 1

2
x

√
π

t
erfc

(
x

2
√
t

)]
, (3)

and shown in Fig. 2 together with a space-time and implicit Euler solution. The resulting
solutions for the temperature distribution are depicted in Fig. 2. All solutions are visually
identical. Therefore, we proceed to analyze the errors of the individual implementations. Our
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Figure 2: Exact temperature distribution on the most left 2 m of the rod after 1 sec.

first comparison is between the presented approach and a classical implementation of the space-
time jump-term. Fig. 3 shows the error between these techniques and between each of them
and the exact solution for two different discretizations. The curve index refers to the discretiza-
tion while the ”difference” curves show the error between the two implementations. The mesh
details are the following:

Table 2: Mesh sizes for comparison between flipped and classical space-time implementations.

Curve index elements in length elements in width time step size

1 1000 1 0.1
2 10000 1 0.05

From Fig. 3, it is evident that the effect of the mesh inversion is negligable in comparison to
the overall discretization error. Fig. 4 shows the evolution of the error between the analyti-
cal solution and various space-time simulations as well as one implicit Euler simulation under
temporal refinement. The error is evaluated as the L-2 norm over the first 2 m of the mesh
normalized by the number of evaluation points (N). The analysis was performed on a quadri-
lateral 100.000x1 element spatial mesh. Note that the error of the implicit Euler scheme comes
close to the theoretical convergence order of one. In comparison, the error of the space-time
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Figure 3: Error comparison of heat conduction analysis between classical and flipped space-time.
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Figure 4: Relative error evolution of heat conduction analysis under temporal refinement.

ansatz decreases significantly faster when decreasing the time step size. However, not further
than about 5.0e−10 where the spatial discretization error dominates and temporal refinement
results in no improvement. For a fair comparison, the depicted time-step size ∆t in the case of
multiple time layer meshes corresponds to the layer thickness.
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Figure 5: Illustration of the beam used for structural analysis [7].

3.2 STRUCTURAL ANALYSIS

The next test case we would like to present is the transient structural analysis of a beam
that is fixed on the left side to a cylinder and bending under its weight. The clylinder is not
part of the computational domain. The test case is taken from [7] where it is used to validate a
structural solver before investigating fluid-structure-interaction. A hyperelastic material model,
namely the St-Venant-Kirchhoff model, is employed. The problem is modeled from a classical
lagrangian point of view, and we avoid 2nd order temporal derivatives by introducing a velocity
field and solving it. The geometry is depicted in Fig. 5, and the following parameters were
used:

Table 3: Parameters of structural analysis test-case.

Parameter value unit

length 35 cm
width 2 cm

cylinder radius r 5 cm

density 1000 kg
m3

1st lamme parameter λ 2 106 kg
ms2

2nd lamme prameter µ 0.5 106 kg
ms2

gravity (y-direction) -2 m
s2

We compare the displacement of the reference point A at the tip of the beam shown in Fig. 5.
Fig. 6 illustrates the displacement over 10 seconds in X and Y direction. The simulation details
are given in Tab. 4. The results seem to be in good agreement. Nevertheless, there are minor

Table 4: Simulation parameters of structural analysis results.

run elements ∆t

csm l4 5120 5ms
Crank-Nicolson (CN) 20x128 5ms

Space-time (ST) 20x128 5ms
CN dt=1ms 20x128 1ms

deviations. Fig. 7 zooms in on the last period of the oscillation between 9.2 and 10 seconds, and
we focus on the displacement in x-direction as the differences are more visible in that direction.
The result employing a Crank-Nicolson scheme and the same time-step is very close to the
reference values, and different meshes can explain the occurring fine distinctions. CSM l4 uses
an unstructured mesh with 5120 quadrilateral elements, while we choose a structured mesh of
20x128 quadrilateral elements. The space-time result exhibits slightly different behavior, which
is close to the results of a Crank-Nicolson simulation with a refined time-step. However, as
shown in the previous test case, space-time exhibits a superior accuracy with respect to the
time-step size, so this result is to be expected.
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Figure 6: Displacement of reference point A over 10 seconds.
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Figure 7: Displacement in x-direction within the last considered period.

3.3 RIGID-BODY MOVEMENT

The last test case we are discussing is the movement of a rigid body. This test case is
somewhat artificial as we solve a continuum mechanical system of equation coupled with an
elastic mesh-update problem and a free-surface approach, similar to what is described by Elgeti
and Zwicke [4, 5]. However, as we are only interested in the deformation of the domain, we
reduce the problem to a rigid body movement by imposing a fully developed velocity field of
v = (0.1, 0.1)T as initial and boundary conditions. The test case is a 1x1 sized spatial domain
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that then has to move (1, 1)T in 10 seconds. Fig. 8 shows the result after one time-step with
size 10. The t-axis is pointing out of the plane, and we view the x-y plane, meaning, at the
bottom, the body is in its initial configuration, and the mesh connects it to its new position
after 10 seconds at the top. The legend shows that the magnitude of the displacement is

√
2

after 10 seconds, which corresponds to the analytical solution.

Figure 8: Rigid-body movement result after 10 seconds.

4 CONCLUSION

In this work, we presented an algorithmic approach to the treatment of jump terms in
the context of space-time discontinuous finite element methods. We showed that inverting the
space-time slab around its temporal axis leads to a one-to-one degree of freedom correspondence
on the new bottom of the slab, allowing for easy evaluation of the jump term. Additionally,
this alleviates the requirement of a conforming mesh on the top and bottom of the time-slab
introducing new flexibility for the discretization. This ansatz is especially advantageous for
problems involving moving domains, where the movement is not known apriori. Our numerical
studies validated the approach in comparison to classical space-time and semi-discrete FEM
solutions and analytical solutions for different physical problems.
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Abstract: The inverse solution to the heat conduction equation for the heat transfer coefficient
have been performed to the experimental data obtained during the oxidised Armco steel plate
cooling by the air nozzle. A 3D numerical model of the heat transfer during the plate cooling has
been considered. Steel products cooled in air from high temperatures are covered with the oxide
layer having significantly lower conductivity, and a different surface structure comparing to the
non-oxidised metal surface. The Armco steel has been selected as the experimental material
because it oxidized in a similar way to carbon steels, but there is no microstructure evolution
process in Armco steel below 900◦C. It eliminates in the inverse solutions serious problems
caused by a latent heat of microstructure evolutions encountered during carbon steel cooling. In
the present, study the steel plate has been heated to about 900◦C and cooled by the air nozzle.
The plate temperature has been measured by 36 thermocouples.

1 INTRODUCTION

Air cooling is one of the most common methods of removing excess of heat from an object
heated to high temperature. The heat transfer during this process consists of convection and
radiation. During cooling with a stream of air, heat is mainly removed from the surface by
forced convection. Under natural convection in air, the radiation part of heat transfer in the
total heat flux increases. Due to the availability and high costs of obtaining other gaseous
coolants, air is used most often. Cooling with a stream of air is used in the metallurgical
industry, among others, during hot forging, rolling or heat treatment of metals. Air stream
cooling is commonly used to cool turbines components [1]. To achieve the appropriate cooling
parameters, and hence the appropriate properties of products, it is necessary to know a rate
of heat removal from the surface during the cooling process. Due to the limited possibility
of using other methods, especially in high-temperature processes, in order to determine the
heat transfer between the coolant and the cooled surface, the inverse problem for the heat
conduction equation is usually used [2, 3]. This method relies on temperature measurements
at a few points inside the sample, which are then used in numerical calculations. The results of
numerical calculations allow to determine the heat transfer on the cooled surface. To be able to
perform numerical calculations, it is necessary to develop a heat transfer model. Mathematical
and numerical models describing the heat transfer during cooling with an air stream were
developed and improved by many scientists. One of the first was Beck [4]. Back presented
an inverse method, by means of which, determined changes in the heat flux at the sample

https://doi.org/10.4995/YIC2021.2021.12344
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surface from the temperature measurements inside a cooled copper sensor. Malinowski et al.
[5] introduced an inverse method to determine three-dimensional heat transfer coefficient and
heat flux as functions of time and location. Haw-Long et al. [6] presented an inverse algorithm
for the solution of the inverse hyperbolic heat conduction problem. A significant problem
during cooling of iron-containing products is the formation of a layer of scale on the surface.
Scale formed on the cooled surface changes the heat transfer between the cooling medium and
the cooled surface. Determining the thickness and properties of the scale layer formed on
the surface, is important to obtain high accuracy numerical model. Li et al. [7] published
the results of research concerning the thermal conductivity and diffusivity determination as
temperature functions for FeO oxide. An example of a material where the problem of scale
formation is significant is Armco steel. This material is used, inter alia, in the production of
magnetically active parts of electrical devices in the petrochemical, energy, and shipbuilding
industries. Maachou et al. [8] has tested an identification method using Volterra series to
model a thermal diffusion in an Armco steel sample. The main purpose of the article is to
identify the boundary conditions of heat transfer on the plate surface made of Armco steel
during cooling with an air stream. The inverse method was used to determine the boundary
conditions. Experimental tests were carried out, consisting of measuring the temperature inside
the plate with 36 thermocouples. Temperature measurements taken during cooling were then
implemented in a numerical program. The inverse solution for the heat conduction equation
allowed to determine the heat transfer coefficient at the plate surfaces cooled by the air stream.

2 GENERAL SPECIFICATIONS

To identify the boundary conditions of heat transfer on the surface of the plate subjected to
air cooling, it was necessary to measure the temperature change inside the plate during cooling.
These measurements were carried out on an experimental stand, which consisted of three main
parts: electric resistant furnace, a cooling chamber, and the temperature acquisition system.
The experimental stand was equipped with a control system that allows to operate the feeder
arm, furnace door, start cooling, and set furnace temperature (Fig. 1). The first stage of
experimental measurements involved heating the plate in an electric furnace. The purpose of
the heating was to obtain uniform temperature of about 900◦C throughout the entire volume
of the plate. After reaching the pre-set temperature, the plate was transported to the cooling
chamber, where it was cooled by the MNM type air nozzle. The distance between the nozzle
and the plate was 0,15 m. The furnace and the cooling chamber were separated by an automatic
door. The plate was mounted vertically in the pneumatic feeder arm which was responsible for
its transport between the furnace and the cooling chamber.
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Figure 1: Experimental stand scheme. 1- electric furnace, 2- furnace door, 3- cooling chamber,
4- termocouples, 5- plate, 6- air nozzle, 7- feeder arm, 8- air compressor, 9- air pressure regulator,
10- rotameter, 11- control system, 12-temperature acquisition system, 13- laptop, 14- Armco
steel plate cooled by air nozzle.

Experimental studies were carried out on a plate made of Armco steel Fig.1. The plate
was B = 10mm thick, L = 245mm in length, and H = 200mm in height. The temperature
inside the plate was measured with 36 NiCr - NiAl (K type) thermocouples with a diameter
of 1 mm. Thermocouples were numbered from P1 to P36. All thermocouples were placed 2
mm below the cooled surface, in holes 1 mm in diameter. The thermocouples were placed on
a quarter of plate with a length of 90 mm. The arrangement of thermocouples is shown in
(Fig. 4). The maximum temperature measurement error, related to the accuracy class of the
thermocouple was 0.4% of the measured temperature [9]. The maximum temperature of the
plate during the tests was 914◦C. It follows that the maximum temperature measurement error
resulting from the accuracy class of the thermocouple was 3.66◦C. The temperature measured
by the thermocouples was read with a data acquisition system [10]. The accuracy of the device
was 0.2%, which means that the maximum reading error was 1.83◦C. These two sources of
errors related to the temperature measurements gave the maximum temperature measurement
error of about 5.5◦C. Additionally, three thermocouples were used to measure the temperature
changes of the cooling chamber wall, and one thermocouple to measure the temperature of air
supplied through the nozzle. Parameters of the cooling process has been presented in Table 1.
The air flow during the cooling process was recorded by a rotameter.
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Material Air pressure
Distance between

nozzle and plate

Cooling

time

Average air

temperature
Air flow

[MPa] [m] [s] [◦C ] [l/min]

Armco 0.1 0.15 2000 23.5 27.7

Table 1: Parameters of the cooling process.

3 THE INVERSE PROBLEM FORMULATION

The plate temperature T (x1, x2, x3, τ) has been calculated from the finite element solution
to the heat conduction equation:

∂

∂x1

(
λ
∂T

∂x1

)
+

∂

∂x2

(
λ
∂T

∂x2

)
+

∂

∂x3

(
λ
∂T

∂x3

)
− ρc∂T

∂τ
= 0 (1)

where:
c – Specific heat [J/(kg ·K)],
T – Temperature [◦C],
x1, x2, x3 – Cartesian coordinates [m],
λ – Thermal conductivity, [W/(m ·K)],
ρ – Density [kg/m3],
τ – Time [s].

In the heat conduction model the thermal conductivity, and specific heat dependence on
temperature has been considered for material selected for the experiments. The data given in
[11] have been approximated with the polynomials (Fig. 2-3).

Figure 2: Thermal conductivity and den-
sity of Armco steel. Figure 3: Specific heat of Armco steel.
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A FEM algorithm and software developed by Malinowski et al. [5], has been employed
to solve Eq. (1). In the FEM solution to Eq. (1) 600 elements with linear shape functions
were employed. In the thickness of the plate 6 elements have been employed. The first layer of
elements at the surface cooled by the nozzle had the thermophysical properties of iron oxide and
a thickness of 0,097 mm. Thickness of the scale layer was determined based on measurements
made after the end of the experiment. The properties of the scale implemented in numerical
code were taken from Li et al. [7]. Since, the air nozzle was located in the center of the plate,
and due to symmetry of the air flow, zero heat fluxes have been assumed at the two symmetry
planes:

q̇ (x1;x2 = 0;x3) = −λ ∂T
∂x2

= 0 (2)

q̇ (x1;x2;x3 = 0) = −λ ∂T
∂x3

= 0 (3)

At the plate edges, and the vertical surfaces of the plate the boundary conditions have been
approximated using the heat flux model:

q̇i = 5.67 ·10−8 [Ts(x1;x2;x3)]4 − [Tc(τ)]4

1
εs(T )

+ Ss

Sc

(
1
εc
− 1
) + ∝i [Ts(x1;x2;x3)− Ta] (4)

where:
q̇i – Heat flux [J/(kg ·K)],
Sc –Cooling chamber surface [m2],
Ss – Plate surface [m2],
Ta – Ambient temperature [◦C],
Tc – Chamber temperature [◦C],
Ts – Cooled surface temperature [◦C],
εc – Emissivity of the cooling chamber surface,
εs – Emissivity of the plate surface,
∝i – Heat transfer coefficient [W/(m2 ·K)].

The first term in Eq. (4) describes the radiation heat losses to the chamber walls. The
cooling chamber was made of a stainless steel and had the surface Sc = 4.33m2. Comparing
the chamber temperature measurements given by the thermal camera with thermocouple’s
indications, the chamber emissivity εc = 0.2 was specified in the boundary condition model.
The chamber surface temperature Tc(τ) was specified based on the thermocouple indications.
The sample surface was Ss = 0.107m2. The symbol i denotes a surface number at which a
convection heat transfer coefficient αi was calculated.

At the horizontal edge of the plate cooled from above the heat transfer coefficient (HTC)
was calculated from the Nusselt number formula given by Lewandowski et al. [11].

Nu = 0.774Ra
1
5 (5)

where:
Nu – Nusselt number,
Ra - Rayleigh number.

At the vertical edge of the plate, and at the vertical surface cooled under natural convection,
the HTC was calculated from formula developed by Churchill and Chu [13].
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Nu =

0.825 +
0.387Ra

1
6[

1 +
(

0.492
Pr

) 9
16

] 8
27

 (6)

where:
Pr – Prandtl number.

The boundary condition at the vertical plate surface cooled by the air nozzle has been
approximated by the product of functions

∝con ( ẇ, Ts, HN , p) = ẇ (x2, x3, HN , p)
AwpD(Ts, HN , p) (7)

where:
Awp – Parameter regulating the air flux distribution,
D – Thermal characteristic of air [J/(kg ·K)],
HN – Distance from nozzle to surface [m],
p – Air pressure [Pa],
ẇ – Air flux [kg/(s ·m2)],
∝con – Convection heat transfer coefficient [W/(m2 ·K)].

The function D depends on a local temperature Ts of the plate surface, air pressure p, and
the nozzle distance to surface HN . For a particular air pressure p and the nozzle distance to
surface HN the function D depends only on the plate surface temperature Ts. A scheme of the
function D approximation has been shown in (Fig. 5). The plate surface temperature from the
plate initial temperature T0 to the air temperature Ta has been divided into 5 sections. The
beginning, and the end of a particular section k is defined by the temperature Tk and Tk+1,
respectively. The value of the function D at point Tk is defined by Dk parameter. However, for
the plate surface temperature equal to the air temperature the convection HTC vanishes and
therefore D1 = 0. The remaining Dk parameters for k = 1 to 5 must be determined from the
minimum condition of the objective function (15).
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Figure 4: The arrangement of thermocou-
ples

Figure 5: Scheme of thermal characteris-
tic of air as a function of the plate surface
temperature.

For surface temperature Ta < Ts < T2 dimensionless temperature η is defined as

η =
Ts − Ta
T2 − Ta

(8)

and the function D is calculated from

D (η) = D2 η
2 (9)

For surface temperatureTs > T2 and Tk < Ts < Tk+1 dimensionless temperature η is defined
as

η =
Ts − Tk
Tk+1 − Tk

(10)

and the function D is calculated from

D (η) = Dk (1− η) +Dk+1 η (11)

The function ẇ (x2, x3, Hn, p) describes the rate of air flow over the cooled surface in kg/(s ·
m2).

The local air flux has been determined on the basis of measurments that were done for
water-air nozzle described in [14]. These measurments allowed to develop the hydraulic charac-
teristic of the MNM nozzle. Distribution of air flux rate has been approximated in cylindrical
coordinates using nondimensional distance from the stagnation point rz:

rz = c1
150

HN

√
x2

2 + x2
3 (12)

The parameter rz defines dimensionless radius at which air moving along the conical surface
of the spray touches the plate regardless of the nozzle position HN. For the axially symmetrical
approximation of the measured air flux two functions given by Eq. (13) and Eq. (14) have
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been selected. The function defined by Eq. (13) approximates the air flux distribution from
the stagnation point to a position rz = 1:

ẇ (r,HN , p) = 0, 55

(
150

HN

)2

pc5 (1 + c2 r
c3
z ) exp (−rz) for rz ≤ 1 (13)

The function defined by Eq. (14) approximates the air flux distribution from a point rz = 1
to infinity:

ẇ (r,HN , p) = 0.55

(
150

HN

)2

pc5 (1 + c2 r
c4
z ) exp (−rc4z ) for rz ≥ 1 (14)

Nozzle Angle
Coefficient

c1 c2 c3 c4 c5

45◦ 0.0512 0.1870 0.0000 1.0000 0.4800

Table 2: Coefficients employed in Eq. (12), Eq. (13) and Eq. (14) for a MNM nozzle angle of
45◦.

It is important to notice that at point rz = 1 the air flux calculated from Eq. (13), or
Eq. (14) has the same value. The air flow rate calculated as the integral of Eq. (13) and Eq.
(14) over the range from r = 0 to r = 150mm was in a good agreement with the rotameter
indication given in Table 1.

The parameters Di and the Awp parameter defining the D function distribution have been
obtained by minimizing the objective function:

E(Di, Awp) =
1

NT ·NP

NT∑
m=1

NP∑
n=1

 1√
1 +

(
∆Tenm

∆τ

)2
(Tenm − T (Di, Awp)

nm)

2

(15)

where:
Tenm – Sample temperature measured by the sensor n at the time τm,
T nm – Computed sample temperature at the location of the sensor n at the time τm,
NP – Number of temperature sensors,
NT – Number of temperature measurements performed by one sensor.

The objective function (15) defines the temperature difference between measured and com-
puted temperatures along the normal to the measured temperature curve.

The radiation heat losses depended on the plate emissivity εs(T ) has been calculated from
the emissivity model developed based on inverse solution to the Armco plate cooling under
natural convection in air:

εs = 0.5 + 0.35 t̄2p (16)
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4 IDENTIFICATION OF THE HEAT TRANSFER COEFFICIENT

The performed numerical calculations made it possible to determine the local convection
HTC on the cooled surface of the Armco plate covered with scale. In Fig. 6 and Fig. 7,
local HTC distributions in relation to the surface temperature excess, and time, respectively,
calculated at 6 elements E1-E6 have been presented. The centers of the elements, in which
the local HTC have been presented, corresponded to the positions of P1, P2, . . . , P6 thermo-
couples inserted along x2 axis (Fig. 4). In Fig. 8 the thermal characteristics of air versus the
temperature excess has been presented.

Figure 6: The local convection HTC dis-
tributins versus the temperature excess.

Figure 7: The local convection HTC distri-
butions versus the time of cooling.

From the beginning of the air nozzle cooling, the convection HTC increase during about
300 s and reaches the maximum value depending on the location along x2 axis (Fig. 7). The
lowest value of a maximum convection HTC of 115W/(m2 ·K) was reached at element E6, and
a highest of 165W/(m2 ·K) at element E1. It is related to the air velocity and mass flux. Near
the center of the nozzle axis, the air velocity as well as the air mass flux are the highest. It
increases the convection heat transfer process. As the distance from the nozzle axis increases,
the air mass flux decreases. During the first 300 s of cooling process carried out with the air
nozzle, the plate temperature decreases to about 350◦C (Fig. 6). During that time the HTC
has reached the maximum values, Next, the convection HTC decreases gradually, and after
subsequent 1100 s has reached about 130W/(m2 ·K) in E1, and 90W/(m2 ·K) in E6 (Fig. 7).
During this time, the plate temperature decreases slowly from 350◦C to about 120◦C (Fig. 6).
In the last stage of cooling which lasted of about 600 s, a rapid drop in convection HTC values
was observed.

In Fig. 8 the thermal characteristics of the air has been shown. This characteristic is
presented as a function that determines the ability of a coolant to remove heat from the cooled
surface. Such presentation of the results allows to eliminate the influence of the amount of air
supplied on the efficiency of the cooling process. As shown in Fig. 8, the greatest ability of heat
extracting from the cooled surface was obtained in element E1, which was located in the axis
of the air stream. As the distance from the nozzle axis increases, the ability of heat removing
decreases (Fig. 8). Such a behavior is related to the distribution of air velocity and the air mas
flux distribution over the cooled surface.
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Figure 8: Function defining thermal characteristic of air versus the surface temperature excess.

The accuracy of the performed inverse solutions to the convection HTC identification has
been presented in Table 3. The average temperature difference between measured and calcu-
lated temperature did not exceed 2K. This indicates a satisfactory accuracy of the numerical
calculations.

Average deviation
Maximum negative

deviation

Maximum positive

deviation

[K] [K] [K]

1.667 -5.95 7.88

Table 3: Inverse solution accuracy

5 CONCLUSION

The inverse solution to the heat conduction equation for the heat transfer coefficient determi-
nation during the vertical plate cooling by the air nozzle has been obtained. Three-dimensional
heat conduction problem has been solved using the finite element method. The thermophysical
properties of the Armco steel have been considered as functions of temperature. The oxide layer
on the cooled surface has been considered in the heat conduction model as well. The thickness
of the oxide layer of about 0.1 mm has been determined based on the oxidation process kinetics.
The boundary condition at the oxide layer has been defined. The boundary condition model has
been specified as a product of two functions. The first function defined the air flux specific for
a particular nozzle. The second function defined the air ability to extract heat from the cooled
surface. The parameters of the heat conduction model were determined from the minimum
condition of the object function. It has been found that the convection heat transfer coeffi-
cient increases rapidly as the plate temperature grows. However, the convection heat transfer
coefficient has reached a maximum value at the plate temperature of 350◦C. For the plate
temperature range from 350◦C to 800◦C a linear decrease in the HTC has been obtained. Air
flux distribution over the cooled surface is a particularly important in the developed boundary
condition model.
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Abstract: Metamaterials are those that, through human engineering, have unusual properties
that cannot be commonly found in nature. Recently, these metamaterials have been gaining im-
portance due to the introduction of additive manufacturing technologies. Specifically, metama-
terials known as lattice structures have advantages over bulk solid materials, such as increased
strength and specific stiffness. However, in order to exploit these advantages of these exotic
materials, we need robust and accurate tools to tailor and design their properties. The objective
of this work is to present a complete systematic study of the different approaches for metamate-
rial computational design evaluating their advantages and drawbacks in terms of computational
efficiency and accuracy in predicting the metamaterial mechanical properties.

1 INTRODUCTION

Metamaterials are human designed materials which can acquire unforeseen properties not
seen in nature [1]. These can be produced by different manufacturing methods [2]. There are
different types of metamaterials, e.g., electromagnetic metamaterials modulating electromag-
netic waves [3] or mechanical metamaterials with extraordinary specific mechanical behavior
[4]. One type of mechanical metamaterials are lattice structures. Lattices have interesting
properties like weight reduction compared to the solid structure, preserving other beneficial
properties, for example the strength or biocompatibility [5]. Lattice structures are expected
to revolutionize different fields [6],[7]. In the biomedical industry, these structures are selected
as the perfect candidate for a new generation of biocompatible implants [6]. In the aerospace
industry, the light-weighting potential of these structures can replace solid component with
similar properties but higher weights [7]. In order to design these lattice structures, computa-
tional simulations are critical. Finite element modelling (FEM) stands as the preferred route
to simulate lattice structures. The unresolved problem of using FEA for lattice design resides
in the numerous variables that affect the results which can lead to a wrong design-optimization
exercise. Among them are the type of mesh, the number of elements or heterogeneities in the
material properties heritage from the additive manufacturing process. Furthermore, there is
not a systematic study that shows the optimal form of modelling metamaterials [8].

To fill this gap, this work presents a systematic study of the effect of these variables on the
mechanical simulations of latticed metamaterials. Three different methodologies are used: 3D
explicit meshing, homogeneous beam models and heterogeneous beam models. The computa-
tional results are validated against experimental results of a lattice structure explicitly designed

https://doi.org/10.4995/YIC2021.2021.12529
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and manufactured for this study.

2 METHODOLOGY OF THE STUDY

2.1 Lattice geometry

For this project, a typical lattice structure has been designed with a strut radius of 1.3 mm
and target solid fraction of 24% following a Voronoi distribution, see Fig. 1. A summary of
lattice structure features is presented in Table 1. The design has been additively manufactured
(AM) by selective laser method in Renishaw AM250 using Ti6Al4V as base material. These
are presented in Fig. 2.

Figure 1: Lattice structure used in this study.

Figure 2: Additively manufactured Ti6Al4V lattice structures.

Structure Strut radius Solid fraction

Lattice 1.3 mm 23.78%

Table 1: Features of the lattice structure.
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2.2 Mechanical Testing

The additively manufactured lattice samples have been subjected to compression testing
using a servo-hydraulic MTS (model 810) universal testing machine equipped with a 100kN
load cell. A strain rate of 10−3 s−1 was imposed during the test. Strain was monitored using
digital image correlation (DIC) during the test. The DIC system have a camera (model BFS-
U3-13Y3C-C) and also have a in-house code developed to group stress and strain points in real
time. Two repeats were performed to address the consistency of the experimental results.

2.3 Computational study

The mechanical behaviour of the lattice structure has been addressed computationally.
Abaqus (2018) FEM static analysis has been used for this purpose [9]. The lattice struc-
ture has been meshed with 2 different element types: (1) C3D10 volumetric quadratic elements
and (2) quadratic B32 beam elements. Table 2 shows the number of elements for each type of
mesh. Regarding the boundary conditions, the displacement of the nodes located at the lower
face of the sample are restricted in all directions (U1 = U2 = U3 = 0). For the nodes at the
upper face, a displacement equivalent to 5% of the total sample deformation is imposed. In
terms of material model, material properties for the FE model are extracted from the experi-
mental mechanical behaviour of AMTi6Al4V. A wire of AMTi6Al4V with the same thickness
of the lattice struts (1.3 mm) was tested in a tension test and the experimental stress-strain
curve was used as an Abaqus material database for the lattice structures [10].

Type of Mesh Number of elements

Volumetric Mesh

(C3D10 Abaqus Code)
462551

Beam Mesh

(B32 Abaqus Code)
1051

Table 2: Number of elements for volumetric and beam meshes.

A typical feature of these lattice structures is the rounding of the struts at the lattice nodes
to avoid stress concentrations promoting premature failures of the lattice, see Fig. 3. Due to
this, the radius is not homogeneous along the axis of the struts. The strut radius is higher
when approaching to nodes than in the centre of the lattice beams.
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Figure 3: Representation of the curvature produced near the nodes.

The geometry at the nodes of the volumetric models is fully heritage from the explicit
lattice structure model in the form of “stl” surface. However, for the beam models, the beam
radius needs to be estimated in order to obtain a homogenised representative geometry of each
strut in the lattice. In this work, two different approaches to target this problem have been
proposed (see Fig. 4): (1) model A, assuming the lattice as a continuous beam network with a
total volume equal to the experimental one or (2) model B, integrating the effect of the nodes
idealising the lattice structure as a combination of beams (struts) and spheres (nodes). The
details for each model are explained next. Beam model A: The first model assumes a network
of beams with an idealised circular section of area πR2

A, see Fig, 4. The total volume VA of the
beam network is calculated as:

VA =
N∑
i

π R2
A Li

A (1)

Where Li
A is the node-to-node length of the beam i and N is the total number of beams. By

equaling this VA to the real volume of the AM geometry VAM , the RA can be extracted as

RA =

√
VAM

π LT

(2)

Where LT is the total length of all beams of the structure. This radius RA is used to define
the section of the beams in model A. The calculated value is presented in Table 3. Beam model
B idealises each node as a sphere of radius RB and each beam as a cylinder of the same radius
RB, see Fig. 4. The total volume of the lattice VB can be calculated adding up the individual
volume of all the nodes and beams in the lattice as:

RB =
4

3
NnπR

3
B +

N∑
i

(
Li
B − 2RB

)
πR2

B (3)
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where LB is the node-to-node length of the strut i and Nn is the total number of nodes in
the lattice structure. By equaling this VB to the real volume of the AM geometry VAM , the RB

can be extracted solving the function:

RB =
4

3
NnπR

3
B + LTπR

2
B − 2R3

BNB (4)

Where NB is the total number of beams in the structure. This radius RB is used to define
the section of the beams in model B. The calculated value is presented in Table 3.

Figure 4: Beam model A (left) and beam model B (right).

Type of Models Radius (mm)

Experimental at the centre of the struts 0.65

Model A (RA) 0.63

Model B (RB) 0.712

Table 3: Radius for each of the beam models used.

3 RESULTS AND DISCUSSION

In this section, the computational mechanical behaviour of the lattice structure is compared
against the experiments. Next, the accuracy of each of the different modelling approaches is
addressed. Finally, the advantage and disadvantages of each method are discussed.

3.1 Experimental behaviour

Experimental and FEM stress-strain curves of the lattice structure are presented in Fig.
5. The two repeats of the experimental tests present a good repeatability with less than 10%
discrepancy between both curves. The lattice behaviour presents an initial elastic region with
an elastic modulus proportional to the solid fraction of the lattice. After yielding, there is an
initial hardening region followed by a plateau before failure (not studied in this work). The three
different FEM approaches (Volumetric, Beam Model A and Beam Model B) present a similar
qualitative behaviour. However, quantitively, the three models differ, with the volumetric model
presenting the closest behaviour to the one experimentally observed.
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Figure 5: Experimental and FEM stress-strain curves. Red curves represent experimental
lattice compression test, yellow curve represents the volumetric model and blue and green
curves represent the beams models A and B, respectively.

The apparent elastic modulus and yield stress has been extracted from the stress-strain
curves; they are shown in Fig. 6. The apparent elastic modulus of the volumetric model is
higher than the experimental ones (∼10% higher) while the beam models present a substan-
tially lower elastic modulus than the experiments (∼30% lower for Model A and ∼20% lower
for Model B). Regarding the higher rigidity of the volumetry model when compared to the
experiments, it is known that AM lattice present defects, especially for self-supported lattices
like the ones in this work [11]. These defects can reduce rigidity of the lattice and might
partially explain the small increase in the elastic modulus, which are not taking into account
in the models. Another reason might be small deviations in the printed geometries from the
ideal simulated ones [11]. In terms of the yield stress, all the models present lower values
than the experimental ones. The volumetric and beam model B present the closest values to
the experiments (<10% error) while the beam model A differs considerable (>20% lower yield
strength). As a summary, the volumetric model shows superior accuracy when comparing with
the experimental apparent elastic modulus and yield stress. On the other hand, beam model A
presents the worst approximation for both, the apparent elastic modulus and the yield stress.
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Figure 6: Experimental and FEM elastic modulus (left) and yield stress (right).

The mechanical behaviour of lattice structures is strongly influence by their solid fraction
[12]. Small deviations of the solid fraction can produce significant variations in the mechanical
behaviour of the lattice. Therefore, it is important to address this aspect between the experi-
ments and the simulations. Solid fractions of experimental and FEM geometries are compared
in Fig. 7. There are small deviations between the computational geometry (ideal design geom-
etry) and the experimental one, arising from the imperfections in the additive manufacturing
process [13]. Beam model A has the same solid fraction than the volumetric model because
the radius is obtained equalling AM structure volume and beam model volume. On the other
hand, beam model B has the bigger solid fraction due to the overlap of the beams produced at
the nodes.

Figure 7: Solid fraction estimated for the samples tested and the numerical models, respectively.
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3.2 Failure modes

In this section, focus is put on the failure mechanisms in the lattice structure. Fig. 8 shows
the failure modes of each model compared to the experimental specimen. Volumetric failure
modes correlate well with the ones observed experimentally. Both beam models (A and B)
present the same failure modes, suggesting that the change in beam diameter between A and
B did not affect the failure mechanism.

Figure 8: Comparison between failure modes in the volumetric model (a), experimental speci-
men (b) and the beam models (c).

3.3 Computational efficiency and discussion

Computational cost is a critical aspect in the design of lattice structures. In this regard,
the computational time of each FEM approach is represented in Fig. 9. Beam models have
considerably lower computational cost than the volumetric model. This supports the necessity
of developing new beam theories adapted to AM lattice design capturing the peculiarities and
defects in these structures.
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Figure 9: Computation time of FEM models.

4 CONCLUSIONS

In this work, the advantages and drawbacks of different FEM approaches in modelling and
design AM metamaterial structures have been studied. The following conclusions can be drawn:

• Volumetric FE models with elasto-plastic material equations present the best accuracy
when compared to experimental results. The minor difference in the mechanical response
between experimental specimens and FE volumetric models are due to the defects present
in the experimental specimens that have not been considered in the simulations. These
models capture the plastic failure mechanics with great accuracy. However, these models
present higher computational costs than beam models.

• Two criteria to establish FE radius in beam models have been presented: one based on
the total experimental volume of the lattice (model A) and another simulating the lattice
structure as combination of struts and spheres (model B). The beam model B presents a
higher accuracy than model A. The beam model B has an error less than 10% compared
to experiments in elastic modulus and yield stress.

• Beam models are computationally more efficient than volumetric models. However, the
precision of these models is lower, and they do not correctly maintain the physics of the
deformations. There is a need to develop new beam models that capture the same physics
than volumetric models but with a lower computational cost.
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Abstract: In this work, we implement goal-oriented error control and spatial mesh adap-
tivity for stationary fluid-structure interaction (FSI). The a posteriori error estimator is ac-
complished using the dual-weighted residual method in which the adjoint equation arises. The
fluid-structure interaction problem is formulated within a variational-monolithic framework us-
ing arbitrary Lagrangian-Eulerian coordinates. The overall problem is nonlinear and solved
with Newton’s method. We specifically consider the FSI-1 benchmark problem in which quan-
tities of interest include the elastic beam displacements, drag, and lift. The implementation
is based on the deal.II finite element library and provided open-source published on github
https://github.com/tommeswick/goal-oriented-fsi. Possible extensions are discussed
in the source code and in the conclusions of this paper.

1 INTRODUCTION

Fluid-structure interaction (FSI) is well-known [11, 25, 27, 10, 5, 8, 46, 26, 59] and a prime
example of a multiphysics problem. It combines several challenges such as different types
of partial-differential equations (PDE), interface-coupling, nonlinearities in the equations and
due to coupling, Lagrangian and Eulerian coordinates. These result into typical numerical chal-
lenges such as robust spatial discretization (in particular for the moving interface), robust time-
stepping schemes, efficient and robust linear and nonlinear solution algorithms. Computational
works include different coupling concepts [37, 30, 53, 42, 16], space-time multiscale [51], reduced
order modeling [24, 40, 52, 33], optimal control, parameter estimation, uncertainty quantifica-
tion [41, 7, 48, 39, 21, 62], and efficient solver developments [34, 4, 28, 43, 13, 45, 15, 38, 55].

In this work, the main objective is the application and open-source implementation of goal-
oriented a posteriori error control using the dual-weighted residual (DWR) method [6, 3]. For
applications in fluid-structure interaction, we refer to [32, 23, 54, 57, 44, 46, 20, 22]. A recent
overview of our own work using the adjoint FSI equation in goal-oriented error estimation
and optimization was done in [60]. In [49] a variational localization using a partition-of-unity
(PU) was proposed, facilitating the application to coupled problems such as fluid-structure
interaction. In view of increasing initiatives of open-source developments, another purpose of
this work is to provide a documented open-source code. To this end, a stationary fluid-structure
interaction problem is considered in order to explain the main steps of a PU-DWR estimator.
The problem is formulated within a monolithic framework using arbitrary Lagrangian-Eulerian
(ALE) coordinates. For some well-posedness results of such stationary FSI problems, we refer

https://doi.org/10.4995/YIC2021.2021.12332
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to [31, 61]. Together with the goal functional under consideration, the FSI formulation serves
as PDE constraint and the Lagrange formalism can be applied. Specifically, the monolithic
formulation yields a consistent adjoint equation.

For the monolithic, stationary, FSI formulation we follow [47, 56] and for the PU-DWR
error estimator, we follow [49]. The basis of our programming code is [58] (see also updates on
github1) and we take some ideas from deal.II [1, 2] step-142. Our resulting code can be found
on github3.

2 VARIATIONAL-MONOLITHIC ALE FLUID-STRUCTURE INTERACTION

2.1 Modeling

For the function spaces in the (fixed) reference domains Ω̂, Ω̂f , Ω̂s, we define V̂ := H1(Ω̂)d.
In the fluid and solid domains, we define further:

L̂f := L2(Ω̂f ), L̂0
f := L2(Ω̂f )/R, V̂ 0

f := {v̂f ∈ H1(Ω̂f )
d : v̂f = 0 on Γ̂in ∪ Γ̂D},

V̂ 0
f,û := {ûf ∈ H1(Ω̂f )

d : ûf = ûs on Γ̂i, ûf = 0 on Γ̂in ∪ Γ̂D ∪ Γ̂out},
V̂ 0
f,û,Γ̂i

:= {ψ̂f ∈ H1(Ω̂f )
d : ψ̂f = 0 on Γ̂i ∪ Γ̂in ∪ Γ̂D ∪ Γ̂out},

V̂ 0
s := {ûs ∈ H1(Ω̂s)

d : ûs = 0 on Γ̂D}.

As stationary FSI problem in variational-monolithic ALE form, we have [56][p. 29]:

Problem 2.1. Find {v̂f , ûf , ûs, p̂f} ∈ {v̂Df + V̂ 0
f,v̂} × {ûDf + V̂ 0

f,û} × {ûDs + V̂ 0
s } × L̂0

f , such that

(ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f ), ψ̂
v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

− 〈ĝf , ψ̂v〉Γ̂N
− (ρ̂f Ĵ f̂f , ψ̂

v)Ω̂f
= 0 ∀ψ̂v ∈ V̂ 0

f,v̂,

(F̂ Σ̂, ∇̂ψ̂v)Ω̂s
− (ρ̂sf̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ V̂ 0

s ,

(σ̂mesh, ∇̂ψ̂u)Ω̂f
+ (v̂s, ψ̂

u)Ω̂s
= 0 ∀ψ̂u ∈ V̂ 0

f,û,Γ̂i
,

(d̂iv (Ĵ F̂−1v̂f ), ψ̂
p)Ω̂f

= 0 ∀ψ̂p ∈ L̂0
f ,

with F̂ = Î+∇̂û, Ĵ = det(F̂ ), σ̂f = −p̂f Î+ρ̂fνf (∇̂v̂f F̂−1+F̂−T ∇̂v̂f ), Σ̂ = 2µsÊ+λstr(Ê)Î , Ê =

0.5(F̂ T F̂ − Î), σ̂mesh = αu∇̂ûf , volume forces f̂f and f̂s (both zero in this work), flow correction
term ĝf (do-nothing [35]), densities ρ̂s, ρ̂f , kinematic viscosity νf , and the Lamé parameters
µs, λs. All explanations are provided in [56][Chapter 3].

2.2 Discretization and numerical solution

For spatial discretization, a conforming Galerkin finite element scheme on quadrilateral mesh
elements is employed [12]. Specifically, we use Qc

2 elements for v̂ and û := ûf + ûs, and
Qc

1 elements for p̂. For the flow problem (v̂, p̂), this is the well-known inf-sup stable Taylor-
Hood element; see e.g., [29]. Due to variational-monolithic coupling and globally-defined fi-
nite elements, the fluid pressure must be extended to the solid domain, which is achieved via
αu[(∇̂p̂s, ∇̂ψ̂p) + (p̂s, ψ̂

p)], and αu (as before) small, positive. This is only for convenience, an
alternative is to work with the FE_NOTHING4 element in deal.II. The nonlinear problem is solved

1https://github.com/tommeswick/fsi
2https://www.dealii.org/current/doxygen/deal.II/step_14.html
3https://github.com/tommeswick/goal-oriented-fsi
4https://www.dealii.org/current/doxygen/deal.II/step_46.html
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with Newton’s method. Therein, for simplicity in this work, we utilize a sparse direct solver
[14]. For algorithmic descriptions of our implementation, we refer to [56].

3 PU-DWR GOAL-ORIENTED ERROR CONTROL

The Galerkin approximation reads: Find Ûh = {v̂f,h, ûf,h, ûs,h, p̂f,h} ∈ X̂0
h,D, where X̂0

h,D :=

{v̂Df,h + V̂ 0
f,v̂,h} × {ûDf,h + V̂ 0

f,û,h} × {ûDs,h + V̂ 0
s,h} × L̂0

f,h, such that

Â(Ûh)(Ψ̂h) = F̂ (Ψ̂h) ∀Ψ̂h ∈ X̂h, (1)

where X̂h is the test space with homogeneous Dirichlet conditions.

3.1 Goal functional

The solution Ûh is used to calculate an approximation J(Ûh) of the goal-functional J(Û) :

X̂ → R. This functional is assumed to be sufficiently differentiable. The drag value as goal
functional reads

J(Û) :=

∫
Ŝ

Ĵ σ̂f F̂
−T n̂f d̂ dŝ,

where n̂f is the outward point normal vector of the cylinder boundary Ŝ [36] and the FSI

interface Γ̂i. Moreover, d̂ is a unit vector perpendicular to the mean flow direction. For the
drag, we use d̂ = (1, 0).

3.2 Error representation

We use the (formal) Euler-Lagrange method, to derive a computable representation of the

approximation error J(Û)− J(Ûh). The task is: Find Û ∈ X̂0
D such that

min{J(Û)− J(Ûh)} s.t. Â(Û)(Ψ̂) = F̂ (Ψ̂) ∀Ψ̂ ∈ X̂,

from which we obtain the optimality system

L′
Ẑ

(Û , Ẑ)(δẐ) = F̂ (δẐ)− Â(Û)(δẐ) = 0 ∀δẐ ∈ X̂, (Primal problem),

L′
Û

(Û , Ẑ)(δÛ) = J ′(Û)(δÛ)− Â′
Û

(Û)(δÛ , Ẑ) = 0 ∀δÛ ∈ X̂, (Adjoint problem).

Using the main theorem from [6], we obtain:

Theorem 3.1. We have the error identity:

J(Û)− J(Ûh) =
1

2
ρ(Ûh)(Ẑ − Φ̂h) +

1

2
ρ∗(Ûh, Ẑh)(Û − Ψ̂h) +R(3)

h , (2)

for all {Ψ̂h, Φ̂h} ∈ X̂h × X̂h and with the primal and adjoint residuals:

ρ(Ûh)(Ẑ − Φ̂h) := −A(Ûh)(·) + F̂ (·),
ρ∗(Ûh, Ẑh)(Û − Ψ̂h) := J ′(Ûh)(·)− A′(Ûh)(·, Ẑh) + F̂ (·).

The remainder term is R(3)
h is of cubic order. This error identity can be used to define the error

estimator η, which can be further utilized to design adaptive schemes.
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Corollary 3.2 (Primal error). The primal error identity reads:

J(Û)− J(Ûh) = ρ(Ûh)(Ẑ − Φ̂h) +R(2)
h . (3)

3.3 Adjoint equation, discretization, and numerical solution

The adjoint equation reads: Find Ẑ = (ẑv, ẑu, ẑp) ∈ X̂ such that

J ′(Û)(Φ̂) = Â′
Û

(Û)(Φ̂, Ẑ) ∀Φ̂ ∈ X̂,

and the explicit form can be found in [56, 60].
For the discretization, we briefly mention that higher-order information for the adjoint so-

lution must be employed due to Galerkin orthogonality; in this work X̂h ⊂ X̂
(2)
h ⊂ X̂. For

simplicity, this is realized with global-higher order finite elements and in order to ensure again
inf-sup stability, we use Qc

4 elements for ẑv and ẑu, and Qc
2 elements for ẑp. It is clear that this

is an expensive choice. For the numerical solution, the same solvers as for the primal problem
are taken (see Section 2.2), namely a Newton-type method and sparse direct solver. Since the
adjoint problem is linear, Newton’s method converges in one step. This is a trivial information,
but for debugging reasons useful.

3.4 Localization

A PU localization [49] for stationary FSI reads:

Proposition 3.1. We have for the primal error part ρ(Ûh)(·) the a posteriori error estimate

|J(Û)− J(Ûh)| ≤ η :=
∣∣ M∑
i=1

ηi
∣∣ ≤ M∑

i=1

|ηi| (4)

where M is the dimension of the PU finite element space V̂PU (composed of Qc
1 functions χi)

and with the PU-DoF indicators

ηi = −A(Ûh)((Ẑ
(2)
h − ihẐ

(2)
h )Ψ̂i) + F̂ ((Ẑ

(2)
h − ihẐ

(2)
h )Ψ̂i)

= −(ρ̂f Ĵ(F̂−1v̂f · ∇̂)v̂f ), ψ̂
v
i )Ω̂f

− (Ĵ σ̂f F̂
−T , ∇̂ψ̂vi )Ω̂f

+ 〈ĝf , ψ̂vi 〉Γ̂N

− (F̂ Σ̂, ∇̂ψ̂vi )Ω̂s
− (σ̂mesh, ∇̂ψ̂ui )Ω̂f

− (d̂iv (Ĵ F̂−1v̂f ), ψ̂
p
i )Ω̂f

+ (ρ̂f Ĵ f̂f , ψ̂
v
i )Ω̂f

+ (ρ̂sf̂s, ψ̂
v
i )Ω̂s

with the interpolation ih : X̂
(2)
h → X̂h and the weighting functions are defined as

ψ̂vi := (φ
(2)
2h,v − φh,v)χi, ψ̂ui := (φ

(2)
2h,u − φh,u)χi, ψ̂pi := (φ

(2)
2h,p − φh,p)χi.

3.5 Adaptive algorithm

1. Compute the primal solution Ûh and the (higher-order) adjoint solution Ẑ
(2)
h on the present

mesh Th.

2. Evaluate |η| := |
∑

i ηi| in (4).

3. Check, if the stopping criterion is satisfied: |J(Û)− J(Ûh)| ≤ |η| ≤ TOL, then accept Uh
within the tolerance TOL. Otherwise, proceed to the following step.
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4. Mark all elements Ki for refinement that touch DoFs i with indicator ηi with ηi ≥ αη
Mel

(where Mel denotes the total number of elements of the mesh Th and α ≈ 1).
Alternatively, pure DoF-based refinement in i can be carried out.

4 NUMERICAL TESTS

In this section, we consider the FSI-1 benchmark [36] (see also the books [11, 10] and our
own former results [47, 58]) and the 2D-1 benchmark [50]. The drag value is taken as goal
functional. As previously mentioned, this paper is accompanied with a respective open-source
implementation on github5 based on the finite element library deal.II [1, 2] and our previous
fluid-structure interaction code [58], which is also available on github6.

4.1 FSI-1 benchmark

The configuration, all parameters, and reference values can be found in [36]. The refer-
ence value for computing the true error was computed on a five times refined mesh and is
1.5370185576528707e + 01 (see also in the provided github code). Our results from the file
dwr_results.txt are:

Dofs True err Est err Est ind Eff Ind

13310 2.58e-01 1.43e-01 4.37e-01 5.54e-01 1.69e+00

20921 9.00e-02 4.75e-02 1.60e-01 5.28e-01 1.77e+00

37874 3.20e-02 1.09e-02 5.96e-02 3.40e-01 1.86e+00

68754 1.84e-02 4.57e-03 2.77e-02 2.48e-01 1.51e+00

Furthermore, the terminal output yields

DisX : 2.2656126465725842e-05

DisY : 8.1965770448936843e-04

P-Diff: 1.4819455817646477e+02

P-front: 1.4819455817646477e+02

------------------

Face drag: 1.5351806985399641e+01

Face lift: 7.3933527637991259e-01

where Face drag represents the chosen goal functional. While the error reductions in the
True err J(Û) − J(Ûh) and the estimated error η are reasonable, the effectivity index Eff

has room for improvement. The indicator index Ind (for the definition see [49]) performs quite
well. The main reason for the intermediate effectivity indices might be the accuracy of the
reference value. Second, we notice that only the primal error part ρ (Corollary 3.2) was used.
As shown in our recent studies for quasi-linear problems, the adjoint error part ρ∗ might play
a crucial role in order to obtain nearly perfect effectivity indices for highly nonlinear problems
[18]. Graphical solutions of the primal solution, including the adaptively refined mesh, and the
adjoint solution are displayed in Figure 1.

4.2 Adaptation to flow benchmark 2D-1

The provided code can be adapted with minimal changes to the 1996 flow around cylinder
benchmark 2D-1 [50]. In the *.inp file the material ids for solid must be set to 0 (flow), and

5https://github.com/tommeswick/goal-oriented-fsi
6https://github.com/tommeswick/fsi
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Figure 1: FSI-1 benchmark: Primal solution of v̂x and adjoint solution ẑvx . The adaptive mesh is displayed
together with the primal solution (right).

the inflow and material parameters are adapted correspondingly. Of course, in this code, the
displacement variables are still computed despite that they are zero everywhere, which increases
the computational cost in comparison to a pure fluid flow code. Due to the zero displacements
û = 0, the ALE mapping is the identity, yielding F̂ = Î and det(F̂ ) = 1. Consequently, there
is no mesh deformation and the Navier-Stokes equations fully remain in Eulerian coordinates.
Here, extracting information from dwr_results.txt, the findings for the drag value as goal
functional are:

Dofs True err Est err Est ind Eff Ind

1610 3.51e-01 2.97e-01 6.20e-01 8.44e-01 1.76e+00

2586 8.80e-02 7.27e-02 2.21e-01 8.26e-01 2.51e+00

4764 1.89e-02 1.54e-02 7.11e-02 8.14e-01 3.75e+00

10830 3.23e-03 2.95e-03 1.82e-02 9.13e-01 5.62e+00

The pressure, drag (goal functional), and lift values are taken from the terminal output:

P-Diff: 1.1743527755157424e-01

P-front: 1.3213237901562136e-01

P-back: 1.4697101464047121e-02

------------------

Face drag: 5.5754969431700365e+00

Face lift: 1.0717678080199560e-02

These values fit well with the reference values given in [50]. Moreover, we observe very stable
effectivity indices, which indicate that the primal error estimator ρ (Corollary 3.2) is for incom-
pressible Navier-Stokes a sufficient choice. Indeed, using this part only, was already suggested
in early work [6, 9]. Finally, we notice that extensions to multiple goal functionals for the 2D-1
benchmark were undertaken in [17, 19].

5 CONCLUSIONS

In this work, we developed and implemented PU-DWR goal-oriented error control and spatial
mesh adaptivity for stationary fluid-structure interaction. An important part is the open-source
programming code published on github. As numerical example, the FSI-1 benchmark is chosen.
Therein, mesh adaptivity performs as expected and also the error reductions in the true error
and estimated error are good. However, the effectivity index may be improved. Extensions of
this work include inter alia the implementation of the adjoint error part ρ∗, local-higher order
interpolations for the adjoint rather than using global-higher order finite elements, parallel
iterative/multigrid linear solvers within Newton’s method, and a 3D implementation. The
latter is implementation-wise not difficult with deal.II’s dimension-independent programming,
but the linear solver becomes really important.
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[32] T. Grätsch and K.-J. Bathe. Goal-oriented error estimation in the analysis of fluid flows
with structural interactions. Comp. Methods Appl. Mech. Engrg., 195:5673–5684, 2006.

[33] N. Hagmeyer, M. Mayr, I. Steinbrecher, and A. Popp. Fluid-beam interaction: Capturing
the effect of embedded slender bodies on global fluid flow and vice versa, 2021.

[34] M. Heil. An efficient solver for the fully coupled solution of large-displacement fluid-
structure interaction problems. Comput. Methods Appl. Mech. Engrg., 193:1–23, 2004.

[35] J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries and flux and pres-
sure conditions for the incompressible Navier-Stokes equations. International Journal of
Numerical Methods in Fluids, 22:325–352, 1996.

[36] J. Hron and S. Turek. Proposal for numerical benchmarking of fluid-structure interaction
between an elastic object and laminar incompressible flow, volume 53, pages 146 – 170.
Springer-Verlag, 2006.

[37] T. Hughes, W. Liu, and T. Zimmermann. Lagrangian-Eulerian finite element formulation
for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg., 29:329–349, 1981.

[38] D. Jodlbauer, U. Langer, and T. Wick. Parallel block-preconditioned monolithic solvers
for fluid-structure interaction problems. Int. J. Num. Meth. Eng., 117(6):623–643, 2019.

[39] J. Kratzke. Uncertainty Quantification for Fluid-Structure Interaction: Application to
Aortic Biomechanics. PhD thesis, University of Heidelberg, 2018.

[40] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza. A reduced computational and geo-
metrical framework for inverse problems in hemodynamics. Int. J. Numer. Meth. Biomed.
Engrg., 29(7):741–776, 2013.

[41] M. Perego, A. Veneziani, and C. Vergara. A variational approach for estimating the
compliance of the cardiovascular tissue: An inverse fluid-structure interaction problem.
SIAM Journal on Scientific Computing, 33(3):1181–1211, 2011.

[42] C. Peskin. The immersed boundary method, pages 1–39. Acta Numerica 2002, Cambridge
University Press, 2002.

[43] M. Razzaq, H. Damanik, J. Hron, A. Ouazzi, and S. Turek. FEM multigrid techniques
for fluid-structure interaction with application to hemodynamics. Appl. Numer. Math.,
62(9):1156–1170, 2012.

[44] T. Richter. Goal-oriented error estimation for fluid–structure interaction problems. Com-
puter Methods in Applied Mechanics and Engineering, 223-224:28 – 42, 2012.

[45] T. Richter. A monolithic geometric multigrid solver for fluid-structure interactions in ale
formulation. International Journal for Numerical Methods in Engineering, pages 372–390,
2015.

[46] T. Richter. Fluid-structure interactions: models, analysis, and finite elements. Springer,
2017.

             265



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

[47] T. Richter and T. Wick. Finite elements for fluid-structure interaction in ALE and fully
Eulerian coordinates. Comp. Methods Appl. Mech. Engrg., 199:2633–2642, 2010.

[48] T. Richter and T. Wick. Optimal control and parameter estimation for stationary fluid-
structure interaction. SIAM J. Sci. Comput., 35(5):B1085–B1104, 2013.

[49] T. Richter and T. Wick. Variational localizations of the dual weighted residual estimator.
Journal of Computational and Applied Mathematics, 279(0):192 – 208, 2015.
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Abstract: Short-to-medium span simply-supported (SS) railway bridges are prone to experience
high levels of vertical acceleration due to train passage. The necessity of predicting accurately
their dynamic behaviour for design, safety and maintenance reasons, requires a deep under-
standing of the train induced vibrations in these structures. A key factor of this phenomenon
is the influence exerted by the ballast track on their dynamic response. This paper provides a
detailed sensitivity analysis over a single-track bridge catalogue covering lengths of interest from
10 to 25 m considering two different typologies, (i) girder-deck bridges and (ii) slab-deck bridges.
The effect of the vertical flexibility of elastic bearings is also analysed. A 2D Finite-Element
(FE) track-bridge interaction model is implemented with the aim to evaluate the influence of the
track parameters on the modal properties of the bridges and the dynamic response under train
passages. The results obtained reveal the influence of the ballast shear stiffness and damping in
the dynamic behaviour of the structures, especially in the case of the shortest girder bridges.

1 INTRODUCTION

In a context of an increasing demand of personal and freight mobility around the world,
railway systems have experienced a sustained development that projects them as a reliable
and sustainable way of transportation for the time to come. For this reason, dynamic effects
on railway bridges are considered of major interest and concern for scientists and engineers,
especially since the appearance of High Speed (HS) [1]. In this regard, short-to-medium span
(10 – 25 m) SS railway bridges are particularly prone to experience an excessive level of ver-
tical acceleration at the deck during train passage, due to its usually associated low mass and
structural damping, especially at resonance [2]. This could cause discomfort for the passengers,
flaws in the ballast layer, a rise in the maintenance service cost of the track and an increased
risk of derailment in the worst-case scenario. Train induced vibrations in railway bridges is
a rather complex interaction problem, which is affected by several factors. Apart from the
mechanical and geometrical properties of the bridge and the characteristics of the train, inter-
action mechanisms regarding the vehicle, the track and the soil may also affect the response
of the structure, which are currently under investigation [3]. In addition, the computational
cost of including these mechanisms is considerable, thus, simplified models that usually dis-
regard them are commonly used in engineering consultancies. This work is dedicated to the
investigation of the effect exerted by the ballast track on the vertical dynamic response of SS

https://doi.org/10.4995/YIC2021.2021.12220
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railway bridges. To this aim, the influence of the main track parameters on the bridge modal
properties and on the dynamic response due to train passage is evaluated. With this purpose,
a 2D FE track-bridge interaction model is implemented, where the track is represented using
a three-layer discrete model, based on the work by Zhai et al. [4]. The model is employed
to perform a sensitivity analysis over a bridge catalogue covering bridges of two different deck
typologies and for a selected range of lengths of interest from 10 to 25 m. In sections 2 and
3, the bridge catalogue is presented, and the numerical model is described. In section 4, the
results of dynamic analyses under train passage are included. Finally, in section 5, the main
conclusions are summarized.

2 BRIDGE CATALOGUE

The catalogue contemplates single-track railway bridges of span lengths that range from 10
to 25 m in 5 m intervals. For each length, two common deck typologies are considered: (i)
pre-stressed concrete girder decks; and (ii) voided or solid concrete slabs, or pre-stressed filler
beams encased in a concrete pseudo-slab. As for the vertical support of the decks, infinitely
rigid supports and elastic supports accounting for the vertical flexibility of neoprene bearings
are differentiated.

 M
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Figure 1: (a) Mass per span and (b) fundamental frequency of the bridges under study.

The main characteristics regarding the mass and the fundamental frequency of the bridges
are calculated according to the work presented by Doménech et al. [5], where an ensemble of
existing bridges of the considered typologies was studied. Fig. 1 shows for the 16 bridges of
the catalogue the total mass per bridge span and the fundamental frequency. For the girder
decks, the mass of the reported single-track existing bridges approaches the inferior limit.
Additionally, this corresponds to the worst-case scenario for the vertical acceleration criterion.
The fundamental frequency is selected as 50% of the difference between the Eurocode 1 (EC1)
simplified method limits for each length [6]. For the slab decks, the mass value is selected as
25% of the difference between the upper and the lower limits for each length. This corresponds
to an average value for the mass of existing single-track slab bridges. For the fundamental
frequency, the same criterion is applied, and the frequency is calculated as 25% of the difference
between the limits for each length. In addition, an elastically-supported (ES) version for each
bridge is also defined admitting that the ratio κ between the bridge bending stiffness and the
vertical stiffness of the bearings is approximately equal to 0.05, which leads to a reduction of
the fundamental frequency of 3-4% with respect to the SS case [7], as indicated in Eq. 1. In
this equation, EbiIybi stands for cross-section flexural stiffness of each section, K̄bi,dyn for the

             269



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

vertical dynamic stiffness of the elastic bearings and Lbi for the span length.

κ =
Ebi Iybi π

3

K̄n
bi,dyn L

3
bi

≈ 0.05 (1)

The mechanical properties of the bridges of the catalogue are shown in Tables 1 and 2, where
the data is expressed per bridge span. From left to right, the columns show the information
relative to the span length, Lbi, fundamental frequency, f1, total mass,Mbi, cross-section flexural
stiffness of the span section, EbiIybi, and the vertical dynamic stiffness of the elastic bearings
K̄bi,dyn, respectively. The last column stands for the identification code for each bridge, which
contains the typology, the type of support and the span length (e.g. GD-ES-10 stands for
girder-deck bridge, elastically-supported with 10 m of span length).

Lbi[m] f1[Hz] Mbi[t] EbiIybi[MN/m2] K̄bi,dyn[MN/m] ID
10 12.46 80.0 3.56·103 ∞ GD-SS-10

11.72 80.0 3.18·103 3.12·103 GD-ES-10
15 8.92 135.0 1.06·104 ∞ GD-SS-15

8.39 135.0 9.63·103 2.70·103 GD-ES-15
20 7.04 200.0 2.41·104 ∞ GD-SS-20

6.62 200.0 2.20·104 2.49·103 GD-ES-20
25 6.02 275.0 4.93·104 ∞ GD-SS-25

5.66 275.0 4.51·104 2.50·103 GD-ES-25

Table 1: Mechanical properties of the girder bridges.

Lbi[m] f1[Hz] Mbi[t] EbiIybi[MN/m2] K̄bi,dyn[MN/m] ID
10 10.22 177.5 6.63·103 ∞ SD-SS-10

9.62 177.5 6.06·103 4.67·103 SD-ES-10
15 7.12 281.3 1.66·104 ∞ SD-SS-15

6.70 281.3 1.53·104 3.59·103 SD-ES-15
20 5.52 395.0 3.32·104 ∞ SD-SS-20

5.19 395.0 3.05·104 3.03·103 SD-ES-20
25 4.76 518.8 6.41·104 ∞ SD-SS-25

4.48 518.8 5.95·104 2.96·103 SD-ES-25

Table 2: Mechanical properties of the slab bridges.

3 TRACK-BRIDGE INTERACTION MODEL

For the subsequent analysis, the discrete FE 2D track-bridge interaction model shown in
Fig. 2 is implemented. A three-layer discrete model for the track is configured, based on that
proposed by Zhai et al. [4], which couples a series of elastically or simply-supported bridge
spans. The track admits Ahlbeck hypothesis, so it can be assumed that the load transmitted
from each sleeper to the ballast has a cone distribution. In the proposed model, the rail
is represented with a Bernoulli-Euler (B-E) beam, where Er, Iyr, and mr stand for the rail
Young Modulus, cross-section moment of inertia with respect to the Y axis and linear mass,
respectively. Below, the vertical damping and stiffness of the rail pads (Cp, Kp), of the mobilized
ballast (Cb, Kb) and of the subgrade (Cf , Kf ) are included at the sleepers locations. The
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continuity and coupling effect of the interlocking ballast granules is also considered in the
model by means of spring-damper elements (Cw, Kw) that link relative vertical displacements
between adjacent ballast masses. Then, Msl and Mb stand for the mass of each sleeper and the
vibrating ballast mass under each support, respectively. Damping and stiffness on the bridge
deck (Cb

f , K
b
f ) are set to 0 and 100 · Kf , respectively, assuming that the ballast rests directly

on the bridge deck. The longitudinal interaction between the rails and the deck through the
ballast layer is disregarded in a first approach given the high flexural stiffness of the bridges.
As shown in Fig. 2, rail and track parameters are multiplied by a factor of two, as only one
rail is explicitly included in the model. The bridge is represented by means of Nsp simply or
elastically-supported B-E beams representing each span of the bridge. In the present paper,
Nsp is set to a value of 2, as two identical spans are considered for each bridge. The vertical
stiffness of the neoprene bearings is introduced by the constant equivalent vertical stiffness
K̄bi,dyn at each end section of the i-th bridge span. The parameters Lbi, Ebi, Ibi and mbi stand
for the length, Young Modulus, cross-section moment of inertia with respect to the Y axis and
linear mass of the i-th bridge span, respectively. Due to the presence of the continuous ballast
track, a weak interaction takes place between successive spans. In the simulations, a track
length of Lr,prev = 20 m is included before and after the bridge, which is considered sufficient
according to previous publications [8], corresponding to 33.3 times the sleeper distances. The
rail is discretized into two beam elements between consecutive sleepers, and so are the bridge
beams.

The train excitation is represented by means of a constant moving load model, which implies
that vehicle-structure interaction effects are neglected. In this sense, it is intended to isolate
the effect of the track components affecting the dynamic behaviour of the bridges to investigate
their influence separately. For the track parameters, an important dispersion has been found
among different publications. Based on a review presented by the authors in [9], the values
selected are shown in Table 3, expressed per rail seat. Mb, Kb and Kf are calculated with the
equations given in [4]. Data from the European [10] and Spanish Standards [12], and from
[11] are adopted for the rail, rail pads and sleepers properties. In the case of the ballast shear
stiffness and damping, the authors have found that most of the times these parameters are not
considered in track models. In the few cases where included, the majority of them adopted
those proposed in [4]. For this reason, in this work, these same values are employed, and its
influence is investigated. The model is implemented in ANSYS. For the computation of the
bridges response under passing trains (see section 4), mass, stiffness and damping matrices are
exported to MATLAB, and the equations of motion of the full model are integrated in the time
domain applying the Newmark-beta constant acceleration algorithm. The time step for the
numerical integration is set as the minimum between 1/50 times the smaller period of interest
and 1/20 times the load travelling time between two consecutive sleepers.

4 SENSITIVITY ANALYSIS: MODAL PROPERTIES AND VERTICAL AC-
CELERATION

This section presents the results for the sensitivity analysis regarding the influence of the
track properties on the dynamic behaviour of the bridges. The authors have found that the
only parameters that affect significantly the modal properties of the bridges at low frequencies
are the ballast shear stiffness and damping (Kw, Cw). In this sense, Zhai et al. [4] pointed
out their great influence on the dynamic behaviour of the track too. Thus, in what follows,
individual variations of these track parameters are considered to evaluate how this impacts the
modal properties and the vertical acceleration on the bridge deck under train passages. It is
also intended to determine what bridges are the most affected by these variations.
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Figure 2: Track-bridge interaction model.

4.1 Influence of Kw on the bridge modal parameters

In this section the influence of the ballast shear stiffness on the bridge frequencies is evaluated.
To this aim, the first, third and fifth longitudinal bending modal frequencies are calculated
under individual variations of Kw. Fig. 3 shows the results for all the bridges in the catalogue,
grouped per bridge length. Each plot shows the variation in the natural frequency fi for i =
1, 3, 5 when factors [0.0, 0.5, 1.0, 1.5, 2.0] multiply the nominal value of Kw (Table 3) with
respect to the nominal case. From the results obtained, the following is observed:

• Natural frequencies increase with Kw. Bridges with shorter spans in a certain typology
are more affected with the variation of this parameter.

• The fundamental frequency f1 corresponding to the first longitudinal bending mode is
significantly more affected than higher frequencies. The effect of Kw reduces with the
frequency number.

• Regarding the typology, girder bridges, with lower longitudinal bending stiffness, are
affected to a higher extent than slab bridges.

• As per the bridge supports, bridges on elastic supports are slightly more affected by Kw

variations than rigidly supported bridges. Nevertheless, the difference is not significant,
especially for modes higher than the fundamental one.

These results are consistent in all the considered bridges. From the sensitivity analysis it is
concluded that regarding the modal parameters, short-span elastically-supported girder bridges
are the most sensitive ones to the value of Kw. On this matter, the maximum variations for the
frequency obtained for the first, third and fifth modes are 20%, 6% and 3%, respectively, for the
shortest bridge considered (GD-ES-10), and 10%, 3% and 1.5% for the longest one (GD-ES-25).

4.2 Influence of Kw and Cw on the deck vertical acceleration due to train passage

The influence of Kw and Cw on the vertical acceleration at the bridge deck under train
passages is investigated in this section. To this aim, several dynamic analyses are carried out on
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Notation Parameter Value Unit Reference
Er Rail UIC 60 elastic modulus 2.100 · 1011 Pa [10]
Iyr Rail UIC 60 moment of inertia 3038.3 · 10−8 m4 [10]
mr Rail UIC 60 mass per unit of length 60.21 kg/m [10]
Kp Rail pad vertical stiffness 1.000 · 108 N/m [11]
Cp Rail pad damping 7.500 · 104 Ns/m [4]
Msl Sleeper mass 300 kg [12]
Dsl Sleeper distance 0.600 m [12]
le Half sleeper effective supporting length 0.950 m [4]
lb Sleeper width 0.300 m [12]
α Ballast stress distribution angle 35 ◦ [4]
hb Ballast thickness 0.300 m [12]
ρb Ballast density 1800 kg/m3 [4]
Mb Ballast vibrating mass 317.910 kg [4]
Eb Ballast elastic modulus 1.100 · 108 Pa [4]
Kb Ballast vertical stiffness 1.933 · 108 N/m [4]
Cb Ballast damping 5.880 · 104 Ns/m [4]
Ef Subgrade K30 modulus 9.000 · 107 Pa/m [4]
Kf Subgrade vertical stiffness 7.399 · 107 N/m [4]
Cf Subgrade damping 3.115 · 104 Ns/m [4]
Kw Ballast shear stiffness 7.840 · 107 N/m [4]
Cw Ballast shear damping 8.000 · 104 Ns/m [4]

Table 3: Bridge-track interaction model parameters, per rail seat.

the GD-ES-10 bridge under the circulation of HSLM-A1 Universal Train presented in the EC1.
Only this bridge is selected for the sake of conciseness and for being the most influenced one
by the ballast shear stiffness and damping properties. The acceleration response is calculated
for the HSLM-A1 train in the range of velocities [40, 117] m/s (e.g. [144, 420] km/h) every
1 m/s at a quarter, mid-span and three quarters of both spans. A 3rd order Chebyshev filter
is applied to the response in order to filter contributions below 1 Hz and above 60 Hz. Then,
maximum response envelopes are obtained for each speed. The following individual variations
of the track parameters are imposed: [0.0, 0.5, 1.0, 1.5, 2.0] · Kw and [0.5, 1.0, 1.5, 2.0] · Cw.
Also, Rayleigh damping is assumed according to EC1 for pre-stressed concrete bridges as 1.7%
for the GD-ES-10 bridge. This ratio is applied on the first and fifth natural frequencies.

In Fig. 4 (a-b), an envelope of the maximum acceleration response at the bridge deck is
represented at the most critical section which corresponds to the center of the second span.
The maximum acceleration level is not relevant as an unrealistically high design velocity is
considered in order to capture low order and clear resonances of the bridge. Also, and in order
to visualize how the variation of Kw and Cw affects the bridge response in different situations,
the acceleration time-history at the same section is represented for three different velocities. In
this way, the analysis is started with the second resonance speed of the first mode (e.g. j = 2,
n = 1 in Eq. 2, according to [13]), which is equals to 380 km/h (see Fig. 4 (c-d)).

V r
nj =

dk
j Tn

=
dk ωn

2πj
(2)

In the previous equation, dk stands for the characteristic distance of the HSLM-A1 train (18
m), Tn is the n-th natural period of the bridge and j the resonant order. Following that, the
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Figure 3: Influence of the variation of Kw in f1, f3 and f5 with respect to the frequency in the nominal case.

response is computed at 324 km/h, far both from resonance and from cancellation of resonance
(see Fig. 4 (e-f)). Finally, it is determined for a speed near a cancellation of resonance condition,
given by Eq. 3, in agreement with [13]:(

Lbi

dk

)c

nji

=

(
λn

nπ

)2
n

2jKc
ni

, n, j, i ≥ 1 (3)

In this way, when the relation Lbi/dk between the length of each span and the characteristic
distance of the train approaches the i-th cancellation ratio given by Eq. 3, the cancellation of
the resonance is produced, and the vibration level gets significantly attenuated. For the case of
the GD-ES-10 bridge associated to the circulation of the HSLM-A1 train, the third resonance
speed of the first mode, equal to 253 km/h, approaches the first (Lbi/dk)

c
nji theoretical condition

of cancellation for this resonance (e.g. j = 3, n = 1, i = 1, respectively), although it is not
coincident (the difference is approximately 15%). Nevertheless, the phenomenon is visible,
leading to a quite reduced resonant peak. These results are shown in Fig. 4 (g-h). In summary,
the subsequent observations can be made:

• An increase in Kw leads to a rise in the resonant velocities, in the same proportion that
the resonant frequency is modified by this parameter (in this particular case, neglecting
or doubling Kw entails variations of -17.4% to +9.3% of the resonant velocity for the
nominal case). This affects similarly different order resonances.

• For the range of Kw values considered, resonance at a certain speed may or may not take
place depending on Kw (see Fig. 4(c-e)).

• Regarding the effect of the ballast shear damping, it is only relevant at resonance, leading
to a pronounced reduction of the acceleration response. In this particular case, if Cw is
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doubled with respect to its nominal value, the vertical acceleration reduces by a 26%.
The effect of this parameter on the second resonant peak (V = 380 km/h) is much higher
than the effect on the third one (V = 253 km/h). Nevertheless, this last peak is close to
cancellation and no conclusions can be extracted in this regard.

• Finally, for the resonance speed approaching the cancellation conditions, a very signifi-
cant attenuation of the acceleration level is observed with a small influence of the track
parameters.

5 CONCLUSIONS

The longitudinal coupling effect exerted by the continuity of the ballasted track in single-
track railway bridges composed by several isostatic consecutive spans is evaluated in this work.
Specifically, the influence of the ballast shear stiffness and damping in the modal parameters and
vertical acceleration under train passages is investigated. In the first place, a bridge catalogue
considering short-to-medium span lengths and two common bridge deck typologies has been
prepared. Then, a sensitivity analysis has been performed by means of a 2D FE track-bridge
interaction model. Individual variations of the track parameters have been imposed in order to
study their influence on the dynamic behaviour of the bridges. The main conclusions for this
work are summarized as follows:

• In the discrete track model presented, the ballast shear stiffness and damping are the
parameters that affect the most the bridge response in the frequency range of interest.
The influence of the remaining parameters is negligible compared to these two.

• Regarding the modal parameters of the bridges, Kw exerts a notable influence on them,
which is stronger in shorter bridges. When it comes to the typology, girder-deck bridges
are the most affected due to their initially lower bending stiffness. The correlation with
the flexibility of elastic supports is minor.

• With respect to the vertical acceleration level caused by the passage of a train, it is found
that the effect of Kw and Cw is significant, especially at resonance. In particular, an
increment of Kw leads to an important rise in resonant velocity, while an increment of
Cw results into a reduction of the resonant acceleration amplitude. The effect of Cw far
from resonance is negligible. These results are consistent, since, higher Kw values lead to
an increase on the natural frequencies, especially of the fundamental one and in the case
of short flexible structures.

• Future investigations are required in order to understand completely the influence of
these shear parameters. It is also needed to find clear ways to determine their value,
since their influence on the dynamic behaviour of railway bridges is significant and the
information about it found in the literature is scarce. Experimentally appraised values for
these parameters could be quite useful in the case of using discrete track models, which
is a reasonable solution permitting solving the dynamic equations of motion in the time
domain performing a full analysis in a reasonable amount of time.
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Abstract: A significant number of railway bridges composed by simply-supported (SS) spans
are present in existing railway lines. Special attention must be paid to short to medium span
length structures, as they are prone to experience high vertical acceleration levels at the deck,
due to their low weight and damping, compromising the travelling comfort and the structural
integrity. The accurate prediction of the dynamic response of these bridges is a complex issue
since it is affected by uncertain factors such as structural damping and complex interaction
mechanisms such as vehicle-bridge, soil-structure or track-bridge interaction.

Concerning track-bridge interaction, experimental evidences of a dynamic coupling exerted by
the ballasted track between subsequent SS spans and also between structurally independent single-
track twin adjacent decks have been reported in the literature. Nevertheless, this phenomenon
is frequently disregarded due to the computational cost of models including the track and due to
the uncertainties in the mechanical parameters that define the track system.

The present work contributes to the study of the coupling effect exerted by the ballasted track
in railway bridges composed by SS adjacent decks. With this purpose a 3D finite element (FE)
track-bridge interaction model is implemented with a continuous representation of the track
components meshing the sleepers, ballast and sub-ballast with solid FE.

The numerical model is updated with experimental measurements performed on an existing
railway bridge in a view to evaluate (i) the influence of the track continuity on the bridge modal
parameters and (ii) the adequacy of the implemented numerical model.

1 INTRODUCTION

The ballasted track in railway bridges distributes the axle loads from the rails to the struc-
ture, acts as a high-frequency filter and introduces a restraining effect at the end sections [1].
In addition, experimental evidences of load and vibration transfer mechanisms between consec-
utive spans or adjacent SS decks sharing a continuous ballasted track have been reported over
the last years [1, 2]. A vast description of different ballast models developed by researchers
in the analysis of train-induced vibrations may be consulted in Reference [3]. These models
fall into two main categories: discrete and continuous models. In discrete models the rail dis-
placement is connected to the bridge deck through a set of spring, damper and lumped mass
elements generally defined at the sleepers positions that represent the stiffness, damping and
mass of the different track components (sleepers, railpads, ballast and sub-ballast), while the

https://doi.org/10.4995/YIC2021.2021.12283
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rail is modelled as a continuous beam. From this basis, 2D and 3D representations of the track-
bridge interaction have been reported in the scientific literature for different applications [4, 5].
Discrete models are conceptually simple and require less computational effort than continuous
models. However they neglect potentially relevant aspects, such as the bending coupling be-
tween consecutive SS spans associated to the separation of the ballast and rails from the centre
of gravity of the deck cross section and the contribution of the ballast bed to the global deck
stiffness.

Continuous track models permit considering the composite action between the track and the
bridge associated to the transmission of shear stress between the deck and the rails through the
ballast. In these models, the ballast is generally considered as a continuum and is discretised
into solid FE [6], admitting elastic and isotropic constant material properties. Additionally, in
the ballast regions located at the joints between consecutive spans or decks, a few researchers
propose the use of degraded material properties to take into account the possible loss of stiffness
of the ballast due to the cyclic movement caused by passing trains [7]. In these works, the degra-
dation is accomplished by reducing the elastic modulus of the general ballast. More refined
techniques including the heterogeneous and granular nature of the ballast, such as the Dis-
crete Element Method, are applied for the analysis of settlement and degradation under cyclic
loading [8] but they require enormous computational resources which make them unfeasible for
application.

The models for ballasted tracks require a significant number of parameters which are highly
uncertain. Therefore, a better understanding of their influence is needed in bridge engineering
to develop more realistic and adequate numerical tools that, at the same time, do not fall into
inadmissible computational costs. In this regard the performance of experimental campaigns
on bridges, the development of appropriate calibration methodologies and the experimental-
numerical validation becomes crucial. However, the number of reported field measurements per-
formed on multi-span SS viaducts or bridges composed by adjacent decks only coupled through
the ballast is scarce to derive general conclusions. Rebelo et al. [1] performed experimental tests
on some single-span ballasted railway bridges composed by two adjacent single-track slabs and
pointed out the existence of a coupling effect exerted by the shared ballast, which was especially
relevant in skewed decks.

In the present work, the authors analyse the coupling effect of the ballasted track taking as
starting point Old Guadiana Bridge, a representative railway bridge from a conventional railway
line in Spain. The bridge is composed by two identical SS spans and two structurally indepen-
dent but adjacent single-track decks. A clear dynamic coupling between the spans attributable
to the track continuity, and also between the adjacent decks through the shared ballast layer
was detected during experimental tests [9]. This work aims to assess the extent of track-bridge
interaction effects in such bridges and the key parameters affecting the dynamic coupling be-
tween structurally independent parts. With this purpose a 3D FE model is implemented. A
degraded type of ballast with elastic anisotropic behaviour is assumed for the regions between
subsequent spans or adjacent decks. Finally, the model is updated to reproduce the modal
properties identified experimentally.

2 BRIDGE DESCRIPTION

The structure under study is a double-track bridge that belongs to the conventional railway
line Madrid-Alcázar de San Juan-Jaén in Spain. It is composed by two identical SS spans of
11.93m length between supports centres. The horizontal structure is formed by two adjacent
but structurally independent single-track decks. Each deck is made of a reinforced concrete
slab of 0.25 m thickness resting on five pre-stressed concrete girders. The decks are weakly
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connected along their longitudinal border through the ballast. Each track is conformed by
Iberian gauge UIC60 rails and mono-block concrete sleepers separated 0.60 m [10]. A total
ballast thickness “hb” of 0.45 m is assumed. Underneath the sleepers, the ballast thickness is
0.34 m in accordance with current Spanish regulations [11]. The bridge substructure consists
of two external abutments and one central support, and the girders rest on them through
laminated rubber bearings.

On May 2019 the response of the bridge was measured to characterise the modal parameters
and the dynamic response under operating conditions. Eighteen accelerometers were installed
underneath the girders and the vertical response was measured under ambient vibration and
several train passages. The accelerometers were installed at points 1 to 18 as indicated in Fig.
1. For details of the experimental campaign the reader is referred to Reference [9].
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Figure 1: Sensors layout.

Notice that the number of sensors installed was limited, especially in the second span. As
a result, the five modes shown in Fig. 3 in red trace (lines and crosses) were identified. The
lowest one in frequency order corresponds to the first longitudinal bending mode of each span.
The second mode was associated to the combined first torsion mode. In the third mode, the
two adjacent decks conform a first transverse bending mode. The fourth and fifth modes were
identified as in-phase torsional deformation mode and to the transverse bending mode of each
deck, respectively. Fig 3 also provides their natural frequencies (f exp) and modal damping
ratios identified from ambient vibration (ξexp).

3 NUMERICAL MODEL

A 3D continuous track-bridge interaction model of the complete bridge is implemented in
ANSYS. The model includes the structure and 15 m of track extension over the embankment
before and after the bridge (Fig. 2). The slabs and girders of the bridge are discretised
with shell FE, while the laminated rubber bearings with solid FE. The elastic modulus of
the bearings was previously calibrated in order to reproduce the experimental static deflection
measured during the load test proof of the bridge performed in 2005 [12]. Concerning the track
plattform, the sleepers, ballast and subgrade layer are modelled with solid FE. For the rails,
Timoshenko beam FE are used, which are connected to the sleepers thorugh the rail pads,
considered as discrete spring-dashpot elements. Finally, the handrails are included as lumped
masses uniformly distributed along the two external borders of the deck.

An optimisation iterative procedure implemented in ANSYS-MATLAB is performed to min-
imize an objective function which involves the differences in the predicted and measured natural
frequencies and MAC values for the five modes identified from ambient vibration. Based on a
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preliminary sensitivity analysis, the optimisation parameters were selected. Successive model
samples are generated from variations of these parameters within reasonable limits with re-
spect to nominal values extracted from the project information, scientific literature and current
standards. Table 2 shows the main model parameters used in the numerical idealisation of
Old Guadiana bridge. Among them, the selected optimisation parameters are those for which
variation ranges are provided. In the cited table the following nomenclature is used: E, ν and
ρ stand for the elastic modulus, Poisson’s ratio, and mass density, respectively. Also, X, Y
and Z refer to the longitudinal direction (parallel to the track), transverse and vertical direc-
tions, respectively. Concerning the track components, the spring-dashpot discrete properties of
the rail pads (Kp and Cp) are provided. The main ballast presents isotropic elastic properties
(Eb and νb identical in the three directions). The degraded ballast behaviour is considered as
transversely isotropic material with elastic constants expressed as EbI , GbIJ and νbIJ , where I
and J refer to the spatial directions X, Y and Z. This material is unequivocally defined by
five independent constants:

EbX = EbY EbZ GbXZ = GbY Z νbXY νbXZ = νbY Z (1)

In Eq. 1, EbX = EbY are the in-plane elastic moduli, EbZ and GbXZ = GbY Z the out-of-plane
elastic and shear moduli, respectively, and νbXY and νbXZ = νbY Z the Poisson’s ratios.
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Figure 2: 3D numerical model: detail of one span and track extension.

The experimental and paired numerical mode shapes of the calibrated model are represented
in Fig. 3, where the numerical frequency fnum is also provided for each paired mode. Table
1 shows the results of the model calibration in terms of frequency differences, calculated as
e100% = (f exp − fnum)/f exp × 100 and MAC numbers.

Table 1: Frequency differences and MAC numbers of the paired modes after calibration.

Mode (i) 1 2 3 4 5

e100% [-] 0.47 -3.17 5.37 -2.05 -9.75
MAC [-] 0.94 0.89 0.97 0.93 0.75

As can be seen in Fig. 3, the second and third modes, which are more affected by the con-
tinuity of the ballasted track between adjacent decks, are predicted with frequency differences
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lower than 5.5%. Also their MAC numbers exhibit a satisfactory correlation with the mea-
surements, with values close to 0.90 or even above. As it is shown, the correspondence of the
fifth numerical mode with the experimental measurements is less accurate, even though very
reasonable considering the limited number of sensors available in the experimental campaign
for the identification of high frequency modes.

Figure 3: Experimental modes identified (lines path) and calibrated solution (surface)

4 SENSITIVITY ANALYSIS

4.1 Evolution of modal parameters with the thickness of the ballast layer

In this subsection the influence of the thickness of the ballast layer on the modal numerical-
experimental correspondence is evaluated. Fig. 4 shows the MAC and e100% values for the
paired numerical modes under variations of the ballast thickness hb in the range [0.3 – 0.7]m.
Experimental frequencies and modal shapes (Fig. 3) are always used as reference values in
what follows. The same thickness is assumed for both the main and the degraded ballast
regions, based on in situ observations. The rest of the model parameters are kept unmodified
and equal to their final updated values. In order to be able to separate the effect of the added
mass and the added stiffness that the increase of hb entails, two different results are provided.
First, the total ballast mass is kept invariable, therefore, as hb increases, the ballast density is
modified accordingly and only the extra stiffness affects the results (dashed trace); Secondly,
as hb increases, the ballast density is kept unmodified and equal to its updated final value (and
the ballast mass increases proportionally), i.e, both the ballast added mass and stiffness are
taken into account (continuous trace). In the plots a black dashed horizontal line indicates a
zero difference between the numerical and experimental natural frequencies and a black vertical
dash-dot line points out the calibrated value of the elastic property.

From the analysis of the previous figures it can be observed that the fundamental frequency is
the one most affected by hb, leading to a reduction of the numerical frequency as a consequence
of the added mass. Its mode shape alteration is negligible as it also is the contribution of
the ballast added stiffness. The second (first torsion) mode evolution follows a similar trend,
but the numerical frequency reduction is smaller and the effect of the added stiffness is higher
when compared to the previous mode. It can also be observed that the natural frequency of
the third (transverse bending) mode increases with the thickness of the ballast layer due to
the predominant effect of the added stiffness, however its mode shape is only slightly modified.
The influence of the ballast thickness on the fourth (second torsion) mode is negligible, but
the MAC number reduces remarkably. Finally, the fifth (second transverse bending) mode
frequency reduces slightly as the height of the ballast layer increases, and its mode shape
remains unaltered.
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Figure 4: Modal parameters variation in terms of ballast thickness hb. Dashed trace: constant
ballast mass; Continuous trace: constant ballast density.

4.2 Evolution of modal parameters with degraded ballast elastic properties

Finally, a sensitivity analysis is performed in order to analyse the influence of the degraded
ballast parameters on the frequency differences and MAC numbers of the paired modes. The
parameters that are investigated are the elastic modulus in the vertical direction (Fig. 5 ), the
elastic modulus in longitudinal and transverse directions (Fig. 6 ) and the independent shear
moduli (Fig. 7 ). These parameters are modified and applied to the degraded ballast along the
longitudinal shared border between the adjacent decks and along the transverse shared border
between the two spans, separately. In all the cases, the model parameters are kept equal to
their final updated value, except for the one that is modified.

In Fig. 5a the MAC and frequency difference e100% are represented versus EbZ of the degraded
ballast along the shared border between the adjacent decks that conform each bridge span, for
the five paired modes. In Fig. 5b, the same quantities are represented but the degraded ballast
property EbZ is modified only along the transverse border between the spans. Similarly, in Figs.
6a and 6b and in Figs. 7a and 7b the same type of representations are included for the elastic
modulus in the horizontal directions EbX = EbY and for the shear modulus in the XZ and
Y Z planes GbXZ = GbY Z , respectively. As in Fig. 4, black dashed horizontal and vertical lines
indicate, respectively, zero frequency difference and calibrated value of the model parameter.

From the analysis of the previous figures it can be concluded that the first longitudinal
bending mode is the one least affected by the degraded ballast elastic properties. For an
acceptable calibration of the frequency of the first torsion mode the elastic modulus in the
horizontal directions EbX = EbY must be substantially lower than the vertical elastic modulus
EbZ (no higher than 20% of EbZ), both along the longitudinal and the transverse borders. The
MAC of the torsion mode is the most affected by the value of the shear modulus in the XZ and
Y Z planes, GbXZ = GbY Z . Both the MAC number and frequency difference for this mode evolve
in a similar way for variations of this parameter along both the longitudinal and the transverse
borders. The third (first transverse bending) mode is the one most affected by the degraded
ballast elastic properties. In this case the frequency difference increases with the reduction of
EbZ between the adjacent decks. This effect is also observed for the fourth mode. Nevertheless,
the influence of this parameter is not very significant. A minimum value of the elastic modulus
in the horizontal directions EbX = EbY , both between the adjacent decks and consecutive spans
is needed to reproduce the experimental third mode, opposite to what happens with the torsion
mode. For values higher than 4× 107 Pa along the longitudinal border, the model becomes too
rigid and the frequency difference is unacceptable. That is not the case for the degraded ballast
between the spans. As for the shear modulus GbXZ = GbY Z , the value of this parameter does
not affect much the MAC of the third mode but the frequency correspondence improves with
the increase of this property. As for the fourth (second torsion) mode the influence of the
degraded ballast elastic properties between the two spans is almost negligible. In this case the
ballast zone affecting the most is GbXZ = GbY Z of the degraded ballast between adjacent decks.
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Both, the MAC and frequency difference reduce as this parameter increases. For an accurate
prediction of the bridge behaviour a compromise should be found regarding the shear modulus
between the second, third and fourth modes, as it affects in opposite ways the modal residuals.
Finally, the fifth (second transverse bending) is not affected by either the vertical modulus of
elasticity EbZ or the horizontal one EbX = EbY along either of the two edges of the deck. The
only parameter affecting this mode is the shear modulus GbXZ = GbY Z of the degraded ballast
between spans, which increase leads to a slight improvement in the MAC number.
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(b) EbZ variations along the transverse border between spans.

Figure 5: Influence of EbZ on the natural frequencies and MAC values.
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(a) EbX = EbY variations along the longitudinal border between adjacent decks.
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(b) EbX = EbY variations along the transverse border between spans.

Figure 6: Influence of EbX = EbY on the natural frequencies and MAC values.
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(a) GbXZ = GbY Z along the longitudinal border between adjacent decks.
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(b) GbXZ = GbY Z variations along the transverse border between spans.

Figure 7: Influence of GbXZ = GbY Z on the natural frequencies and MAC values.

Table 2: Initial and final properties value for track and bridge superstructure.

Bridge
component

Notation
Initial
value

Calibration
range

Calibrated
value

Unit

Rail pad
Kp 1.00 · 108 - 1.00 · 108 N/m
Cp 7.50 · 104 - 7.50 · 104 Ns/m

Ballast
hb 0.34 - 0.34 m
Eb 1.10 · 108 - 1.10 · 108 Pa
νb 0.3 - 0.3 -
ρb 1800 [−30, 30]% 1584 kg/m3

Degraded
ballast

EbX=EbY 1.10 · 108 [−89, 0]% 12.10 · 106 Pa
EbZ 1.10 · 108 - 1.10 · 108 Pa

GbY Z=GbXZ 4.58 · 107 [−89, 0]% 2.29 · 107 Pa
νbXY=νbY X 0.2 - 0.2 -
νbXZ=νbY Z 0.2 - 0.2 -

ρb 1800 [−30, 30]% 1584 kg/m3

Handrail mb 50 - 50 kg/m

Girders
Eg 3.60 · 1010 [−30,+45]% 4.82 · 1010 Pa
νg 0.3 - 0.3 -
ρg 2500 [−30,+30]% 2504 kg/m3

Slabs
Es 3.60 · 1010 [−30,+35]% 3.10 · 1010 Pa
νs 0.3 - 0.3 -
ρs 2500 [−40,+40]% 2480 kg/m3

Elastic
bearings

Eeb 2.39 · 108 - 2.39 · 108 Pa
νeb 0.2 - 0.2 -
ρeb 1230 - 1230 kg/m3
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5 CONCLUSIONS

In this work the dynamic response of railway bridges composed by SS spans and adjacent
single-track decks weakly connected through the ballasted track is investigated. The main aim
is to assess the extent of track-bridge interaction effects in such bridges and the key parameters
affecting the dynamic coupling between structurally independent parts. With this purpose a
3D FE model is implemented. A degraded type of ballast with elastic anisotropic behaviour is
assumed at the regions between subsequent spans or adjacent decks to consider the potential
degradation of the ballast due to the relative vertical movements under train passages. The
model is updated with experimental results and the main ballast properties affecting the decks
coupling are identified and evaluated by means of sensitivity analyses. The following conclusions
are derived:

• The updated numerical model is able to reproduce the first five natural frequencies and
mode shapes identified experimentally with an average error in the frequencies close to 4%
and an average MAC of 0.9, and with a remarkably good correspondence in the particular
case of the first longitudinal bending, third transverse bending and fourth second torsion
modes.

• In order for the model to reproduce experimental modes higher than the second one,
it is essential to consider the coupling effect of the ballast layer, especially between the
adjacent decks.

• The predicted natural frequencies and mode shapes are not affected by the degraded
ballast elastic modulus between spans in the vertical direction, Ebz.

• The first longitudinal bending mode is the one least affected by the degraded ballast
elastic properties. In order to obtain a good prediction of the second (first torsion) mode
natural frequency the ballast elastic moduli EbX = EbY should be significantly smaller
than the vertical elastic modulus Ebz.

• The third mode (first transverse bending mode) is the one most affected by the degraded
ballast elastic properties. A minimum value of the elastic modulus in the horizontal
directions EbX = EbY is needed to reproduce the experimental third mode.

• As per the fourth mode, the most relevant parameter is the shear modulus in the vertical
planes GbXZ = GbY Z of the degraded ballast between the decks. Both, the MAC and
frequency error reduce as this parameter increases.

• The fifth mode is only affected by the shear modulus GbXZ = GbY Z between the two
spans. The MAC number improves as it becomes stiffer.

• Regarding the thickness of the ballast layer, the added stiffness associated to a thicker
ballast layer does not affect the fundamental mode. This effect is particularly relevant in
the case of the third mode, leading to an important increase in its natural frequency.
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Abstract: FastSim is the most widely used tangential contact method due to its accuracy
and computational efficiency. However, its use is limited to elliptic contact areas, as it needs
results from Kalker’s Linear Theory, a Hertzian contact theory, to obtain the so-called elastic
parameters. This makes FastSim unable to face some of the current railway challenges, such as
wear, corrugation, Rolling Contact Fatigue (RCF), wheel flats, etc. Taking this limitation into
account, in the present work, an alternative methodology to Kalker’s Linear Theory is proposed,
which will enable FastSim to deal with non-Hertzian conditions.

1 INTRODUCTION

Solving the tangential wheel-rail contact problem is always complex. Depending on the ap-
plication, a trade-off between accuracy and computational cost is required. The most accurate
tangential contact model existing is CONTACT [1, 2], but, because of its high computational
cost, it is mainly used as a reference theory for validation. In railway dynamics simulation,
simplified contact theories [3, 4, 5, 6] are usually required. These theories are much more
computationally efficient, although they are less accurate. Among all the simplified theories,
the most widely used is FastSim [6], due to its high-level performance and accuracy, and its
ability to predict tangential stresses distribution and the stick-slip boundary [7]. FastSim is a
contact theory that assumes that the surface displacements on a point are only related to the
tangential stress on that point through the so-called elastic parameters [8]. To obtain these
parameters, creep forces resulting from the full adhesion solution [8] (simplified contact theory
which assumes adhesion over the entire contact area) are equalled to the ones obtained through
Kalker’s Linear Theory (KLT) [9] (exact contact theory but limited to Hertzian contact condi-
tions). It is this limitation which has led various authors to find alternative methods to obtain
these elastic parameters under non-Hertzian contact conditions [8, 10, 11], and so, to be able to
extend FastSim validity to non-elliptic contact areas. The elastic parameter calculation under
non-Hertzian condition has been carried out according to two different approaches [11]: a first
approach, based on associating the contact area to one or several equivalent ellipses [12, 13];
and a second approach, in which, for each particular contact geometry, elastic parameters are
obtained by solving the exact contact problem [8, 10]. Despite the methods based on the sec-
ond approach are quite more accurate, their computational cost is much higher than the ones
based on the first approach. That is the reason why equivalent ellipse based methods are used
nowadays to study the influence of the non-Hertzian contact in actual railway vehicle dynamics
[14, 15], as well as in complex tangential contact phenomena, such as wear [16, 17], Rolling
Contact Fatigue (RCF) [18], wheel out-of-roundness [19, 20], etc.

In the present work, an alternative tangential contact model to KLT which allows the elastic
parameters calculation under non-Hertzian hypothesis is proposed. This model derives from
Kalker’s Variational Theory [8], to which steady-state and full adhesion hypothesis are imposed.

https://doi.org/10.4995/YIC2021.2021.12313
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Since the exact contact is solved to obtain the elastic parameters using this model, it is included
within the second approach described above. Nevertheless, this model presents some advantages
compared to existing alternatives [8, 10], as its resolution is not iterative, nor stress solutions
are approximated to any polynomic function. These advantages make this model more suitable
to face the new railway challenges, as the ones listed above.

The mathematical model of this work is developed in Section 2. In Section 3, the accuracy
of the proposed contact model is analysed, when results are compared to the ones obtained
with KLT on elliptic contact areas. Finally, in Section 4, according to presented results, the
contribution of this work is concluded and justified.

2 MATHEMATICAL MODEL

In the present work, a mobile reference frame X1X2X3 is assumed, with origin at the the-
oretical contact point, and it moves with it as the vehicle travels along the track. X1 axis is
parallel to the rolling direction, X3 axis is normal to the contact, being positive to the wheel,
and X2 axis corresponds to the lateral direction in order to form a right-handed rectangular
frame, as it is shown in Figure 1.

Figure 1: Mobile reference frame X1X2X3 at the theoretical contact point between rail (green)
and wheel (blue).

As it is done in Kalker’s Variational Theory [8], the kinematic equation that relates the rigid
body displacements of the bodies in contact with the slip velocities and the elastic deformations
can be written

s = w + 2
Du

Dt
= w + 2

∂u

∂t
+ 2V

∂u

∂x1
, (1)

where s are the local slip velocities, u are the displacements related to the elastic deformation
of the bodies in contact, V is the vehicle speed, and w are the velocities associated to the
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undeformed configuration, which can be calculated from the creepages [8]. Assuming the steady-
state hypothesis

(
∂
∂t

= 0
)

and the full adhesion hypothesis (s = 0), Eq. (1) re-writes

w = −2V
∂u

∂x1
. (2)

Including the constitutive relationships in Eq. (2), it is possible to obtain an expression,
which provides tangential stresses under steady-state and full adhesion conditions p̄τ :

w = −2V

(∫
S

∂c1 (x,y)

∂x1
p̄1 (y) +

∂c2 (x,y)

∂x1
p̄2 (y)

)
ds (y) , (3)

where c1 (x,y) and c2 (x,y) are two vectors that contain the elastic influence functions, and S
is the contact surface. To solve Eq. (3), the contact area is discretised analogously as it is done
in the TANG algorithm [8], assuming constant stresses on each element. For the j-th element
of the mesh, Eq. (3) writes

wj = −2VCjp̄, (4)

where Cj is the vector which contains the elastic influence coefficients derivatives, and p̄ is the
column vector which contains tangential stresses under adhesion conditions of every element of
the mesh. Figure 1 shows a scheme of the mesh used for solving Eq. (4), where a and b are
half the size of the element on longitudinal and lateral directions, respectively. This equation
is solved by a collocation method [1, 21], where the location of the collocation point can be
controlled with a parameter α, which takes values in the range [−1, 1].

Once the tangential stresses have been obtained, the tangential contact forces can be obtained
by summation of these stresses. As it is assumed that every element on the contact area is
under adhesion, the tangential stresses and forces will be linear with creepages. By analogy
with KLT, tangential forces under adhesion conditions F̄τ can be written as

F̄1 = −f ∗
11ξ (5)

F̄2 = −f ∗
22η − f ∗

23φ, (6)

where f ∗
11, f

∗
22 and f ∗

23 are the analogous coefficients to the creep coefficients f11, f22 and f23
defined by Kalker in Ref. [9]; and ξ, η and φ are longitudinal, lateral and spin creepages,
respectively.

3 RESULTS

Using KLT creepage coefficients as a reference, it is possible to study the influence of the
collocation point and the number of elements N on the accuracy of the results provided by
the proposed method, for different ellipse axes ratio, r. Figure 2 shows the ratio between the
creepage coefficients obtained by the proposed method and the ones obtained from KLT as
a function of the location of the collocation point, for a mesh size of N = 6400. Results for
coefficients f ∗

11 and f ∗
22 are quite similar: the optimum collocation point is located at the centre

of the element. Instead, to achieve higher accuracy on the f ∗
23 coefficient, it is convenient to

move the collocation point forward to a value of parameter α = 0.5.
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Figure 2: Mesh scheme with collocation points (green dots).

Figure 3 shows the evolution of the creepage coefficients ratio as a function of the number
of elements of the mesh, N , for a collocation point at the centre of the element. According
to these results, despite the ratio is close to 1 for a sufficient number of elements, thus being
the error acceptable, the method does not present convergence. Assuming the full adhesion
hypothesis leads to infinite tangential stress at the trailing edge of the contact area, which
produces numerical errors, and the non-convergence of the method, as it is also concluded in
Ref. [22].

Figure 3: Creep coefficients ratio as a function of the collocation parameter α for three different
ellipse ratios r. The number of elements of the mesh is N = 6400.
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As coefficients f ∗
11 and f ∗

22 are the most relevant for tangential forces calculation, optimum
collocation point is located at the centre of the element. The optimum mesh size is conditioned
by the computational cost. To solve Eq. (4), it is needed to invert a 2N × 2N matrix, so that,
increasing the mesh size, exponentially increases the calculation time. Increasing mesh size
from N = 60 × 60 toN = 80 × 80 elements implies four times more calculation time, but only
a reduction of creep coefficients absolute error calculation of 0.2%. Therefore, as N = 60 × 60
is the smallest mesh size with absolute errors on f ∗

11 and f ∗
22 calculations below 1%, authors

propose an optimum mesh size of N = 60 × 60 elements.

Figure 4: Creepage coefficients ratio as a function of the number of elements of the mesh N for
three different ellipse ratios r. The collocation point is located at the centre of the element.

4 CONCLUSION

The FastSim algorithm is limited to elliptical contact areas because of the calculation of
the elastic parameters based on Kalker’s Linear Theory results. In this work, an alternative
model has been proposed to deal with that restriction, allowing the calculation of the creep
coefficients for non-Hertzian contact conditions, which can be used to obtain the elastic param-
eters according to the FastSim methodology. Based on results shown in this work, it has been
proved that, combining both optimum collocation point (α = 0) and mesh size (N = 60×60 el-
ements), sufficient to minimize the numerical error associated with the full adhesion hypothesis
assumption, without considerably increasing the computational calculation time, the present
model gives fairly accurate results on creep coefficients calculation for elliptic contact areas,
without assuming Hertzian contact hypothesis. So, on future research, this method will be
used together with FastSim to obtain results on tangential forces and stress distributions on
non-Hertzian contact conditions.

AKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of Agencia Estatal de Investigación
and European Regional Development Fund (grant PRE2018-084067 and project TRA2017-
84701-R).

292



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

REFERENCES

[1] J. J. Kalker, ”The computation of three-dimensional rolling contact with dry friction,”
International Journal for Numerical Methods in Engineering, vol. 14, no. 9, pp. 1293-1307,
1979.

[2] J. J. Kalker, Users Manual of the Fortran Program CONTACT, Delft: Delft University of
Technology, Departament of Math. and Computer Science, 1986.

[3] K. L. Johnson, ”The effect of spin upon the rolling motion of an elastic sphere on a plane,”
Journal of Applied Mechanics, vol. 25, pp. 332-338, 1958.

[4] P. J. Vermeulen and K. L. Johnson, ”Contact of Nonspherical Elastic Bodies Transmitting
Tangential Forces,” Journal of Applied Mechanics, vol. 31, no. 2, pp. 338-340, 1964.

[5] O. Polach, ”A Fast Wheel-Rail Forces Calculation Computer Code,” Vehicle System Dy-
namics, vol. 33, no. 1, pp. 728-739, 1999.

[6] J. J. Kalker, ”A fast algorithm for the simplified theory of rolling contact,” Vehicle System
Dynamics, vol. 11, no. 1, pp. 1-13, 1982.

[7] M. S. Sichani, R. Enblom and M. Berg, ”An alternative to FASTSIM for tangential solution
of the wheel-rail contact,” Vehicle System Dynamics, vol. 54, no. 6, pp. 748 - 764, 2016.

[8] J. J. Kalker and K. L. Johnson, Three-Dimensional Elastic Bodies in Rolling Contact, Delft:
ASME. J. Appl. Mech., 1993.

[9] J. J. Kalker, On the rolling contact of two elastic bodies in the presence of dry friction, T.
H. Delft: Thesis, 1967.

[10] K. Knothe and L. T. Hung, ”A method for the analysis of the tangential stresses and
the wear distribution between two elastic bodies of revolution in rolling contact,” Solids
Structures, vol. 21, no. 8, pp. 889-906, 1985.

[11] M. S. Sichani, R. Enblom and M. Berg, ”Comparison of non-elliptic contact models: To-
wards fast and accurate modelling of wheel-rail contact,” Wear, vol. 314, no. Issues 1-2, pp.
111-117, 2014.

[12] J. Piotrowski and W. Kik, “A simplified model of wheel/rail contact mechanics for non-
Hertzian problems and its application in rail vehicle dynamic simulations,” Vehicle System
Dynamics, vol. 46, no. 1-2, pp. 27-48, 2008.

[13] J. B. Ayasse and H. Chollet, “Determination of the wheel rail contact patch in semi-
Hertzian conditions,” Vehicle System Dynamics, vol. 43, no. 3, pp. 161-172, 2005.

[14] B. Liu and S. Bruni, ”Comparison of wheel-rail contact models in the context of multibody
system simulation: Hertzian versus non-Hertzian,” Vehicle System Dynamics, pp. 1 - 21,
2020.

[15] Q. Guan, B. Liu and S. Bruni, ”Effects of Non-Hertzian Contact Models on Derailment
Simulation,” in Proceedings of the 2020 Joint Rail Conference. 2020 Joint Rail Conference.,
St. Louis, Missouri, USA, 2020.

             293



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

[16] G. Tao, Z. Wen, X. Zhao and X. Jin, ”Effects of wheel-rail contact modelling on wheel
wear simulation,” Wear, Vols. 366 - 367, pp. 146 - 156, 2016.

[17] M. Meacci, Z. Shi, E. Butini, L. Marini, E. Meli and A. Rindi, ”A railway local degraded
adhesion model including variable friction, energy dissipation and adhesion recovery,” Ve-
hicle System Dynamics, pp. 1 - 22, 2020.

[18] S. Hossein-Nia, M. S. Sichani, S. Stichel and C. Casanueva, ”Wheel life prediction model
- an alternative to the FASTSIM algorithm for RCF,” Vehicle System Dynamics, vol. 56,
no. 7, pp. 1051 - 1071, 2018.

[19] G. Tao, Z. Wen, G. Chen, Y. Luo and X. Jin, ”Locomotive wheel polygonisation due to
discrete irregularities: simulation and mechanism,” Vehicle System Dynamics, vol. 59, no.
6, pp. 872 - 889, 2021.

[20] U. Spangenberg, ”Variable frequency drive harmonics and interharmonics exciting axle
torsional vibration resulting in railway wheel polygonisation,” Vehicle System Dynamics,
vol. 58, no. 3, pp. 404 - 424, 2020.
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Abstract: The overhead contact line or catenary is the structure composed of support ele-
ments and wires responsible for the power supply of the locomotive through sliding contact with
the pantograph. This contact causes wear not only on the pantograph contact strips but also in
the contact wire, which produces a reduction on its effective section and eventually its replace-
ment, resulting in the stoppage of the rolling stock with its associate economical and operational
drawbacks. For this reason, it is important for catenary designers to count with appropriate
tools able to predict the contact wire wear behaviour for extending the service life of the system.
This work proposes a strategy to simulate the long-term contact wire wear evolution considering
the mutual influence between the dynamic behaviour and wear of the system. The method is
based on two pillars: the efficient simulation of the catenary-pantograph dynamic interaction
and a heuristic wear model which considers mechanical wear due to friction and electrical wear
produced by Joule effect and electric arcs. With the proposed simulation tool, we analyse the
effect on the long-term contact wire worn height of the train speed.

1 INTRODUCTION

Power supply in electric trains is usually carried out by the sliding contact between the
overhead contact line or catenary and the contact strips of the pantograph. As shown in Figure
1a, the catenary is composed of the contact wire, which is held by droppers from the messenger
wire. All the cabling is regularly supported by brackets attached to posts. By means of steady
arms, the catenary is arranged in a zig-zag shape. The pantograph mechanism (see Figure ??)
is mounted on the roof of the locomotive. Powered by a pneumatic system, the mechanism
unfolds and the contact strips push against the contact wire.

This sliding contact produces wear in both the contact wire and contact strips. While the
latter are relatively easy and cheap to replace, the substitution of a worn contact wire requires
a higher investment and the stoppage of the rolling stock. For this reason, it is important to
establish a correct maintenance strategy that predicts when you will need to replace the contact
wire. To this end, numerical simulations can be an interesting tool not only to predict wear
but also to help catenary designers to develop catenaries with longer service life.

Some authors have proposed different models to compute the normal wear rate (NWR) of
the contact wire, which is defined as the volume of material removed in a kilometre of the wire.
Specifically, heuristic wear models fitted by experimental measurements [1, 2] and models based
on the Lim-Ashby wear maps [3, 4] are the most representative. Other research is focused on the
experimental measurement of the contact wire thickness variation along successive years [5, 6]
and the simulation of the pantograph-catenary dynamic interaction with the worn contact wire
height profile. The main conclusions reveal that the greater the wear, the greater the oscillations
in the contact force.

In this work, we propose a simulation strategy to predict the long-term contact wire wear

https://doi.org/10.4995/YIC2021.2021.12566
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Figure 1: Main components a railway catenary (a) and pantograph (b)

evolvement considering the mutual influence between the dynamic behaviour of the system and
the worn contact wire height profile. Starting from an unworn contact wire, this method allows
to foresee when will be necessary to replace the contact wire and which are the most critical
spots in which severe wear appears. The influence of the train velocity on the contact wire
wear is also investigated.

2 LONG-TERM CONTACT WIRE WEAR SIMULATION

This section is devoted to give an overall view of the strategy proposed to compute the
contact wire wear evolution which follows the flow diagram shown in Figure 2. Each of the
steps involved in the procedure will be detailed in Section 3. The procedure starts by solving
the initial configuration problem in which the nodal coordinates along with the element lengths
are obtained for the Finite Element model of the nominal catenary with an unworn contact
wire. From this point, a simulation loop is repeated until a given stopping criteria is reached,
such as a certain percentage of the wire section is worn. The first step within this loop consists
on solving the pantograph-catenary dynamic interaction. The main output obtained from this
calculation is the contact force Fc between the pantograph and catenary contact wire. This
force feeds the wear model to obtain the normal wear rate (NWR), which is the amount of
area removed from each point of the contact wire due to wear. The removed section is then
converted to an equivalent height following geometrical relations. At this step, as the contact
wire section has changed, the total mass of the contact wire has decreased and therefore, it is
needed to compute a static equilibrium problem to obtain the new position of the catenary and
particularly the new contact wire height zcw.

3 STAGES OF THE PROPOSED METHODOLOGY

This section is devoted to give a detailed insight of the models considered and the assump-
tions made in each of the stages that compose the proposed algorithm.

3.1 Initial configuration problem

In first place, the catenary model must be initialised. The Finite Element Method (FEM)
with Absolute Nodal Coordinates Formulation (ANCF) elements is chosen to model the cate-
nary cabling. The shape-finding problem consists of finding the nodal coordinates q and the
undeformed element length l0 that fulfil both equilibrium equations and design constraints.
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Figure 2: Flow diagram of the long-term contact wire wear simulation

The resultant non-linear problem is:

Fint(q, l0) + Fg(l0) = 0

C(q, l0) = 0
(1)

in which, Fint is the vector of internal forces, Fg is the vector of gravitational forces and C
denotes for the design constraints such as tension of contact and messenger wires or position of
dropper and stitch wire connection points. The interested reader is referred to [7] for a deeper
explanation of the catenary initial configuration problem.

3.2 Pantograph-catenary dynamic interaction

The next step consists of solving the pantograph-catenary dynamic interaction problem. A
lumped-mass model has been chosen to model the pantograph and the penalty method is used
to consider the interaction between the pantograph and the contact wire.

This dynamic problem is governed by the following equation:

Mü+Cu̇+Ku = F (2)

in which, M , C and K are the mass, Rayleigh damping and stiffness matrices respectively,
F is the vector of external forces and u, u̇ and ü are the nodal displacement, velocity and
acceleration vectors, respectively. This problem is also ruled by two nonlinearities, namely
dropper slackening and pantograph contact losses.

For the simulation of the long-term evolvement of the contact wire wear, this dynamic
problem must be solved hundreds of times. Thus, it is important to choose an efficient algorithm
to perform the time integration of Eq. (2) with as low computation effort as possible. In this
case, the fast algorithm proposed in [8] has been fully adopted.

3.3 Contact wire wear model

In this work we use the wear model of the copper contact wire proposed in [1]. This model
differentiates three contributions on the total wear: (i) mechanical wear due to friction, (ii)
electrical wear due to Joule effect of the current flow at the contact area and (iii) wear produced
by electrical arcs when contact loss occurs. These three contributions to the contact wire wear
are directly related to the three terms present in Eq. (3).

NWR = k1

(
1

2
(1 +

Ic
I0
)

)−α (
Fc

F0

)β
Fc

H
+ k2

RcI
2
c

Hv
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The NWR represents the worn section and it is given in mm2. The main factors that
determine the wear rate are the electric current Ic, the sliding speed v and the contact force
Fc. In this work we assume that Fc remains unaltered during a given number of pantograph
passages in which it is not necessary to solve the dynamic interaction problem. Specifically,
we have checked that 1000 passages gives a good balance between accuracy of the results and
efficiency of the overall simulation.

A detailed description of all the parameters involved in the wear model is provided in [1]
and unless otherwise indicated, we have kept the parameter values given in that reference. The
only changes are the current intensity Ic = 300 A which is supposed constant, the contact
force Fc and the appearance of contact loss u which come from the dynamic simulation and
the electrical contact resistance Rc which, for a contact between a copper contact wire and a
graphite contact strip, depends on the contact force as experimentally stablished in [9]:

Rc = 0.015 + 0.18e−(Fc−4
7

) (4)

3.4 Worn section height

The objective of this step of the proposed algorithm is to compute the total worn height
h of the contact wire. For a contact wire section of radius R with an initial worn section A0

(coloured region in Figure 3), the worn height due to the NWR produced by an additional
thousand pantograph passages (grated area in Figure 2) is obtained from Eq. (5), in which the
angle θ is first computed by solving the nonlinear Eq. (6), being A = A0 + 1000NWR.

Figure 3: Worn section and worn height

h = R(1− cos
θ

2
) (5)

R2

2
(θ − sin θ)− A = 0 (6)

3.5 Static equilibrium

Once the contact wire height profile has been updated, it is important to note that the
contact wire section has been reduced and therefore, the mass per unit length is modified. This
weight loss modifies the force balance in the catenary model. That is why a static equilibrium
problem is solved at this stage of the algorithm. This problem consists of solving Eq. (7) to
obtain the new nodal coordinates that satisfy force equilibrium.

Fint(q) + Fg = 0 (7)

Unless the initial configuration problem stated in Eq. (1), in this case, the element lengths
are not set as unknowns.
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4 NUMERICAL RESULTS

The numerical results presented in this work are obtained from the AC high speed contact
line and the pantograph models provided in the standard EN-50318:2018 [10]. The initial
contact wire section is 120 mm2 and wear is only computed in a central region of the second
catenary section, from kilometre point 400 to 800 m, to avoid boundary and transient effects.
The stopping criteria for all the simulations performed is reaching a 20% of reduction on the
contact wire section in a given kilometre point. This condition usually implies the replacement
of the contact wire of the entire catenary section.

4.1 Nominal scenario

In this nominal case, the train speed is 300 km/h with an uplift force of 142.8 N acting on
the pantograph mechanism. The main results obtained are shown in Figure 4.

Figure 4: Comparison between the unworn and the worn catenaries in the nominal operating
conditions: (a) contact wire height, (b) contact force, (c) normal wear ratio and (d) Percentage
of worn area

The contact wire height is ploted in Figure 4a in which two effects can be distinguished.
On the one hand, the main increase of the contact wire height (about 2 mm) is caused by the
overall loss of weight. On the other hand, higher frequency irregularities are due to local wear
effects. Figure 4b shows a comparison of contact force obtained from the unworn and the worn
catenary. At first glance, a less oscilatory behaviour is observed in the contact force of the
worn catenary, specially due to the disappearance of some local minima. The NWR obtained
at the first and last pantograph passages is given in Figure 4c. An enlarged view of this plot
is shown in Figure 5, in which a phase shift between the two wear rates is clearly observed.
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This indicates that wear evolvement has a directional character which depends on the train
travelling direction. This feature is also observed in the contact force. There is a clear direct
relation between the contact force and the NWR since the main wear phenomena is mechanical
friction in comparison to Joule wear.

Figure 5: Enlarged view of the NWR obtained from the unworn and the worn catenary between
kilometre points 500 and 600 m

Finally, in Figure 4d the percentage of worn section at the end of the simulation is shown.
The 20% of worn area is reached at kilometre point 457 m after 250 dynamical simulations,
which means 250.000 pantograph passages. Thus, this method provides a useful tool to foresee
the life service period of a given catenary section.

4.2 Influence of train speed

It is well known that train speed has an important effect on the pantograph-catenary contact
force and therefore, it is expected to also have it on the contact wire wear. In this section we
compare the wear results obtained from simulations in which the pantograph travels at 200,
250, 300 and 350 km/h respectively. All the other parameters have been kept constant.

Figure 6 shows a comparison between the unworn and the worn catenary of the standard
deviation σ, the maximum contact force Fmax

c and the minimum contact force Fmin
c for a dif-

ferent train speed. These results indicate that the worn catenary interacts with the pantograph
producing a smother contact force than the unworn catenary as reflected by the lower value
of sigma for all the studied velocities. This trend is confirmed by the lower values of the
maximum force and the higher values of the minimum force found in the worn catenary. The
relative variation of any of these values is also indicated in Figure 6. In general, such variations
become more significative with the increase of train speed. This means that the contact wire
wear evolvement tends to form a contact wire height profile that smoothes the contact force so
that wear decelerates and the chance of electric arcs due to contact loss decreases.

The percentage of contact wire worn section is shown in Figure 7 for the four studied ve-
locities. The limit of 20% of section reduction is reached at different kilometer points in each
case (circles in Figure 7). The number of pantograph passages necessary to reach this value
and replace the contact wire is 367.000, 350.000, 250.000 and 173.000 for the wear simulation
with 200, 250, 300 and 350 km/h respectively.

The position of steady arms is marked with vertical dashed lines in Figure 7. For this
catenary, the points that suffer the highest wear are located at midspan because the contact
force presents higher values at this region.

It is important to mention that at low velocities the mean wear is higher, and there are
several points with a worn section close to the 20% of the initial contact wire section. However,
at high velocities most of the contact wire length suffers low wear while only a few local points
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Figure 6: Statistics of the contact force under different train speeds for the unworn and the
worn catenary

present severe wear. This implies to replace the whole contact wire of the catenary section
because only in a few local spots the contact wire section has been reduced to its limit.

Figure 7: Percentage worn section along the contact wire for different train speeds

The higher overall amount of wear produced at low velocities is directly reflected in a higher
contact wire height profile as shown in Figure 8. Specifically, the mean percentage of worn
section is 9.11, 8.82, 6.76 and 4.85% for 200, 250, 300 and 350 km/h respectively.

Figure 8: Contact wire height profile for the unworn catenary and the worn catenary when the
pantograph travels at different velocities
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5 CONCLUSIONS

This work proposes a simulation strategy to compute the long-term evolution of the con-
tact wire wear for high-speed catenaries. The method uses an efficient dynamic solver of the
pantograph-catenary interaction problem and a well-stablished contact wire wear model. As a
novelty compared to other related works, the proposed algorithm considers the change in the
catenary equilibrium position produced by the loss of material in the contact wire.

To exemplify the capabilities of the proposed method, it has been applied to a given catenary.
Results such as the contact wire height profile, the contact force or the percentage of worn
section were obtained for the nominal scenario concluding that wear evolution tends to provide
a contact wire height that produces a smoother contact force so that, in a certain way, it seems
to be beneficial for the current collection quality.

The effect of train speed on the contact wire wear has been also analysed. The main con-
clusion drawn from these simulations is that the increase of speed produces the localisation of
wear on a few punctual regions of the contact wire, leading to its replacement even though on
average it is little worn.

It is important to mention that this is an initial work on this field. Thus, the results and
conclusions obtained cannot be extrapolated generally to other catenary-pantograph couples
and they also need experimental measurements to be fully confirmed.

6 ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support received from the Spanish
Ministry of Economy, Industry and Competitiveness (TRA2017-84736-R).

REFERENCES

[1] Bucca G. and Collina A. Electromechanical interaction between carbon-based pantograph
strip and copper contact wire: A heuristic wear model. Tribol. Int. (2015) 92:47-56.

[2] Derosa S., N̊avik P., Collina A., Bucca G and Rønquist A. A heuristic wear model for the
contact strip and contact wire in pantograph-catenary interaction for railway operations
under 15 kV 16.67 Hz AC systems. Wear (2020) 456:203401.

[3] Bucca G. and Collina A. A procedure for the wear prediction of collector strip and contact
wire in pantograph-catenary system. Wear (2009) 266:46-59.

[4] Wei X.K., Meng H.F., He J.H. Jia L.M. and Li Z.G. Wear analysis and prediction of rigid
catenary contact wire and pantograph strip for railway system. Wear (2020) 442:203118.
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Abstract: Railway rolling noise is nowadays a major source of acoustic pollution in urban
areas, with nearly up to 12 million people daily affected in Europe by this phenomenon. Hence,
the search for ways of decreasing such noise radiation has become a highly active and signifi-
cant research field. Following this approach, a Genetic Algorithms-based shape optimization of
the railway wheel is developed with the aim of minimizing rolling noise. Different approaches
are considered to address the problem, such as directly minimizing radiated Sound poWer Level
(SWL) or using the maximization of the natural frequencies if computational efficiency is es-
pecially critical. A parametric Finite Element model is implemented for the wheel based on the
most relevant geometric parameters in rolling noise radiation. For the acoustic calculation, the
sound radiation models used in the TWINS software are adopted, which also accounts for the
whole dynamics of the wheel/rail system. Furthermore, for every candidate wheel proposed, a
structural analysis is computed in order to check design feasibility in accordance with the cor-
responding standard. In all cases, new geometries for the wheel cross section are achieved that
reduce the radiated rolling noise.

1 INTRODUCTION

Railways are a highly efficient, cost-effective and low polluting transportation system. Un-
fortunately, there are also some drawbacks that need to be handled if the rail network is to be
further expanded. Such issues are mainly related to acoustic pollution, what becomes especially
important along urban environments, where it is estimated that about 12 million people are
affected daily in Europe by the sound emitted by railway vehicles [1].

In that sense, one of the predominant types of noise emitted by railway vehicles is rolling
noise [2], generated by the vibration of the wheel and track caused by the interaction force that
emerges as a result of the irregularities present in their surfaces [3]. Through the different range
of possible approaches that can be followed for rolling noise mitigation, those that consider its
control at source are acknowledged as considerable cost-effective measures [4].

The present work therefore presents a procedure for the reduction of railway rolling noise
by achieving optimal wheel geometries that minimize sound radiation. This is done by means
of the global optimization technique known as Genetic Algorithm (GA) using two different
methodologies, a first one based on the computed Sound Power Level (SWL), what includes
solving the whole dynamic interaction, and another focused on the modal properties of the
wheel. Moreover, the structural feasibility of each proposed candidate during the search is
assured.

The document is structured as follows: firstly, the theoretical model used for the dynamic
and acoustic calculations is introduced; Secondly, the optimization procedure is described along

https://doi.org/10.4995/YIC2021.2021.12577

304



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

with the defined objective functions and wheel shape parametrization; and, later, the results
obtained are shown. Finally, a concluding discussion is presented.

2 THEORETICAL MODEL

For the present work, a methodology based on that of the commercial software TWINS is
developed [5]. A system composed by a wheel and a continuously supported rail interacting at a
contact point is considered. In order to derive the rolling noise radiation produced by the wheel,
the whole coupled dynamic response of each of the components involved in the wheel/track
interaction is solved through the use of linearised models in the frequency domain. Then, the
wheel sound power is obtained with a semi-analytical formulation capable of computing the
wheel acoustic efficiencies from the dynamic behaviour of its cross-section geometry.

2.1 Wheel response

The wheel response for the jth degree of freedom (d.o.f) is given by

uw,j = −
3∑

i=1

Hw,jiFc,i , (1)

where Hw,ji is the receptance of the wheel for the jth d.o.f. when the force is applied at the
contact point in the ith direction and Fc,i is the value of the contact force in the ith direction;
x, y and z being represented by directions 1, 2 and 3, respectively.

The receptance of the wheel is given by modal superposition, with the associated modeshapes
classified according to its number of nodal diameters n and nodal circumferences m, as [6]

Hw,jk (ω) =
∞∑
n=0

∞∑
m=0

Ψnm,jΨnm,k

mnm(ω2
nm − ω2 + 2iξnmωnmω)

, (2)

where, Ψnm,j and Ψnm,k are the modal amplitudes of the modeshape (n,m) for direction j
and k, respectively, mnm is the modal mass of the corresponding modeshape, ωnm its natural
frequency, ξnm the modal damping ratio and ω the angular frequency considered.

Regarding the derivation of the contact force F̄c, assuming that the excitation of the system
is produced by the presence of a roughness amplitude r acting in the vertical direction, it can
be stated that

r̄ =HHHsysF̄c , (3)

with r̄ being a vector with amplitude r in the vertical direction and HHHsys the combined recep-
tance of each component of the system defined as [2]

HHHsys =HHHw +HHHr +HHHc , (4)

where HHHw, HHHr and HHHc are the receptances in matrix form of the wheel, rail and contact,
respectively. In the present model, the rail receptance HHHr is characterized considering the rail
as a Timoshenko beam on a continuous foundation [2] and the contact receptance HHHc describes
the wheel/track interaction by means of a contact spring [7].

2.2 Wheel sound power

As a means to compute the radiated sound power of the wheel, the surface of this compo-
nent is divided into six concentric rings and the tyre surface. Then, their velocity responses
are calculated with the dynamic model introduced in the previous section and used for the
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computation of the corresponding sound radiation. Therefore, it is possible to derive the wheel
sound power W through [2]

W = ρc0

Nm∑
l

(
σa
l

∑
j

(Sa,j⟨ṽ2a,jl⟩) + σr
l Sr⟨ṽ2r,l⟩

)
, (5)

where index l refers to each the Nm modeshapes considered, ρ is the air density, c0 the speed of
sound, ⟨ṽ2a,jl⟩ and ⟨ṽ2r,l⟩ represent the mean squared vibration velocity averaged over time and

surface area of the ring j and lth modeshape for the axial and radial directions, respectively;
Sa,j refers to the axial area of the jth ring, Sr to the surface used fo the radial radiation and σa

l

and σr
l are the radiation efficiencies of the axial and radial contribution, respectively, for the

lth mode.
The radiation efficiencies, which are defined as the ratio of the amount of acoustic power

radiated compared to that of a piston of the same area on an infinite wall when vibrating in
the same manner [8], are obtained with a semi-analytical formulation detailed in [9].

3 OPTIMIZATION PROCEDURE

With the intention of minimizing the rolling noise radiated by the railway wheel, a Genetic
Algorithms-based shape optimization procedure is developed and two different objective func-
tions are studied: one based on the direct minimization of the radiated sound power (LA,W -min),
and another focused on the maximization of the natural frequencies of the wheel (NF-max).

Additionally, for the purpose of establishing a way of generating the different geometries
propose for testing by the GA, a parametric FE model is defined using general axisymmetric
elements [10]. The wheel cross section is set by the geometric characteristics found to be the
most influential for the acoustic radiation [9, 11]: wheel radius x1, fillet radius x2, web thickness
x3 and web offset x4. An overview of the described framework is presented in Fig. 1, while the
design boundaries specified for this research are shown in Table 1. It should be noted that, as
x1, x2 and x4 are absolute parameters whose value directly correspond to the corresponding
geometric property, x3 is defined as a proportionality factor of the reference thickness along
the web. Besides, due to constraints in the design process related with the modification of the
wheel radius, two different optimizations are run for each procedure: one considering all the
components in the parametrization and another in which the radius is kept as constant with
value x1 = 0.45 m.

The optimization algorithm proceeds as follows: the first step is to create a set of wheel
candidates by using the defined parametrization, which conforms the generation Xi; then,
for every candidate x̄j in Xi, the structural feasibility of each proposed wheel is checked
by following the standard EN13979-1 [12]. If the candidate is feasible, a modal analysis to
obtain the Nm modeshapes Ψnm and natural frequencies ωnm, needed for the calculation of the
studied objective functions, is carried out by the FEM software ANSYS APDL. Afterwards,
modeshapes are identified and classified in accordance to the number of nodal diameters and
nodal circumferences (n,m) they present and the selected objective function Obj is evaluated.

Table 1: Design domain for the optimization methodologies.

x1 [m] x2 [m] x3 x4 [m]

Reference 0.45 0.0427 0.0681 0.0300
Lower Boundary 0.40 0.0364 -0.1000 -0.2700
Upper Boundary 0.50 0.0484 0.1000 0.2700
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Figure 1: Design variables of the wheel cross section parametrization.

Once Obj has been computed for the whole generation, the stopping criteria is checked. If
it is fulfilled, the candidate most suited for the objective function x̄∗ is selected as the Best
Found Solution (BFS). Otherwise, a new generation is set that accounts for the geometrical
information of the cross sections already analysed during each iteration and the described
process is repeated. For further clarification, a flow diagram of the optimization algorithm is
represented in Fig. 2.

3.1 Objective functions

As already mentioned in the prevous sections, two different objective functions are used along
the optimization algorithm, LA,W -min and NF-max. Below, their main features are explained
with further detail.

3.1.1 LA,W -min methodology

In the LA,W -min methodology the goal is to directly minimize the radiated noise emitted
by the wheel. With this intention, the SWL expressed in dB(A) is used, computed for every
design as

SWL = 10 log10(
W

Wref

) + Afilter , (6)

where W is the sound power, Wref = 10−12 W and Afilter is the A-weighting filter for dB.
Next, Obj is defined as the summation in energy of the SWL in each frequency band.

Figure 2: Flow diagram describing the optimization procedure.
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Therefore,

ObjLA,W
= 10 log10(

ncf∑
i=1

10
SWLi
10 ) , (7)

where SWLi is the SWL of the ith one-third octave band and ncf the number of bands in the
chosen frequency region.

3.1.2 NF-max methodology

In the NF-max methodology, the minimization of rolling noise is intended indirectly through
the maximization of the natural frequencies of the wheel. The assumption made in this case is
that, as the excitation of the system is dependent on the wheel-rail combined roughness and its
content is lower in the high frequency region, shifting the natural frequencies to higher frequency
regions should lead to wheel shapes whose vibration modes are less excited and, consequently,
quieter designs. With this aim, the objective function Obj for the current methodology its
defined as

ObjNF =
1

ω̂m

, (8)

where ω̂m is the mean of all the Nm extracted natural frequencies of the wheel.

4 RESULTS

For the results presented in this section, the following specifications are used: an UIC54 rail
with concrete bibloc sleepers separated 0.6 m, the parameters of which are shown in Table 2,
and a standard roughness defined for a train speed of V = 80 km/h when a contact filter is
applied [13]. In the dynamic calculations, the frequency range varies from 50 to 5000 Hz with a
resolution of 1 Hz and the reference wheel, taken as a guideline to compare the changes observed
for the wheel designs, is based on a simplified monobloc wheel with typical dimensions. As for
the modal analysis made, a rigid constraint is applied at the nodes on the inner surface of the
wheel hub, the maximum element size defined for the FE mesh is h = 0.007 m and a number of
Nm = 48 modeshapes are considered. Additionally, in order to assure the correct development
of the theoretical model, the combined SWL for all the components involved in the rolling
noise radiation is compared to the results offered for the same case by the commercial package
TWINS [5]. As it can be seen in Fig. 3, no significant discrepancies are observed, with a total
variation in terms of energy of ∆LA,T = 0.17 dB(A).

The main results for both methodologies are presented in Table 3 and the wheel cross
section geometries obtained for each procedure are shown in Fig. 4. The two approaches
show a reduction in both the wheel SWL and total SWL for either the fixed radius case or
the optimization with all the parameters. Thus, in the fixed radius case, it is clear that the
obtained LA,W are lower than the reference wheel, with variations of ∆LA,W = −3.94 dB(A) and

Table 2: Track parameters used in SWL calculations.

Rail UIC54 Vertical Lateral Foundation Vertical Lateral

Bending stiffnes EI [Nm2] 4.93 · 106 0.87 · 106 Pad stiffness k′
p [N/m2] 2.17 · 109 1.17 · 108

Shear coefficient κ 0.4 0.4 Pad loss factor ηp 0.25 0.25
Loss factor ηr 0.02 0.02 Ballast stiffness k′

b [N/m2] 1.17 · 108 5.83 · 107
Mass per length ρA [kg/m] 54 Ballast loss factor ηb 2 2
Cross receptance level -15 Sleeper mass per length m′

s [kg/m] 203.33
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Figure 3: Total SWL produced by the commercial program TWINS (−−) and the methodology
developed in the present work (—)

.

∆LA,W = −1.11 dB(A) for the LA,W -min and NF-max methodologies, respectively. Regarding
the noise when considering all the components involved, reductions are kept with a change in
LA,T of ∆LA,T = −1.87 dB(A) for LA,W -min and ∆LA,T = −0.43 dB(A) NF-max. When all
the geometric parameters are considered in the optimization, quieter wheel designs are achieved
with improvements of up to ∆LA,W = −4.96 dB(A) and ∆LA,T = −2.05 dB(A) for the LA,W -
min approach. In all cases, an increase of the mean of the natural frequencies ω̂m is produced
and the NF-max approach appears as computationally demanding methodology, requiring a
lower number of generations ngen to achieve convergence with a ∆ngen = −24 generations when
compared with LA,W -min in the optimization with fixed radius.

Concerning the evolution of the wheel shape along the optimization procedures, different
Response Surfaces (RS) are generated in order to study it. For each RS, a pair of the defined
geometric parameters are chosen and evaluated for each objective function in 676 different
points along the solution space, allocated in the form of a 26× 26 evenly distributed sampling
grid. Some of the most relevant RSs generated are represented in Fig. 5. As exemplified in
the results shown in Fig. 5a, the objective function defined for the NF-max approach presents
mainly a planar form and the greatest maximization of natural frequencies is related with the
decrease of radius x1. Conversely, in the LA,W -min methodology, the observed behaviour is
in a more complex and variable manner. This can be seen in Fig. 5b, which also reveal the
predominance of the web offset x4 variable, followed by the radius x1, in setting the value of
the corresponding objective function. It should be noted that in all cases the minimum value
obtained for the selected objective function were worse than that offered by the optimization.

Finally,for the purpose of further exploring the relation between ObjNF and ObjLA,W
, the

Table 3: BFS values for the optimization procedures. x1, x2 and x4 are expressed in m. All LA

values are expressed in dB(A).

Methodology x1 x2 x3 x4 LA,W ∆LA,W LA,T ∆LA,T

LA,W -min (Fixed rad.) 0.4500 0.0484 0.1000 -0.0128 97.35 -3.94 102.28 -1.87
NF-max (Fixed rad.) 0.4500 0.0484 0.1000 -0.0270 100.18 -1.11 103.73 -0.43

LA,W -min (All param.) 0.4222 0.0483 0.0999 -0.0102 96.33 -4.96 102.10 -2.05
NF-max (All param.) 0.4000 0.0484 0.1000 -0.0167 99.26 -2.03 103.10 -1.05

Ref. 0.4500 0.0427 0.0700 0.0300 101.29 - 104.16 -
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Figure 4: Wheel shapes comparison for the BFSs obtained by the optimization procedure with
the fixed radius case (left) and considering all the geometric parameters (right). In both cases
the results are shown for the NF-max (orange) and LA,W -min (green) approaches together with
the reference wheel (black).

objective function value LA,W for all candidates designs evaluated in the optimization runs is
plotted against their natural frequencies mean in Fig. 6. Although some correlations can be
found locally, there are not for the totality of sampled candidates: for the optimization with
all the geometric parameters, the decreases of both objective functions value are coupled in the
region where x1 is above the optimum value (x1 = 0.42 m), but below this point the trend shift;
and in the fixed radius case, a wide range of emitted noise is present for the the candidates with
minimum ObjNF value. In both cases, the observable patterns are consistent with the existence
of design variables with high influence on the acoustic behaviour but low on the fixing of the
natural frequencies, as the web offset x4.

5 CONCLUSIONS

With the goal of reducing acoustic radiation, a geometric optimization ot the railway wheel
cross-section shape is performed by means of a GA-based optimizer. Two different method-
ologies are applied: the NF-max methodology, focused on the maximization of the natural
frequencies, and the LA,W -min methodology, based on the direct minimization of the wheel
SWL. Furthermore, response surfaces for different combinations of geometric parameters are
carried out in order to study their behaviour along the optimization process.

Results reflect that in all approaches a reduction is accomplished for both the wheel SWL,
with improvements of up to 4.96 dB(A) in the LA,W -min case, and the SWL when all compo-
nents involved in the rolling noise radiation are considered. The differences in the evolution of

(a) (b)

Figure 5: Response surfaces for different combinations of geometric parameters: (a) with ObjNF

for x1 and x2; (b) with ObjLA,W
for x1 and x4. Fixed values correspond to those of the BFS for

the corresponding optimization procedure and points M indicate the RS minima.
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Figure 6: ObjNF and ObjLA,W
values for candidate evaluations corresponding to the optimiza-

tion runs using the LA,W -min methodology. Black points are evaluations in a run with a design
space consisting of all x1 to x4 variables. Red points are evaluations in a run considering a
fixed wheel radius variable x1.

each objective functions when modifying the wheel shape are established, identifying the radius
x1 and web offset x4 as the principal factors in the changes observed. Finally, local correlations
are found between the NF-max and LA,W -min objective functions behaviour, although not for
the totality of sampled wheel cross-sections. In all cases, the observed patterns are related with
the existence of design variables with significant influence on the acoustic performance although
not in a noticeable way on the fixation of the natural frequencies.
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Abstract: The main goal of the present work lies in the identification of the railway track
properties that influence acoustic radiation, as well as in the analysis of these properties for
the reduction of sound levels. This is achieved through a dynamic model of the railway wheel
and track that allows the study of rolling noise, produced as a result of the wheel/rail interac-
tion. Once the vibrational response of the railway components is determined, the sound power
radiated by them is evaluated. The influence of the track properties on the sound radiation is
determined by analysing the acoustic power results of different track configurations. From the
results obtained, a number of guidelines are presented for noise mitigation of the involved railway
elements. Between the worst and the best track design, there are differences of approximately
7.4 dB(A) in the radiation considering the wheel, rail and sleeper noise.

1 INTRODUCTION

Noise pollution due to transport is one of the most damaging environmental factors for
humans, according to the World Health Organization [1]. The consequences of prolonged
exposure to high noise levels include, in order of severity, hearing loss, hypertension, ischaemia,
insomnia and even changes in the immune system [2]. Consequently, the development of tools
for detection, analysis and mitigation of sound levels radiated from railway transport is of
great importance. Among the sources of acoustic radiation of railway vehicles, rolling noise is
considered one of the most relevant [3].

In this work, a dynamic model of the wheel and track is implemented, which allows cal-
culating the rolling noise radiated by the different railway elements (wheel, rail and sleeper).
With this approach, the geometric and viscoelastic parameters of the track that most influence
sound radiation are identified. Also, the necessary changes in these factors to reduce railway
noise levels are determined [4].

The vibroacoustic model and methodology for the analysis of track influence on sound radi-
ation are presented in Section 2. Results of an optimal track design as well as some guidelines
to achieve noise mitigation are given in Section 3. In Section 4 the conclusions of the work are
summarised.

https://doi.org/10.4995/YIC2021.2021.12583
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2 METHODOLOGY

2.1 Vibroacoustic model

To model the dynamic behaviour of the wheel, the Finite Element Method (FEM) is applied.
Vibration modes of the wheel can be characterized according to the number of nodal lines (no
vibration) that cross the wheel in a radial direction passing through its centre, known as nodal
diameters [5]. This characterization allows grouping the contribution of the modes to the motion
of the wheel and, consequently, to its acoustic radiation. By adopting a modal approach, the
vibrational response of the wheel is evaluated.

After solving the dynamics of the railway wheel, its acoustic radiation is calculated as a
postprocess of the vibrational field on its surface. The radiation model used in this work was
developed by Thompson [6] and it establishes that the acoustic power of the wheel is obtained
as a sum of the contribution of each set of modes with the same number of nodal diameters.
This model is the same as the one implemented in the commercial package TWINS [7, 8].

Regarding the railway track, in this work it is considered to be formed by the rails, rail pads,
sleepers and ballast (see Figure 1). In this configuration, the rail is supported by a spring-
mass-spring system, modelled as a double continuous viscoelastic layer of uniform section,
distributing the properties of the rail pad, sleeper and ballast per unit of length [5].

Ballast

Sleeper

Rail pad

Rail

Figure 1: Railway track model configuration.

Due to the wheel/rail interaction force, structural waves propagate in the longitudinal direc-
tion through the infinite track. These propagating waves are evaluated applying the method-
ology proposed by Mead, whose formulation can be found in [9]. This consists of analysing a
finite track segment using FE techniques. Using this approach, the displacement of any point
on the track is obtained as a superposition of waves.

Regarding the sound radiation of the track, in this work it is assumed that there is a contri-
bution from the rail and sleeper. The acoustic models of both components implemented in this
work are described in [10] and it is assumed a two-dimensional radiation of each cross-section
of the track, which is subsequently corrected to consider the three-dimensional nature of the
sound radiation. Given the proportionality of the acoustic power and dynamic response of a
component, the radiation from the rail and sleeper is also obtained as a superposition of the
radiation associated with each wave.

The coupling between the wheel and track occurs through the wheel/rail interaction. The
roughness present on the surfaces of both components is a source of excitation when the vehicle
travels along the track. This excitation generates a vibrational field in the railway elements,
producing rolling noise. A roughness spectrum defined in the standard EN13979-1 [11] is
used. The contact model proposed by Thompson [12] is used in this work, which evaluates the
interaction force from the wheel and rail combined roughness.
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2.2 Influence analysis

This work aims to analyse the influence of the railway track design on the sound radiation
of the wheel, the rail and the sleeper. In particular, the effect of the rail geometry and vis-
coelastic properties of the rail pad and ballast are studied. To do this, first, the rail profile is
parameterised in six main variables (see Figure 2) and their limits are established; similarly,
limits are set for the viscoelastic properties of the pad and ballast. Subsequently, a design
of experiments and an ANOVA are carried out on the results, looking for a regression model
that fits the calculated acoustic power. If the fit is good enough, the analysis of the regression
coefficients allows knowing the influence of the different contributing variables on the sound
radiation.

Figure 2: Rail profile parameterization.

In total, ten main parameters of the track are considered. Six of them describe the geometry
of the rail (see Figure 2): wHead, hHead, wFoot, hFoot, wWeb and hRail; two represent the stiffness
and damping of the rail pad, kPad and ηPad, respectively; and the last two represent the stiffness
and damping of the ballast, kBallast and ηBallast, respectively. In order to analyse the influence
of these on sound radiation, a factorial design is proposed, covering all possible combinations of
the variables. An ANOVA is performed on the result of the simulations, modifying the effects
to ensure their statistical significance on radiation. The total acoustic power, which is the sum
of the power of the rail, sleeper and wheel, is quantified by adding the energy contained in the
frequency spectrum after including the A-weighting of the sound levels.

In this work both the influence of each parameter and its importance on the sound radiation
are determined. For this, the technique developed by Pratt [13] is applied, by which the
importance of each contributing variable is determined from the set of samples obtained from
the factorial design calculation. For these samples, a polynomial regression is performed, given
by:

ŷ =
∑
j

βjxj, (1)

where the response variable ŷ is the total radiation of each combination of the design of
experiments previously standardised to unit variance and null mean, xj is the standardised
jth effect and βj is the jth coefficient. An effect can be a simple parameter, an interaction
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or a power. Note that the vector of the adjusted response variable ŷ is obtained as a linear
combination of the standardised effects xj, which form the basis of the vectorial subspace of
the model. For two effects, this concept can be visualized in Figure 3.

Figure 3: Vectorial subspace of the regression model.

The projection of βjxj onto ŷ represents the importance of the jth effect. In this work, the
importance of the jth effect dj is defined as follows:

dj = ŷ · (βjxj), (2)

which represents the proportion of variance in the response variable that the jth effect
explains. Consequently, the cumulative importance of all significant effects results in the coef-
ficient of determination R2 of the regression model.

3 RESULTS

The implemented vibroacoustic tool described in Section 2.1 has been verified with the
commercial package TWINS [7, 8], which is considered as the reference program in railway
rolling noise calculation.

To study the track influence on sound radiation, a design of experiments is carried out with
five levels of each parameter. For each combination of them, the sound radiation of the railway
components is calculated using the implemented tool. An ANOVA with the significant effects
is performed on the results and the Pratt methodology, described in Section 2.2, is applied
to determine the variability explanation of each effect. Using this technique, the variables in-
fluencing the total radiation are established, which are the width of the rail foot (wFoot) and
the four viscoelastic parameters of the track (kPad, ηPad, kBallast and ηBallast). The polynomial
regression model performed on the results of the factorial design has a coefficient of determi-
nation R2 = 99.43 %. In Figure 4 the importance of each significant effect of the regression
model as well as the cumulative importance are shown. The stiffness of the rail pad is the most
important parameter, explaining 83.58 % of the sound radiation variability.
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Figure 4: Importance and cumulative value of the significant effects.

An increase in the rail pad stiffness leads to a reduction in the rail and wheel noise and
an increase in the sleeper radiation; for the total noise, at low stiffnesses the reduction of rail
noise predominates and at high stiffnesses there is a balance between the three components.
Regarding the rest of the parameters, a reduction in the rail foot width results in lower radiation
levels of the rail as it reduces the radiation ratio and radiation area; the rail pad damping and
ballast damping reduce the vibration amplitudes of the rail and sleeper, yielding a positive
influence on their sound radiation; the ballast stiffness governs the vibrational response of the
sleeper and, consequently, its acoustic power.

The optimal solution for the total sound power corresponds to a minimum value of wFoot

and maximum values of ηPad, kBallast and ηBallast; regarding kPad, the minimum sound power
levels are obtained with an intermediate/high stiffness, where the aforementioned balance is
achieved. The regression model predicts that the optimal design is reached with the following
parameters: wFoot = 120 mm, kPad = 780 MN/m, ηPad = 0.5, kBallast = 100 MN/m and
ηBallast = 2, with an acoustic power of 98.4 dB(A). In contrast, the worst design corresponds
to the following parameters: wFoot = 150 mm, kPad = 130 MN/m, ηPad = 0.25, kBallast = 40
MN/m and ηBallast = 1, with a power of 105.8 dB(A). Therefore, there is a difference between
the best and the worst combination of 7.4 dB (A). Figure 5 shows the sound power levels of
the track design with the worst combination of parameters and with the optimal combination.
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Figure 5: Sound power level for one wheel and associated track vibration. Best track design ( ) and worst
design ( ).

4 CONCLUSIONS

A vibroacoustic model of the railway wheel and track has been implemented for the prediction
of noise radiation from the wheel, rail and sleeper. A geometric parameterization of the rail
profile has been carried out, which has allowed performing a design of experiments in order
to analyse the influence of the track design on sound radiation. The geometry of the rail,
represented by six variables, and the stiffness and damping of the rail pad and ballast, modelled
through four additional variables, are studied.

The most important contributing variables are the viscoelastic properties of the rail pad
and ballast and the width of the rail foot. The minimum sound power levels are found with
minimum values of the rail foot width, maximum values of the rail pad and ballast damping,
maximum values of the ballast stiffness and intermediate/high values of the rail pad stiffness.
These values conform the optimal track design, which originates a total radiation 7.4 dB(A)
lower than the worst track design found.
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Abstract: In the literature, different dynamic models of the railway wheel have been developed
to predict its sound radiation; however, there are still certain aspects that can be improved.
Specifically, the high computational cost of these models, either because they solve the fluid-
structure interaction or because they solve the dynamics and acoustics of the three-dimensional
wheel, makes it difficult to carry out numerous simulations with the aim of achieving quieter
designs. In the present work, a vibroacoustic model of the stationary wheel is developed through
an axisymmetric approach, yielding an efficient and comprehensive acoustic prediction tool.
The calculation methodology consists of, firstly, adopting an axisymmetric approach to solve the
vibratory dynamics of the wheel from its cross-section, using finite element techniques; subse-
quently, the acoustic radiation of the three-dimensional wheel is calculated from the dynamics of
the aforementioned section through an analytical formulation. Finally, the vibroacoustic model
developed is validated via comparison with commercial software that solves the fluid-structure
interaction, showing the aforementioned computational advantages that the former has over the
latter.

1 INTRODUCTION

Wheel/rail interaction generates a dynamic contact force due to the roughness of their sur-
faces. This excites the wheel causing a vibrational response which, in turn, leads to a sound
radiation known as rolling noise. It is considered an important source of noise from railway
activities [1], especially in urban areas where the vehicle velocity is relatively low [2]. The
frequency range of interest for rolling noise radiation is approximately up to 6 kHz.

The interest in predicting the noise radiated by the railway wheel has resulted in the devel-
opment of vibroacoustic models [3]; in general, the sound radiation is evaluated through the
vibrational field of the wheel boundary. The wheel dynamic behaviour is commonly reproduced
by the Finite Element Method (FEM) [4], which allows considering the flexibility of the body.
Given the wheel geometry axisymmetry, a Fourier series expansion is feasible [5], solving an-
alytically the vibrational response in the circumferential direction and therefore reducing the
associated computational cost.

In this work, a vibroacoustic model of the axisymmetric wheel is presented. The description
of the dynamic response of the wheel along the circumferential direction by means of Fourier
series establishes a similar distribution of its modal properties. By adopting a modal approach,
analytical relations between the vibrational field on the wheel boundary and on the wheel
cross-section are found. This allows computing the acoustic problem also in a two-dimensional
frame, with the computational advantages that it entails.

The mathematical formulation of the vibroacoustic model is presented in Section 2. The
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results of this model are compared with results from a commercial software in Section 3. Finally,
in Section 4 some conclusions are summarized.

2 VIBROACOUSTIC MODEL

2.1 Dynamics

Considering a cylindrical reference system, the displacement field of an axisymmetric wheel
due to its flexible behaviour is expanded along the circumferential direction using Fourier series
as follows [5]:

ur =ur,0 +
∑
n>0

(ur,n cos(nθ)− ur,n sin(nθ)) ,

uθ =− uθ,0 +
∑
n>0

(uθ,n sin(nθ)− uθ,n cos(nθ)) ,

uz =uz,0 +
∑
n>0

(uz,n cos(nθ)− uz,n sin(nθ)) ,

(1)

where subscripts r, θ and z indicate radial, tangential and axial direction, respectively. In
this expansion, harmonic amplitudes without bar represent symmetric displacements about
θ = 0 and those with a bar represent antisymmetric displacements about θ = 0, θ being the
circumferential coordinate; all harmonic amplitudes are function of the coordinates r and z.
Variable n symbolises each Fourier term. Similarly, the external forces applied on the flexible
wheel can be expanded as Fourier series.

Making use of the expansion in Eq. (1), the kinetic energy of the flexible wheel Ek is
analytically integrated over the circumferential direction. After that, it can be proved that the
kinetic energy can be divided into the contribution of each motion associated with a Fourier
harmonic and this, in turn, into the symmetric and antisymmetric displacements about θ = 0.
Thus, the kinetic energy can expressed as follows:

Ek = Ek,0 + Ek,0 +
∑
n>0

Ek,n +
∑
n>0

Ek,n. (2)

Similarly, the strain energy of the wheel accomplishes the following expression:

Ep = Ep,0 + Ep,0 +
∑
n>0

Ep,n +
∑
n>0

Ep,n. (3)

Applying the Lagrange Equations, a set of Equations of Motion (EoM) are obtained; each
of these describes the motion associated with a Fourier term and a type of motion (symmetric
or antisymmetric). The set of EoM for n = 0, considering a FE approach for the wheel cross-
section, is given by:

M0ü0 +K0u0 = F0,

M0ü0 +K0u0 = F0,
(4)

where u0 contains the amplitudes ur,0 and uz,0 for each node of the wheel cross-section mesh
while u0 contains the amplitudes uθ,0. The force vectors come from expanding the wheel/rail
interaction force; F0 represents the even Fourier coefficients and F0 the odd coefficients, both
defined for n = 0. Similarly, the EoM for motion with n > 0 are given by:

Mnün +Knun = Fn,

Mnün +Knun = Fn,
(5)
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where un contains the symmetric amplitudes ur,n, uθ,n and uz,n for each node of the wheel
cross-section while un contains the antisymmetric amplitudes ur,n, uθ,n and uz,n. Matrices
accomplish the following relations:

Mn = Mn,

Kn = K−n.
(6)

Matrix Mn is indeed independent of n whereas Kn is defined for each n.
A modal approach is adopted in order to solve the dynamics of the flexible wheel. A set

of modes coming from the EoM defined for a certain n is described in the literature as modes
with n nodal diameters [2]. The eigenproblem of the EoM for n = 0 gives as a result a set
of radial and axial modes with zero nodal diameters for the case of symmetric motion and a
set of circumferential modes with zero nodal diameters for the case of antisymmetric motion.
When considering the EoM for n > 0, for each vibration mode coming from the symmetric
EoM, an analogous mode is obtained from the antisymmetric EoM, both being in quadrature
of phase and with the same natural frequency. The wheel modeshapes can be also decomposed
into harmonic functions with the angular coordinate similar to Eq. (1).

After solving the modal problem, the dynamic response of the wheel due to the contact force
from the wheel/rail interaction is solved by modal superposition. Details of the interaction
model can be found in [6]; in this work, the radial and axial directions are solved in the
interaction problem. Although damping matrix is not considered in the EoM, spectral damping
is introduced in the model as proposed by Thompson in [2], where it is suggested that modes
with n = 0 have ξ = 10−3, modes with n = 1 have ξ = 10−2 and modes with n ≥ 2 have
ξ = 10−4. Thus, the velocity of a point of the wheel with coordinates (r, θ, z) formulated in the
frequency domain ω is given by:

vj(r, θ, z, ω) =
m∑
p=1

Ap(ω)ϕp
j(r, θ, z)

( ∑
k=r,z

Fk(ω)ϕ
p
k,c

)
, j = r, θ, z, (7)

where superscript p represents the pth vibration mode, m is the number of modes considered
as a basis of the response, ϕp

j is the pth modeshape particularized in the jth Degree of Freedom
(DoF) of the point, Fk is the kth component of the interaction force, ϕp

k,c is the pth modeshape
particularized in the kth DoF of the wheel contact point and Ap is defined as:

Ap(ω) =
iω

ω2
p − ω2 + 2iξpωpω

, (8)

with ωp and ξp being the natural frequency and damping ratio, respectively, of the pth
vibration mode.

2.2 Sound radiation

In this work, the acoustic model developed by Thompson [3] is employed. The sound radia-
tion of the wheel is evaluated by postprocessing the vibrational field on its surface. Particularly,
this model states that the acoustic power is the sum of the power associated with each set of
modes with the same number of nodal diameters n. Thus, the sound power of the wheel W is
given by:

W (ω) = ρc
∑
n

(
σz,n(ω)Szṽ2z,n(ω) + σr,n(ω)Srṽ2r,n(ω)

)
, (9)

where ρ is the density of air and c is the speed of sound. Functions σ are the radiation ratios
and a set of fitting expressions for them is proposed in [3]. Surfaces Sz and Sr are the projected
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surfaces of the wheel normal to the axial and radial direction, respectively. Squared velocities
v2z,n and v2r,n are the projected velocities in the axial and radial direction, respectively, and they
are averaged over time (˜) and over the wheel surface ( ). The former is evaluated in the
frequency domain as the Root Mean Square (RMS) value of the velocity amplitude v whereas
the latter is computed as an integral given by:

ṽ2j,n =
1

Sj

∫
S

ṽ2j,ndSj, j = r, z, (10)

where S is the wheel surface. Note that ṽj,n is the contribution to the velocity of a set
of modes with n nodal diameters, including both symmetric and antisymmetric ones, and it
can be computed through the modal superposition approach presented in Eq. (7), where m
is replaced by mn, the last being the number of modes with n nodal diameters. The integral
in Eq. (10) can be divided into an integral over the circumferential direction and an integral
over the wheel cross-section boundary. The former can be evaluated analytically by means of
Eq. (7) and the circumferential expansion of the displacements in Eq. (1). Furthermore, by
developing this over the wheel modeshapes, some relations are found between the vibrational
field of the three-dimensional wheel and the response of the wheel cross-section. Finally, a
numerical approach based on the FEM for the cross-section boundary is performed to complete
the evaluation of the integral in Eq. (10).

3 RESULTS

The vibroacoustic model presented in Section 2 is compared with the commercial software
Ansys. To perform this comparison, the Frequency Response Function (FRF) of the contact
point and the Sound poWer Level (SWL) of the wheel are evaluated with both approaches and
the results are shown in this section. The fluid-structure interaction model available in Ansys
computes the acoustic pressure field in the air surrounding the wheel, which requires a high
computational cost as the number of DoF increases. In this work, a straight web wheel with
a diameter of 900 mm and a S1002 profile [7] is considered, as well as a load per wheel of 50
kN. The receptances of the wheel contact point, computed with Ansys and with the proposed
model, are shown in Figure 1.
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Figure 1: Receptances in the wheel contact point from Ansys ( ) and axisymmetric approach ( ): direct
axial/axial (blue), cross axial/radial (green) and direct radial/radial (orange).

For the purpose of comparing the acoustic results from both approaches, the sound power
radiated by the wheel is evaluated considering unit roughness excitation, the result being there-
fore a transfer function. The SWL of the wheel is shown in Figure 2. The greater differences
between the proposed model and Ansys software appear at low and medium frequencies, where
the sound power levels are low and the radiation ratios influence is important; at high frequen-
cies, where the radiated levels are greater, the presented vibroacoustic model predicts the SWL
accurately. The proposed model needs approximately 15 seconds for solving the vibroacoustic
problem while Ansys software requires more than 24 hours, using a PC running with an ®Intel
i7-9700 processor with 64 GB RAM.

Figure 2: Wheel sound power level from Ansys ( ) and axisymmetric approach ( ).
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4 CONCLUSIONS

A vibroacoustic model for a stationary and axisymmetric railway wheel is presented in this
work, in which the displacement field is expanded using Fourier series. This allows solving
analytically the dynamics and acoustics of the wheel along the circumferential direction, re-
ducing the computational cost associated with numerical calculations. Also, the formulation
developed leads to some relations between the dynamic response of the three-dimensional wheel
and the response of the wheel cross-section, making it possible to employ the proposed acous-
tic methodology in combination with alternative three-dimensional dynamic models instead of
that presented here. The vibroacoustic model is compared with the commercial FE package
Ansys, which solves the fluid-structure interaction problem. The dynamic response and sound
radiation results of both approaches show an excellent agreement, the computational cost of
the presented methodology being much lower.
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Abstract: A common problem in railway engineering is the dynamic of repetitive structures
subject to moving loads. Bridges, rails or catenaries are the most representative periodic struc-
tures, over which the train acts as a moving exciter. Usually, these structures are long enough
to consider that their dynamic response is in permanent regime. To assume the steady-state
regime some features have to be considered: infinite length structure, perfect periodicity and
constant velocity of the moving load. This paper adopts these assumptions and provides the
steady-state solution of a generic periodic structure subject to an arbitrary and also periodic
moving load.

The structure is divided into repetitive blocks modelled by the Finite Element Method. By
applying the periodicity condition it is possible to consider the entire structure dynamics with
only one block. The problem is stated in the frequency domain and moved back to time domain
by means of Discrete Fourier Transform.

1 INTRODUCTION

The study of periodic structures subject to moving loads has a great relevance thanks to the
wide use of high-speed trains. Rails, overhead contact lines or bridges are periodic structures
whose dynamic response produced by the train has been studied under different approaches.
The authors who consider an infinite periodic structure focus on the steady-state solution of the
problem. The early analytic models found in the literature are based on an infinite continuous
periodically supported string/beam [1, 2, 3]. In [1] an infinite periodic Euler-Bernoulli beam
subject to a uniform moving harmonic pressure field is solved. The differential equation is
solved in the domain between two supports and four boundary conditions allow to determine
the coefficients of the solution. Boundary conditions are obtained from the periodicity condition
of two consecutive supports and the momentum and shear equilibrium at these supports. In [2]
a similar model subject to a constant moving load is solved using the modal method. A finite
periodic supported beam is defined by N uncoupled differential equations based on a modal
representation. The limit of the previous solution when N → ∞ is computed for a moving
constant load. The same problem is solved in [3], in which the Fourier Transform is used to
shift to the frequency domain where the periodicity condition is easily formulated. The solution
is obtained in the frequency domain and the Inverse Fourier Transform allows to obtain the
response in the time domain. The presented approaches have in common the consideration of
a periodic solution which allows considering only a single period or block of the string/beam
between two consecutive supports.

The limitation of the previous references is their inability of modelling more complex struc-
tures. Some solutions have been found, for example in [4], in which an extension of the approach
proposed in [3] is presented to solve a catenary model, including two strings and two spatial
periods, one for supports and another for droppers. In [5], the beam is modelled by a two-and-
a-half dimensional (2.5D) Finite Element model which allows to model any cross section of the
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beam. The solution is divided into the response produced by the external load and the response
produced by the reactions of the supports. Fourier Transform respect to position x and time
t is performed to solve the differential equation and the periodicity condition is applied to the
reactions of the supports in the frequency domain. The same authors presented an improved
model in [6] in which the dynamic interaction of multiple wheels with the periodic model is
computed by means of the Fourier Series decomposition of the contact force.

The Finite Element Method (FEM) can be used to model any periodic structure by means
of the so-called Wave Finite Element Method (WFEM). This method allows to compute the
frequency response of finite or infinite periodic structures [7, 8]. The frequency response of
a periodic infinite structure obtained by WFEM can be used to compute the response un-
der a moving load by means of the Fourier Transform [9]. WFEM makes possible to model
finite-length structures and even structures with transition zones [8], but for periodic infinite
structures we present an alternative in which some inconveniences of WFEM are avoided. For
example, some slender structures (as catenaries) present ill conditioning behaviour in WFEM.

In this paper, the periodicity condition is applied on FEM models to obtain the frequency
response of any generic periodic infinite structure. Then, the response to a temporal excitation is
obtained by means of the Discrete Fourier Transform (DFT). Finally, the pantograph-catenary
dynamic interaction is solved with this method.

2 HARMONIC RESPONSE

In this section we obtain the harmonic response of the model as a tool for the computation
of the steady-state response. Let consider an infinite structure with a periodic pattern along
the longitudinal axis as in Fig. 1. The repeated block is called substructure and it is modelled
by the FEM. The dynamic equation of the substructure for a harmonic load can be written as:

D(ω)u = F (1)

in which u is the nodal displacement vector, D(ω) = K + iωC− ω2M is the dynamic stiffness
matrix of the substructure and M, C and K are the mass, damping and stiffness matrices,
respectively. Note that the force vector F includes external forces and the reactions produced
by the adjacent blocks. The nodes of the block can be divided into left (L) and right (R)
boundary nodes and inner (I) nodes according to their positions. Thus, the previous equation
can be split into:  DLL DLI DLR

DIL DII DIR
DRL DRI DRR




uL
uI
uR

 =


FL
FI
FR

 (2)

a1

a3

a2

Figure 1: Periodic infinite FEM structure with moving load.
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It is assumed that the load is repeated at every block so that the response of all blocks is
identical but with a time lag that depends on the length L of the substructure and the velocity
v of the moving load. This condition is called the periodicity condition and for the displacement
u of any point it reads:

u(x, t) = u(x+ nL, t+ nL/v); n ∈ Z (3)

This condition allows to state the entire problem only in a single block of the structure, which
is called the reference block. The periodicity condition can be moved to the frequency domain
in which, the response of the next block to the reference one is:

unext = e−
iωL
v u (4)

Both blocks hold the following coupling condition in the common boundary:

uR = unext
L (5)

so that the displacement of the left and right nodes of every substructure are related by:

uL = e
iωL
v uR (6)

Applying this relation to Eq. (2):
DLI DLR + e

iωL
v DLL

DII DIR + e
iωL
v DIL

DRI DRR + e
iωL
v DRL


{

uI
uR

}
=


FL
FI
FR

 (7)

The same procedure can be considered for the nodal forces:

Fnext = e−
iωL
v F (8)

which must satisfy the action-reaction principle in the boundary:

FR = F∂R − Fnext
L (9)

in which F∂R is the external load at the right boundary. By combining Eqs. (8) and (9) the
left and right nodal forces of every substructure can be related by:

FL = e
iωL
v (F∂R − FR) (10)

Introducing this constraint in Eq. (7) it becomes into:
DLI DLR + e

iωL
v DLL

DII DIR + e
iωL
v DIL

DRI DRR + e
iωL
v DRL


{

uI
uR

}
=

 0 e
iωL
v I

I 0
0 0

{ FI
F∂R

}
+

 −e
iωL
v I

0
I

FR (11)

If all the unknowns are moved to the left-hand side,
DLI DLR + e

iωL
v DLL e

iωL
v I

DII DIR + e
iωL
v DIL 0

DRI DRR + e
iωL
v DRL −I




uI
uR
FR

 =

 0 e
iωL
v I

I 0
0 0

{ FI
F∂R

}
(12)
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the displacement and the nodal forces are given by:
uI
uR
FR

 = Ĥ(ω)
{

FI
F∂R

}
(13)

in which

Ĥ(ω) =


DLI DLR + e

iωL
v DLL Ie iωLv

DII DIR + e
iωL
v DIL 0

DRI DRR + e
iωL
v DRL −I


−1  0 Ie iωLv

I 0
0 0

 (14)

Eq. (13) can be rewritten in terms of displacements of the substructure:
uL
uI
uR

 = H(ω)
{

FI
F∂R

}
(15)

in which

H(ω) =

 e
iωL
v ĤR(ω)
ĤI(ω)
ĤR(ω)

 (16)

being ĤI(ω) and ĤR(ω) the two first rows of Ĥ(ω).

3 TIME-FREQUENCY ANALYSIS

To achieve the response to an arbitrary moving load, the excitation is moved to the frequency
domain where the frequency response obtained in the previous section can be used. Then, the
response in the frequency domain is moved back to the time domain.

The structure is excited by a moving load f(t) with period L/v. This moving load causes
the nodal forces FI(t) and F∂R(t) which are evaluated in N discrete times tn = n∆t.{

FI(tn)
F∂R(tn)

}
=
[

N>I (tn)
N>R(tn)

]
f(tn) (17)

NI(tn) and NR(tn) are the shape functions of the inner and right nodes evaluated at time tn.
These functions are used in FEM to transform nodal displacements into point displacements
and it can also be used to transform point forces to nodal equivalent forces.

The Discrete Fourier Transform (DFT) is used to obtain the frequency representation of the
nodal forces: {

FI(ωk)
F∂R(ωk)

}
=

N−1∑
n=0

{
FI(tn)

F∂R(tn)

}
e

−i2πkn
N (18)

in which
ωk = k

2π
N∆t ; k ∈ [0, N − 1] (19)

The DFT considers that the temporal function is N -periodic, thus a long enough sequence (high
N) is necessary to ensure a negligible influence of other periods. Note that the block periodicity
of the moving load is different from the periodicity of nodal forces, which is fictitious, created
by the discrete analysis with Fourier.

As the moving load is repeated in every block, Eq. (18) can be used with times tn in which
the moving load is acting on the reference block, from tn = 0 to tn = tM−1 with M = L/(v∆t).
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At the instants in which n ≥M , the load FI(tn) = 0 and F∂R(tn) = F∂L(tn−M), being F∂L the
external load at the left boundary. Then, Eq. (18) can be written as:{

FI(ωk)
F∂R(ωk)

}
=

M−1∑
n=0

{
FI(tn)

F∂R(tn) + F∂L(tn)e−i2πkM
N

}
e

−i2πkn
N (20)

Eq. (15) allows to obtain the displacements of the substructure in the frequency domain.
Now, the Inverse Discrete Fourier Transform (IDFT) is used to return to time domain, resulting
in: 

uL(tn)
uI(tn)
uR(tn)

 = 1
N

N
2∑

k=−N2


uL(ωk)
uI(ωk)
uR(ωk)

 e i2πknN (21)

In addition, if F(tn) is a real function, F(ωk) = conj (F(ω−k)) and the same applies for
u(ωk) = conj (u(ω−k)) because H(ω) exhibits Hermitian symmetry. Then, the IDFT can be
computed as: 

uL(tn)
uI(tn)
uR(tn)

 = 1
N




uL(ω0)
uI(ω0)
uR(ω0)

+ 2Re


N
2∑

k=1


uL(ωk)
uI(ωk)
uR(ωk)

 e i2πknN


 (22)

It is also possible to truncate and consider only the Nc first frequencies if the effect of higher
frequencies is negligible.

If Eq. (17) is introduced in Eq. (20) and the result in Eq. (15), then in Eq. (21) and finally
in Eq. (22), a condensed formulation is obtained.

u(tn) =
M−1∑
n̂=0

I(n, n̂)f(tn̂) (23)

in which

I(n, n̂) = 1
N

Nc−1∑
k=0

akRe
(

H(ωk)
[

0 I 0
e

−i2πkM
N I 0 I

]
e
i2πk(n−n̂)

N

) N>L (tn̂)
N>I (tn̂)
N>R(tn̂)

 (24)

being ak = 2 if k 6= 0 or ak = 1 if k = 0. Note that the variable n̂ is used to distinguish the
instant of application of the load from the instant of evaluation of the displacement n.

To reduce the computational cost, I(n, n̂) can be written as:

I(n, n̂) = J(λ)N(tn̂) (25)

in which
J(λ) = 1

N

Nc−1∑
k=0

akRe
(

H(ωk)
[

0 I 0
e

−i2πkM
N I 0 I

]
e
i2πkλ
N

)
(26)

and λ = n− n̂.

4 NUMERICAL EXAMPLE

In this section, a numerical example of application of this method is analysed. The pantograph-
catenary dynamic interaction is solved under the hypothesis of steady-state behaviour. The
infinite catenary is composed of repetitive blocks as shown in Fig. 2 and the pantograph applies
a vertical load fc on the contact wire.
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a2

a1
a3

a4

Figure 2: Pantograph interaction with the periodic catenary.

To solve the problem, Eq. (23) is only evaluated at the contact point instead of at all the
degrees of freedom of the block. That is:

uc(n) =
M−1∑
n̂=0

Ic(n, n̂)fc(tn̂) (27)

in which Ic(n, n̂) is obtained from a simple transformation of I(n, n̂). This formulation provides
a discrete matrix operator Ic(n, n̂) that relates the M values of the moving load with the M
values of the contact point vertical displacement. The total height of the contact point is
composed of the displacement produced by the load and the initial height profile of the contact
wire:

zc(n) = zcw(n) + uc(n) (28)

A linear pantograph is considered whose dynamic response is defined by the frequency re-
sponse function Hp(ω) of its contact point. This contact point is excited by an M -periodic
force −fc(n) due to the action-reaction principle. The displacement zc(n) of the pantograph
contact point can be also obtained by using the DFT:

zc(n) = zext −
M−1∑
n̂=0

Ip(n, n̂)fc(tn̂) (29)

in which zext is the displacement produced by a constant external load (produced by the bellow
of the uplift mechanism) and:

Ip(n, n̂) = 1
M

M/2∑
k=0

akRe
(
Hp(ωk)e

i2πk(n−n̂)
M

)
(30)

being:
ωk = k

2π
M∆t (31)
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The contact force can be obtained imposing the same displacement zc(n) of the pantograph
contact point (Eq. (29)) and the catenary contact point (Eq. (28)) at the M instants of time.
That is:

zext −
M−1∑
n̂=0

Ip(n, n̂)fc(tn̂) = zcw(n) +
M−1∑
n̂=0

Ic(n, n̂)fc(tn̂) (32)

with n = 0, ..,M − 1. This system of M linear equations allows to compute the contact force
fc(tn).

As an example of a particular solution in which the dynamic interaction is produced at 300
km/h and the catenary model has 5 droppers per span, Fig. 3 gives a comparison between the
solution obtained from the proposed method and the solution obtained from a FEM simula-
tion performed with a long enough catenary to achieve the steady-state regime. The perfect
coincidence shown gives validity to the proposed algorithm.

0 0.1 0.2 0.3 0.4 0.5

xxxx

100

150

200

250

y
y
y
y

Legend1

Legend2

Figure 3: Solution of the infinite periodic model (PFEM) and a long conventional FEM model.

5 CONCLUSIONS

• The periodicity condition allows to compute the dynamic response of infinite periodic
structures subject to a moving load combined with a FE model and discrete Fourier
analysis.

• The repeated block is modelled by the Finite Element Method so that the proposed
algorithm can be applied to any generic linear structure.

• The proposed method can be divided into two parts: the first devoted to compute the
discrete operator that relates the load with the displacement of the structure and the
second in which this operator is applied at different problems. The second part has a
very low computational cost which makes it very suitable to perform (Hardware In the
Loop) HIL tests or pantograph optimisation within the frame of pantograph-catenary
dynamic interaction.
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• A pantograph-catenary dynamic interaction problem is solved in this work to exemplify
the proposed formulation. This has allowed us to validated the obtained results with
a conventional FEM simulation, in which a long catenary must be used to ensure the
steady-state interaction with the pantograph.
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Abstract: In numerous engineering applications, such as polymer or blood flow, the dependence
of fluid viscosity on the local shear rate plays an important role. Standard techniques using
inf-sup stable finite elements lead to saddle-point systems posing a challenge even for state-of-
the-art solvers and preconditioners. Alternatively, projection schemes or time-splitting methods
decouple equations for velocity and pressure, resulting in easier to solve linear systems. Although
pressure and velocity correction schemes of high-order accuracy are available for Newtonian
fluids, the extension to generalised Newtonian fluids is not a trivial task. Herein, we present
a split-step scheme based on an explicit-implicit treatment of pressure, viscosity and convection
terms, combined with a pressure Poisson equation with fully consistent boundary conditions.
Then, using standard equal-order finite elements becomes possible. Stability, flexibility and
efficiency of the splitting scheme is showcased in two challenging applications involving aortic
aneurysm flow and human phonation.

1 INTRODUCTION

Various engineering and industrial applications such as automotive design, wind or hydraulic
power production, medical devices or synthetics manufacturing share incompressible viscous
flow as a central element. The modeling and simulation of fluids has thus been of great interest
even before the beginning of computer aided design. More often than not, such fluids are
modeled assuming a linear relationship between shear rate and viscous stress via constant
viscosity. As it turns out, this modeling assumption may be invalid in various scenarios, blood
and polymer flows being practically relevant examples. A vast majority of numerical schemes,
however, focuses on Newtonian fluids, neglecting these effects. Depending on the problem and
specific flow regime, non-Newtonian characteristics can heavily impact the results obtained and
conclusions drawn from them [1, 2]. The most popular approach to incorporate phenomena
such as plug flow or shear thinning/thickening is to consider the viscosity depending on the
shear rate, leading to so-called generalised Newtonian or quasi-Newtonian assumptions.

Driven by the ever increasing demand, numerical treatment of the Navier-Stokes equations
for incompressible flows have become a staple in modern day computational engineering. But
despite the enormous efforts invested, large-scale flow problems still challenge state-of-the-art

https://doi.org/10.4995/YIC2021.2021.12217
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high-performance computer architectures. The development of new algorithms and methods
designed for such problems therefore remains an intense field of research. When employing finite
elements, basis functions for velocity and pressure have to be chosen with caution, obeying the
Ladyzhenskaya–Babuška–Brezzi (LBB) condition. Some extensions of classical workarounds
for Newtonian fluids are readily available, ranging from penalty methods [3, 4] to pressure
Poisson stabilisation [5] and local pressure projection [2]. Some residual-based stabilisations
have been proposed [6, 7], and we recently presented a novel one [8, 9], eliminating spurious
pressure boundary layers and poor conservation properties even in lowest-order discretisations.
However, preconditioning the arising linear (block-) systems is a critical and often limiting task
when developing numerical schemes, despite well-performing algorithms being available [10–12].

In view of these challenges, one might prefer projection or split-step schemes decoupling ve-
locity and pressure [13, 14], thereby decomposing the system into convection-diffusion, Poisson
and simple mass matrix problems. Nonetheless, projection methods suffer from artificial pres-
sure boundary conditions (refer to Guermond et al. [15] for an excellent overview), which often
call for corrective measures [16, 17]. As an alternative, Liu [18] combines explicit treatment
of the convective velocity with a pressure Poisson equation (PPE) equipped with consistent
boundary conditions. While schemes of similar kind have been applied to challenging incom-
pressible flow problems [19–22], the extension to the non-Newtonian case is in many aspects
challenging. Deteix and Yakoubi [14] proposed the so-called shear rate projection scheme which,
despite being accurate and simple, requires LBB-stable velocity-pressure pairs and the solution
of an advection-diffusion equation, two Poisson problems and more than ten scalar mass matrix
problems per time step.

By contrast, we focus herein on the recent extension of the PPE scheme [18] to generalised
Newtonian fluids [23, 24]. This new framework allows for continuous equal-order finite elements,
is higher-order accurate, iteration-free, and consists of an advection-diffusion equation, a single
PPE, and two mass matrix solves to recover pressure Dirichlet data and viscosity. We focus
on the full-traction variant, additionally including Galerkin least-squares (GLS) stabilisation
[25] to counteract dominant convective terms and the popular three-element Windkessel model
together with backflow stabilisation.

2 PROBLEM STATEMENT

As a starting point, let us consider mass and momentum balance equations for an incom-
pressible fluid in Ω ⊂ Rd, d = 2, 3 and a time interval from t = 0 to T :

ρ [∂tu+ (∇u)u]−∇ · S+∇p = f in Ω× (0, T ], (1)

∇ · u = 0 in Ω× (0, T ], (2)

with a constant density ρ, velocity u, pressure p, volumetric body force f and viscous stress S.
For generalised Newtonian fluids the viscous stress S computes by

S = 2µ∇su, (3)

where µ(x, t) ∈ R+ denotes the variable dynamic viscosity and ∇su := 1/2[∇u+ (∇u)⊤] is the
symmetric part of the velocity gradient. System (1)–(2) is supplemented by

u = g on ΓD × (0, T ], (4)

(S− pI)n = h on ΓN × (0, T ], (5)

u = u0 at t = 0, (6)

given Dirichlet data g on ΓD and Neumann data in terms of the full normal traction h on
ΓN , where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The rheological law describing the viscosity µ
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depending on the shear rate γ̇ is usually formulated in terms of a map η : R+ → R+ \ {0}:

µ = η(γ̇), with γ̇ :=
√

1/2∇su : ∇su . (7)

A popular choice in the context of shear-thinning haemodynamics or polymeric flows is the
well-established Carreau model [26]

η (γ̇) = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

]n−1
2 , (8)

with upper and lower limits η0 and η∞, respectively, and further fitting parameters λ and n ≤ 1.
Homogeneous Newtonian fluids are naturally included in this setting, e.g. for n = 1.

3 TIME-SPLITTING SCHEME

The time-splitting scheme is based on a consistently derived PPE equipped with suitable
boundary conditions. So, let us start by taking minus the divergence of Eq. (1), to obtain

−∇ · (∇p) = −∇ · f + ρ∇ · [∂tu+ (∇u)u]−∇ · (∇ · S) =
−∆p = −∇ · f + ρ∂t (∇ · u) + ρ∇ · [(∇u)u]−∇ · (∇ · S) .

We can further use ∇ · u = 0 and

∇ · S = ∇ · (2µ∇su) = µ∇ (∇ · u) + µ∆u+ 2∇su∇µ = µ∆u+ 2∇su∇µ

to obtain

−∆p = −∇ · f + ρ∇ · [(∇u)u]−∇ · (2∇su∇µ)−∆u · ∇µ− µ∆(∇ · u) ,

which simplifies to

−∆p = ∇ · [ρ(∇u)u− 2∇su∇µ− f ] + [∇× (∇× u)] · ∇µ (9)

using

∆u ≡ ∇ (∇ · u)−∇× (∇× u) = −∇× (∇× u) .

The Dirichlet condition for this auxiliary problem is obtained by dotting the traction boundary
condition on ΓN (5) with the unit outward normal vector n:

n · [(S− pI)n] = n · h ∴ n · [Sn− h] = pn · n = p (10)

and similarly, dotting the momentum balance equation (1) with n

n · ∇p = n · [f − ρ∂tu− ρ(∇u)u+ 2∇su∇µ− µ∇× (∇× u)] (11)

gives the Neumann condition for the PPE when restricted to ΓD. For a detailed derivation, the
interested reader is referred to our recent work [23], while we herein focus directly on a weak
formulation of the split-step scheme. Let us denote the L2(Ω) and L2(ΓD) scalar products by
⟨·, ·⟩ and ⟨·, ·⟩ΓD

, respectively, and start off by multiplying the PPE (9) with a test function
q ∈ H1(Ω), q|ΓN

= 0, integrating by parts and inserting the Neumann boundary condition (11),
thereby yielding

⟨∇q,∇p⟩ =− ⟨q,n · [ρ∂tu+ µ∇× (∇× u)]⟩ΓD

+ ⟨∇q, 2∇su∇µ+ f − ρ(∇u)u⟩+ ⟨q, [∇× (∇× u)] · ∇µ⟩,
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Table 1: Coefficients αm
j and βm

j of order m = 2 for BDF and extrapolation [27].

j 0 1 2

αm
j

2∆tn+∆tn−1

∆tn(∆tn+∆tn−1)
−∆tn+∆tn−1

∆tn∆tn−1
∆tn

∆tn−1(∆tn+∆tn−1)

βm
j − 1 + ∆tn

∆tn−1 − ∆tn

∆tn−1

which is rewritten using integration by parts once again as

⟨∇q,∇p⟩ =⟨∇q, f + 2∇su∇µ− ρ(∇u)u− µ∇× (∇× u)⟩ − ⟨qn, ρ∂tu⟩ΓD
,

Note however, that second-order derivatives are still present, which we mend via

⟨µ∇q,∇× (∇× u)⟩ =⟨∇q × n, µ∇× u⟩Γ + ⟨∇ × (µ∇q) ,∇× u⟩,
=⟨∇q × n, µ∇× u⟩ΓD

+ ⟨∇q, [∇u− (∇u)⊤]∇µ⟩,

omitting some of the details from [23] for brevity. Other vital ingredients of the split-step
scheme are (i) the full decoupling of momentum balance and PPE through explicit treatment
of the pressure gradient term in (1), (ii) projection of the PPE Dirichlet condition on ΓN (10),
(iii) recovering the viscosity µ via an L2 projection and (iv) improving conservation of mass
using divergence damping [20, 22]. For the time integration, we consider variable time steps
∆tn = tn+1 − tn in higher-order accurate backward differentiation (BDF) and extrapolation
formulae (indicated by ⋆) with coefficients αm

j and βm
j given in Tab. 1:

∂tu(t
n+1) ≈ αm

0 u
n+1 +

m∑
j=1

αm
j û

n+1−j, un+1 ≈ u⋆ :=
m∑
j=1

βm
j un+1−j. (12)

Then, given solutions from previous time steps, the split-step scheme reads

1. Momentum balance:
Find un+1 ∈ Xh ⊂ H1(Ω), such that un+1|ΓD

= gn+1 and〈
ρv, αm

0 u+
m∑
j=1

[
αm
j

(
un+1−j −∇φn+1−j

)]
+ (∇u)u⋆

〉
+ ⟨∇v, 2µ⋆∇sun+1 − p⋆I⟩

= ⟨v, fn+1⟩+ ⟨v,hn+1⟩ΓN
∀v ∈ Xh,v|ΓD

= 0. (13)

2. Project viscosity :
Find µn+1 ∈ Yh ⊂ H1Ω, such that

⟨v, µn+1⟩ = ⟨v, η(un+1)⟩ ∀v ∈ Yh. (14)

3. PPE Dirichlet condition:
Recover the continuous ζn+1 := n · [(2µn+1∇sun+1)n− hn+1] on ΓN via L2 projection.

4. Pressure Poisson step:
Find pn+1 ∈ Zh ⊂ H1(Ω), such that pn+1|ΓN

= ζn+1 and

⟨∇q,∇pn+1⟩ = ⟨∇q, fn+1 + 2
(
∇un+1

)⊤∇µn+1 − ρ(∇un+1)un+1⟩

−⟨qn, ρ
m∑
j=0

αm
j u

n+1−j⟩ΓD
+ ⟨n×∇q, µ∇× un+1⟩ΓD

∀q ∈ Zh, q|ΓN
= 0. (15)
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5. Divergence damping :
Find φn+1 ∈ Zh, such that φn+1|ΓN

= 0 and

⟨∇ψ,∇φn+1⟩ = ⟨ψ,∇ · un+1⟩ ∀ψ ∈ Zh, ψ|ΓN
= 0, (16)

which will be used in the following time step.

Note here, that the Poisson problems (15)–(16) can be combined, solving only one Poisson
problem per time step (cf. [18, 23]) and for Newtonian fluids, the viscosity projection step (14)
is skipped. Also, the rheological law is easily replaced by swapping the right-hand side of (14)
and was actually lumped in our experiments. Per time step, the scheme consists of solving a
vector-valued advection-diffusion equation, an L2 projection on ΓN , a lumped mass matrix and
one Poisson problem in the auxiliary variable p̂ := p+ φ.

4 NUMERICAL EXAMPLES

The split-step algorithm (13)–(16) is implemented in the open-source finite element library
deal.II [28], using parallel algebraic multigrid (AMG) methods provided by Trilinos’ ML
package [29] for preconditioning the FGMRES and BiCGStab methods used to solve linear
systems corresponding to fluid momentum and PPE, respectively. The versatility and compu-
tational performance of the scheme is showcased in two fundamentally different applications
in biomechanics, the first being flow through an abdominal aortic aneurysm and the second
example considering human phonation.

4.1 Abdominal aortic aneurysm

Aneurysms are pathological vessel malformations giving rise to deformed, bulging lumina,
altering flow fields and triggering various critical health conditions. A physiological setup is
created similar to [30] based on flow data and geometry provided in [31, 32]. This prototypical
segment of the abdominal aorta with length L = 20 cm and inlet/outlet radius R = 1 cm is
subject to periodic inflow and outlet pressure p̄ depicted in Fig. 1. Starting from the quiescent
state, i.e., u0 = 0, we prescribe u = (u1, 0, 0)

⊤ smoothly ramped by

ξ(t) =

{
sin2

(
πt
2τ

)
for t ≤ τ,

1 otherwise,
(17)

with τ = 0.2 s and a quadratic velocity profile, matching the volumetric flow rate computed
by the given mean velocity ū. Concerning the fluid parameters, we set ρ = 1060 kg/m3 and
η0 = 56 mPas, η∞ = 3.45 mPas, λ = 3.313 s and n = 0.3568 in (8) according to [33]. Further
modeling aspects such as three-element Windkessel models, backflow stabilisation and GLS sta-
bilisation are included into the split-step scheme. These extensions, typical for haemodynamic
applications, merely modify Neumann data hn+1 or add terms to the momentum equation, and
a rigorous introduction is omitted for brevity. Moreover, we define the maximum element CFL
and Reynolds numbers as

CFLe = max
e=1,...,Ne

max
i=1,...,d

|un+1
i |∆tn

hi
, Ree = max

e=1,...,Ne

max
i=1,...,d

ρ|un+1
i |hi
µ

, (18)

with the number of elements Ne and directional element size hi taken as the maximum vertex
distance in direction i. Based on (18), we aim for CFLe ≤ 0.5, starting from an initial value of
∆t0 = 10−3 s until five pulses are completed, i.e., t ∈ (0, 5]. The solution is periodic in time,
spatially symmetric and characterised by strong recirculations during diastole, as exemplarily
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Figure 1: Abdominal aortic aneurysm: computational mesh (left) and boundary data (right).

Figure 2: Strong recirculation and viscosity gradients in aneurysm at t ≈ 4.97 s (diastole), selected streamlines
(left) and viscosity in cut domain together with selected velocity vectors (right).

shown in Fig. 2 at t ≈ 4.97 s. Consequently, viscosity spans the whole admissible spectrum
η∞ ≤ µ ≤ η0 due to large variations in the local shear rate. All linear systems are solved
reducing the residual by a factor of 10−6, taking the last timestep solution as the initial guess.
Doing so, iteration counts for momentum balance (Nu) and PPE (Np) stay below 20, while
the projection of pressure Dirichlet data on ΓN needs a constant of 6 steps only for reaching
convergence. Note here, how the former two mildly depend on the flow field as shown in Fig. 3,
where we include the inlet velocity ū for reference. Fig. 3 also depicts the adapting time step
size together with element CFL and Reynolds numbers, showing time steps decreasing from
≈ 0.015 to ≈ 0.002 shortly after peak inflow, yielding a maximum CFLe of ≈ 0.85 without
repeating time steps. CFLe > 1 is admissible in the split-step scheme (cf. Pacheco et al. [23]),
but only at the cost of increasing iteration counts in the momentum balance solve.

4.2 Human phonation

In a second numerical test, we aim to simulate human phonation, which is the process of vocal
folds interacting with air from the lungs, creating the human voice. However, in this preliminary
two-dimensional study, the setup inspired by Kniesburges et al. [34] is limited to fixed vocal
folds. Parameters representing air are selected as ρ ≈ 1.18 kg/m3 and µ = 0.0137 mPas for a
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Figure 3: Iteration counts of momentum balance Nu, pressure boundary projection Nζ and PPE Np (left);
maximum element CFL and Reynolds numbers and ∆tn (right) with inlet velocity ū for reference.

Newtonian fluid. The glottis is modeled as a channel of total length of ≈ 50.4 mm and height
of H = 18 mm, including the vocal folds (VFs) with a height of 8.9 mm as well as in a distance
of 7.5 mm the false vocal folds with a height of 6.5 mm. The gap distance between the two
VFs is HG = 0.2 mm as depicted in Fig. 4.

Figure 4: Computational domain for the phonation example with vocal folds in dark grey.

Starting again from a quiescent state (u0 = 0) and ramping via (17) with τ = 0.01 s,
we enforce a quadratic inflow profile. The maximum inlet velocity is prescribed as 80 cm/s,
yielding an intraglottal maximum velocity of ūG ≈ 56 m/s and Re = ρūGHG/µ = O(103) being
in the physiological range [34]. On the outlet, a zero reference pressure is (approximately) set
using h = 0. Regarding the solver settings, we choose an initial ∆t0 = 10−4 s, adapt the
time step size such that CFLe ≤ 0.8 and reduce the residual by a factor of 10−8 with the last
time step’s solution as initial guess. The resulting velocity field is characterised by a strong
jet, triggering vortices which in return influence the jet direction. Moreover, the pressure field
features fluctuations in the vicinity of the jet as shown in Fig. 5. Low iteration counts result over

Figure 5: Snapshot of the solution at step 12000 (t = 13.576 ms) in the fold region: selected velocity streamlines
(left) and vectors (right) colored by |u| over pressure p in the background.

the whole considered timespan and interestingly, almost constant iteration counts are observed
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after the initial ramp-up phase. This is due to the time step size settling at ∆t ≈ 10−6 s, giving
an almost constant Ree ≈ 720 and CFLe ≈ 0.8. Therefore, we simply report mean iteration
counts over the last 1000 time steps as N̄ζ = 3, N̄u ≈ 22.53 and Np ≈ 54.18. Comparing
to the previous aneurysm example, a slight increase is seen, which is due to a combination of
worsened element aspect ratios and higher Reynolds number, but also depends on the more
strict convergence criterion.

5 CONCLUSION

Within this work, a time-splitting scheme suitable for incompressible (generalised) Newto-
nian fluids has been presented. Momentum and mass balance equations are decoupled using
an implicit-explicit treatment of the pressure, viscosity and convection terms. Thus, only an
advection-diffusion equation for momentum balance and a PPE with fully consistent bound-
ary conditions are computationally relevant steps. Lower equal-order interpolation of velocity
and pressure is also found admissible, while temporal accuracy is determined by suitable BDF
and extrapolation formulae. Two challenging examples in biomedical context were tackled,
namely, flow through an abdominal aortic aneurysm and human phonation, demonstrating the
effectiveness and versatility of the presented approach.
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Abstract: The simulation of underground flow across intricate fracture networks can be ad-
dressed by means of discrete fracture network models. The combination of such models with
an optimization formulation allows for the use of nonconforming and independent meshes for
each fracture. The arising algebraic problem produces a symmetric saddle-point matrix with a
rank-deficient leading block. In our work, we investigate the properties of the system to design
a block preconditioning strategy to accelerate the iterative solution of the linearized algebraic
problem. The matrix is first permuted and then projected in the symmetric positive-definite
Schur-complement space. The proposed strategy is tested in applications of increasing size, in
order to investigate its capabilities.

1 INTRODUCTION

The simulation of the flow in highly fractured systems can be particularly demanding from a
computational standpoint, because of the size and complexity of the domain and the uncertainty
characterizing the rock properties and the fracture geometry.

In this context, discrete fracture network (DFN) models can be used, and are preferred par-
ticularly when the presence of fractures has a dominant impact on the fluid flow dynamics. DFN
models represent only the fractures as intersecting planar polygons, neglecting the surrounding
underground rock formation. Differently from homogenization-based techniques, DFN models
provide an explicit representation of the fractures and their properties in a 3D structure, pre-
scribing continuity constraints for the fluid flow along the linear intersections. The number of
the fractures and their different size, that can change of orders of magnitude, entail a complex
and multi-scale geometry, which is not trivial to address. The problem has been effectively
reformulated as a PDE-constrained optimization problem in [1, 2]. The formulation relies on
the use of non-conforming discretizations of the single fractures and on the minimization of a
functional to couple intersecting planes. Thus, no match between the meshes of the fractures
and the traces are required, simplifying the mesh generation process. Moreover, the problem
on the entire DFN can be decoupled in several local problems on the fractures with a moderate
exchange of data among fractures, being suitable for a massive parallel implementation [2].

The linearized algebraic problem that derives from such a formulation produces a large size
symmetric saddle-point matrix with a rank-deficient leading block. In this work, we focus on
accelerating the iterative solution of the linear system by introducing effective block precon-
ditioning techniques. In particular, an appropriate permutation of the global matrix is first

https://doi.org/10.4995/YIC2021.2021.12234
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performed, in order to avoid a singular leading block. Though the permuted matrix is no
longer symmetric, this approach should be better suited for the solution with Krylov subspace
methods. Then, the matrix is projected in the symmetric positive-definite Schur complement
space of the fluxes along the intersection traces. The properties and the structure of matrix
blocks are properly exploited in order to guarantee an efficient parallel implementation. The
matrix properties are tested in applications of increasing size to verify pros and cons of the
approach.

The manuscript is organized as follows. In section 2 the mathematical problem and the
related discrete algebraic form are introduced. In section 3 the preconditioner framework is
described. In section 4 numerical results for four problems of increasing size and complexity
are analyzed and discussed.

2 PROBLEM STATEMENT

We consider a connected three-dimensional fracture network made by a system of intersected
polygonal fractures surrounded by an impervious matrix. The flow occurs only along the
fractures and their intersections, called traces. The flow along the fractures is modeled by
means of Darcy’s law with appropriate boundary conditions. Coupling conditions are imposed
on the traces, in order to guarantee the continuity of the solution and the balance of the
fluxes. The whole problem can be reformulated as PDE-constrained optimization problem [1].
Introducing an independent mesh on each fracture and trace, the Darcy equation, as well as the
optimization problem, can be discretized following the standard finite element method. The
result is the following algebraic problem [2]:

Ghh− αBu+ ATp = 0, (energy minimization) (1a)

−αBTh+Guu− CTp = 0, (energy minimization) (1b)

Ah− Cu = q, (mass balance) (1c)

where h ∈ Rnh
is the hydraulic head on the fractures, u ∈ Rnu

is the flux on the traces, p ∈ Rnp

are Lagrange multipliers and q ∈ Rnp
derives from the boundary conditions and the forcing

terms. Usually, np = nh, while according to the problem nu can be either larger or smaller than
nh. The coefficient α ∈ R is a user-specified positive parameter, usually on the order of 1. The
matrices Gh ∈ Rnh×nh

, A ∈ Rnh×nh
and C ∈ Rnh×nu

are fracture-local, whereas B ∈ Rnh×nu

and Gu ∈ Rnu×nu
operate on degrees of freedom related to different fractures. Their properties

can be summarized as follows:

• Gh and Gu are symmetric positive semi-definite (SPSD), usually rank-deficient;

• B and C are rectangular coupling blocks, whose entries are given by inner products
between the basis functions of the main unknowns along the fracture traces;

• A is symmetric positive definite (SPD) with a block diagonal structure. Each diagonal
block arises from the discretization of a ∇ · (κ∇) operator over a fracture, where κ is a
proper diffusion tensor, hence inherits the usual structure of a 2-D discrete Laplacian.
Block size depends on each fracture dimension and can be significantly different one from
the other.

Equations (1) can be written in a compact form as: Gh −αB AT

−αBT Gu −CT

A −C 0

 h
u
p

 =

 0
0
q

 ⇒ Kx = f (2)

             347



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

where K is a symmetric saddle-point matrix with a rank-deficient leading block. Solution to
such problems arise in several applications and is the object of a significant number of works.
For a review on methods and ideas, see for instance [3]. With an SPD leading block, as it often
arises in Navier-Stokes equations, mixed finite element formulations of flow in porous media,
poroelasticity, etc., an optimal preconditioner exists based on the approximation of the Schur
complement matrix [4]. However, if the leading block is singular the problem is generally more
difficult and the only available result is for the case of maximal rank deficiency [5].

3 PRECONDITIONER FRAMEWORK

Matrix K in equation (2) is a classical example of the discretization of a coupled multi-
physics problem. A general preconditioning framework for such problems can be developed
following the results in [6], where the different unknown fields are approximately decoupled to
obtain a block diagonal problem.

Theorem 1 of [6] holds true if the leading blocks of K are non singular. In order to satisfy
this hypothesis, a proper row and column block permutation, Pr and Pc, can be applied:

K̃ = PrKPc, x̃ = PT
c x, f̃ = Prf , (3)

such that a decoupling operator can be computed for the equivalent system K̃x̃ = f̃ . A possible
choice is:

K̃ =

 A 0 −C
Gh AT −αB

−αBT −CT Gu

 , x̃ =

 h
p
u

 , f̃ =

 q
0
0

 . (4)

Let us define the decoupling operator factors G,F ∈ RN×N of K̃, being N = 2nh + nu, as:

G =

 I 0 0
G21 I 0
G31 G32 I

 , F =

 I F12 F13

0 I F23

0 0 I

 , (5)

with G21, F12 ∈ Rnh×nh
and G31, G32, F

T
13, F

T
23 ∈ Rnu×nh

, and such that GK̃F = S, with S a
block diagonal matrix. Then, the off-diagonal blocks of F satisfy the relationships:

AF12 = 0[
A 0
Gh AT

] [
F13

F23

]
=

[
C
αB

]
. (6)

from which we obtain:

F12 = 0, F13 = A−1C, F23 = A−T
(
αB −GhA−1C

)
. (7)

Similarly, the off-diagonal blocks of G read:
G21A = −Gh[
G31 G32

] [ A 0
Gh AT

]
=

[
αBT CT

] , (8)

which provides:

G21 = −GhA−1, G32 = CTA−T , G31 =
(
αBT − CTA−TGh

)
A−1. (9)
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It is easy to observe that G32 = F T
13 and G31 = F T

23, hence only three off-diagonal blocks, namely

F13, F23, and G21, are needed. Recalling that GK̃F = S, i.e.: I 0 0
G21 I 0
F T
23 F T

13 I

 A 0 −C
Gh AT −αB

−αBT −CT Gu

 I 0 F13

0 I F23

0 0 I

 =

 S1 0 0
0 S2 0
0 0 S3

 (10)

we have:

S1 = A, S2 = AT , (11)

and

S3 =
(
F T
23A+ F T

13G
h − αBT

)
F13 +

(
F T
13A

T − CT
)
F23 +Gu − F T

23C − αF T
13B

= Gu − F T
23C − αF T

13B. (12)

Remark 1 Using the definitions of F13 and F23, it is easy to observe that the matrix S3 of
equation (12) is actually the Schur complement of K̃ computed with respect to the third block
row:

S3 = Gu −
[
αBT CT

] [ A 0
Gh AT

]−1 [
C
αB

]
. (13)

Similarly, S1 and S2 can be also regarded as the Schur complements computed with respect to
the first and second block row of K̃, respectively.

Introducing the matrix E = B − C, the definition of the Schur complement (12) can be
rewritten also as a function of F13 only:

S3 = Gu + F T
13

(
Gh − 2αA

)
F13 − α

(
ETF13 + F T

13E
)

(14)

From equation (10) it follows immediately:

K̃−1 = FS−1G, (15)

that is, the expression of the exact inverse of the block matrix K̃. Of course, equation (15) can-
not be computed explicitly in large-size applications, because both the decoupling off-diagonal
blocks in F,G and the diagonal blocks in S−1 are dense. However, we can use the factorization
(15) to build an inexact application of K̃−1 that can be used as a preconditioner in a Krylov
subspace method.

Since our aim is to compute the product of K̃−1 by a vector r ∈ RN , we do not necessarily
need to form an explicit expression of F and G, but just to define an algorithm to compute
their products by portions of size nh and nu of a vector lying in RN . This can be done exactly
and efficiently in a parallel computational environment by recalling the properties of matrix A
(see section 2). Similarly, also S−1

1 and S−1
2 (equation (11)) can be exactly applied to a vector.

Hence, the block preconditioner M−1 for K̃ can be defined as:

M−1 = FŜ−1G, (16)

where Ŝ−1 reads:

Ŝ−1 =

 A−1 0 0
0 A−T 0

0 0 Ŝ−1
3

 , (17)

Ŝ−1
3 being some approximation, either implicit or explicit, of S3.

For the eigenspectrum of the preconditioned matrix M−1K̃, the following result holds true.
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Lemma 1 Let K̃,M−1 ∈ RN×N be the matrices defined in (3) and (16), respectively. Then,

the eigenvalues λ of M−1K̃ are either 1, with multiplicity 2nh, or equal to those of the matrix
Ŝ−1
3 S3.

Proof 1 By using equation (16), the matrix M−1K̃ reads:

M−1K̃ = FŜ−1GK̃, (18)

which is similar to Ŝ−1GK̃F. Recalling (10), we have:

Ŝ−1GK̃F = Ŝ−1S

=

 I 0 0
0 I 0

0 0 Ŝ−1
3 S3

 , (19)

which completes the proof.

The key for the effectiveness of M−1 as a preconditioner of K̃ is therefore the selection of
Ŝ−1
3 . In the next paragraph, we analyze the results from different choices for Ŝ−1

3 .

4 NUMERICAL RESULTS

Since the effectiveness of M−1 depends on Ŝ−1
3 only, we reduce the system (4) on the flux

space:
S3u = b with b =

(
αBT − F T

13G
h
)
A−1q (20)

Since S3 is SPD, system (20) is solved by a preconditioned CG method, setting the maximum
number of iterations to 1500 and the exit tolerance on the relative residual to 10−6. Four
problems of increasing size have been analyzed (Table 1). Figure 1 shows the mesh domain for
the case PC.

Figure 1: 3D mesh domain for the case PC.

Table 1: Problem size.

PA PB PC PD

nh 787 13732 39288 93768
nu 206 5085 8219 18276
N 1780 32549 86795 205812

The non-zero pattern of the matrices of the smallest problem is shown in figure 2. Matrices A,
C and Gh are block diagonal. Being each block related to a fracture, these matrices are fracture-
local. Instead, matrices B and Gu connect degrees of freedom related to different fractures. In
particular, matrix B is made by the same diagonal blocks as C with additional extra-diagonal
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Figure 2: Structure and number of non-zeros of the matrices for case PA.

terms corresponding to intersections between fractures. Thus, the matrix E = B − C is zero
on the diagonal blocks and contains the same terms as B outside. Matrix F13, being defined as
A−1C, is also block diagonal, with the same size and structure as C.

On the basis of these considerations, the Schur complement can be written as (see equation
(14)):

S3 = SD − SE (21)

where SD = Gu + F T
13

(
Gh − 2αA

)
F13 and SE = α

(
ETF13 + F T

13E
)
. Matrix SD contains the

diagonal blocks of S3 and SE the off-diagonal part. Therefore, SD is SPD, whereas SE is
indefinite.

A key property for Ŝ3 is being SPD. It is therefore natural to consider Ŝ3 = SD, that is
the block diagonal and positive definite part. The results in terms of number of iterations
(iter), ratio between the non-zeros of the approximate Schur complement and the exact one
(µ) and the conditioning number (ξ) are reported in Table 2. Despite the preconditioning, the
number of iterations required to solve the system is still high and the conditioning number of
the preconditioned matrix is not very different from the original.

Table 2: Results considering the approximation Ŝ3 = SD. The ∗ indicates that the problem
does not converge, with the residual stagnating around 10−5.

Case iter µ ξ
(
Ŝ−1
3 S3

)
ξ (S3)

PA 125 0.3921 3.10e+04 1.67e+04
PB 300 0.3958 2.08e+06 4.90e+05
PC ∗ 0.3619 1.40e+08 1.72e+09
PD 957 0.3594 7.39e+06 1.15e+09

Approximating S3 with its diagonal blocks appears to be not enough for an efficient solution
of the system. Thus, in the following also the off-diagonal part is taken into account. Aiming
at understanding the importance of the single blocks of S3 as a preconditioner, we filter the
two contributions SD and SE separately, naming ŜD and ŜE their approximation. First, only
the extra-diagonal part of S3 is approximated:

Ŝ3 = SD − ŜE (22)

where ŜE is obtained by filtering each column j of the product ETF13 neglecting the components
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such that: ∣∣∣(ETF13

)
ij

∣∣∣ < τ
∥∥∥(ETF13

)
j

∥∥∥
2

(23)

Results for different values of τ are reported in Table 3.

Table 3: Results computing S3 with the sparsified SE. The * indicates the case when Ŝ3

becomes indefinite.

τ
case PA case PB

iter µ ξ
(
Ŝ−1
3 S3

)
iter µ ξ

(
Ŝ−1
3 S3

)
5× 10−2 * 0.8306 5.47e+03 * 0.4747 6.41e+08
10−2 8 0.9398 1.79e+02 26 0.6171 5.07e+06

case PC case PD

10−2 * 0.9577 3.26e+09 * 0.8056 4.68e+07
10−3 7 0.9950 2.28e+04 * 0.9742 3.44e+10

Finally, we consider the preconditioner Ŝ3:

Ŝ3 = ŜD − SE (24)

where the extra-diagonal blocks are computed exactly, while the diagonal ones are approximated
neglecting the components sij of the product F T

13

(
Gh − 2αA

)
F13 such that:

|sij| < τ
√

|sii sjj| (25)

Results for the four matrices are reported in Table 4.

Table 4: Results computing S3 after the sparsification of SD. The * indicates the case when Ŝ3

becomes indefinite.

τ
case PA case PB

iter µ ξ
(
Ŝ−1
3 S3

)
iter µ ξ

(
Ŝ−1
3 S3

)
5× 10−1 * 0.6604 1.47e+04 * 0.6114 3.51e+08
10−1 10 0.9217 1.99e+03 * 0.6351 4.62e+07
10−2 3 0.9910 2.99e+00 * 0.8902 1.84e+05
10−3 2 0.9987 1.06e+00 * 0.9925 2.33e+04

case PC case PD

10−2 * 0.9928 2.34e+04 * 0.9851 4.39e+05
10−3 2 0.9993 2.47e+01 2 0.9987 6.88e+01

In both cases, i.e. when approximating only SE or SD, the level of fill-in of Ŝ3 required for
the convergence is near to the one of the exact Schur complement (µ ≃ 1). This is because
Ŝ3 can easily become indefinite after the filtering. As an example, in figure 3 the ten smallest
eigenvalues of the exact and the approximated (with τ equal to 5 × 10−1) Schur complement
for the case PA are shown. While S3 is positive definite, the eigenvalues of Ŝ3 are both positive
and negative.
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Figure 3: Case PA: ten smallest eigenvalues of S3 and Ŝ3 computed through equation (24) with
τ = 5× 10−1.

In the last test, the preconditioner is computed approximating both SD and SE:

Ŝ3 = ŜD − ŜE (26)

To this aim, a sparsified F13 is computed by filtering the smallest components. Since F13 is block
diagonal, it can be efficiently computed in a parallel computational environment exploiting a
Cholesky factorization of the blocks of A. A relative drop tolerance is used, removing the
components such that:

|F13,ij| < τ ∥F13,j∥2 (27)

Results are reported in Table 5. The iterations count can decrease significantly with respect to
Table 2, with densities that are even smaller than those obtained keeping SD only. However,
in difficult problems, such as PC, quite a high fill-in can be required and the performance can
be very sensitive to the τ selection.

Table 5: Results computing S3 with the approximation of F13.

τ
case PA case PB

iter µ ξ
(
Ŝ−1
3 S3

)
iter µ ξ

(
Ŝ−1
3 S3

)
10−1 28 0.2697 3.75e+04 136 0.1226 1.88e+07

5× 10−2 19 0.8595 5.85e+04 57 0.2508 1.45e+07
10−2 1 1.0000 1 17 0.6072 1.48e+06

case PC case PD

5× 10−2 1483 0.5400 1.08e+11 445 0.3196 1.06e+09
2.5× 10−2 8 0.9952 1.64e+06 128 0.5663 8.89e+07

10−2 4 0.9990 3.38e+04 41 0.8100 1.57e+07
10−3 1 1.0000 1 5 0.9912 1.10e+05

Considering as a preconditioner an approximation Ŝ3 obtained by filtering S3 or its compo-
nents can be efficient (as results in Table 5 demonstrate), but also quite fragile because of the
possible indefiniteness of the approximation (see Table 3 and Table 4).
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5 CONCLUSIONS

A symmetric saddle-point matrix with a rank-deficient leading block arises from the com-
bination of DFN models with an appropriate optimization formulation. Here, we focused on
accelerating the iterative solution of this system with a block preconditioning technique. First,
an appropriate permutation of the matrix is performed and then a projection on the Schur
complement space of the flux is performed. The Schur complement proves to be the key for an
effective preconditioner, therefore we investigate different approaches to approximate it. Both
the diagonal and off-diagonal blocks of the Schur complement are fundamental for an efficient
solution of the system. Independent filterings of such components reveal the fragility of the ap-
proximated Schur complement, that can easily become indefinite. When the filter step regards
the matrix F13, before the computation of the Schur complement, results are more promising.
This suggests to investigate different other filtering approaches for F13, aiming at finding a more
robust and less τ dependent solution. Alternatively, a polynomial acceleration in a matrix-free
implementation can help improving the performance when working in a parallel environment.
Comparing the approaches we investigated, we noted that the conditioning number does not
vary according to the number of iterations, as one can expect. This can be related to the dis-
tribution of the eigenvalues, that means that the eigenspectrum is mainly grouped, but there
are a few outliers. In order to fix this problem, a deflation approach can be used to remove
the eigenvectors related to the extreme eigenvalues. This technique requires the a priori knowl-
edge of these eigenvalues, that is quite computational expensive, but reasonable in an iterative
framework.
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Abstract: In this work, the efficient approximation of a nonlinear cardiac poromechanics model
is investigated. Quasi-Newton solvers based on iterative two-way and three-way decoupling are
proposed. For increased robustness and better performance, the iterative schemes are accelerated
by additionally using Anderson acceleration. The solvers are tested for a numerical example
simulating cardiac perfusion. The results obtained demonstrate a significant speed-up for the
splitting approaches with respect to the standard monolithic Newton method.

1 INTRODUCTION

Cardiac perfusion describes the fundamental process of blood supply of the heart muscle, but
its importance at the outset of cardiac disease remains largely understudied. This motivates
the use of mathematical models to deepen the understanding of this phenomenon. The complex
network structure of the coronary vessels in the heart and tissue itself (myocardium) have been
mainly addressed by the use of poroelastic models [14, 9, 11], which possess the advantage of
greatly reducing the complexity of the vessels through formal averaging techniques [20].

Nonlinear poroelasticity consists in a complex multi-physics model, whose numerical ap-
proximation is still under active research. The linear case, i.e. Biot’s equation, is instead
better understood, with iterative coupling strategies presenting the most successful family of
methods for this kind of problem. The main ones used in practice are the undrained [21] and
fixed-stress [16] splitting schemes. These methods alternate between solving for flow and then
solid variables until convergence, while keeping the others fixed. For guaranteed robustness,
however, sufficient stabilization has to be used which can be obtained through analysis. Com-
putational costs may be significantly reduced due to the decoupling, which relies on solving
many times simpler sub-problems instead of solving once a difficult problem. The concept of
decoupling can be extended to nonlinear problems as a quasi-Newton method [15, 4, 5], where
the computational cost reduction can become even more relevant.

In this work, we study the nonlinear solution of a simplified nonlinear model for cardiac
poromechanics. The model combines thermodynamically-consistent linearization [7] of a fully-
nonlinear model [10], but with a nonlinear constitutive stress-strain relation [13]; the final model
consists in a nonlinear coupled system of three physics. Quasi-Newton solvers are proposed
integrating stabilized two-way and three-way decoupling, inspired by splitting schemes derived
for the linearized model [3] which guarantee linear convergence. Our numerical results show that
our iterative splitting quasi-Newton schemes outperform the widely used monolithic Newton
method, with a reduction in computer times of up to a 50% for the three-way and an 85% for
the two-way, making them an attractive choice for the fully-nonlinear models.

https://doi.org/10.4995/YIC2021.2021.12324
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2 NONLINEAR POROELASTICITY MODEL FOR CARDIAC PERFUSION

The scope of the following model is twofold: on one hand, it captures the interaction between
the deformation of the myocardium during a heartbeat and the myocardial coronary vessels,
and on the other hand it provides a simple scenario in which numerical methods can be tested.
We pose our problem on a prolate ellipsoid geometry Ω representing a left ventricle, cf. Figure 2.

The poromechanics model we consider is given by the following: Find a displacement ys,
absolute fluid velocity vf and pressure p such that

Fs := ρs(1− ϕ)∂ttys − div P(F, t) + (1− ϕ)∇ p− ϕ2κ−1
f (vf − ∂tys) = 0 in Ω,

Ff := ρfϕ∂tvf − div (ϕσvis(vf )) + ϕ∇ p+ ϕ2κ−1
f (vf − ∂tys) = 0 in Ω,

Fp :=
(1− ϕ)2

κs

∂tp+ div (ϕvf ) + div ((1− ϕ) ∂tys) = 0 in Ω,

(1)

where σvis := 2µfε(vf ) and P is the Piola stress tensor, given by P (F , t) := dΨ
dF

+ Pa(F , t)
for a Helmholtz potential Ψ and an active stress tensor Pa(F , t), specified further below. The
remaining parameters are: solid density ρs, fluid density ρf , porosity ϕ, permeability tensor κf
and bulk modulus κs.

To model the ventricle mechanics, a Guccione fiber oriented constitutive law [13] was used
together with an artificial active contraction force. The constitutive law is given by

Ψ(F ) := C exp{Q(F )− 1}+ κ

2
(J − 1) log J, (2)

Q := bfE
2
ff + bsE

2
ss + bnE

2
nn + 2(bfsE

2
fs + bfnE

2
fn + bsnE

2
sn), (3)

E :=
1

2
(F TF − I), F = ∇ys + I, J := det(F ), Euv := (Ev) · u, (4)

where f , s and n are a pointwise set of independent vectors directed towards the heart fibers,
sheets and normal directions, and the active stress is given by

Pa(F , t) := 3 · 104 sin(πt)
(Ff)⊗ f

∥Ff∥
. (5)

We use the same parameters from [18]: C = 0.88 · 103, bf = 8, bs = 6, bn = 3, bfs = 12, bfn =
3, bsn = 3, κ = 5 · 104 for the nonlinear constitutive law, and the ones from [7] for the remaining
parameters: ρf = ρs = 103, ϕ = 0.1, κf = 10−7 and κs = 108. All parameters are considered
within the SI unit system.

We note that this is a hybrid model, in the sense that it includes a nonlinear mechanics
response but it does not account for large deformations in the fluid momentum and mass
conservation. Still, it correctly captures the deformation pattern of a beating heart and, as our
results show, provides an adequate framework for studying the interaction strength between
the mechanics and the porous media flow. We thereby expect conclusions of this work to be
also applicable to extended models.

2.1 Initial and boundary conditions

The initial conditions are simply given by

ys(0) = ys0, ∂tys(0) = vs0, vf (0) = vf 0, p(0) = p0. (6)

The boundary conditions are defined as follows: the mechanics follow the Robin boundary
conditions from [18] which model the interaction with the pericardium at both the epicardium
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i 7→ i+ 1 i 7→ i+ 1 i 7→ i+ 1

Monolithic:

solid eq. +

fluid eq. +

pressure eq.

Two-way:

fluid eq. +

pressure eq.

solid eq.

Tree-way:

pressure eq.

fluid eq.

solid eq.

Figure 1: Summary of the monolithic, two-way, and three-way split solver strategies at an
arbitrary iteration i, where connected blocks denote coupled physics.

(external surface) and the base (circular ring on top), whereas the endocardium (inner surface)
uses a null Neumann condition. For the blood we consider a no-slip condition vf = ∂tys on the
endocardium and epicardium, and at the base of the heart we set a null Neumann condition
which allows for the blood to freely leave the tissue.

2.2 Numerical discretization

We use the continuous Galerkin finite element method for solving this problem. For this,
we consider the inf-sup stable family of generalized Taylor-Hood elements P2 × P2 × P1 [2] for
the solid×fluid×pressure space, and we use an implicit Euler method with a fixed time-step
∆t. We note that this approach is equally valid for the energy-consistent discretization shown
in [6], as well as higher order methods. The no-slip condition is imposed weakly as in [6].

The use of higher order finite elements for the displacement, although less frequently used
in the mechanics community, are common practice in the field of geomechanics, requiring an
inf-sup stability condition for the displacement and pressure finite element spaces. Yet, we note
that such discretization has also already been used in the context of cardiac poromechanics [11].
This relation is also true for the linear model we used as a base for our hybrid model, with
the inf-sup constant being proportional to the solid porosity 1 − ϕ for the case in which the
displacement is approximated with the lower order P1 elements [2].

3 MONOLITHIC AND BLOCK-PARTITIONED NUMERICAL SOLVERS

We present three iterative solver strategies for solving the nonlinear problem from Section 2:
a monolithic, a two-way splitting, and a three-way splitting approach, outlined in Fig. 1. The
monolithic scheme is the standard Newton method, whereas the splitting schemes are formu-
lated as quasi-Newton solvers, i.e. each iteration is a linearization iteration decoupling different
physical sub-problems by a suitable choice of the inexact Jacobian. The decoupling strategies
are closely related to previous developments for the corresponding linearized problem [3].

Through simultaneous linearization and decoupling, a significant reduction in overall com-
putational cost can be expected as observed for other nonlinear poroelasticity problems [4].
Furthermore, we suggest employing Anderson acceleration to both improve the performance
and slightly relax the need for well-chosen stabilization parameters.

All solvers are formulated in residual form, allowing in particular for a direct comparison.
For this, we denote with Fs, Ff , and Fp the canonical residuals of the solid momentum, fluid
momentum, and mass conservation/pressure equations, respectively. Throughout the remaining
section, i will denote the current iteration index which decorates approximations, e.g. ys

i, as
well as increments, e.g., δys

i.
The resulting schemes consider at each iteration i some approximation (ys

i,vi
f , p

i), for which
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we compute an increment (δys
i, δvf

i, δpi). The next iteration is then defined by (ys
i+1,vi+1

f , pi+1) :=

(ys
i,vi

f , p
i)+(δys

i, δvf
i, δpi). In the following, we specify the definition of the different lineariza-

tion steps.

3.1 Monolithic Newton solver

The monolithic Newton solver is usually the first-choice linearization scheme for nonlinear
problems (see [12] for the case of cardiac mechanics). The Jacobian is given by a full lineariza-
tion of the governing equations (1) after discretization.

The linearization step at iteration i ≥ 0 reads: Compute (δys
i, δvf

i, δpi) such that

ρs(1− ϕ)

∆t2
δys

i − div ∂ysP (F
i) : δys

i + (1− ϕ)∇ δpi (7)

−ϕ2κ−1
f

(
δvf

i − δys
i

∆t

)
= −Fs(ys

i,vi
f , p

i),

ρfϕ

∆t
δvf

i − div
(
ϕσvis(δvf

i)
)
+ ϕ∇ δpi (8)

+ϕ2κ−1
f

(
δvf

i − δys
i

∆t

)
= −Ff (ys

i,vi
f , p

i),

(1− ϕ)2

κs∆t
δpi + div

(
ϕδvf

i
)
+ div

(
(1− ϕ)

δys
i

∆t

)
= −Fp(ys

i,vi
f , p

i), (9)

Algebraically, this can be written asDysR
i
s A⊤

fs −BT
s

Afs Af −BT
f

Bs Bf Ap

δys
i

δvf
i

δpi

 = −

Ri
s

Ri
f

Ri
p

 , (10)

with natural definitions of the block matrices A(·)(·),B(·) and residual vectors R(·). The mono-
lithic solver strategy does not utilize the fact that all blocks aside of the solid diagonal block
DysR

i
s are constant. Splitting solvers are instead capable of making use of all constant blocks,

i.e. A(·)(·) and B(·).

3.2 Two-way splitting

We employ ideas previously developed for the linearized problem [3] justified by a similar
coupling character of the exact Jacobian, cf. Sec. 3.1. For this, the mechanics equations are
decoupled from the remaining two equations, and the mass conservation equation is stabilized
with a weighted L2-type term – essentially as in the fixed-stress split for Biot’s equations.

Let βp denote a user-defined stabilization parameter, and associate a weighted L2-type bilin-
ear form (p, q) 7→ βp⟨p, q⟩L2 with a corresponding discretization matrix Sp. Then the two-way
split is given by a decoupled solver with diagonal L2-type stabilization, which can be written
algebraically at each iteration i as: Find the increment (δys

i, δvf
i, δpi) satisfyingDysR

i
s A⊤

fs −BT
s

0 Af −BT
f

0 Bf Ap + Sp

δys
i

δvf
i

δpi

 = −

Ri
s

Ri
f

Ri
p

 (11)

Equivalently, the two-way split can be performed in two separate steps. First the coupled
fluid momentum and stabilized mass conservation equations are solved. Second, the solid
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momentum equation is solved with updated fluid flow parameters. We highlight that the first
step does not require any setup update over the course of iterations.

For the linearized problem, convergence can be showed for a range of stabilization values [3].
We expect similar robustness in the nonlinear case.

3.3 Three-way splitting

The two-way split still involves the solution of the coupled fluid momentum and mass conser-
vation equations, which have the character of a time-dependent Stokes equations. Inspired by
developments for the time-dependent Stokes equations [8], we apply additional decoupling with
two sub-steps accounting for one of the two contributions (L2-type and diffusion-type) in the
fluid velocity diagonal block Af . Similarly to the fixed-stress split, the diffusion contribution
in Af suggests an L2-type stabilization SCC,mass, associated to (p, q) 7→ βCC,mass⟨p, q⟩L2(Ω),
whereas the L2-type contribution in Af results in a Laplace-type stabilization SCC,diff , associ-
ated with (p, q) 7→ βCC,diff⟨∇p,∇q⟩L2(Ω). Here, βCC,mass and βCC,diff denote two (additional)
user-defined stabilization parameters.

The total increment is then obtained through mixing with parameter γ ∈ [0, 1]

(δys
i, δvf

i, δpi) := γ(δys
i
mass, δvf

i
mass, δp

i
mass) + (1− γ)(δys

i
diff , δvf

i
diff , δp

i
diff ) (12)

where the two increments are computed by solving the three-way splitting methodsDysR
i
s A⊤

fs −BT
s

0 Af −BT
f

0 0 Ap + Sp + SCC,mass

δys
i
mass

δvf
i
mass

δpi
mass

 = −

Ri
s

Ri
f

Ri
p

 , (13)

and DysR
i
s A⊤

fs −BT
s

0 Af −BT
f

0 0 Ap + Sp + SCC,diff

δys
i
diff

δvf
i
diff

δpi
diff

 = −

Ri
s

Ri
f

Ri
p

 . (14)

3.4 Choice of stabilization parameters and acceleration

The two-way and three-way splitting schemes involve the choice of user-defined stabilization
parameters βp, βCC,mass, βCC,diff , and a mixing parameter γ. In the numerical example in
Section 4, inspired by the strategy in [17], we manually chose βp = 0.22 as it resulted in
the fewest iterations for the first 10 time steps. We keep the value fixed over the course of
the entire simulation. The linear structure of the fluid-pressure coupling naturally suggests

βCC,mass = 3ϕ/(2µf ) and βCC,diff =
(
ρf (∆t)−1I + κ−1

f

)−1
. The mixing parameter is chosen as

γ = 0.9 to favor the L2-type stabilization.
The performance of the solvers depends on the choice of the parameters. However, the

nonlinear character of the problem impedes optimization at each iteration; we note that the
non-constant diagonal block DysR

i
s in particular controls βp. For remedy, we employ the

multisecant and nonlinear GMRES method called Anderson acceleration [19]. As observed
in [4], the need for optimized stabilization can be expected to be strongly relaxed, in addition
to a generally improved performance.

4 NUMERICAL TESTS

In this section we present the performance of the quasi-Newton schemes with respect to the
standard Newton method. We consider the solution of problem (1), whose solution is shown in
Figure 2. It can be seen that (i) the base of the geometry allows for free flow of blood and (ii)
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t = 0.0 t = 0.1 t = 0.4

Figure 2: Simulation of the poromechanics model at rest (t = 0.0), systole (t = 0.1) and
dyastole (t = 0.4). Deformation is illustrated via the deformation of the geometry, and fluid
velocity by the arrows.

it can be seen that the fluid is an absolute velocity, as it follows the heart’s untwisting motion
during diastole.

To study the splitting schemes we focus on the first 30 time-steps (up to t = 3 · 10−2), the
mesh used yields around 130 000 degrees of freedom, and all sub-blocks being solved with the
GMRES method. We use a right ILU preconditioner with 1 level of fill-in for the splitting
methods, and readily highlight that this was not possible for the monolithic Newton solver,
as it diverged. For convergence, we required 3 levels of fill-in for the monolithic case. The
absolute and relative tolerances used for the linear solvers (GMRES) were 10−10 and 10−8 for
the residual, and instead for the nonlinear solvers (Newton and quasi-Newton) we used 10−8

and 10−6, computed through the residual as well. All tests were run in serial to avoid mixing
the results with the parallel performance of the precondtioners1. The implementation was
performed using the FEniCS library [1].

Results are shown in Figure 3, where we depict both the iterations of the nonlinear solvers
and the wall-time. We note that Anderson acceleration was fundamental for the convergence of
the quasi-Newton schemes, with different levels of depth being required; the depth denotes the
amount of previous iterations utilized for determining the next approximation. The two-way
split required a depth of at least one, whereas the three-way required a depth of at least 5. It
must still be further studied whether the impact of Anderson acceleration is due to an improved
robustness with respect to the stabilization parameters as observed in [4] or instead because it
improves the convergence of the quasi-Newton itself.

For the iteration counts, cf. Figure 3a, we note that as expected the monolithic Newton
method presents a much more robust behavior, with a maximum of three iterations per time-
step. The accelerated two-way, albeit with more iterations, also does not present large oscilla-
tions in the iteration count, with a minor improvement obtained through further acceleration.
The three-way instead varies from 33 to 68 iterations when using 5 levels of acceleration, this
behavior being greatly reduced with an acceleration depth of 10, which presents iteration num-
bers between 31 and 43. This shows the effectiveness of Anderson acceleration in granting
robustness to the iterative splitting schemes while the problem character changes over time due
to the nonlinearities.

The solution times, cf. Figure 3b, show clearly the superiority of splitting schemes to the
monolithic Newton method. The two-way split with one level of acceleration solves each time-
step at roughly 15% of the time it takes the monolithic Newton method, whereas the three-way
split with 5 levels of acceleration takes in average a 50% of the monolithic time. These times

1Simulations were performed in the Indaco cluster from the University of Milan.
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can be further improved by means of acceleration, where using an acceleration depth of 10, we
see that in average the solution time at each time-step is further reduced to roughly a 10% and
a 43% for the two- and three-way respectively, both with respect to the Newton solver.
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Figure 3: Iteration counts and solution time at each time step for different nonlinear solvers;
depth of Anderson acceleration (AA) in parentheses.

5 CONCLUSIONS

In this work, we have proposed an extension of a two-way splitting scheme for a linearized
model presented in [3], now applied as quasi-Newton methods for a nonlinear poroelasticity
problem. Both two-way and three-way splitting schemes are considered. Both schemes have
been numerically tested for a simplified, nonlinear model of cardiac poromechanics. Our results
are very encouraging: the two-way splitting scheme presented an average reduction of the
solution time of up to a 85% with respect to the classic Newton scheme, and the three-way a
reduction of roughly 50%.

Anderson acceleration provided a crucial improvement to the quasi-Newton methods, with-
out which they would have not converged. The amount of previous iterations required by
Anderson depends on the scheme used, 1 being sufficient for the two-way, and instead 5 for
the three-way. The three-way splitting scheme, although slightly less performant in this case,
presents a more attractive alternative for high performance simulations as it does not require
the preconditioning of a saddle point block.
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The difference in performance between the monolithic and splitting schemes is mainly jus-
tified by the difficulty of devising an efficient preconditioner for the monolithic problem, as
can already be seen by the requirement of using additional fill-in with the ILU (1 for the
splitting schemes, 3 for the monolithic one). Splitting schemes leverage on the solution of the
better understood sub-blocks to yield an overall more efficient solver with potentially better
computational complexity.

Future work will be devoted to further investigate three-way decoupling techniques in the
context of preconditioning. In addition, the application of quasi-Newton methods inspired by
decoupling approaches for the fully nonlinear cardiac poromechanics will be further studied.
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Abstract: We consider the flow of two immiscible fluid phases in a porous medium. At the
scale of pores, the two fluid phases are separated by interfaces that are transported by the flow.
Furthermore, the surface tension at such interfaces depends on the concentration of a surfactant
dissolved in one of the fluids. Here we discuss a two-scale model for two-phase porous-media
flow, in which concentration-dependent surface tension effects are incorporated. The model is
obtained by employing formal homogenization methods and relies on the phase-field approach,
in which thin, diffuse interface regions approximate the interfaces. We propose a two-scale
numerical scheme and present numerical results revealing the influence of various quantities on
the averaged behaviour of the system.

1 INTRODUCTION

Porous media are complex domains involving many alternating solid grains surrounded by
void spaces (the pores). These form hierarchically organized structures in which various pro-
cesses take place at different scales. Prominent examples in this sense are the fluid flow through
the pores of the medium, the transport of chemically reactive substances, or mechanical de-
formation. In situations like the ones mentioned here, there are processes taking place at the
scale of pores (from now on called the micro scale), whereas the main interest is in the averaged
behavior of the system at a larger scale (the laboratory or even the field scale, from now on
called the macro scale).

Two-phase flow in porous media are encountered in several real-life situations of practical
relevance. Prominent examples in this sense are geological CO2 sequestration or oil recovery.
Here we consider the flow of two immiscible fluid phases in a porous medium. At the micro scale,
one encounters an interface separating the two fluids transported by the flow. Furthermore,
we assume that the surface tension may change depending on the concentration of a surfactant
dissolved in one of the fluid phases. Since the location of the interface is not known a-priori
but depends on the (unknown) fluid velocities and the surfactant concentration, the resulting
mathematical model involves free boundaries at the micro scale. Hence, the model equations
are defined in time-dependent a-priori unknown micro-scale domains.

Two significant challenges can be identified in this context: the free boundaries at the
micro scale and the complex structure of the micro-scale domain. To deal with the former, we
consider a phase-field approach, in which the evolving interfaces are approximated by narrow
diffuse-interface regions, which allows defining all model components on the entire micro-scale
domain. For the latter, we recall that in practical applications, the main interest is in the
system’s behavior at the macro scale, not necessarily in the complex, micro-scale behavior.

https://doi.org/10.4995/YIC2021.2021.12571
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Therefore, we apply formal homogenization techniques to derive a two-scale phase-field model,
approximating the averaged, macro-scale behavior of the system. In the resulting two-scale
model, the effective (macro-scale) parameters required at the macro scale are determined by
solving micro-scale cell problems, which, in their turn, depend on the macro-scale quantities.

Similar situations are considered in [1,2], where macro-scale models are derived for two-phase
porous-media flow, accounting for the evolving interfaces at the micro scale. Such results are
extended in [3], where dynamic and hysteretic contact angles are incorporated in the micro-
scale model before deriving macro-scale ones. Closest to the present contribution is the case
involving a concentration-dependent surface tension studied in [4]. However, all these results
are obtained for sharp-interface micro-scale models.

Phase-field models for two-phase porous-media flow, including the derivation of macro-scale
models are discussed in [5–10]. More precisely, in [5, 6] phase-field pore-scale models are dis-
cussed, and the convergence to the corresponding sharp-interface model is proved when passing
the diffuse-interface parameter to zero. A macro-scale model is derived in [9] under certain
scaling assumptions, but without accounting for variable surface-tension effects. A macro-scale
phase-field model for compressible fluids is derived in [8]. Here we consider a two-scale phase-
field model derived by formal homogenization techniques [11]. The model includes variable
surface-tension effects, depending on the concentration of a surfactant dissolved in one of the
fluid phases. We propose an explicit numerical scheme, accounting for the coupling between
the two scales.

The paper is organized as follows. In Section 2, the two-scale model is presented, and the
interaction between the scales is highlighted. Then, in Section 3, an explicit numerical scheme
is proposed for the numerical solution of the two-scale model. Finally, in Section 4, a numerical
example is presented, for which the necessity of using adaptive meshes at the micro scale is
discussed, and the influence of the macro-scale quantities on the micro-scale results is studied.

2 THE TWO-SCALE MODEL

At the macro scale, the porous medium is a bounded domain Ω ⊂ R2, having Lipschitz-
continuous boundary ∂Ω. Let T ∈ (0,∞) be the final time. To each macro-scale point x ∈ Ω,
one micro-scale cell Y = [0, 1]2 is associated. The micro-scale cell is divided into two sub-
domains: the inner grain G surrounded by the pore space P . We denote by ∂G the boundary
of G and by n the unit normal to ∂G pointing into G. One has Y = G ∪ P ∪ ∂G, and we
assume that the pore space P is filled by two fluids, “Fluid 1” and “Fluid 2”. A sketch of the
two-scale domain is shown in Figure 1.

Following the phase-field approach, the (micro-scale) sharp interface separating the two fluids
is replaced by a narrow, diffuse interface. Consequently, the two fluids are identified at the micro
scale through the phase field ϕ, ranging from 1 (corresponding to Fluid 1) to −1 (for Fluid
2). At the micro scale, this allows defining the velocity, pressure, and solute concentration for
the mixture over the entire pore space P , without separating between the fluid phases. The
corresponding macro-scale quantities are v̄, v̄ϕ, p and c. Also, S stands for the macro-scale
saturation of Fluid 1. We consider the following macro-scale model for x ∈ Ω and t ∈ (0, T ]

(Pp)

{
v̄ = −K∇p−Mγ(c),

∇ · v̄ = 0,

(PS)

v̄ϕ = −Kϕ ∇p−Mϕ γ(c),

Φ ∂tS +
1

2
∇ · v̄ϕ = 0,
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Figure 1: The porous medium: the macro-scale domain Ω (left) and the micro-scale domain Y
(right) corresponding to a point x ∈ Ω.

(Pc) Φ ∂t(Sc) +
1

2
∇ · (c(v̄ + v̄ϕ)) =

1

Pec
∇ · (B∇c+Hc).

Initial and boundary conditions complete the model. Here Pec is the non-dimensional Péclet
number and Φ denotes the medium porosity. The definition of the effective parameters Kϕ,
K, Mϕ, M, B, H depend on the micro-scale structure and on the evolution of the micro-scale
phase field ϕ, as explained below. Note that v̄ is the velocity of the mixture of the two fluids,
while v̄ϕ accounts for the phase distribution. Hence 1

2
(v̄+ v̄ϕ) reflects the macro-scale velocity

of Fluid 1.
At each micro-scale cell Y , the phase field ϕ and the potential ψ are computed by solving

the following micro-scale cell problem

(Pϕ)



∇ · (vϕ) = Aϕλ∆ψ, in P,

ψ =
Aψγ(c)

λ

(
CP ′(ϕ) + I ′(ϕ)− Cλ2∆ϕ

)
, in P,

∇ϕ · n = 0, on ∂G,

∇ψ · n = 0, on ∂G,

ϕ, ψ are Y -periodic,

1

Φ

∫
P

ϕ dy = (2S − 1) .

Observe that t enters in (Pϕ) as a parameter, through the macro-scale saturation S and concen-
tration c. Here Aϕ,Aψ are non-dimensional quantities and γ(c) is the concentration-dependent
surface tension, which introduces a coupling with the macro scale. The micro-scale velocity v
is defined below and its average is by construction v̄. Moreover, we choose P (ϕ) = 1

4
(1− ϕ2)2

as the double-well type potential and I(ϕ) = 1
2
(1 + ϕ) as a characteristic function which is 1 in

Fluid 1 and 0 in Fluid 2. The parameter λ is the diffuse interface thickness and C = 3
2
√
2
is a

calibration constant.
The components of the effective matrices K and Kϕ, appearing in the Darcy-type laws in

(Pp) and in the evolution equation for the saturation (PS), are found through

Ks,r =

∫
P

(wr)s dy and (Kϕ)s,r =

∫
P

(wr)sϕ dy, for r, s = 1, 2. (1)

Here (wr)s are the components of wr = ((wr)1, (wr)2)
t, where (wr,Πr) solve the following
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Stokes-type cell problems

(Pr
K)



Eu (er +∇Πr) = − 1

Re
∇ · (2µ(ϕ)ε(wr)) , in P,

∇ ·wr = 0, in P,

wr = 0, on ∂G,

Πr,wr are Y -periodic and

∫
P

Πr dy = 0.

Here ε(wr) = 1
2

(
(∇wr) + (∇wr)

T
)

is the symmetric stress tensor and er is the unit basis

vector. The Euler and Reynolds numbers are denoted by Eu and Re, respectively. Moreover,

µ(ϕ) = µ2·(1+ϕ)
2

+ µ1·(1−ϕ)
2

is the viscosity of the mixture of the two fluids and µi with i = 1, 2
correspond to the viscosity of Fluid i. As before, t enters in (Pr

K) as a parameter through ϕ.
Additionally, the components of the effective vectors M and Mϕ, appearing in the Darcy-

type law (Pp) and in the evolution equation for the saturation (PS), are found through

Ms =

∫
P

(w0)s dy and (Mϕ)s =

∫
P

(w0)sϕ dy, for r, s = 1, 2. (2)

As before, (w0)s are the components of w0 = ((w0)1, (w0)2)
t, where (w0,Π0) solve the following

modified Stokes-type cell problem

(PM)



Eu∇Π0 = − 1

Re
∇ · (2µ(ϕ)ε(w0)) +

C
Re Ca

(
1

λ
P ′(ϕ)− λ∆ϕ

)
∇ϕ, in P,

∇ ·w0 = 0, in P,

w0 = 0, on ∂G,

Π0,w0 are Y -periodic and

∫
P

Π0 dy = 0,

with Ca being the capillary number. Observe that (PM) is introduced to deal with the
concentration-dependent surface tension.

The micro-scale cell velocities wr and w0 are also involved in the calculation of the micro-
scale velocity v, i.e.

v = −
2∑

r=1

wr ∂xrp−w0γ(c). (3)

Notice that the macro-scale velocities v̄ and v̄ϕ in (Pp) are related with the micro scale trough
v and ϕ as follows

v̄ =

∫
P

v dy and v̄ϕ =

∫
P

vϕ dy.

The components of the effective matrix B and the effective vector H, appearing in the
macro-scale equation for the solute concentration (Pc), are

Bs,r =

∫
P

I(ϕ) (δs,r + ∂ysχr) dy, Hs =

∫
P

I(ϕ)∂ysχ0 dy, for r, s = 1, 2. (4)

Here, χr and χ0 solve the following micro-scale cell problems

(Pr
B)


∇ · [I(ϕ) (∇χr + er)] = 0, in P,

I(ϕ) (∇χr + er) · n = 0, on ∂G,

χr is Y -periodic and

∫
P

χr dy = 0.

             367



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

(PH)


∇ · [I(ϕ)∇χ0] = ∇ · (I(ϕ)v) , in P,

I(ϕ)∇χ0 · n = 0, on ∂G,

χ0 is Y -periodic and

∫
P

χ0 dy = 0.

3 THE NUMERICAL SCHEME

We propose an explicit numerical scheme for solving the two-scale model for the two-phase
flow porous-media problem presented in Section 2. With N ∈ N, we let ∆t = T/N be the time
step size and define tn = n∆t. The time-discrete solutions are denoted by ϕn := ϕ(·, ·, tn) and
νn := ν(·, tn) where ν ∈ {Kϕ,K,Mϕ,M,B,H, p, v̄, v̄ϕ, S, c}. For n ≥ 0, assume Sn, cn and ϕn

given. The time stepping reads:

• For each x ∈ Ω, compute the solution of the time-discrete micro-scale cell problems
corresponding to (Pr

K) and (PM).

• Compute the first set of time-discrete effective parameters Kn
ϕ, Kn, Mn

ϕ and Mn.

• Compute the macro-scale solution pn and v̄n by solving the time-discrete macro-scale
problems corresponding to (Pp).

• Compute the macro-scale solution v̄nϕ and Sn+1 by solving the time-discrete macro-scale
problems corresponding to (PS).

• For each x ∈ Ω, compute the micro-scale velocity vn and the solution of the time-discrete
micro-scale cell problems corresponding to (Pr

B) and (PH).

• Compute the second set of time-discrete effective parameters Bn and Hn.

• Compute the macro-scale solution cn+1 by solving the time discrete problem corresponding
to (Pc).

• For each x ∈ Ω, compute the solution of the time-discrete phase-field problem corre-
sponding to (Pϕ) to obtain ϕn+1.

The explicit scheme is sketched in Figure 2. We highlight that the two-scale problem itself is
fully coupled, and an iterative structure could be considered here. We refer to [12,13] for similar
approaches using iterations to handle the multi-scale interaction between the sub-problems.

Clearly, for the numerical simulations the explicit time stepping needs to be completed by
the spatial discretization. More precisely, let TH be a triangular partition of the macro-scale
domain Ω with elements T of diameter HT and H := max

T∈TH

HT . For computing the micro-scale

quantities, a micro-scale domain Y is assigned to each macro-scale element T . On each micro-
scale domain Y we define another triangular partition Th with elements Tµ of diameter hTµ
and h := max

Tµ∈Th

hTµ . Finally, we use the mixed finite element method to calculate the numerical

solution at both scales. For an effective computation we use adaptive mesh refinement on the
micro scale (see [12,14]).
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Figure 2: The explicit two-scale scheme.

4 NUMERICAL RESULTS

In this section, we present a micro-scale numerical experiment that highlights the relation
between the macro-scale quantities and the micro-scale solutions. We restrict our implementa-
tions to the 2D case and all parameters remain non-dimensional. Here the micro-scale domain
contains a centered square grain with side lengths 0.2 and we choose

Pec = Eu = Re = Ca = Aϕ = Aψ = 1 and λ = 0.08.

4.1 THE PHASE-FIELD AND THE MICRO-SCALE MESH

Figure 3 shows the initial phase field ϕ, corresponding to a saturation S0 = 0.639, and the
Laplacian of the initial phase field ∆ϕ, which is needed for computing the potential ψ in (Pϕ).
The Laplacian is calculated numerically, and this calculation requires the construction of a
very fine mesh around the transition zone to achieve sufficient accuracy. Close to the diffuse
interface, the resolution of the micro-scale mesh Th is taken h ≪ λ to capture the diffuse
transition zone and the variation in its derivatives. Following the ideas in [12], we refine the
micro-scale mesh only close to the diffuse transition zone, making the computation of the phase
field and the effective parameters accurate and efficient.

In Figure 3 we use an initially uniform mesh with 800 elements. Then, the mesh is re-
fined around the transition zone such that the length of the smallest edge in the mesh is
min
Tµ∈Th

hTµ = 1.25E-2 < λ and the length of the largest edge (located far from the transition

zone) is max
Tµ∈Th

hTµ = 7.071E-2.
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Figure 3: Phase-field initial condition (left) and the numerical calculation of the Laplacian of
the phase field (right).

4.2 FIRST SET OF MICRO-SCALE PROBLEMS

Given the phase-field initial condition in Figure 3, we solve the micro-scale problems (Pr
K)

and (PM) over the refined mesh. Figure 4 shows the scalar solutions Π1, Π2 and Π0 of the
problems (Pr

K) and (PM) in the simple case when the two fluids have the same viscosity, i.e.
µ1 = 1 and µ2 = 1.

Figure 4: The solution of the first set of micro-scale problems (Pr
K) (left and middle) and

(PM) (right).

Notice that for Π0, the location of the changes in the solution coincides with the phase-field
transition zone. This supports the requirement of a mesh refinement strategy to improve the
accuracy and efficiency of further computations.

4.3 THE EFFECTIVE PARAMETERS

We show below the behavior of the effective parameters Kϕ, K, Mϕ and M, depending on
the saturation. Figure 5 displays the results for the effective tensors Kϕ and K. We consider
two cases: a simple case where the two fluids have same viscosity, i.e. µ1 = µ2 = 1, and a more
complex case where the viscosities are µ1 = 0.1 and µ2 = 1.

The symmetry of the phase field at the micro scale implies that the effective tensors are
isotropic. The non-diagonal components of Kϕ and K can be neglected, and in Figure 5 we
only show the first component of the effective tensors.

Notice that when µ1 = µ2 = 1, the changes on the saturation do not affect the permeability
K. This is expected since the two fluids flow like one. In contrast, Figure 5 reflects that the
changes in the saturation have an important effect if the two fluids have different viscosities.
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Figure 5: Dependence of the effective parameters Kϕ and K on the macro-scale saturation.

Commonly used two-phase porous-media flow models are relying on saturation-dependent
quantities like relative permeability and capillary pressure. The situation here is similar, but
capillary pressure is absent due to the assumed scaling of the capillary number [11]. Moreover,
here K is not separated into absolute and relative permeability, and it reflects how the velocity
of the mixture of the two fluids relate to the pressure gradient.

Figure 6: Dependence of the effective parameters Mϕ and M on the macro-scale saturation.

In Figure 6 we denote by (Mϕ)1 and M1 the first component of the effective vectors Mϕ and
M. Notice that for these macro-scale vectors, both components are equal due to the symmetry
of the phase field. Moreover, Figure 6 shows that the variations in the effective parameters Mϕ

and M are more relevant in the case of a large viscosity ratio.

5 SUMMARY AND OUTLOOK

We have considered a two-scale model for two-phase flow in a porous medium. The model
describes the behavior of the mixture of two fluids and a surfactant dissolved into one of
them. Here, the surface tension depends on the concentration of the solute. This model is the
homogenized counterpart of a pore-scale phase-field model. For these phase-field formulations,
a diffuse region approximates the moving interfaces separating the two fluids.

Based on the Euler explicit time stepping and the lowest order mixed finite element spatial
discretization, we have proposed a two-scale numerical scheme. The scheme requires solving
several micro-scale cell problems for each macro-scale point, depending on the macro-scale
concentration and saturation. The solution of these micro-scale cell problems is used to deter-
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mine the macro-scale parameters needed to compute the macro-scale model unknowns (velocity,
pressure, saturation and concentration). For each micro-scale cell problem, the spatial mesh is
refined or coarsened adaptively, improving the efficiency of the scheme.

We have presented numerical simulation results in two different situations, when the fluids
have the same viscosities or when the viscosity ratio is large. Based on these results, we show
the dependence of the macro-scale parameters depending on the saturation.

In the following research steps, we will analyze the possibility to compute the macro-scale
parameters adaptively based on an active-passive node strategy. Furthermore, implicit or semi-
implicit schemes will be considered, coupled with appropriate linearization approaches. Also,
different regimes will be analyzed, possibly leading to models involving a capillary pressure.
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Abstract: Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual
changes on earth with a huge impact on the global climate and ecology system [1]. The principles
of sea ice growth and melting in the MIZ of the Antarctic are not yet as well researched as their
polar counterparts in the north [2]. For this study, pancake ice, consolidated ice and floe ice were
analyzed with a compression test in July, October and November 2019 in the marginal ice zone of
the Antarctic. Newly formed pancake ice in July showed the highest compressive strength in the
bottom layer (3 MPa), whereas consolidated ice was strongest at the top (5 MPa). Consolidated
ice in October and November had the highest compressive strength in a middle layer with up to
13.5 MPa, the maximum strength at the top was 3 MPa. Floe ice, consisting of destroyed pack
ice, did not show a clear strength development over sea ice depth.

1 INTRODUCTION

Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual changes
on earth with a huge impact on the global climate and ecology system [1]. The principles of
sea ice growth and melting in the MIZ of the Antarctic are not yet well researched. The annual
freezing-thawing cycle can be divided into two parts. The first part is the pancake ice cycle,
which describes the sea ice growth process in four steps [3]. The melting process is the second
part and is dominated by the ice-ocean albedo feedback [4]. Both processes combined, as shown
in Figure 1, can explain the full annual growth and melt process in the MIZ of the Antarctic.

https://doi.org/10.4995/YIC2021.2021.12249
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Figure 1: Full-year pancake cycle in the MIZ of the Antarctic. A) Freezing starts with the formation
of frazil ice, which develops into grease ice. B) Grease ice grows thicker and starts to form ice floes
named pancake ice due to their round appearance. Waves lead to pancake rafting and get attenuated
by the ice cover. C) Closed ice cover overcast by snow with an albedo of 0.85. D) The ocean is still
completely covered by ice. Solar radiation leads to the melting of the ice cover from the top (Albedo
decreases to 0.60) and from the bottom. The bottom starts melting due to the ice-ocean albedo effect.
E) Waves break up the ice and release ice floes.

Two prerequisites must be fulfilled for the beginning of sea ice growth: The water must be
supercooled and under turbulent conditions. If both prerequisites are met, the growth of frazil
ice takes place. Frazil ice, which appears as grease ice, a grey milky layer at the surface, is
the first step in the annual freezing process. If a sufficient number of frazil ice crystals has
formed, the crystals stick together and form flocs of ice. Flocs of frazil ice develop into larger
agglomerations of crystals, forming first pans of ice. The size of pancakes varies between a
few centimeters for the first pans up to 5 m in diameter for fully grown so called pancakes [5].
Pancakes get rafted by ocean waves and wind, starting to form larger ice floes by pancakes
freezing together. The bonding process between the pancakes has not been observed in the
laboratory or field yet and is therefore referred to as a welding mechanism [6]. A growing sea
ice layer at the ocean surface attenuates the ocean waves, leading to a calmer ocean [7]. When
the ocean waves are sufficiently damped, the ice cover freezes up completely. Snow at the sea
ice surface increases the albedo of the ice cover to 0.85, preventing the ice and the ocean from
absorbing energy from solar radiation. In contrast to snow covered ice, seawater has an albedo
of only 0.07. As solar radiation gets stronger, the ocean absorbs most of the solar energy,
which increases the water temperature. An increasing water temperature melts the ice from
the bottom side, while the melting snow at the top decreases the albedo to 0.60 and lower [8].
As the ice gets weaker due to the melting from the bottom side, the ice breaks up and floes
form, which then drift freely in the ocean.

This study will focus on the strength development of sea ice in the full-year pancake cycle,
which has an effect on the formation, durability and break-up process of sea ice. This study
presents the whole year cycle of freezing and thawing in 2019, enabling a direct comparison
between the steps in the full-year pancake cycle.

Up to now, only a few tests have been conducted on sea ice in the Antarctic region. The
maximum uniaxial compressive strength reported was 4.5 MPa in the melt season and the
mean compressive strength was 2.35 MPa. In this case, the compressive strength was tested
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immediately after sampling and showed the strongest layer in the center part of the ice floe [9].
Ice collected by Urabe and Inoue showed the same behavior, even though the samples were
tested after long time storage in a cold room. The strongest layer was again in the center part
of the floe with a maximum uniaxial compressive strength of about 2.5 MPa [10]. Only a few
tests were conducted by Vaudrey with a maximum reported value of 9 MPa [11].

This is the first time, that the uniaxial compressive strength is determined in July, October
and November of the same year with the same in situ testing equipment.

2 METHODS

The data provided in this study were collected during the SCALEWinter Cruise and SCALE
Spring Cruise in 2019. Locations and ice concentrations for the different stations are displayed
in Figure 9. The uniaxial compressive strength was determined with a hand stroke uniaxial
compression test (GCTS PLT-2W Point Load Testing Device, GCTS Testing Systems, USA).
Cores with a diameter of 9 cm and varying lengths were collected. These cores got cut into
several cylindrical samples with a height of 13.5 cm. Even though the perfect relation of
diameter to height is 1:2.5 it was decided to not reduce the diameter of the samples to avoid
changes in the ice structure and proceed with the test as fast as possible after collection. This
study kept the same strain rate for all samples in the ductile-to-brittle transition zone (10−3 1/s)
to focus on the sea ice strength development over depth.

3 RESULTS

The results are separated into the five stages of the full-year annual pancake cycle. Frazil
ice is tested regarding its rheological properties, pancake ice, consolidated ice, and ice floes are
tested using the uniaxial compression test device.

3.1 Frazil ice

Grease ice, which consists of lose frazil crystals and small flocs, is the first ice that forms
in the freezing process in the MIZ of Antarctica. Frazil ice crystals grow under turbulent
and supercooled conditions. The viscosity of grease ice was determined with a rheometer
and showed a shear thinning behavior. A higher frazil ice concentration leads to a higher
viscosity, which also indicates, that the ocean gets damped by a thicker frazil ice cover. Due to
the completely different experimental approach the results for this set of experiments will be
published elsewhere.

3.2 Pancake ice

Pancake ice develops from frazil ice. Pancake ice tested in July 2019 had a medium thickness
of 0.36 m. The compressive strength increased from top to bottom, this is displayed in Fig-
ure 2. The minimum compressive strength for the pancake ice was 1.5 MPa and the maximum
compressive strength was 3.1 MPa.

3.3 Pack ice (freezing period)

Three pack ice cores were cut into eight samples and tested in July 2019. The compressive
strength was higher for the consolidated ice than for the pancake ice and showed a different
profile over the depth (Figure 2). A relatively high compressive strength could be spotted close
to the top, followed by a region with a lower compressive strength. The results for pancake ice
and pack ice in the freezing period will be published elsewhere.

             377



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Figure 2: Sea ice strength in July 2019. Symbols connected with a line represent one core. The error
bar indicates the length of a sample and is valid for all samples. Further results will be published
elsewhere.

3.4 Pack ice (spring)

In total 44 pack ice samples were collected and tested at four different days for the com-
pressive strength during the SCALE spring cruise 2019. The peak load for every sample from
the pack ice stations MIZ2, MIZ3, MIZ6 and MIZ7 are displayed in Figure 3. MIZ2, MIZ6 and
MIZ7 show an increase of the compressive strength over depth. MIZ3 shows a high compressive
strength in a middle layer with a drop in strength beneath.

Figure 3: Maximum compressive load in October 2019 for MIZ2 (24.10.2019), MIZ3 (25.10.2019),
MIZ6 (29.10.2019) and MIZ7 (30.10.2019). Symbols connected with a line represent one core. The
failure occurs somewhere within the sample length of 13.5 cm without knowing the exact location.
Therefor the error bar indicates the length of a sample and is valid for all samples shown in the figure.

The temperature gradient over the ice depth is shown in Figure 5. MIZ2 and MIZ3 have a
slightly lower temperature at the top than MIZ6 and MIZ7. The bottom temperature is the
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same for all stations. Salinity is displayed in Figure 5, showing that the highest salinity is at the
top and decreases to a depth of about 30 cm. Below 30 cm all salinity profiles show scattering
in the data points with no clear trend. The images of the samples after testing displayed in
Figure 4 are typical for the sea ice collected at the stations MIZ2, MIZ3, and MIZ6.

Figure 4: Bottom image of a core from station MIZ3 before preparing the samples. Top images:
samples after the compression tests.

Different types of failure were obtained at stations MIZ2, MIZ3 and MIZ6. Sample MIZ3-
DE-01-c (Figure 4) as well as sample MIZ3-DE-01-d (Figure 4) show a shear faulting failure.
Whereas samples MIZ3-DE-01-a and MIZ3-DE-01-b (Figure 4) did not show terminal failure.

Shear faulting behavior results from confinement across the column [12]. Confinement is
induced into the sample by a) the l/d ratio of 1.5, which is lower than the optimal l/d ratio,
and b) the rough compression plates, preventing the sample to release stress laterally. The
failure mechanism for shear faulting behavior is described in literature as follows: First parent
cracks with an angle of 45◦ to the loading direction are induced into the sample, developing into
wing cracks under increasing load. The growth of these cracks is trans-granular and followed
by comb cracks. Comb cracks are unique for confined compression tests. They have one fixed
end and a free end. If comb cracks are loaded by frictional drag across their free ends they fail.
By this failure the load is shed further and starts a chain direction [13, 14]. Wing and comb
cracks lead to a measured crack angle of 45◦ to 65◦ for all samples which showed a shear faulting
behavior in the experiments presented in this study. The samples, which showed a shear faulting
behavior during the compressive test, also exhibit the highest compressive strength. Cracks at
an angle of 45◦ to the axis of maximum loading are also visible in the samples MIZ3-DE-01-a
and MIZ3-DE-01-b (Figure 4), even though they did not show brittle final destruction of the
sample. The samples did not fall apart even after the test, which suggests that the samples
show a partwise brittle and ductile behavior. The appearance of 45° cracks to the direction of
maximum loading, shows that the ice did not fail in a pure ductile way. Whereas the missing
comb cracks, which would lead to an ultimate failure, suggests that the structure within the
grain boundaries is not strong enough to allow secondary comb cracks to grow. This might be
due to strain relaxation through creep, so that the stress cannot exceed the yield stress [11].
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Figure 5: Temperature and salinity profiles for all stations. The first row shows the profiles for
the pack ice stations, the second row the profiles of the floe stations. Salinity and temperature
measurements were provided by Riesna Audh.

3.5 Ice floes

To reveal more information about the broken ice, eight cores from three different ice floes
were tested. The maximum compressive strength is displayed in Figure 6 and shows that the
compressive strength is only slightly increasing over depth. The temperature is constant over
the ice core length and the salinity varies in a narrow range between 3 and 5 PSU.

Figure 6: Maximum compressive load for ice floes in November 2019 at MIZ8 (01.11.2019) and MIZ9
(03.11.2019). Symbols connected with a line represent one core. The failure occurs somewhere within
the sample length of 13.5 cm without knowing the exact location. Therefor the error bar indicates the
length of a sample and is valid for all samples shown in the figure.
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Figure 7 shows, at the bottom, an image of an uncut core from an ice floe and, at the top,
images after the compression test had been conducted. Figure 7 was chosen, because it is
representative for all floe stations from the spring cruise. It can be seen that the entire core is
perforated with holes. The holes are distributed over the whole core length, they are visible at
the top and bottom of the core. From the holes it can be concluded, that melting takes place
from the bottom due to the warmer ocean as well as from the top, due to solar radiation. The
top left-hand side sample (Figure 7 a)) deforms comparable to the top samples from Figure 4,
whereas the bottom sample shows a different behavior than samples from previous stations.
It looks like the top right hand side sample splits into several pieces of ice, along the brine
channels. Suggesting, that the weakest bonding during the melting period is between the brine
channels.

Figure 7: Bottom image of a core from station MIZ9 before preparing the samples. Top image:
Samples after the compression test.

4 DISCUSSION

The compression strength of pancake ice is characterized by a low compressive strength at
the top followed by an increase of strength over depth. The transition from pancake to pack
ice is marked by a higher overall compressive strength. Furthermore, the compressive strength
for the pack ice during freezing does not increase monotonously over depth but has a peak
for the sample taken from the (Figure 2). This change in sea ice strength for the top sample
from 3 MPa and lower for pancake ice to over 4 MPa for the pack ice can be explained by a
temperature difference of about 6 ◦C. A temperature difference in this order of magnitude can
lead to an increase of compressive strength by about 1.8 MPa [15].
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Figure 8: Average compressive strength at each station.

The next step in the full-year pancake cycle is the older pack ice during or shortly before
melting. The fact that the ice at MIZ3 has the highest uniaxial compressive strength and the
lowest temperature suggests, that it is the least melted station. Station MIZ2 shows a lower
compressive strength and a slightly higher temperature compared to MIZ3. At the top samples
it is not clear which station has a higher compressive strength in the layers underneath. But
the samples in a depth between 20 to 25 cm show a smaller increase in compressive strength
for MIZ2 than for MIZ3. The average compressive strength increases for samples from a depth
between 10 and 15 cm to samples from a depth between 20 to 25 cm is 3.5 MPa for MIZ2 and
4.9 MPa for MIZ3. Cores collected at MIZ6 and MIZ7 do not show a strong increase from the
first to the second sample, but still show an increase for the third sample. Even though the
temperature does not differ in a depth of 40 cm and deeper, the compressive strength is further
decreasing over depth (Figure 8). The last two ice floe stations MIZ8 and MIZ9 show a similar
compressive strength as the ice from MIZ7. MIZ8 differs from MIZ7 by a weaker compressive
strength below a depth of 45 cm. The ice floe at MIZ9 was already too short to test below 45
cm but shows the same compressive strength in the top part as MIZ6, MIZ7 and MIZ8. This
leads to the assumption, that MIZ6 and MIZ7 are on the verge of breaking apart, a precise
time or breaking mechanism cannot be pointed out in this study. It is suggested, that storms
or waves will lead to the final ice break up [16,17].
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Figure 9: Sea ice concentration at the different stations. The ships position is marked with a red
dot.

5 CONCLUSIONS

Data for the compressive strength of sea ice during the freezing and melting cycle of the
Marginal Ice Zone of the Antarctic were presented. Samples from pancake ice, pack ice during
freezing, pack ice during melting and ice floes were collected.

• The compressive strength of pancake ice increases over the sea ice depth.

• In contrast to the compressive strength in pancake ice, pack ice in the freezing period
has a strong compressive strength at the top, followed by a weaker compressive strength
underneath.

• Pack ice in the melting period has a comparable compressive strength for the top 15 cm,
independent of the melting progress in the sea ice underneath. A maximum in compressive
strength was measured in a depth between 35 to 40 cm.
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• During the melting process, the compressive strength decreases until it reaches a constant
strength over the sea ice depth. If the compressive strength is sufficiently decreased, the
pack ice breaks apart and forms ice floes.

• The compressive strength in pack ice, which is estimated to break apart soon, and that
of ice floes can be similar.
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Abstract: Observational records provide a strong basis for constraining sea ice models within
a narrow range of climate conditions. Given current trends away from these conditions, models
need to be tested over a wider range of climate states. The past provides many such exam-
ples based on paleoclimate data, including abrupt, large-amplitude climate events. However, the
millennial-duration of typical paleoclimate simulations necessitates balancing the inclusion and
sophistication of model processes against computational cost. This is why many simplified mod-
els used for multi-millennial simulation only feature representations of thermodynamic sea ice
processes, while representing sea ice dynamics is essential for more complex general circulation
models. We investigate the impact on climate mean states and variability of introducing sea ice
dynamics into the simplified general circulation model PlaSim-LSG.

We extend the default thermodynamic sea ice component in PlaSim-LSG with one that in-
cludes also dynamic sea ice processes. We adapt the structure and parallelization scheme of
this new submodel originating from the MITgcm, a more complex state–of–the–art general cir-
culation model. Then, we evaluate the impact of sea ice dynamics on the simulated climate.
Comparing climatologies and the variability of the extended model to control simulations of the
pre-existing setup, we find that the standard model overestimates sea ice extent, concentration
and thickness. The extended model, however, is biased towards low sea ice amounts and extent.
Modifying individual parameters in initial tests of the newly added component is not sufficient
to compensate for this bias. Still, the general ability of the model to represent positive and nega-
tive biases of the sea ice cover provides a promising starting point for the tuning of PlaSim-LSG
with sea ice dynamics. Eventually, the extended model can be used to investigate the role of sea
ice for past climate oscillations.

1 INTRODUCTION

Paleoclimate simulations provide a test-bed to constrain climate models of different com-
plexity over a much wider range than what is available from instrumental records [1, 2]. In
addition, they provide an opportunity to verify concepts on mechanisms and tipping elements
which led to abrupt climate oscillations in the past. Sea ice is closely linked with past abrupt
climate transitions as found in model studies [3–6] and inferred from paleoclimate archives [7,
8].

A major limitation of transient paleoclimate simulations over multiple millennia with state–
of–the–art general circulation models (GCMs), which represent the earth system to a great
level of detail, are the high computational costs. Simplified GCMs still offer a reasonable rep-
resentation of the atmosphere and ocean with a dynamical atmospheric core and a mixed-layer

https://doi.org/10.4995/YIC2021.2021.12383
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or dynamic ocean component [9]. Depending on the questions and time scales of interest, they
additionally feature representations of other components of the earth system, like sea ice ther-
modynamics or simple vegetation [10]. Yet, simplified GCMs are typically highly parametrized,
have a relatively coarse spatial resolution to allow for moderate computational cost in simula-
tions of multiple millennia, and are often specifically adapted to answer specific research ques-
tions with design decisions carefully weighing model complexity against computational costs
[9–12]. As a result, simplified GCMs or models of intermediate complexity do not take all earth
system processes into account in great detail and, other than in more complex state–of–the–art
general circulation models, it is not always common to, for example, model the dynamics of sea
ice. Simplified GCMs can, however, help to build a better understanding about which processes
are actually needed to effectively resolve particular climate phenomena [11].

The Planet Simulator (PlaSim) [13–15] coupled to the Large Scale Geostrophic Ocean (LSG)
[16] is a well-studied simplified GCM. It solves the primitive equations in the atmosphere, ap-
proximates the dynamical equations of the ocean under the assumptions of large spatial and
temporal scales, and employs simplified parametrisations for processes like sea ice thermody-
namics, greenhouse gas forcing, and land cover and vegetation [14]. However, it does not contain
a component to model the dynamics of sea ice up to this point. PlaSim and its atmospheric
core PUMA have been used in a wide range of applications from synchronization experiments
[17] to entropy and hysteresis studies [18]. More recently, the model was used to study the
dynamical landscape of climate [19] and in combination with LSG in a study on atmospheric
contributions to abrupt climate changes in the past [20]. LSG has been extensively studied and
was a part of CMIP1 [21] and of Paleoclimate Model Intercomparison Projects [e.g. 22–24].

Yet, it has been shown that under climate conditions of the Last Glacial Maximum, the
time period of greatest land-based ice volume during the Last Glacial period, occuring around
21 kyr ago [25], PlaSim-LSG has pronounced biases with respect to CMIP5 simulations towards
too low high-latitude winter temperatures over oceanic and snow-covered land regions [20].
Similar biases occur under present-day conditions during winter in high latitudes. The model
overestimates climate sensitivity as is visible from transient simulations [26, 27] and simulates
unrealistically large and thick amounts of sea ice. Dynamics of sea ice are crucial to realistically
represent the sea ice thickness distribution, while sea ice thermodynamics are most relevant to
enable feedbacks with earth system compartments [28, 29]. Thus, sea ice dynamics could
potentially help to address the model biases by reducing the amount of too-thick multi-year
sea ice present in the model. Also, representing sea ice in PlaSim-LSG in more detail for multi-
millennial simulations of past climate could help to reveal the role of sea ice as an important
moderating and tipping component in the onset and development of centennial- to millennial
scale climate oscillations.

Here, we present our work integrating sea ice dynamics into PlaSim-LSG. While it is essential
for more complex GCMs to represent the dynamics of sea ice, this is less common for simpli-
fied GCMs or earth system models of intermediate complexity used for coupled simulations of
multiple millennia. We describe the pre-existing model configuration, and its newly extended
capabilities for dynamic sea ice modelling in Section 2. While one of the primary motiva-
tions for these extensions to PlaSim-LSG comes from prospective multi-millennial paleoclimate
simulations, we present and discuss initial simulations with the current state of the extended
model under present-day climate conditions (Section 3.1). We choose present-day climate for
initially constraining the extended model, because direct sea ice observations are available in
this period. We test the impact of several key parameters of the sea ice dynamics component
(Section 3.2), and evaluate the performance of the new model configuration (Section 3.3). We
conclude with future perspectives in Section 4.
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2 MODEL DESCRIPTION

2.1 Planet Simulator

PlaSim in version 17 is a simplified GCM which solves the wet primitive equations of the
atmosphere in its dynamical core PUMA. We employ a T42 spectral resolution in this study
(about 2.8° × 2.8°) and a vertical discretization of 10 layers. PlaSim performs calculations
which are for example associated with the mixed-layer ocean, sea ice thermodynamics, and the
surface energy balance on a 64 latitude × 128 longitude Gaussian grid [13–15, 20].

The thermodynamic sea ice model in PlaSim is based on the zero-layer Semtner [30] model
which is used as well in several other GCMs like the MITgcm [31]. Other than in the standard
version of PlaSim-LSG, snow on sea ice is represented following the description of snow on land
in the appendix of Andres and Tarasov [20]. In addition to the configuration described there,
we implement a simple representation of snow-covered ice, bare ice (meaning ice that is directly
exposed to the atmosphere and not covered by snow), and melt pond fraction following the ver-
sion 2 scheme for sea ice albedo of Køltzow [32]. The purpose of these extensions is to represent
the sub-grid scale effects of melt ponds and snow cover on sea ice albedo and the surface energy
balance [e.g. 28], which was not the case in PlaSim-LSG previously. We further introduce a
globally conservative treatment of excess thermodynamic sea ice growth beyond the physical
limits of the sea ice thickness parametrisation in the zero-layer model to improve model stability.

LSG is a 3d general circulation ocean model running at 2.5°× 5° horizontal resolution with
22 vertical layers [16, 22]. LSG implicitly solves the oceanic primitive equations assuming large
spatial and temporal scales. This makes a longer integration step than for all other compo-
nents in PlaSim possible. However, this benefit comes at the expense of not representing gravity
waves and barotropic Rossby waves in the ocean [22]. While we run PlaSim at a time step of
20 minutes, one integration step of LSG is performed every 10 days. A mixed-layer ocean with
a thickness of 50 m is coupled between LSG and the rest of PlaSim, allowing the ocean to re-
spond to phenomena on shorter time scales than the LSG step. The mixed-layer ocean relaxes
to the LSG solution under stationary atmospheric conditions, and mixes the solution from LSG
and the thermal response to surface forcing when atmospheric conditions vary [described e.g.
in 20].

PlaSim has been coupled to another ocean model, yielding the PlaSim-GENIE model [33].
This implementation replaced the thermodynamic sea ice component of PlaSim and the LSG
ocean model by the GOLDSTEINSEAICE and GOLDSTEINOCEAN components. To repre-
sent sea ice dynamics, this model employs an advection scheme and uses Laplacian diffusion
[34]. Conversely, we choose to retain the LSG model and extend PlaSim-LSG with a component
to model sea ice dynamics which we adapt from the MITgcm [31, 35] (see Section 2.2). Unlike
PlaSim-GENIE, this approach allows us to also resolve nonlinear viscous-plastic rheologies of
sea ice. Another reason is that PlaSim-LSG is user-friendly, well-documented, and extensively
studied. Finally, the LSG model has previously been shown to exhibit abrupt climate oscilla-
tions [36]. This makes it an ideal test-bed to study such oscillations during the Last Glacial
Period.

2.2 Sea ice dynamics component

To model the dynamics of sea ice, we adapt those parts of the MITgcm’s sea ice component
[35] which solve the sea ice momentum equations of a variant of the nonlinear viscous-plastic
(VP) sea ice model introduced by Hibler [37]. The momentum equations in the MITgcm’s com-
ponent are solved with the line-successive-over-relaxation (LSOR) method of Zhang and Hibler
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[38] on an Arakawa C grid. Furthermore, we integrate the second- and third-order flux-limited
volume- and area-conserving advection schemes from the MITgcm which are used to advect sea
ice thickness, concentration, and snow cover [31, 35]. Ice–ocean and ice–atmosphere stresses
are directly applied from PlaSim-LSG. While viscous-plastic rheologies with an elliptical yield
curve and normal flow rule have been employed for many years in GCMs including MITgcm [e.g.
39, 40], it should be noted that they produce unphysical fracture angles. This is why current
development efforts aim at using rheologies which result in better agreements of small-scale sea
ice features with observations [e.g. 41, 42]. However, our motivation of incorporating sea ice
dynamics into PlaSim-LSG is not to most accurately represent sea ice across a wide range of
spatial scales. We rather aim to represent sea ice dynamics in this simplified GCM in sufficient
complexity to reduce model biases and study its role in abrupt climate oscillations, which can
be observed in multi-millennial simulations with the model. For this purpose, a well-tested and
widely-applied sea ice component with elliptical yield curve is sufficient and affordable in terms
of added computational costs.

To handle the coupling and interpolation between PlaSim’s Gaussian grid and the Arakawa
C grid of the dynamic sea ice component, we add and test an intermediate module. We use
the pre-existing coupler of PlaSim and LSG to first interpolate any additionally needed oceanic
fields to the PlaSim grid. In this process we extend the parallelization architecture of PlaSim
to allow for fast handling of neighbouring grid areas used in the discretisations of the sea ice
model (“halo exchange”). Additionally, we modify the MITgcm routine interfaces to match
with the coding conventions of PlaSim where needed.

In the coupled model, the dynamic sea ice component is called sequentially in every step
of PlaSim, with the oceanic stress forcing from LSG being updated at every LSG time step.
Thickness categories used in the dynamic model are still represented as zero-layer in the ther-
modynamic component. This is the default option for the MITgcm sea ice model as well.
Given the potential for substantial biases in zero-layer thermodynamic sea ice models, the
MITgcm provides an option for the 3-layer model of Winton [43]. This is not available in our
configuration due to the current implementation of sea ice thermodynamics in PlaSim.

3 PRELIMINARY RESULTS AND DISCUSSION

3.1 Impact on climatological model biases and simulated climate variability

Starting with the default PlaSim-LSG model parameter set and default parameter settings of
the sea ice dynamics component, we run equilibrium simulations under present-day boundary
conditions and radiative forcing (CO2 concentration-equivalent of 360 ppm). Following an initial
spin-up phase into a quasi-equilibrium state, we study climatologies over 70 years (150 for the
control simulation with only thermodynamic sea ice). Compared to the model setup with
only thermodynamic sea ice, we find a strongly decreased mean sea ice extent throughout the
year for the model configuration which includes the new component for sea ice dynamics in
both hemispheres. Fig. 1 shows this bias for Antarctica. Sea ice extent is below the 1981-
2010 median observations for all months. As a result, the 2m temperature has a positive
bias compared to reanalysis data (Fig. 2), strongly overcompensating the negative polar 2m
temperature bias of the control simulation in the Northern High Latitudes but doing so only
slightly in Antarctica. This may hint at the need for differing parametrisations of sea ice albedo
for the two hemispheres.

Over all seasons, the mean sea ice thickness from the simulation with the extended model is
greatly reduced compared to the configuration with only thermodynamic sea ice in most of the
Antarctic Ocean, with thicker accumulations only in the Weddell Sea and Ross Sea (Fig. 1).
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We observe a similar behaviour with greatly reduced sea ice thicknesses in the Arctic region
(not shown). The configuration with only thermodynamic sea ice exhibits unrealistically thick
sea ice under present-day conditions in parts of Antarctica and the Arctic. Thus, tuning of the
coupled model should allow us to reach a realistic sea ice state in between the extremes of the
configuration of PlaSim-LSG with only thermodynamic sea ice and the extended model.

Figure 1: Climatogies of PlaSim-LSG for the present day control simulation (PD C) with only thermodynamic
sea ice (top row) and for the simulation with sea ice dynamics under present-day conditions and using the
default parametrizations (PD SID, bottom row). Panels show annual mean 2m-temperature of the standard
configuration (A), annual mean 2m-temperature anomaly between the two configurations (simulation with sea
ice dynamics minus control simulation, B), absolute sea ice thickness in September (C, D) and absolute sea ice
concentration in September (E, F). The 1981-2010 median sea ice extent of September is indicated in magenta
using the data of Cavalieri et al. [44].

Compared to reanalysis data, the model configuration with only thermodynamic sea ice over-
estimates mid to high latitude annual 2m temperature variability, measured in units of absolute
2m temperature standard deviation of the zonal 2m temperature average (Fig. 2). Conversely,
the extended model with sea ice dynamics underestimates 2m temperature variability in North-
ern mid- to high latitudes. This negative bias in the temperature variability is a lot smaller in
Southern mid-latitudes and remains positive for Southern high latitudes. Reduced temperature
variability in a state with low amounts of sea ice is in line with previous findings which indicate
that temperature anomalies could be amplified less under global warming scenarios which go
along with major reductions in sea ice cover [45]. As for the biases of the mean temperature
and sea ice states, the results for temperature variability are promising for achieving a realistic
representation in between the extremes of the configurations with only thermodynamic sea ice
and the one with sea ice dynamics through tuning.
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Figure 2: Zonal mean 2m-temperature (top row) and standard deviation (bottom row) for the entire annual
cycle (panels A and B), and for monthly climatologies of March (panels C and D) and September (panels E
and F) of the present-day control simulation (PD Control), the simulation with sea ice dynamics using default
parameters (PD SID), and ERA 5 Reanalysis [46].

3.2 Effects of tuning

We conduct initial tests towards a more realistic representation of sea ice cover in the ex-
tended model. Therefore, we vary individual parameters of the dynamic sea ice component
aiming at increases in mean sea ice extent, concentration and thickness distribution in the
coupled model setup. We only consider key parameters of the sea ice dynamics component and
do not conduct a comprehensive tuning procedure involving the entire coupled model. Table 1
lists these parameters which are related to the internal sea ice dynamics or the coupling to
oceanic and atmospheric stresses. Parameters are varied equally in both hemispheres to test
the general response of the coupled model. The purpose of these initial parameter tests is to
gain an understanding for how the coupled model responds to parameter changes in the first
place and to provide a basis for more systematic parameter tuning.

Overall we find little to no impact for individual parameter changes in 30 year-averaged
simulation data. Sea ice concentration and thickness are slightly increased when changing the
sea ice strength parameter P ∗ to P ∗ = 3.1625 × 104N/m3 compared to the default param-
eters. P ∗ (see Table 1) is the main free parameter in the sea ice strength parametrization,
which is why it is particularly suited for modifications [37]. The most notable impact can be
found in and around the Beaufort Sea and East Siberian Sea in the Arctic (Fig. 3). For the
Antarctic, sea ice extent and concentration are still generally too low. Thus, more realistic val-
ues cannot be achieved by variations in individual parameters of the sea ice component alone.
Evaluating combinations of varied parameters at once and involving the thermodynamic sea
ice component, the albedo parametrisation, and other components of the coupled model in a
more rigorous process of parameter optimisation are possible next steps to improve the tuning
of PlaSim, following e.g. Mehling et al. [47]. In addition, different parameterisations for the
two hemispheres might need to be considered in the tuning. This is generally supported by
previous findings indicating that the most accurate representations of sea ice by models which
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Table 1: Main parameters related to the sea ice-internal dynamics, and to the coupling to ocean and atmosphere
which can be subject to model tuning.

Parameter [units] Variable name Description Default
value

Tested values

Cw [10−3] SEAICE waterDrag Water drag for freely drifting sea
ice

5.5 1.1, 2.4, 3.5, 6.2 (See Table 1 in
[49] and the findings of [50])

k2 [N/m
3] SEAICEbasalDragK2 Parameter and implicit flag for

basal stress parametrisation of
landfast sea ice

0.0 15.0 (see [51] for additional pa-
rameters u0, k1, k2 which have not
been changed from defaults here)

C∗ [1] SEAICE cStar Empirical (exponential) scaling
constant to couple sea ice thick-
ness and strength following [37]

20.0 Not changed, same impact
achievable with parameter P ∗

P ∗ [104N/m3] SEAICE strength Primary free parameter to couple
sea ice thickness and strength fol-
lowing [37]

2.75 2.61, 2.89, 3.025, 3.1625 (cor-
respond to ∼ ±5% steps from
MITgcm default)

κ [1] SEAICEstressFactor Overall coupling factor of sea ice
and wind stress to ocean surface
layer

1.0 0.9, 0.95, 1.05

Figure 3: Sea ice concentration and extent in March for the PlaSim-LSG model with only thermodynamic
sea ice (panel A), the default parametrisation of the extended model with sea ice dynamics (parameter P ∗ =
2.75 × 104 N/m3, B), and with an increased parameter P ∗ = 3.1625 × 104 N/m3 (C). The 1981-2010 median
sea ice extent of March is indicated in magenta using the data of Cavalieri et al. [44].

comprise a VP rheology with an elliptical yield curve cannot be achieved with a single global
value of the sea ice strength parameter [48]. A limiting factor for high values of P ∗ are the
potentially inaccurate representations of small-scale sea ice features [42], which are, however,
not the focus of our effort of representing sea ice dynamics in this simplified GCM used for
multi-millennial simulations of past climate.

3.3 Model Performance

We compare the performance of the new model configuration to the different possible config-
urations of PlaSim-LSG and the core model PlaSim, for the hardware capabilities of a standard
server (Intel Core i5-8600K, 6 × 3.60 − 4.30GHz, simulations in this study on 4 cores) and a
general purpose high performance computing cluster. Table 2 shows the total run time and the
resulting simulation times achievable per day of simulation. The added component increases
the simulation time per year by about 10 % compared to the standard PlaSim-LSG setup.
For a T42 resolution we achieve a decent benefit when increasing the number of computing
cores from eight to sixteen (35 % speed-up). Further increase to 32 cores does only decrease
run time marginally. This hints at the primary limitation of performance of PlaSim-LSG in
general. In the current implementation the LSG ocean component is not parallelized, although
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it is sequentially coupled.

Table 2: Typical computational cost of different model setups. If not stated otherwise, the given numbers refer
to a coupled PlaSim-LSG setup with only thermodynamic sea ice at T42 resolution (see Section 2).

Machine Core Number and
Clock Rate [GHz]

Time per simula-
tion year [mn]

Simulation years
per day

Standard Server 4× 4.3 ≃ 13.0 111
Standard Server (with sea ice dynamics) 4× 4.3 ≃ 14.2 101
Standard Server (only PlaSim core model) 2× 4.3 ≃ 6.4 225
Standard Server (only PlaSim core model, T21) 2× 4.3 ≃ 2.7 533
General purpose cluster 8× 2.1 (0.25 node) ≃ 12.0 122
General purpose cluster 16× 2.1 (0.5 node) ≃ 7.8 184
General purpose cluster 32× 2.1 (1 node) ≃ 7.2 199

4 CONCLUSION

We extended the simplified general circulation model PlaSim-LSG with a component for
sea ice dynamics adapted from the MITgcm. While it is essential for state–of–the–art general
circulation models to represent the coupled dynamics of sea ice, it is less common for sim-
plified general circulation models, which are used for multi-millennial simulations of the past
climate, to feature sea ice dynamics. The component now added to PlaSim-LSG solves the
Hibler [37] sea ice momentum equations with a non-linear viscous-plastic rheology, and advects
sea ice as a response to stress forcing, thereby adopting the most common representation of sea
ice dynamics in more complex general circulation models. We studied climatological biases of
2m-temperature, and sea ice extent and thickness in the PlaSim-LSG configuration with only
thermodynamic sea ice and with the new model extension under present-day climate condi-
tions. The extended model presently under-represents sea ice extent and thickness compared
to present-day observations, and exhibits ice-free summer months. Through this, the negative
temperature bias of the standard model configuration in mid- to high latitudes is overcompen-
sated. As expected, the reduced amount of sea ice leads to decreased temperature variability
in mid- to high latitudes compared to the PlaSim-LSG version without thermodynamic sea
ice. Thus, sea ice dynamics is of great importance for the mean state and variability of the
high-latitude climate simulated by PlaSim-LSG.

Variations of individual parameters of the sea ice dynamics component have small to negli-
gible impact on the sea ice bias of the extended model. More thorough tuning of the coupled
model components simultaneously is required. However, while the extended model underesti-
mates sea ice thickness and extent, the configuration with only thermodynamic sea ice overes-
timates them. Therefore we expect that a realistic present-day state in between these extremes
can be reached through appropriate and comprehensive tuning of the coupled model. Introduc-
ing different parametrisations for the two hemispheres into the dynamic and thermodynamic
sea ice components could provide an additional possibility to improve the simulated climate of
the model.

Modelling sea ice dynamics adds about 10 % of runtime to the PlaSim-LSG model. This
is reasonable given the comparably high degree of explicit formulations introduced into the
model architecture to represent sea ice dynamics in more detail. The main bottleneck of
the PlaSim-LSG combination remains the unparallelized LSG ocean component, which limits
effective parallelization to sixteen cores. While additional tests for physical consistency, model
stability under varying boundary conditions, and tuning remain, the extended model adds to
the repertoire of different PlaSim-LSG configurations and allows us to study the impact of sea
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ice dynamics on known biases of the model. Given the reasonable computational effort needed
to run the extended model, it can potentially contribute to the understanding of mechanisms
which led to past climate oscillations in multi-millennial simulations of the Last Glacial Cycle.

CODE AVAILABILITY

The most recent state of the extended model can be accessed on GitHub: https://www.
github.com/paleovar/plasim17sid.
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Abstract: With the recent surge in neural network usage, machine learning libraries have
become more convenient to use and implement. In this paper the possibility of using neural
networks in order to faster process displacements obtained from finite element calculation and
replace existing post-processing procedures is investigated. The method is implemented on 2D
membrane finite elements for their relative simplicity. A speed up is observed in comparison
to traditional methods of post-processing. Possible further applications of this method are also
presented in this paper.

1 INTRODUCTION

As the performance of central processing units (CPUs) and graphics processing units (GPUs)
increased in the past decades, neural networks have gained momentum since they can be im-
plemented easier than ever before. This has given rise to code such as TensorFlow [1] and
wrappers around the code to make it easier to use such as Keras [2]. Finite element calcula-
tions are commonly used by engineers in a plethora of fields [3] and the two are recently being
combined and commonly used in describing constitutive models, multiscale simulations and
other fields [4–12].

This paper has been inspired mainly by the work of Jung et al. [11] where neural networks
are used to generate the finite element strain-displacement matrix in order to construct the
element stiffness matrix. In this paper the possibility of calculating stress directly from nodal
displacements using neural networks is presented as well as the speed increase over the FEM
software Abaqus’ post-processing. All the necessary data will be generated from Abaqus and
Python with Keras will be used to train and evaluate neural networks.

2 PROBLEM STATEMENT

The goal of this paper is to correctly model linear elasticity trained on 2D membrane elements
and directly obtain stress results from nodal displacements. A stiffness matrix of any finite
element is given in eq. 1, where B is the strain displacement matrix and C is the material
matrix.

K =

∫
V

BTCB dV (1)

In the paper by Jung [11] the strain displacement matrix is generated with neural networks,
while in Huang et. al [12] only the material behaviour is captured. In Eq. 2 u are the nodal
displacements of an element. Thus the need for having separate networks for generating a
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strain displacement or material matrix can be eliminated and help speed up the calculation.
Obtaining stresses from finite element calculations the following expression is used:

σ = CBu (2)

3 DATA GENERATION AND PREPARATION

The data for training the neural network was obtained through the software Abaqus. First,
a case was prepared through a script where a simple 4 point plate meshed with 2D membrane
elements (type M3D4) was constrained at one edge and loaded on a different edge, Fig.1. The
coordinates xi, yi on the plate were chosen randomly between 0.5 and 1.5 metres in their
respective quadrants, and the nodal loads on the edge are all equal and are randomly chosen
from F n

x ∈ {−3000, 3000} N , and F n
y ∈ {−3000, 3000} N with the individual nodal force then

being F n = F n
x · i + F n

y · j. A structured mesh of element size 50 mm was used. The force
varies from case to case, as well as the edge to which the load or the constraint is applied. The
minimum force applied to an edge can be 84 kN, while the maximum force can be 254 kN.
The load direction also varies from case to case. In total 800 plates were auto-generated for
obtaining training data, in total around 800 000 training samples.

O

(x  , y )1 1

(x  , y )
2 2

(x  , y )
3 3

(x  , y )4 4

Fixed Displacements

Fixed Displacements

Nodal Loads

x

y

Figure 1: Plate geometry and boundary conditions for generating training data.

Once all the simulations are finished the data is processed in the following manner:

1. Nodal positions are obtained from the Abaqus input file

2. The intersection of the diagonals is found.

3. Distances between the intersection and nodes are found and stored in an auxiliary vector.

4. Displacements of the nodes are found and stored in an auxiliary vector.

5. Nodal positions and displacements and Poisson’s ratio are added to the input vector for
training.

6. Stress results from integration points are added into an output vector for training.
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Data preparation is shown on Fig. 2. In total the input vector contains 17 values, nodal
positions, displacements, and Poisson’s ratio, see Eq. 3.

1 2

3
4

x

x x

x 4 3

21

1
4

2
3

Figure 2: Illustration of diagonals intersection and nodal distances.

u = (x1, y1, x2, y2, x3, y3, x4, y4, u
1
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2
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2
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3
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3
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4
x, u

4
y, ν) (3)

The output vector contains 12 values, 2 normal stresses and 1 shear stress per integration
point, see Eq. 4. The lower indices refer to the stress component, and the upper indices refer
to the integration point.

σ = (σ1
x, σ

1
y , τ

1
xy, σ

2
x, σ

2
y , τ

2
xy, σ

3
x, σ

3
y, τ

3
xy, σ

4
x, σ

4
y, τ

4
xy, ) (4)

4 TRAINING AND EVALUATING THE NETWORK

The hyperparameters of the network (number of layers, neurons per layer, activation func-
tion, kernel initialization) were determined through trial and error. An illustration of a general
feed-forward neural network is given in Fig. 3 The best performing hyperparameters were:

• Number of hidden layers: 2

• Neurons per layer: 100

• Activation function: Parametric Rectified Linear Unit (PReLU)

• Kernel initialization: Glorot normal [13]

• Kernel regularizer: L2 regularization

• Bias: None

• Optimizer: Adam

• Loss measure: Mean squared error
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Figure 3: Illustration of a feed-forward neural network.

For each of the stress components a separate network was trained, due to this the output
was subdivided into three outputs each consisting of 4 values.

σx = (σ1
x, σ

2
x, σ

3
x, σ

4
x) (5)

σx = (σ1
y, σ

2
y, σ

3
y, σ

4
y) (6)

τxy = (τ 1xy, τ
2
xy, τ

3
xy, τ

4
xy) (7)

The networks were then trained with early stopping enabled in case the validation loss does
not improve for 10 epochs.

A few additional cases were generated that have not been in the training or validation set,
these cases are declared to be the holdout set. As a general measure of accuracy the R2 values
are given in Table 1. The values were obtained on the holdout set.

Table 1: R2 values for each stress component.

σ1
x σ1

y τ 1xy σ2
x σ2

y τ 2xy σ3
x σ3

y τ 3xy σ4
x σ4

y τ 4xy
0.9906 0.9901 0.988 0.9915 0.975 0.978 0.9909 0.987 0.969 0.9905 0.975 0.969

A visual representation is given on Fig. 4. For brevity other plots like the one in Fig. 4 are
not shown as they are very similar, as can be seen in Table 1.
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Figure 4: Plot of σ1
x, predicted vs Abaqus stress.

5 TIME REDUCTION

Time was measured for Abaqus needed to complete the analysis of a plate with a set number
of elements. Afterwards the simulation was rerun, but with the option to output stress results
unchecked. The time difference between these two simulations is taken as the time necessary
for Abaqus to post-process stress results. Then a dataset of the same size was processed by
the previously obtained neural network and the execution time was measured. Given that 3
separate networks are used (one for each stress component) the execution time listed for the
neural network is the total time for all 3 networks.

The time required for Abaqus to post-process stress results is 11 seconds while the execution
time for the neural networks is 1.89 seconds. This translates into a time reduction of 82.8% or
an acceleration of 5.82 times. Time required for saving the results from the networks to a file
is also included in the neural network execution time (0.01 seconds per file save in NumPy).

6 CONCLUSION

Neural networks are a viable option for post-processing displacements of finite element cal-
culations especially given the observed time reduction. In this paper they have been used in
conjunction with 2D membrane finite elements and a linearly elastic material model. Applying
neural networks to more complex material models such as those presented in Huang et al. [12]
or du Bos et al. [9] and implementing them in non-linear solvers has the potential to reduce
the computational time by a large margin.

Acknowledgments

This work has been fully supported by Croatian Science Foundation under the project IP-
2019-04-4703. This support is gratefully acknowledged.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

             401



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[2] F. Chollet et al., “Keras,” https://keras.io, 2015.

[3] K. Bathe, Finite element procedures. Place of publication not identified: publisher not
identified, 2006.

[4] J. Ghaboussi, D. A. Pecknold, M. Zhang, and R. M. Haj-Ali, “Autoprogressive training
of neural network constitutive models,” International Journal for Numerical Methods in
Engineering, vol. 42, no. 1, pp. 105–126, may 1998.

[5] L. Liang, M. Liu, C. Martin, and W. Sun, “A deep learning approach to estimate stress
distribution: a fast and accurate surrogate of finite-element analysis,” Journal of The Royal
Society Interface, vol. 15, no. 138, p. 20170844, jan 2018.

[6] J. He, L. Li, J. Xu, and C. Zheng, “ReLU deep neural networks and linear finite elements,”
Journal of Computational Mathematics, vol. 38, no. 3, pp. 502–527, 2020.

[7] G. Capuano and J. J. Rimoli, “Smart finite elements: A novel machine learning applica-
tion,” Computer Methods in Applied Mechanics and Engineering, vol. 345, pp. 363–381,
mar 2019.

[8] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, “A deep learning framework
for solution and discovery in solid mechanics,” 2020.

[9] M. L. du Bos, F. Balabdaoui, and J. N. Heidenreich, “Modeling stress-strain curves with
neural networks: a scalable alternative to the return mapping algorithm,” Computational
Materials Science, vol. 178, p. 109629, jun 2020.

[10] P. Carrara, L. D. Lorenzis, L. Stainier, and M. Ortiz, “Data-driven fracture mechanics,”
Computer Methods in Applied Mechanics and Engineering, vol. 372, p. 113390, dec 2020.

[11] J. Jung, K. Yoon, and P.-S. Lee, “Deep learned finite elements,” Computer Methods in
Applied Mechanics and Engineering, vol. 372, p. 113401, dec 2020.

[12] D. Huang, J. N. Fuhg, C. Weißenfels, and P. Wriggers, “A machine learning based plasticity
model using proper orthogonal decomposition,” Computer Methods in Applied Mechanics
and Engineering, vol. 365, p. 113008, jun 2020.

[13] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” Journal of Machine Learning Research - Proceedings Track, vol. 9, pp. 249–256,
01 2010.

402



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Comparison of numerical and experimental strains distributions in
composite panel for aerospace applications
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Abstract: In structural applications of aerospace industry, weight efficiency, understood as
minimal weight and maximal stiffness, is of great importance. This criterion can be achieved by
composite lightweight structures. Typical structures for aforementioned applications are sand-
wich panels (e.g., with honeycomb core) and stiffened panels (e.g., with blade ribs, T-bar ribs,
or hat ribs). In this paper, a hat-stiffened panel, made of carbon/epoxy woven composite, is
considered. Results of experiments, consisting of loading the panel and measuring exciting forces
and strains (using strain gages), are presented. The results are compared to strains distribution
obtained from finite element model of the panel.

1 INTRODUCTION

Composite lightweight structures are popularly used for aerospace applications (aircraft skin,
wings etc.). They are characterized by very good weight efficiency, which means low weight
and high stiffness. Typical aerostructures are sandwich panels (e.g. with honeycomb core) and
stiffened panels (e.g. with blade ribs, T-bar ribs, or hat ribs) [1–5].

In aerospace applications, such structures are often monitored in real-time in order to de-
tect potential changes to material or geometric properties which could mean potential damage
(Structural Health Monitoring) [6–8], or in order to estimate the remaining in-service life of
the structures (Operational Loads Monitoring) [9–12]. The monitoring is often performed by
means of embedded or surface mounted strain sensors (e.g., intrinsic optical fibers or strain
gages) [13, 14].

In the following paper, a hat-stiffened panel, of geometry presented in Fig. 1, is considered.
Dimensions of the panel are 597 x 204 x 29 mm. The material of the panel is a 10-layer laminate
– woven carbon fiber / epoxy composite. Mechanical properties of a single layer, of thickness
230 µm, are presented in Table 1.

https://doi.org/10.4995/YIC2021.2021.12572
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a) b)

Figure 1: Geometry of the hat-stiffened panel: a) front view, b) isometric view (597 x 204 x 29 mm).

Table 1: Mechanical properties of a single layer

Young Module [GPa] Shear Module [GPa] Poisson’s ratio []
E1 64.70 G12 4.00 ν12 0.04
E2 64.70 G23 2.66 ν23 0.34
E3 7.17 G13 2.66 ν13 0.34

The geometry of the panel can be divided into the main curved part and the two ribs (Fig. 2).
Each part contains 10 layers of carbon woven, therefore the panel is 2.3 mm thick (except the
common part that is 4.6 mm thick). In the main part, layers 1, 3, 5, 6, 8, 10 have the carbon
fibers of the woven parallel to the external edges of the panel, and layers 2, 4, 7, 9 rotated by
the angle of 45◦. In the ribs, all ten layers of the woven are of the same orientation – parallel
to the external edges of the panel.

a) b)

Figure 2: Geometric regions of layer groups: a) main curved part, b) ribs.

In Section 2, the finite element model of the panel is presented, as well as results of numeri-
cal simulations for example load cases. Section 3 describes the experimental results of loading
the panel and strain measurements. Strain distributions in numerical simulations and experi-
ments are compared. Conclusions and idea of cyber-physical system for real-time monitoring
of aerostructures using artificial intelligence techniques is presented in Section 4.

2 FINITE ELEMENT MODEL AND NUMERICAL RESULTS

The boundary conditions of the numerical model and characteristic points are presented in
Fig. 3. On edge A displacements along axes X and Y were fixed. On edge B displacements
along axis Y were fixed. Force is applied to two alternative points – F1 and F2. Displacements
along axis Z are fixed in the point where load is applied. Six sensors (strain gages) are mounted
at points S1-S6, to measure strains in longitudinal directions.
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a) b)

Figure 3: Boudary conditions, strain sensors positions and load points: a) view from top, b) view
from bottom.

Surface finite element model was created using ANSYS Workbench software, with ACP
module. The model has got 18757 finite elements (of quadratic order) and 56584 nodes. The
mesh is presented in Fig. 4. In points where loads are applied and strain sensors are mounted,
the mesh is refined.

Figure 4: Finite element model.

Force of value 20 N was applied to points F1 and F2, sequentially. Displacements and strains
distributions are presented in Fig. 5 and 6 for both load cases, respectively.
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a)

b)

c)

d)

e)

Figure 5: Results of finite element simulation, force applied at point F1 (central midpoint of the
curved panel): a) vertical deformation [mm], b) maximum principal strain (top view), c) maximum
principal strain (bottom view), d) von Mises equivalent strain (top view), e) von Mises equivalent
strain (bottom view)

406



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

a)

b)

c)

d)

e)

Figure 6: Results of finite element simulation, force applied at point F2 (near of the rib flap): a)
vertical deformation [mm], b) maximum principal strain (top view), c) maximum principal strain
(bottom view), d) von Mises equivalent strain (top view), e) von Mises equivalent strain (bottom
view).

3 EXPERIMENTAL RESULTS

Experimental measurements of strains distributions were performed using a universal testing
machine MTS Insight 10 with 500 N load cell and data acquisition system Hottinger Baldwin
Messtechnik (HBM) MGCplus. Six strain gages and analog output of the applied load from
the testing machine were connected to the acquisition system. Force was applied at points F1
and F2 in the range 0-20 N, with velocity of 0.5 mm/min. Photograph of the test stand during
experiment is presented in Fig. 7.
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Figure 7: Photograph of experimental testing.

Strain values obtained from sensors S1-S6 during the experiments (for both load cases) were
compared to numerical values. In the finite element model, the actives areas of the strain gages
were modelled as separated surfaces, where average strains in local coordinate systems were
computed. Comparison of the numerical and experimental data is visualized on force-strain
plots, in Fig. 8. Table 2 summarizes the mean-square-errors between numerically computed
and experimentally measured strains, for all strain sensors, for both load cases.

Table 2: Mean square error between numerical analysis and experimental data [µm2/m2].

S1 S2 S3 S4 S5 S6
F1 6.45 13.62 2.40 4.08 0.60 1.44
F2 12.18 48.30 5.95 1.56 1.99 12.60
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a) b)

c) d)

e) f)

Figure 8: Comparison of strains obtained from experiments and numerical simulations: a) S1, b) S2,
c) S3, d) S4, e) S5, f) S6

4 CONCLUSIONS

As one can see in Figures 8 and 9 and in Table 2, quite good agreements between numerical
and experimental results were obtained. The finite element model is of satisfying accuracy.
Minor differences between computed and measured strains can result from measurement accu-
racy of strain gages, material imperfections of the prototype panel (related to manufacturing
process), minor geometrical differences between model and prototype.
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The obtained results are for the authors a starting point for future research on real-time
monitoring system. The idea is a cyber-physical system (CPS, system where computing unit
controls physical components) [15], whose goal is real-time monitoring of aerostructures in order
to predict possible damage, current loading state, or life span of the structure, based on strain
measurements in selected areas. The number of critical points, where measurements should
be taken, may be sometimes very high. In order to decrease the number of sensors, artificial
intelligence techniques will be introduced. Artificial neural networks (ANNs) or deep learning
networks (DLNs) will be trained, based on FE model of the structure, to give information on
the whole structure, based on measurement data of only few points. The necessary condition
is a high fidelity numerical model, that provides very similar data as the real object, like the
model presented in the paper. Real-time computations using ANNs could be even performed
in the microcontroller [16] on which the CPS is built.
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Abstract: Assessing the probability of failure of a structure under seismic loading requires
the simulation of a great number of similar nonlinear computations. A model-order reduction
strategy is proposed for decreasing the computational cost associated to each nonlinear simu-
lation. In this contribution, the method is illustrated to evaluate the damage evolution in a
primary circuit piping component of a pressurized water reactor, subjected to accidental seismic
input. Piping components are described with a damageable elasto-plastic material exhibiting a
preliminary damage pattern.

1 INTRODUCTION

Fragility curves are one of the main tools for characterizing the resistance of civil engineering
structures, such as nuclear facilities, to seismic hazard. These curves describe the probability
that the response of a structure exceeds a given criterion, called “failure criterion”, as a function
of the expected seismic loading level. Their computational cost is expensive as a large number
of loading scenarii must be considered to model seismic input variability, but also due to the
inherent uncertainties (material parameters, geometry, modelling errors, etc.) that must be
taken into account for reliability assessment. Their construction therefore falls into the scope
of the many-queries problems where the need to reduce the numerical cost of each simulation is
imperative. Another point is that the final aim of the study is to add a preliminary structural
damage as a parameter of those charts. Decreasing the computational costs of solving large
dimensional problems has long been studied and decreasing the dimension of the solution space
has shown to be of great interest. Among the several existing methods, one finds Model-Order
Reduction (MOR) techniques. Some of them (referred to as a posteriori methods) require
beforehand the computation of a given reduced basis, while others (referred to as a priori
methods) consist in building the reduced basis simultaneously with the computation. The first
kind, including among others the use of Ritz vectors [1] or the Proper Orthogonal Decomposition
(POD) [2], has greatly been studied in [3] where a wide range of reduced basis choices have
been examined. In this last reference, computation time saving and robustness of the basis
considered are looked over. It highlights that the choice of the basis proves to be decisive and
when dealing with numerous computations, finding an ideal reduced basis on which to project
the solutions to these various problems may not be an obvious task. To overcome this difficulty
it is relevant to build the reduced basis on-the-fly, as the solver progresses, to optimize the choice
of new modes. Such a priori model-order reduction methods include the Proper Generalized
Decomposition (PGD) [4] which is used in the present work.

https://doi.org/10.4995/YIC2021.2021.13255
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Herein, the focus is on the implementation of a strategy based on a priori model-order
reduction for the calculation of the nonlinear dynamics problem at stake. Among the different
possible approaches, the PGD coupled with the LATIN method [5] is particularly well suited
for solving parameterized problems in nonlinear mechanics in order to build numerical charts
[6]. The LATIN-PGD method is an iterative approach that seeks the solution of a given
problem by building, in a greedy way, a dedicated reduced-order basis. This basis can be
reused and enriched, allowing a good numerical efficiency. It has been applied to solve a wide
range of problems in mechanics (and more recently for earthquake-engineering applications [7]).
Here we develop this method to solve the low-frequency dynamics problem that arises when
applying seismic loading to metallic piping structures with a nonlinear behaviour while taking
into account their possibly pre-damaged state.

2 DYNAMIC EQUATIONS

The spatial domain on which the problem is written is denoted Ω. On that body of density
ρ, body forces fd and surface forces Fd are applied on Ω and on ∂Ω2 respectively while imposed
displacements ud are applied on ∂Ω1 as described in Fig. 1.

Figure 1: Reference problem on the domain Ω

Let us then define the three sets defining admissibility :

• U =

{
u | ε(u) =

1

2

(
∇ u+T ∇ u

)
, u̇|t=0 = 0, u|t=0 = 0 in Ω,

u = ud on ∂Ω1 and u̇ = u̇d on ∂Ω1} ,

• U0 =

{
u | ε(u) =

1

2

(
∇ u+T ∇ u

)
, u̇|t=0 = 0, u|t=0 = 0 in Ω,

u = 0 on ∂Ω1 and u̇ = 0 on ∂Ω1} ,

• S = {σ | ∇ · σ + fd = ρü in Ω and σ n = Fd on ∂Ω2},

U (respectively U0) is the kinematically admissible (respectively to zero) displacements set
and S is the dynamically admissible stress set. σ is Cauchy’s stress tensor while ε is the strain
tensor. One then needs to find admissible displacement and stress fields s = (u,σ) ∈ U × S
that also satisfy the constitutive relations.

The weak formulation of the dynamic equilibrium then reads

−
∫
Ω×I

σ : ε(u∗)dΩdt+

∫
Ω×I

fd · u∗dΩdt+

∫
∂Ω×I

Fd · u∗dSdt =

∫
Ω×I

ρ ü · u∗dΩdt ∀u∗ ∈ U0. (1)
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In addition to this dynamic equation, the material behaviour of the structure is described through
nonlinear equations which motivates the methodology introduced in this work.

3 DUCTILE DAMAGE MODEL INCLUDING CRACK CLOSURE EFFECT

The damage evolution in the structure is governed by a plastic model [8] with linear kinematic and
isotropic hardening along with isotropic damage contribution [9]. In order to account for crack-closure
effect, an effective stress tensor σ̃ [10] is introduced to read

σ̃ =
σd

1−D
+

[
⟨σH⟩
1−D

− ⟨−σH⟩
]
1, (2)

with σd the deviatoric part of Cauchy’s stress σ and σH its hydrostatic part, D the damage variable, 1
the identity tensor and ⟨□⟩ = max (□, 0) defining the positive part. Doing so leads to Hooke’s relation
between stress and elastic strain reading

σ̃ = K : εe (3)

with K the Hooke’s tensor. Thus, the damage variable is no more explicitly apparent in the elastic
constitutive relation.

When the solicitation is high, some non reversibilities appear and plastic laws as well as new
variables are required. The yield function fp(σ) describes the elastic domain. When the stress is
small enough for the function to be negative then the material follows an elastic behaviour but when
the yield function increases to the point that it reaches zero, non reversibilities appear and plasticity
laws become necessary. The plasticity yield function fp verifies

fp ≤ 0, (4)

and is written using von Mises equivalent stress J2 (□) as follows

fp = J2

(
σ

1−D
−X

)
− σy −R (5)

with σy the yield stress, R the isotropic hardening variable and X the kinematic hardening tensor.
The model chosen to describe those irreversibilities, following the lines of [8], involves both kinematic

and isotropic hardening. The elastic strain tensor reads εe = ε− εp with εp being the plastic strain.
The plasticity level is described by an internal variable called the cumulative plastic strain p which is
a strictly increasing quantity. State equations relative to linear hardening read{

R = hp,

X = 2
3Cα

(6)

with h the rate at which the isotropic hardening increases, C a material coefficient and α the kinematics
internal variable.

Lemaitre’s damage evolution law reads as a function of the elastic energy density Y defined as

Y =
1

2
εe : K : εe = Rν

J2 (σ̃)
2

2E
, (7)

where the triaxiality function Rν = 2
3 (1 + ν) + 3 (1− 2ν) ⟨ σ̃H

J2(σ̃)⟩
2 is introduced.

In order to predict the temporal evolution of these quantities, evolution laws are needed. Plasticity
evolution laws are derived using normality rule, leading toε̇p = ṗ3

2
(σ̃−X)d
J2(σ̃−X) ,

α̇ = ṗ (1−D)
[
3
2

(σ̃−X)d
J2(σ̃−X)

]
.

(8)

As for the damage variable, the evolution is written as
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Ḋ = ṗ

(
Y

S

)s

, if Ws > WD, (9)

with Ws the so-called corrected stored energy [9], WD a given energy threshold, s and S material
parameters. This set of equations allows to describe finely the damage state evolution of the structure
but the resulting problem is nonlinear and involves a large number of degrees of freedom.

4 THE LATIN-PGD

Using the finite element method, the mechanical problem gives a detailed description of the evo-
lution of the quantities of interest but its computation requires solving nonlinear equations at each
Gauss point at each given time step. That leads to a high computational cost that could be driven
down by using model-order reduction techniques.

4.1 The PGD method

For solving linear problems, the idea of the PGD technique is to look for the solution as the sum
of products of single-variable functions. Thus, a displacement field u is approximated by uN (x, t)
reading

u(x, t) ≈ uN (x, t) =
N∑
i=1

ui(x)λi(t). (10)

The reduced basis {ui} is not a priori known and is built during the computation using a greedy
algorithm. New modes are added on the fly. In order to perform a PGD, the used greedy algorithm
requires that one solves a linear space-time problem. Hence having a method turning the nonlinear
problem into solving linear equations on such a domain is mandatory.

4.2 The LATIN solver

The LATIN method, first introduced in [11] has been singled out as it is an iterative non incremental
solver that allows seeking a solution on the entire space-time domain while some of the computations
involve linear equations. Each LATIN iteration is decomposed in so-called local and global stages. At
the local stage, the nonlinear part of the constitutive relations is solved at each Gauss point and at
the global stage, admissibility is imposed on the whole time-space domain leading to a linear problem.
The PGD can be used for an efficient computation of the solution at the linear stage. Those solutions
belong respectively to the manifold Γ gathering solutions of the nonlinear equations and the manifold
Ad gathering solutions of the linear equations. The final solution sexact, which is naturally found at
the intersection of these two manifolds, is thought alternatively in both spaces Ad and Γ involving
two search directions H+ and H− linking the manifolds through Eq. (11),{(

σn+1 − σ̂n+1/2

)
−H− (

εn+1 − ε̂n+1/2

)
= 0,(

σ̂n+1/2 − σn

)
+H+

(
ε̂n+1/2 − εn

)
= 0.

(11)

This iterative scheme can be sketched by Fig. 2 where ŝn+1/2 is the solution belonging to Γ and sn+1

is a solution of Ad, both computed at the (n+ 1)th stage of the method.
The solution can be initialized to a kinematically and dynamically admissible elastic solution. Then

one loops over finding alternatively a solution in Γ and in Ad until a stopping criterion is reached.
Such a criterion is satisfied when an error indicator

η2 =
∥ŝn+1/2 − sn+1∥2

1/2∥sn+1∥2 + 1/2∥ŝn+1/2∥2
, (12)

based on the distance between two consecutive solutions, is lower than a chosen threshold. The norm
∥s∥ is defined as
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Figure 2: Working principle of the LATIN method, modified from [11]

∥s∥2 =
∫
Ω×I

ε : K : ε dΩdt+

∫
Ω×I

σ : K−1 : σ dΩdt. (13)

Such a methodology has recently been suggested for a dynamic resolution [7] where the material is
considered to be described by a visco-plastic behaviour without considering damage evolution.

4.2.1 The global stage

The global stage consists in finding a solution in Ad which means solving the dynamic equilibrium
defined by Eq. (1). Subtracting that equation written in two successive steps of the LATIN method
gives the admissibiblity equation written in corrective terms reading

−
∫
Ω×I

∆σ : ε(u∗)dΩdt =

∫
Ω×I

ρ∆ü · u∗dΩdt ∀u∗ ∈ U0, (14)

with ∆□ = □n+1 −□n.
To solve that equation the descending search direction given by Eq. (11) is injected in the latter,

leading to,

∫
Ω×I

H− : ε(∆u) :ε(u∗)dΩdt+

∫
Ω×I

ρ∆ü · u∗dΩdt

=

∫
Ω×I

[(
σn − σ̂n+1/2

)
−H− :

(
εn − ˆεn+1/2

)]
︸ ︷︷ ︸

−f̂

: ε(u∗)dΩdt ∀u∗ ∈ U0.
(15)

One may notice that terms in the second hand f̂ of that equation are already known quantities. The
displacement field is the only unknown.

Because the global stage consists in solving linear equations over the whole time-space domain, a
greedy algorithm can advantageously be set up in order to find the solution under a PGD form. To

do so, the PGD decomposition □(x, t) =
∑N

i=1□
i
(x)λi(t) of the displacement field is injected into the

previous equation to compute the corrections, N being the number of PGD modes used to describe
the solution.

4.2.2 The local stage

The local stage consists in solving the local and possibly nonlinear equations of the problem. That
means finding ŝn+1/2 ∈ Γ knowing sn ∈ Ad. The ascendant search direction is chosen vertical, i.e.
ε̂n+1/2 = εn. Technically, the local stage consists in a radial feedback algorithm to compute the
plastic and damage evolution of the structure while taking into account normality law and the von
Mises criterion defined by Eq. (4).
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5 NUMERICAL RESULTS

In order to illustrate the method, two cases are investigated. First the dynamic aspects of the
problem are exposed with a 3D beam under flexion loading. Then a pre-damaged 3D plate with a
hole is investigated with various initial damage states. Both geometries are described in Fig. 3 and
their dimensions are summarized in Table 1.

(a) Geometry of the beam (b) Geometry of the plate

Figure 3: Two test cases geometries

Table 1: Dimensions of the geometries

Geometry L l H Umax
d R

Plate 60mm 20mm 2mm 2mm 1mm
Beam 40mm 8mm 8mm 5mm -

The material parameters are given in Table 2.

Table 2: Material parameters

Name Parameters

Young’s modulus E = 200GPa
Poisson’s ratio ν = 0.3

Kinematic hardening modulus C = 2.21× 104MPa
Yield stress σy = 200MPa

Isotropic hardening ratio h = 0MPa
Damage law exponent s = 2

Parameter for damage evolution S = 0.6MPa
Density ρ = 7900 kg/m3

Damage threshold energy WD = 0Jm3/kg

5.1 Dynamic behaviour

A cantilever beam loaded by an imposed vertical displacement Ud at its end, as shown in Fig.
3a, is studied. The beam is submitted to a triangular load for the first half of the simulation then
the displacement at the end of the beam is kept equal to zero for the second half. From an initial
undamaged state, the damage increases along the beam. The damage maps at t = 2.5 × 10−4 s,
t = 6 × 10−4 s and t = 8 × 10−4 s are presented in Fig. 4a, 4b and 4c respectively. It can be noted
that the first instant corresponds to the maximum amplitude of the external perturbation while the
two other instants of interest are posterior to the external load, as shown in Fig. 4d.
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(a) t = 2.5× 10−4 s (b) t = 6× 10−4 s (c) t = 8× 10−4 s
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Figure 4: Evolution of the damage map in the beam

One may notice that, even though the last two showcased results (Fig. 4b and 4b) are taken when
there is no more external loading, the damage map keeps on progressing. This evolution is therefore
only due to inertial forces because waves propagate through the structure as observed in Fig. 4b and
Fig. 4c.

The convergence of the LATIN-PGD implementation leading to this result is plotted in Fig. 5
which shows the evolution of the error indicator η with respect to the number of PGD modes. It may
be noted that the number of modes is rather large at convergence. Indeed, currently the global stage
of the method only consists in adding a PGD mode but a more efficient strategy would be to first
update the temporal modes associated with the existing spatial modes and only add a supplementary
PGD mode if that update did not prove to be effective enough.
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Figure 5: Evolution of the indicator of error for the beam scenario
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5.2 Influence of the initial damage state

As previously stated our long term ambition is the construction of virtual charts in which the
pre-damage is a parameter. To illustrate the role of a pre-damaged zone on the final solution two
simulations with distinct initial damage states have been carried out. The common structure is a
plate shown in Fig. 3a and the loading is a 1 s ramp loading directed along the y-axis. The first
case scenario (illustrated in Fig. 6a, 6b and 6c) shows the structure with a pre-damaged zone below
the hole while the second case scenario (illustrated in Fig. 6d, 6e and 6f) shows the structure with
a pre-damaged zone facing the hole. Only a part of the whole structure is shown as to focus on the
damaged zones, which are of interest.

When observing the damaged maps projected on the deformed structure in Fig. 6, one can see that
damage tends to grow in the surrounding area of the initial damaged zone and near the hole. In the
second case scenario similarly damage increases near the hole and the pre-damaged zone first. But a
coalescence arises between those two zones. A significant influence of pre-damage zones is therefore
observed.

(a) 1st scenario, t = 0 s (b) 1st scenario, t = 0.5 s (c) 1st scenario, t = 1 s

(d) 2nd scenario, t = 0 s (e) 2nd scenario, t = 0.5 s (f) 2nd scenario, t = 1 s

Figure 6: Evolution of the damage map in the plate

As it has been done for the plate, the convergence of the method is plotted in Fig. 7 which shows
the evolution of the error indicator η while the number of PGD modes increases. The previous remark
about the number of modes at convergence remains valid as a great number of modes is needed here
too.
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Figure 7: Evolution of the indicator of error for the plate scenario

A few other cases have been implemented showing similar convergence curves, proving the method-
ology robust enough to investigate a vast variety of scenarii.

6 CONCLUSIONS

The LATIN-PGD framework has been presented for damageable materials in dynamics. Predicting
the damage evolution of a plastic structure under a dynamic loading is possible and the computation
of the solution gives access to a PGD basis. The next step will be to implement the update strategy
in the global stage in order to be able to take advantage of previously computed spatial modes. The
LATIN-PGD methodology will then provide a favorable framework for the computation of fragility
curves where the seismic performances of quasi-identical structures have to be computed for a family
of similar inputs defining the seismic risk. Both initialization of the solution and re-use of reduced
order PGD basis enable one to take full advantage of the possible redundancy contained in those
virtual charts.
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A. Carreño∗, A. Vidal-Ferràndiz†, D. Ginestar† and G. Verdú∗
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Abstract: Given a configuration of a nuclear reactor core, the spatial distribution of the power
can be approximated by solving the λ-modes problem associated with the multigroup neutron
diffusion equation. It is a partial generalized eigenvalue problem whose dominant eigenvalue
characterises the criticality of the reactor and its associated eigenvector represents the distri-
bution of the neutron flux in steady-state. The spatial discretization of the equation is made by
using a continuous Galerkin high order finite element method. Usually, the matrices obtained
from the discretization are huge and sparse. Moreover, they have a block structure given by
the different number of energy groups. In this work, block strategies are developed to optimize
the computation of the associated eigenvalue problems. First, different block eigenvalue solvers
are studied. On the other hand, the convergence of these iterative methods mainly depends
on the initial guess and the preconditioner used. In this sense, different multilevel techniques
to accelerate the rate of convergence of this problem are proposed. A large three-dimensional
benchmark shows the efficiency of the methodology proposed.

1 INTRODUCTION

The computation of the dominant λ-modes associated with the neutron diffusion equation
has an interest in nuclear engineering to study the criticality of a reactor and also to develop
modal methods to integrate the time dependent equation. This equation is an approximation
of the neutron transport equation that assumes that the neutron current is proportional to the
gradient of the scalar neutron flux with a diffusion coefficient.

The λ-modes problem is discretized to yield a large algebraic generalized eigenvalue problem
that has to be solved by using iterative methods to compute its dominant eigenvalues and their
corresponding eigenvectors. In this work, a high order finite element method has been used for
the spatial discretization of the λ-modes problem.

Krylov subspace methods, such as Arnoldi or Krylov-Schur method, can be applied to solve
this non-symmetric eigenvalue problem [10, 12]. However, these iterative methods require
reducing the generalized eigenvalue problem to an ordinary problem, and it implies solving many
linear systems. Other methods to solve eigenvalue problems associated with nonsymmetric
matrices are the gradient type methods, such as the Generalized Davidson method, that do
not require solving linear systems involving the full operator. However, if there are clustered
or degenerate eigenvalues, these methods may have problems to find all the eigenvalues.

In this work, a hybrid method is proposed that combines two types of solvers, the block
inverse-free Arnoldi method (BIFPAM) and the modified generalized block Newton method
(MGBNM). The BIFPAM was proposed in [8] for symmetric problems, but the authors nu-
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merically showed that it also converges for this type of neutron problems where the dominant
eigenvalues are positive. It does not need to solve linear systems. It improves the traditional
steepest descent method by expanding the search direction to a Krylov subspace with the ad-
vantage of better approximation properties offered by Krylov subspaces. The MGBNM is a
generalization of the modified block Newton method ([7]). It has a quadratic convergence, but
it is very sensitive to the initial guess.

The structure of the rest of the paper is as follows. In section 2 the definition of λ-modes
problem and the spatial discretization by using a high order finite element method is given.
Section 3 briefly describes the eigenvalue solvers. Section 4 presents the multilevel strategy to
improve the computational efficiency of the eigenvalue solvers. Section 5 presents the numerical
results for the analysis of the methodology in a benchmark problem. Finally, Section 6 collects
the main conclusions of the work.

2 THE λ-MODES PROBLEM

Given a configuration of a nuclear reactor core, it is possible to force its criticality dividing
the neutron production rate by a positive number, λ, obtaining the known λ-modes problem [9],

Lϕ =
1

λ
Mϕ, (1)

where L is the neutron loss operator, M is the neutron production operator and ϕ the neutron
flux.

To solve the problem (1), a spatial discretization of the equations has to be selected. In this
work, a high order Galerkin finite element method is used (see [12]) leading to an algebraic
eigenvalue problem associated with the discretization of (1) with the following structure,

Ax = λBx , (2)

where A and B are the matrices that appear from the discretization of M and L, respectively.
The vector x is the algebraic vector of weights associated with the neutron flux. For simplicity,
the shape functions used are part of Lagrange finite elements. More details on the spatial
discretization used and general boundary conditions can be found in [12]. The finite element
method has been implemented using the open-source finite elements library Deal.II [2].

3 BLOCK SOLVERS

In this Section, several well-known eigenvalue solvers to solve the partial eigenvalue prob-
lem (2) are described. This list is not intended to be exhaustive, and other eigenvalue solvers
appear in the neutron transport computations or the mathematical literature.

In nuclear computations, different strategies have been used to solve the generalized problem
obtained from the discretization. First, we can transform the problem as an ordinary eigenvalue
problem by using the inverse of B. The inverse of the matrix B is not computed and its product
by a vector is applied by solving linear systems. Second, for the special case of the λ-modes
and two energy groups, many works define an ordinary eigenvalue problem, but with half of
the size of the original problem. Finally, in this work, we aim to apply direct methods for the
generalized eigenvalue problem.

For this problem, we are interested in using block methods, that converge the set of eigen-
vectors in a block, in order to initialize the iterative methods if an initial set of approximated
eigenvectors is provided.

Generalized Davidson method Davidson methods take one eigenvector and apply a cor-
rection as

x(i+1) = x(i) + t(i), where (A− λ(i)B)t(i) = −(A− λ(i)B)x(i) . (3)
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In particular, the generalized Davidson method estimates the correction by solving the problem

Pit
(i) = −r(i), where Pi ≈ (A− λ(i)B). (4)

This method, although its convergence is slow, does not need to solve any linear system involving
the full operator. This makes that the iterations are very cheap. In this case, the block
implementation provided by the library SLEPC is used [6]. As preconditioner for this method,
the ILU(0) factorization from the library PETSc is used [1].

Block Inverse-free preconditioned Arnoldi method (BIFPAM) This block method is
proposed for symmetric and positive definite matrices [8]. However, we have shown that the
convergence is also obtained for neutronic problems where the eigenvalues are positive numbers.
Given a set of eigenvectors Xi, the following approximated eigenvectors Xi+1 are obtained from
the first Ritz q-eigenvectors of the small problem

ZTAZU = ZTBZUΛ, as Xi+1 = ZU, (5)

where Z is a basis of [8]

Kdk :=

q⋃
m=1

Ki
dk,m

(Pm,i(A− λm,iB), Xm,i).

These bases are constructed with the Arnoldi method. It does not solve any linear system
and it has a block implementation. However, this method must be preconditioned to improve
the convergence. In this work, we test two preconditioners of the linear systems: the ILU(0)
preconditioner and the GMG preconditioner [4].

Modified block generalized Newton method (MGBNM) The original method was pro-
posed for ordinary eigenvalue problems and we have proposed two generalizations [4]. In this
work, it assumes that a set of eigenvectors X can be decomposed as

X = ZQ, such that ZTZ = Iq . (6)

Now, the Newton’s method is applied to solve the non-linear problem

F (Z,K) :=

(
AZ −BZK
W TZ − Iq

)
=

(
0
0

)
, where K ≡ Q−1ΛQ (7)

as
Z(k+1) = Z(k) −∆Z(k), K(k+1) = K(k) −∆K(k), (8)

where the corrections are given by solving the q systems(
A− λ

(i)
mB BZ̄(i)

Z̄(i)T 0

)(
∆z̄

(i)
m

−∆λ
(i)
m

)
=

(
Az̄

(i)
m −Bz̄

(i)
m λ

(i)
m

0

)
. (9)

This block method has a quadratic convergence, then few linear systems must be solved in
the computation. However, a ‘good’ initial guess must be provided to obtain convergence
results. The linear systems are solved by using the GMRES method from the PETSc library
[1] preconditioned with the block preconditioner developed for this method in [3].

Hybrid From the convergence histories of the BIFPAM and the MGBNM we have developed
a hybrid method based on these methods [4]. We start from a set of sinitial eigenvectors, we
then apply the BIFPAM method until a tolerance of 10−3 and then, with this solution we apply
the MGBNM that has a quadratic convergence to reach the desired tolerance.
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4 MULTILEVEL INITIALIZATION

Usually, the computation of the λ-modes for a realistic nuclear reactor requires much time
to be solved. In this work, we propose a multilevel initialization to accelerate the convergences
of the eigenvalue solvers.

It is well known that the convergence of iterative methods improves if better initial guesses
are used. In this sense, it is proposed to use a multi-level method with two meshes: the initial
mesh chosen from the spatial discretization, called the fine mesh and a coarse mesh obtained
from the initial one considering a lower number of nodes. The solution obtained in the coarse
mesh is used to generate an improved initial guess for the solution in the fine mesh.

In the coarse mesh, the materials and their corresponding cross-section must be redefined
in each cell with a homogenization method. To solve the coarse eigenvalue problem we use
Krylov-Schur method implemented in the library SLEPc [6]. The multi-level method can be
summarized in Figure 1.

Initial
problem
in the

fine mesh

Problem
in

coarse
mesh

Solution
in

coarse
mesh

Solution of
the initial
problem

Initial
iter.

(Restriction)

Coarsening

mesh

Gen-

eralized

Davidson

Block

method

(Prolongation)

Figure 1: Scheme for the multilevel initialization.

5 NUMERICAL RESULTS

The three-dimensional NEACRP reactor is used to test the methodology described in this
work [5]. The block strategies are tested to compute the dominant 4 λ-modes associated with
the neutron diffusion equation. The initial mesh to discretize the reactor geometry has 3978
cells. Polynomials of degree 3 are used in the FEM, to have a problem of size 230 120 degrees of
freedom. Tolerance for the eigenvalue solvers is set to obtain a residual error lower than 10−6.

The methodology has been implemented in C++ based on data structures provided by the
libraries Deal.II [2] and PETSc [1]. It has been incorporated to the open-source neutronic
code FEMFFUSION [11]. For the computations, a computer with an Intel® Core™ i7-4790
@3.60GHz×8 processor with 32Gb of RAM running on Ubuntu GNU/Linux 18.04 LTS has
been used.

First, multilevel initialization is analysed. It is compared with a Krylov initialization and a
Random initialization. In the Krylov initialization, the vectors are obtained from a subspace
of Krylov of dimension 10 associated to the matrix A − λ

(0)
0 B. The Random initialization

generates the q vectors using random numbers in the interval [−1, 1]. In both cases, the Gram-
Schmidt orthogonalization and the generalized Rayleigh-Ritz process are then applied [4]. In
the multilevel initialization, the simplified problem is defined by using a mesh of 1308 cells.
Figure 2(a) shows the fine mesh used for the spatial discretization to solve the problem and
Figure 2(a) represents the coarse mesh used to apply the multilevel initialization. The tolerance
to solve for the simplified problem has been 10−3. Figure 3 shows the convergence histories
for the BIFPAM and the MBGNM with the different initializations. Both graphics reflect that
the multilevel initialization, although it takes more time to obtain the initial guess, is a better
strategy to initialize the block methods.
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(a) Fine mesh (n. cells = 3978) (b) Coarse mesh (n. cells =1308)

Figure 2: Meshes for NEACRP reactor.
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Figure 3: Convergence histories for the BIFPAM and the MGBNM using different initializations for the
computation of the λ-modes of the NEACRP problem.

Now, the performance of the hybrid method is tested. Figure 4 compares the convergence
histories of the MGBNM and the BIFPAM with the ILU and GMG preconditioner. It is
deduced that the desired tolerance is reached quicker with the MGBNM. However, we would
like to highlight that the convergence behaviour of BIFPAM-ILU is very similar to the one of
BIFPAM-GMG and when the residual becomes smaller the convergence of the Newton method
becomes faster.

Thus, it is proposed the hybrid method that initializes the algorithm with the BIFPAM
method until resg = 10−2 and then, the MGBNM is applied. The BIFPAM has been set
with the ILU preconditioner. Figure 5 compares the hybrid scheme with the MGBNM and the
BIFPAM with ILU preconditioner. It is showed that the hybrid algorithm is an efficient scheme
to compute 4 eigenvalues of the NEACRP problem.

Table 1 shows a comparison of the different eigenvalue solvers for the computation of several
sets of eigenvalues of size q. In this computation, a semi-matrix free technique is used to avoid
the full assemble of the matrices and then, the ILU preconditioner is substituted by the block
Gauss-Seidel preconditioner [13]. All solvers are initialized with the multilevel technique. This
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Figure 4: Convergence history for the fourth dominant eigenvalues of the NEACRP problem using the MGBNM
and the BIFPAM.
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Figure 5: Convergence history of the BIFPAM with ILU preconditioner, the MGBNM and the hybrid method.

Table shows that the fastest results are obtained by applying the hybrid method, although, for
a small number of eigenvalues, the BIFPAM is also very efficient.

Table 1: Computational times (s) obtained for the NEACRP reactor using the KSM method, the GDM, the
BIFPAM, the MGBNM and the Hybrid method for different set of eigenvalues q.

q GDM BIFPAM MGBNM Hybrid

1 26 20 43 20
4 92 57 80 53
6 135 131 82 78

6 CONCLUSIONS

This work presents and compares several block eigenvalue solvers to compute a set of λ-
modes associated with the neutron diffusion equation. Moreover, different strategies to improve
the efficiency of these methods are described. First, numerical results show that the multilevel
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initialization improves the efficiency of the methodologies. Regarding the eigenvalue solvers, one
can deduce that the hybrid method (that combines the BIFPAM and the MGBNM) reduces the
computational time to compute a set of modes in comparison with the BIFPAM, the MGBNM
and the block Generalized Davidson.
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Abstract: In this work, innovative 1D hyperbolic models able to predict the behavior of the
fluid-structure interaction mechanism that underlies the dynamics of flows in different compliant
ducts are presented. Starting from the study of plastic water pipelines, the proposed tool is then
applied to the biomathematical field to reproduce the mechanics of blood flow in both arteries
and veins. With this aim, various different viscoelastic models have been applied and extended
to obtain augmented fluid-structure interaction systems in which the constitutive equation of
the material is directly embedded into the system as partial differential equation. These systems
are solved recurring to Finite Volume Methods that take into account the recent evolution in the
computational literature of hyperbolic balance laws systems. To avoid the loss of accuracy in
the stiff regimes of the proposed systems, asymptotic-preserving Implicit-Explicit Runge-Kutta
schemes are considered for the time discretization, which are able to maintain the consistency
and the accuracy in the diffusive limit, without restrictions due to the scaling parameters.

1 INTRODUCTION

Mathematical models and numerical methods are a powerful resource for better understand-
ing phenomena and processes throughout the fluid dynamics field, allowing significant reduction
in the costs, which would otherwise be required to perform laboratory experiments, and even
allowing to obtain useful data that could not be gathered through measurements.

The correct characterization of the interactions that occur between the fluid and the wall
that surrounds it is a fundamental aspect in all contexts involving deformable ducts, which
requires the utmost attention at every stage of both the development of the computational
method and the interpretation of the results and their application to cases of practical interest.
Concerning flexible plastic pipes, which are playing an increasingly important role in hydraulic
systems due to their cost-effectiveness and ease of installation, it has been demonstrated that
the choice to characterize the fluid-structure interaction (FSI) behavior through a simple elastic
law leads to consistent errors in the predictions of the pressure trends when studying hydraulic
transients phenomena [7]. In fact, almost without exceptions, polymers manifest a viscoelastic
behavior, responding to external forces in an intermediate way between the behavior of an
elastic solid and a viscous liquid [19], and the adoption of a proper viscoelastic constitutive law
for the definition of the FSI mechanism results fundamental [11].

Viscoelasticity is characterized by 3 primary features [14]:

1. Creep, which describes a material in continuous deformation over time when it is main-
tained under constant stress;

2. Stress relaxation, which refers to the decrease of stress over time when it is maintained
under constant strain;

https://doi.org/10.4995/YIC2021.2021.13450
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Figure 1: Scheme of the Standard Linear Solid Model with Kelvin-Voigt unit.

3. Hysteresis, which describes the dissipation of energy when a material undergoes cyclic
loading and unloading.

Similarly, also biological tissues manifest viscoelastic properties. Thus, arteries and veins
can be seen, with the due corrections specifically provided by hemodynamics, as highly flexible,
viscoelastic tubes, tending almost to collapse under certain physiological conditions in the case
of veins, hence leading to deal with highly non-linear systems [16]. Even though frequently, in
hemodynamics models, the viscosity of vessels is neglected for simplicity, there is an increasing
number of contributions showing the benefits of modeling the mechanical behavior of the vessel
wall using a viscoelastic rheological characterization [1].

2 MATHEMATICAL MODELS

2.1 General one-dimensional models

The system of balance laws governing the motion of a compressible fluid through a flexible
tube is obtained averaging the 3D compressible Navier-Stokes equations over the cross-section
under the assumption of axial symmetry of the geometry of the conduct and of the flow. The
resulting 1D non-linear hyperbolic system of partial differential equations (PDEs), composed
by the continuity equation and by the momentum equation, reads [17]:

∂t(Aρ) + ∂x(Aρu) = 0 (1a)

∂t(Aρu) + ∂x(Aρu
2 + Ap)− p ∂xA = FR, (1b)

where x is the space, t is the time, A is the cross-sectional area of the tube, ρ is the cross-
sectional averaged density of the fluid, u is the averaged fluid velocity, p is the averaged fluid
pressure and FR is a model of the friction between fluid and tube wall, which can either account
only for quasi-steady friction effects or both quasi-steady and unsteady ones (for further details
the reader can refer to [2]).

Notice that when an incompressible fluid is considered (as for the case of blood flow studies)
the system can be written as follows [16]:

∂tA+ ∂x(Au) = 0 (2a)

∂t(Au) + ∂x(Au
2) +

A

ρ
∂xp =

FR
ρ
. (2b)

To close system (1), an equation of state (EOS) and a constitutive law (also called tube law)
must be introduced. In most of the technical applications it is usually sufficient to assume a
barotropic behavior of the fluid, therefore ρ = ρ(p). Nevertheless, taking into account cavitation
phenomena may be necessary. An EOS for barotropic flows which accounts also for cavitation
effects is presented in [10]. On the other hand, to solve system (2), only a proper tube law is
needed.

432



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

2.2 The augmented fluid-structure interaction systems

The tube law describes the relationship between the tube cross-section and the internal
pressure, containing all the information about the mechanical behavior of the pipe material.
To correctly model the compliance and the flexibility of plastic ducts, in this work the Standard
Linear Solid (SLS) model is considered, being the simplest viscoelastic rheological model able
to describe the three main features of viscoelastic materials [14]. Hence, we assume that the
mechanical behavior of the wall is defined by the interaction of a linear spring in series with a
Kelvin-Voigt unit, composed of a linear spring in parallel with a linear dash-pot, as presented
in Figure 1.

Evaluating the constitutive equation of the SLS model, expressed in terms of stress σ and
strain ε,

dtσ = E0 dtε−
1

τr
(σ − E∞ε), (3)

the three parameters of the model, namely the instantaneous Young modulus E0, the asymptotic
Young modulus E∞, and the relaxation time τr, are so defined (referring to Figure 1):

E0 = E1, E∞ =
E1E2

E1 + E2

, τr =
η

E1 + E2

. (4)

From equation (3), concerning a compressible fluid and a mildly non-linear system (1),
applying Barlow’s formula, introducing the linearized kinematic relation between the strain
and the non-dimensional cross-sectional area rescaled with respect to its reference value α =
A
A0

= (1 + ε2) ≈ 1 + 2ε, and recurring to the continuity equation (1a), the following PDE form
of the SLS rheological law is obtained [2, 13]:

∂tA+ d1 ∂x(Aρu) = S1, (5)

where

d1 =
2c2s

2ρc2s +Kα
, S1 =

1

τr

[
2A

2ρc2s +Kα
(p− p0)−

E∞
E0

AK

2ρc2s +Kα
(α− 1)

]
.

Here, K represents the stiffness of the material, which accounts for the instantaneous Young

modulus E0, the wall thickness and the radius of the tube, cs =
√

∂p
∂ρ

is the celerity contribute

related to the compressibility of the fluid, which results equal to the sound speed when cavitation
does not occur [2], and p0 is the equilibrium pressure.

It can be observed that the relaxation time τr, and therefore the viscosity coefficient η,
affects only the source term S1. In fact, the viscous information about the FSI mechanism are
all embedded in the term S1, which defines viscoelastic damping effects. Interestingly, if we let
τr → 0, entering in the diffusive and stiff regime of the system, from equation (3) we recover
exactly the Laplace law, which is the standard elastic law used in literature [13]. Therefore,
the hyperbolic augmented fluid-structure interaction (a-FSI) system for compressible fluids
and mildly non-linear systems, capable of describing from simple elastic to viscoelastic FSI
mechanisms, results

∂t(Aρ) + ∂x(Aρu) = 0 (6a)

∂t(Aρu) + ∂x(Aρu
2 + Ap)− p ∂xA = FR (6b)

∂tA+ d1 ∂x(Aρu) = S1. (6c)

Notice that to allow a formally correct treatment of possible discontinuous longitudinal
changes of the reference cross-section or of the mechanical parameters of the wall, it is possible
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to account for trivial equations which simply states that the interested variables are constant
in time [2, 3].

A similar procedure can be followed also when considering blood flow models, hence an
incompressible fluid and a highly non-linear setting, as in system (2), which leads to analogous
results. Indeed, defining ε = αm−αn, where parameters m and n are associated to the specific
behavior of the vessel wall, whether arterial or venous [15], and using this definition in equation
(3) together with Barlow’s formula, recurring also to the continuity equation (2a), the following
PDE of the SLS model is obtained [3, 4]:

∂tp+ d2 ∂x(Au) = S2, (7)

with

d2 =
K

A
(mαm − nαn) , S2 =

1

τr

[
E∞
E0

K (αm − αn)− (p− p0)
]
.

The reader is invited to observe the similarities between d1, S1 and d2, S2. In particular,
also in this configuration, the source term S2 accounts for all the viscoelastic information of
the FSI mechanism, and if we consider the diffusive limit letting τr → 0, we recover again the
corresponding elastic tube law [3, 5]. Hence, the final hyperbolic a-FSI system for blood flow
results:

∂tA+ ∂x(Au) = 0 (8a)

∂t(Au) + ∂x(Au
2) +

A

ρ
∂xp =

FR
ρ

(8b)

∂tp+ d2 ∂x(Au) = S2 (8c)

It is worth to underline that the choice of inserting the tube law in PDE form straight inside
the system of equations results advantageous if compared to approaches generally followed in
literature [1, 15]. Indeed, if the classical formulation is adopted choosing to characterize the
FSI with the Kelvin-Voigt viscoelastic model (which, anyhow, lacks in the description of the
relaxation process of the stress [14]), a second order derivative in space of the flow rate Au
arises, which leads to deal with a non-hyperbolic system and consequent numerical issues.

Finally, to obtain more flexible models, it is possible to extend the number of Kelvin-Voigt
units in the SLS configuration, obtaining the so-called Kelvin-Voigt chain [14]. Theoretically,
the more elements we have, the more accurate our model will be in describing the real response
of the material. Conversely, the more complex the model is, the more parameters that must be
calibrated there are. The extension for the case of water pipelines is presented in details in [2].

3 NUMERICAL METHODS

Initially, to solve system (6), three different numerical schemes have been chosen and com-
pared: the widely used Method of Characteristics (MOC) [7], an explicit path-conservative finite
volume (FV) method associated with the Dumbser-Osher-Toro (DOT) Riemann solver [9], and
a semi-implicit (SI) FV method specifically developed for axially symmetric compressible flows
in compliant tubes [10].

On the other hand, to solve system (8), which can result stiff under physiological conditions,
an Implicit-Explicit (IMEX) Runge-Kutta scheme, proposed for applications to hyperbolic sys-
tems with stiff relaxation terms, is considered [18]; while, for the space discretization, the same
FV method with DOT solver previously mentioned is used. In particular, the second-order
IMEX-SSP2(3,3,2) scheme is adopted [18]. The chosen numerical scheme is asymptotic pre-
serving (AP) and asymptotic accurate in the zero-relaxation limit (i.e. when τr → 0), which
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Figure 2: Comparison of the numerical results obtained with MOC, DOT and SI schemes against the exper-
imental solution (EXP) of the water hammer test when using the SLS model (left) or the Kelvin-Voigt chain
(right). Pressure p(Nx) at the downstream end.
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Figure 3: Results of the efficiency analysis for the water hammer test with the SLS model (left) and Kelvin-
Voigt chain (right), in terms of L2 norm with respect to the CPU time tCPU .

allows to preserve the consistency of the scheme in the equilibrium, elastic limit as well as
the order of accuracy, without restrictions due to the scaling parameters [5]. Another advan-
tage of the chosen scheme lays in the possibility to analytically linearize each Runge-Kutta
step to obtain a totally explicit algorithm, avoiding the adoption of iterative procedures like
Newton-Raphson method, with a consequent consistent reduction of the computational cost
[3].

4 NUMERICAL RESULTS AND DISCUSSION

To validate the proposed methodologies, different numerical tests have been designed. To
compare the numerical methods used to solve system (6), a water hammer test case is here
presented, with reference experimental data taken from [12], for which both the SLS model and
the Kelvin-Voigt chain with 5 units are used.

Concerning the a-FSI blood flow model (8), targeted comparisons between numerical results
and literature benchmarks have been performed with respect to close to reality test cases in
single portions of vessels. In addition, patient-specific tests are considered, for which it has
been possible to compare numerical results with available pressure data recorded in-vivo, from
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Figure 4: Baseline upper thoracic aorta case. Results obtained solving the 1D a-FSI system with the IMEX
FV scheme with elastic tube law compared to six 1D and one 3D benchmark solutions. Results presented in
terms of pressure at the midpoint (left) and flow rate at the midpoint (right).
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Figure 5: Patient-specific common carotid artery cases. Results obtained solving the 1D a-FSI system with
the IMEX FV scheme, with elastic and viscoelastic tube law, for a 29 years old subject (left) and a 44 years
old subject (right), in terms of pressure, compared with measured data.

different volunteers’ common carotid arteries [4].

4.1 Water hammer tests

Following [12], a DN50 (22.0 mm radius) high-density polyethylene (HDPE) pipe is con-
sidered, with length 203.3 m and a flow rate of 2.0 l/s. In order to experimentally generate
the transient wave, a closure maneuver was performed to a valve positioned downstream of the
pipeline, with a closure time of 0.1 s. For this test, viscoelastic parameters have been calibrated
using the SCE-UA (Shuffled Complex Evolution - University of Arizona) algorithm [8]. From
Figure 2, it can be verified that the three numerical methods reproduce similar results, both
using the SLS model or the extended Kelvin-Voigt chain. At the same time, it is observed that
the increment of viscoelastic parameters does not return a consistent increase in the quality of
the final result, weighing, on the other hand, in terms of computational cost and difficulty of
calibration of the parameters. In fact, for the same water hammer test, an efficiency analysis
has been computed to evaluate the performance of each numerical scheme adopted. Observing
results shown in Figure 3, it is visible that the increment of viscoelastic parameters to char-
acterize the material mechanics leads to an inevitable increment of computational costs not
balanced by a comparable error reduction.

4.2 Blood flow tests

A baseline upper thoracic aorta test case is simulated, following [6], using a purely elastic
wall model to allow comparisons with benchmark data available in literature. Figure 4 shows
a comparison of the numerical results obtained solving the a-FSI system with the IMEX FV
scheme with respect to six 1D and one 3D benchmarks [6]. It can be noticed that, for both
pressure and flow rate, IMEX results are in perfect agreement with benchmarks.

Because no reference solutions of blood flow simulations on single vessels assuming a vis-
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coelastic FSI are available in literature, flow velocity and pressure data measured in-vivo from
four common carotids and two femoral arteries of volunteer subjects have been used to set up
patient-specific test cases, to validate the proposed model in its viscoelastic configuration. The
velocity wave extrapolated from each of the six subjects, obtained by Doppler measurements,
is prescribed as inlet condition, while the post-processed pressure wave, measured recurring to
the Arterial Tonometry technique, is used for comparisons with numerical results [4]. These
simulations have been performed using both the elastic model and the viscoelastic law, to eval-
uate the effects of viscoelasticity in arterial hemodynamics. Viscoelastic parameters have been
calibrated following [4]. Results of the test cases obtained for two patient-specific common
carotid arteries are here reported in Figure 5, from which the excellent agreement between
in-vivo measured and numerical pressure wave, obtained with the proposed methodology, can
be observed. Indeed, these results confirm the capability of the proposed model to reproduce
realistic pressure signals and the importance of taking into account the viscosity of the vessel
wall in order not to overestimate systolic pressure values.
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