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Abstract: In this work, we adapt a Total Reuse of Krylov Subspaces for usage in a GMRES-
solver and apply it to nonlinear structural-dynamics examples. These examples are then solved
by a multirate FETI-method, the nonlinear BGC-macro method, which allows local subcycling in
time within substructures, such that local time-stepping is performed between synchronization-
time-steps. In these proposed examples, we show that the reuse-method reduces the total number
of GMRES-iterations and shifts the eigenvalue-spectrum of the global system towards smaller
eigenvalues.

1 INTRODUCTION

Substructuring methods are widely valued for parallelizing large structural mechanics prob-
lems and a popular non-overlapping dual domain decomposition method is the Finite Elements
Tearing and Interconnecting (FETI) method [4]. In cases of local computationally expensive
dynamics in a substructure, e.g. due to local damage or contact, it might be favorable to adjust
the time-step-sizes locally. For such an asynchronous or multirate time-integration, domain-
decomposition-based methods have been developed, such as the linear subcycling-based GC-
method by Gravouil and Combescure [10]. However, this method suffers from energy-dissipation
and therefore the non-dissipative linear and nonlinear PH-methods by Prakash and Hjelmstad
[15] and the linear BGC-macro [3] have been developed. Recently a nonlinear version of the
BGC-macro method has been proposed [18] and applied to an iterative FETI-solver equipped
with a Dirichlet-like preconditioner [19]. Hence, the next natural step is to further improve
solver-efficiency by applying recycling-techniques to this new problem. In this work, we adapt
a Total Reuse of Krylov Subspaces (TRKS) approach [9], successfully applied to linear and
nonlinear structural dynamics in [12, 17], to a GMRES-solver and investigate its applicability
to the nonlinear BGC-macro method.

In Section 2.1, we introduce the applied multirate-method nonlinear BGC-macro and, in
Section 2.2, the TRKS and its application in a GMRES is described. Finally, we show in
Section 3 numerical examples with the described methods and conclusions in Section 4.

2 FETI for nonlinear structural dynamics

For the parallelization of a Finite Elements discretized structural dynamics problem, we
divide the structure spacially along the element’s edges in non-overlapping substructures Ω(s).
These substructures are connected with Lagrange-multipliers ~λ, that can be viewed as interface-
forces, as stated in the FETI method [4]. In Section 2.1, we give a brief introduction to the
governing equations and the multirate BGC-macro method and in Section 2.2, we describe the
application of a TRKS method to a GMRES solver.

https://doi.org/10.4995/YIC2021.2021.12306
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2.1 Multirate with nonlinear BGC-macro method

Throughout this work, we consider different time-step-sizes in each substructure, which is
referred to as multirate or asynchronous time-integration. As depicted in Figure 1 for two
substructures A and B, the global time-integration with time-steps n is sub-cycled with Nj

smaller time-steps with size ∆t(B) = ∆t(A)

Nj
on a micro-substructure.

0 T

0 T
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Subs A

∆t(B)
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t
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t
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Figure 1: Multirate time-discretization.

The global time-steps are also referred to as macro-time-steps and the Lagrange-multipliers
are interpolated linearly onto the local micro-timesteps

~λj =

(
1− j

Nj

)
~λn−1 +

j

Nj

~λn (1)

resulting in the local differential equations of motion, written as a force-residual f ~res
(s)
j here

f ~res
(s)
j = M(s)~̈q

(s)
j + ~fint(~q

(s)
j ) + B(s)T~λj − ~f

(s)
ext(tj) = ~0 (2)

at a discrete time-step j with a mass-matrix M(s), nonlinear internal forces ~fint and external
forces ~f

(s)
ext, as well as displacements ~q(s), velocities ~̇q(s) and accelerations ~̈q(s). The Lagrange-

multipliers ~λ are applied to the local degrees of freedom (dof) by a signed Boolean matrix
B(s). The local solutions are then synchronized at the macro-time-scale, which is formulated by
requiring the interface-velocities to coincide at the macro-timestep n in the interface-residual

I ~resn

I ~resn =
Ns∑
s=1

B(s)~̇q(s)
n = ~0. (3)

This approach is known from the linear BGC-macro method [3], which has been recently ex-
tended to nonlinear models [18]. To solve both equations (2) and (3), we choose as time-
integration scheme one of the most popular ones, namely the Newmark-β scheme [14]

a ~res
(s)
j = − 1

γ∆t
~̇q

(s)
j−1 −

1− γ
γ

~̈qj−1 +
1

γ∆t
~̇q

(s)
j − ~̈q

(s)
j = ~0

d ~res
(s)
j = ~q

(s)
j−1 +

(
1− β

γ

)
∆t~̇q

(s)
j−1 +

(
1

2
− β

γ

)
∆t2~̈q

(s)
j−1 +

β

γ
∆t~̇q

(s)
j − ~q

(s)
j = ~0,

with β ∈ [0, 1/4], γ ∈ [0, 1/2]. The equations have been reformulated in residual-form a ~res
(s)
j

and d ~res
(s)
j here. Analogously to the classical single-rate FETI in Farhat e.a. [6] and the
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PH-method [15], all these equations are linearized for ~̈q
(s)
j , ~̇q

(s)
j , ~q

(s)
j and ~λn, resulting in

M̃
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=

 M(s) 0 K(s)

−γ∆t(s)I I 0

−β∆t(s)
2
I 0 I

 C̃
(s)

=

B(s)T

0
0

 ~̃r
(s)
j =

f ~res
(s)
j

a ~res
(s)
j

d ~res
(s)
j


N(s) =

 0 0 0
−∆t(s)(1− γ)I −I 0
−∆t(s)(1/2− β)I −∆t(s)I −I

 B̃
(s)T

=

 0

B(s)T

0

 ~̃q
(s)
j =

~̈q
(s)
j

~̇q
(s)
j

~q
(s)
j




M̃
(s)

1

N(s) M̃
(s)

2
. . . . . .

N(s) M̃
(s)

Nj


︸ ︷︷ ︸

A(s)


∆~̃q

(s)
1

∆~̃q
(s)
2

...

∆~̃q
(s)
Nj


︸ ︷︷ ︸

∆~̄q(s)

+


1
Nj

C̃
(s)

2
Nj

C̃
(s)

...
Nj

Nj
C̃

(s)


︸ ︷︷ ︸

C̄
(s)

∆~λn =


−~̃r(s)

1 (~̃q
(s)
0 , ~̃q

(s)
1 , ~λ1)

−~̃r(s)
2 (~̃q

(s)
1 , ~̃q

(s)
2 , ~λ2)

...

−~̃r(s)
Nj

(~̃q
(s)
Nj−1, ~̃q

(s)
Nj
, ~λn)


︸ ︷︷ ︸

~̄r(s)

This local problem is solved for the local states~̃q
(s)
j and inserted into the compatibility condition
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where A(s) is invertible due to the regularizing nature of the mass-matrix. This is the so-called
interface-problem and its only unknown are the global interface-forces. In contrast to the
classical FETI-method, the interface-operator F is non-symmetric, which implies that we have
to use a Generalized Minimal Residual (GMRES) method [16] here, as a Conjugate Gradient
requires the problem to be symmetric.

2.2 TRKS for GMRES

The general idea of recycling relies on constructing an auxiliary coarse-space C similarly to
the natural or kernel coarse space in FETI for statical problems. Hence, this is usually referred
to as two-level FETI [7]. This auxiliary coarse-space can be built on FETI-search-directions
from earlier solver-runs in which case these search-directions are projected out from the overall
interface-problem, resulting in the TRKS [9]. This would lead to a reduced solution space and
the iterative solver will not have to find the full set of search-directions every time anew. The
auxiliary coarse-space adds another constraint

CTFT~rk = ~0 (4)

to the interface-problem with search-space C and constraint-space FC according to Gaul [8],
where k is the GMRES-iteration counter. Here, C contains l2-orthonormal search-directions
from previous GMRES-solver-runs. This coarse-space C is filled up until a predefined coarse-
space-size NC is reached. To fulfill constraint (4) in each iteration, we construct an auxiliary
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coarse-grid projector PC . In the original TRKS for FETI, the projector was described for
symmetric systems and a Conjugate Gradient method [9]. In our case, the projector

PC = I− FC
(
CTFTFC

)−1
CTFT P̃C = I−C

(
CTFTFC

)−1
CTFTF

required some modifications for general matrices F, as it is described in [8]. The projector P̃C

is required here for correcting the deflated solution.
This projector is then incorporated into the non-preconditioned GMRES algorithm 1. So,

those search-directions, which are stored in C, are the first NC search-directions generated
in the first Newton-Raphson- and GMRES-iterations and reused in all subsequent Newton-
Raphson-iterations. From TRKS for the PCPG-algorithm it is known, that search-directions
corresponding to high convergence-inhibiting eigenmodes are usually generated in the first
iterations, which creates a suitable coarse-space [12]. A similar behavior is expected for the
GMRES algorithm.

Algorithm 1: Two-level GMRES

∆~λ0 = ~0, ∆λ̂0 = ~0

∆~λC = C
(
CTFTFC

)−1
CTFT

(
~d− F∆~λ0

)
~r0 = ~d− F∆~λC
~w0 = PC~r0

β = ‖~z0‖
V0 = ~w0/‖~w0‖
while ‖~rk‖ > εF,abs and ‖~rk‖/‖~r0‖ > εF,rel and k ← 0 to kend do

~qk = FVk

~wk = PC~qk
for l ← 0 to k do

Hl,k = ~wT
k Vl

~wk = ~wk −Hl,kVl

Hk+1,k = ‖~wk‖, ~e1 =
[
0 . . . 0 1

]
~uk =

(
HTH

)−1
HT (β~e1)T

~vk = P̃CV~uk
~rk = ~r0 − F~vk
Vk+1 = ~wk/‖~wk‖
k ← k + 1

∆~λ = ∆~λ0 + ∆~λC + ~vk
C =

[
C V

]
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∆t = 0.00002s
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(a) 10-substructure plate with the upper middle substructure exhibit-
ing a micro-time-stepsize with time-step-ratio 10. All surrounding sub-
structures exhibit ∆t = 0.0002s.
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(b) Applied load over time.

Figure 2: 2D benchmark example with multirate time-integration.
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Figure 3: Displacements of converged solution at time 0.001s

3 Numerical Experiments

Here, we provide our numerical results. Section 3.1 describes the setup of the presented
bending-plate example. In Section 3.2, we investigate the solver’s convergence behavior and
the captured eigenmodes and in Section 3.3 the influence of the micro-time-scale.

3.1 Model setup

Throughout the following experiments, we used a 2D plate under impact-load as benchmark-
example, which is depicted in Fig. 2. This example is composed of 2D rectangular substructures
with Quad-4 elements and a geometrically nonlinear St. Venant-Kirchhoff material representing
an Aluminium beam (Young’s modulus E = 70 · 103N/mm2, Poisson’s ratio ν = 0.34, density
ρ = 2.7 · 10−6kg/mm3, thickness h = 5.0mm). The external load is applied as a ramped up
impact-like pressure applied on the middle substructure’s top edge, as shown in Fig. 2b with
fmax = 5.0 · 103N/mm, tmax = 0.001s. This model is created in our in-house Open-Source
Python-Fortran FE-code AMfe [1] and solved with our Python FETI-library AMfeti [2]. The
solvers were set up with absolute tolerances εN,abs = 1.0 ·10−6 and εF,abs = 1.0 ·10−7 and relative
tolerances εN,rel = 1.0 · 10−10 and εF,rel = 1.0 · 10−10, such that the Newton-solver is considered

converged if either max(‖~r(s)
i ‖) < εN,abs or max(‖~r(s)

i ‖)/max(‖~r(s)
0 ‖) < εN,rel and the GMRES

is converged if ‖~rk‖ < εF,abs or ‖~rk‖/‖~r0‖ < εF,rel. The resulting displacements of the solution
at time 0.001s are shown in Figure 3. There are some small incompatibilities visible on the
interfaces between the micro- and macro-substructures, resulting from intermediate oscillations
in the velocities [18, 15].

3.2 Convergence behavior and capturing eigenmodes

In singlerate dynamics, the PCPG solver’s convergence behavior is bounded by the condition-
number of the projected preconditioned interface-operator [12, 9]. A GMRES-solver’s conver-

             61



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

rank(F) F size F symmetry ‖FTF− FFT‖ condition number A(s) PCF symmetry
240 264 x 264 1.19 · 10−3 4.59 · 10−4 2.56 · 1019 6.83 · 10−2

‖FTPT
CPCF−PCFFTPT

C‖ condition number coarse problem
8, 51 · 10−3 7.33 · 102

Table 1: System’s average characteristic numbers for BGC-macro case with TRKS-projection.
Matrix symmetries are checked with ‖AT −A‖ for some square matrix A.
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Figure 4: Eigenvalue-spectrum of the eigenvector-matrix of PCF for multirate and singlerate
cases in macro-timestep 1 and Newton-iteration 2.

gence behavior is only determined by this condition-number in case of normal matrices and not
necessarily for nonnormal matrices, as pointed out by Greenbaum e.a. [11]. As shown in Table
1, the F-operator is indeed a non-normal matrix, which is checked by evaluating ‖FTF−FFT‖:
if this norm is close to 0, F is considered normal. This also applies for the deflated case with
‖FTPT

CPCF−PCFFTPT
C‖. However, one can still formulate an upper bound for the residuals

by the condition-number of the eigenvector-matrix of PCF, as proposed by Gaul [8]. In Figure
4, the eigenvalue-spectra for the BGC-macro case and for the single-rate case (macro-time-step
in all substructures) are shown. Note that zero-eigenvalues have been removed in these plots
and the eigenvalues are sorted in ascending order. Two aspects arise from these spectra: the
eigenspectrum is very similar for both, the BGC-macro and the single-rate case. This implies,
that the convergence-behavior is not as much governed by the micro-time-step, but by the
macro-time-step. And the other aspect concerns differences in the captured eigenmodes associ-
ated to the removed eigenvalues by TRKS. In both cases, the coarse-space-size is limited to 50
and while in the single-rate case some high eigenvalues are kept, they are removed in the BGC-
macro case. Krylov solvers capture high eigenmodes first, which lets the TRKS gather these
high convergence inhibiting modes early [12]. Hence, a reason for this different behavior might
be the initial number of FETI-iterations, as depicted in Figure 5. While in the single-rate case
the GMRES-solver requires only 31 iterations in the first timestep and Newton-iteration, 55 are
required to solve the interface-problem in the BGC-macro case. This difference with respect
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Figure 5: FETI iterations required to reach convergence for consecutive macro-timesteps and
Newton-iterations (see labels time-step|Newton-iteration).

to the similar eigenvalue-spectra again emphasizes the fact that the condition number alone
does not define the convergence behavior, but it provides a good estimate and describes the
behavior of deflation well. That also means that only 31 search-directions are available for the
coarse-space and, besides the large eigenvalues, smaller ones are captured in the singlerate-case
earlier as well and therefore the coarse-space is enriched with less effective modes. During the
subsequent Newton-iterations and time-steps the coarse-space is further filled up. In the BGC-
macro case, the coarse-space is completely filled up in the first Newton-iteration. This also
improves the relative reduction in the first Newton-iterations compared to the singlerate case.
We have to point out, that the GMRES-solver didn’t reach convergence in some nondeflated
BGC-macro cases, though. However, that is likely a numerical issue related to the bad local
conditioning, as the residuals stagnated at a low level, as depicted in Figure 6. Here, deflation
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Figure 6: FETI residuals during FETI-iterations of BGC-macro case.
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(a) Multirate case with micro-time-step-size
0.00001s at timestep 1 and Newton-iteration 2.
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0.00001s.

Figure 7: Eigenvalue-spectrum of the eigenvector-matrix of PCF and required iterations for
multirate case with finer micro-time-scale.

also improved this stability.

3.3 Influence of the micro-time-scale

Finally, we further reduce the micro-time-step-size to 0.00001s, resulting in a time-step-ratio
of 20. The resulting eigenvalue-spectrum and required FETI-iterations are depicted in Figure
7a and Figure 7b. The eigenvalue spectrum remains very similar to the one with a coarse
micro-time-scale in Figure 4a. Hence, the micro-time-scale has limited influence on capturizing

64



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

the high eigenvalues. The required iterations are slightly reduced, but show similar convergence
behavior as in Figure 5a apart from better stability in the nondeflated case.

4 CONCLUSIONS

The TRKS has been successfully applied to a GMRES-method for our multirate nonlinear
BGC-macro FETI-solver. In our examples, the total recycling approach selects the high con-
vergence inhibiting eigenmodes and therefore improves convergence. Of course, this does not
affect the FETI-solver in the first Newton-iteration in the first time-step, as the eigenmodes
are to be gathered in this step. With this reducing behavior of the recycling technique and
the characteristic deflation of the eigenvalue-spectrum, we can say that recycling is also well
applicable to a GMRES-solver and the nonlinear BGC-macro method. Moreover, we found,
that the choice of local time-step-sizes hardly affects the performance of the global iterative
GMRES-solver. The global Newton- and GMRES-solvers’ performances are more governed by
the synchronisation- or macro-timestep-size. We are currently working on the application of
more selective recycling approaches for multirate methods and the application of precondition-
ing. Our results in this work also imply, that due to the little interface-problem’s dependency
of the micro time-steps, reusing search-directions from the singlerate case might be beneficial
for a time-adaptive approach and will be investigated further in the future.

Acknowledgement: We thank the DFG for the funding of project RI2451/8-1, in which
context this work has been done.
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