Table of Contents

Acknowledgements
Abstract
Resumen
Resum
List of Publications
Table of Contents
List of figures
List of tables
List of abbreviations and nomenclature

Chapter 1 Introduction

1.1. Research Background
1.2. Scope of the work
1.1. Aims and Objectives
1.2. Research novelty
1.3. Thesis structure

Chapter 2 3D Printing

2.1. Introduction
2.2. History and purposes of use
2.3. Design possibilities
2.4. Overview of current technologies
2.5. Rise of desktop 3d printing

Chapter 3 Fused Filament Fabrication

3.1. Introduction
3.2. FFF 3D printers components
3.3. FFF Process
3.4. Summary

Chapter 4 Design for Additive Manufacturing

4.1. Introduction
4.2. Use of AM potentials
4.3. Design rules
4.4. Combined methods
Chapter 5 Design Features determination

5.1. Introduction
5.2. Prior work
5.3. Features identification
5.4. Features identification
5.5. Overhangs, bridges and angles GBTAs study
5.6. Benchmarking geometries proposal
5.7. Results
5.8. Summary

Chapter 6 Mechanical properties

6.1. Introduction
6.2. Effect of infill parameters on tensile behaviour
 6.2.1. Introduction
 6.2.2. Literature review
 6.2.3. Materials and methods
 6.2.4. Results and discussion
 6.2.5. Conclusions
6.3. Study: Determination of infill density and pattern influence in the bending behaviour
 6.3.1. Materials and methods
 6.3.2. Results and discussion
 6.3.3. Conclusions
6.4. Mechanical properties studies. Conclusions
6.5. Summary

Chapter 7 Post-processing of FFF parts

7.1. Introduction
7.2. Support removal
7.3. Surface modification
 7.3.1. Heat
 7.3.2. Chemical solutions
 7.3.3. Mechanical
 7.3.4. Surface modification. Summary
Chapter 7 Coating Assembly Summary

Chapter 8 Perception of components due to surface quality
8.1. Abstract 183
8.2. Introduction 184
8.3. Materials and methods 187
8.4. Results 190
8.5. Conclusions 192

Chapter 9 Case study. Thumb orthosis
9.1. Abstract 195
9.2. Introduction 196
 9.2.1. Anatomical data acquisition 198
 9.2.2. Additive Manufacturing of orthoses 199
 9.2.3. Post-treatment of FFF parts 201
 9.2.4. Open lattice structures in orthoses design 201
9.3. Aims and objectives 202
9.4. Method 202
 9.4.1. 3D Scan data acquisition 203
 9.4.2. CAD process 204
 9.4.3. 3D Printing 207
 9.4.4. Support removing 207
 9.4.5. Surface treatment 208
 9.4.6. Fastening 210
9.5. Cost analysis 210
9.6. Results and discussion 213
9.7. Conclusions and further research 215

Chapter 10 Development of a DfAM toolkit
10.1. Introduction 217
10.2. Toolkit structure 220
10.3. Identify requirements 221
10.4. Concept design. Ideation cards 222
10.5. Extract design solutions 226
10.6. Embodiment Design
 10.6.1. Main design considerations
 10.6.2. Design features
 10.6.3. Assembly considerations.
10.7. Prototype
10.8. Deliver
10.9. Summary

Chapter 11 Evaluation of the toolkit & case studies
 11.1. Introduction
 11.2. Methodology. Design of the trial
 11.3. Results & discussion
 11.3.1. Case study. Telescopic phone holder
 11.3.2. Survey
 11.4. Conclusions & future work

Chapter 12 Discussion and Conclusions
 12.1. Introduction
 12.2. Achievement of research objectives
 12.3. Contribution to knowledge
 12.4. Limitations of the research
 12.5. Future work

Bibliography

Appendix 1. Design guide
Appendix 2. Ideation cards
Appendix 3. Worksheet