Book of Extended Abstracts of the 6 ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

An overview of p-refined Multilevel quasi-Monte Carlo Applied to
the Geotechnical Slope Stability Problem

Philippe Blondeel!, Pieterjan Robbe!, Stijn Francois?, Geert Lombaert?
and Stefan Vandewalle!

' KU Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium
{philippe.blondeel,pieterjan.robbe,stefan.vandewalle } @kuleuven.be

2 KU Leuven, Department of Civil Engineering
Kasteelpark Arenberg 40, 3001 Leuven, Belgium
{stijn.francois,geert.lombaert } @kuleuven.be

Key words: Multilevel Quasi-Monte Carlo, p-refinement, Higher Order Finite Elements

Abstract: Problems in civil engineering are often characterized by significant uncertainty in
their material parameters. Sampling methods are a straightforward manner to account for
this uncertainty, which s typically modeled as a random field. A popular sampling method
consists of the classic Multilevel Monte Carlo method (h-MLMC). Its most distinctive feature
consists of a hierarchy of h-refined meshes, where most of the samples are taken on coarse and
computationally inexpensive meshes, and few are taken on finer but computationally expensive
meshes. We present an improvement upon the classic Multilevel Monte Carlo, called the p-
refined Multilevel quasi-Monte Carlo method (p-MLQMC). Its key features consist of a mesh
hierarchy constructed from a p-refinement scheme combined with a deterministic set of samples
points (quasi-Monte Carlo points). In this work we show how the uncertainty needs to be
accounted for and present results comparing the total computational cost of the h-ML(Q)MC
and p-MLQMC method. Specifically, we present two novel approaches in order to account for
the uncertainty in case of p-MLQMC. We benchmarking the different multilevel methods on a
slope stability problem, and find that p-MLQMC' outperforms h-MLMC up to several orders of
magnitude.

1 INTRODUCTION

Problems in the engineering sciences are typically subject to uncertainty. In order to assess
the uncertainty on the solution of the considered engineering problem, different steps need to
be taken. First, the engineering problem is discretized, i.e., the underlying partial differential
equation (PDE) governing the problem is approximated, by for example, the Bubnov-Galerkin
Finite Element method. Second, the uncertainty present in the material parameters of the
model, is to be represented as accurately as possible. Here, we chose to represent the uncer-
tainty by means of a random field obtained through a Karhunen-Loeve expansion (KL). Third,
the modeled uncertainty needs to be accounted for in the Finite Element method. We con-
sider two methods to achieve this step, i.e., the midpoint method and the integration point
method. Fourth, the uncertainty on the solution is to be assessed. A straightforward man-
ner to accomplish this last step, is by means of a stochastic sampling method. A well-known
stochastic sampling method consists of the classic Multilevel Monte Carlo (h-MLMC) method.
First developed by Giles, see [1, 2], the h-MLMC method relies on a hierarchy of refined meshes
in order to reduce the total computational cost by means of variance reduction. Most of the
samples are taken on low resolution and computationally cheap meshes, while a decreasing
number of samples are taken on high resolution and computationally expensive meshes. The
mesh hierarchy is typically constructed by selecting a coarse Finite Element mesh approxima-
tion of the considered problem, and recursively applying the h-refinement scheme. In previous
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work, we introduced the p-refined Multilevel Quasi-Monte Carlo method (p-MLQMC), see [3],
which essentially combines a mesh hierarchy based on a p-refinement scheme, i.e., increasing the
polynomial order of the elements’s shape function, together with a quasi-Monte Carlo sampling
rule based on a rank-1 lattice sequence, e.g., [4]. This combination yields significant compu-
tational cost savings with respect to classic Multilevel (quasi-) Monte Carlo (h-ML(Q)MC).
When accounting for the uncertainty in the Finite Element model, we observed a greater chal-
lenge with the p-MLQMC method than with the h-ML(Q)MC method. In our implementation,
h-ML(Q)MC makes use of the midpoint method, while p-MLQMC makes use of the integra-
tion point method. In this work we present two novel approaches in order to implement the
integration point method, with respect to our previous work see [3], i.e., the Local Nested Ap-
proach (LNA) and the Non-Nested Approach (NNA). In addition to this, we will benchmark
the h-ML(Q)MC method against the p-MLQMC method on a slope stability problem where
the cohesion of the soil is uncertain. The slope stability problem is a geotechnical engineering
problem, where the goal is to assess the stability of natural or man-made slopes.

The paper is structured as follows. First we introduce the considered model problem. Second,
we present the theoretical background pertaining to multilevel methods. Third, we discuss how
the uncertainty is modeled as a random field and focus on how to account for said uncertainty
in the Finite Element model. Last, we present the results obtained for p-MLQMC coupled with
LNA and NNA, and h-ML(Q)MC with the midpoint method.

2 MODEL PROBLEM

The model problem we consider for benchmarking the methods, consists of a slope stability
problem where the soil’s cohesion has a spatially varying uncertainty, see [5]. We will discuss
how to model this uncertainty in §4. In a slope stability problem, the safety of the slope can
be assessed by evaluating the vertical displacement of the top of the slope when sustaining its
own weight. Different discretizations of the slope stability problem are presented in Figure 1.

p-refinement

Level 0 Level 1

h-refinement
Level 0 Level 1
\

Figure 1: An example of a fine and a coarse mesh used for the slope stability problem with
the location of Qol indicated by M.

We consider the displacement in the plastic domain, which is governed by the Drucker—Prager
yield criterion. In the plastic domain, the stress—strain relation has a nonlinear behavior. There-
fore, in order to compute a strain increment given a stress increment, an elastic predictor—plastic
corrector iterative solver is used. In literature, this is commonly referred to as the ‘Return Map-
ping algorithm’, e.g., [6]. The governing partial differential equations are discretized by means
of the Bubnov—Galerkin Finite Element method, giving rise to a system of equations. In order
to compute the displacement, an incremental load approach is used, i.e., the total load resulting
from the slope’s weight is added in discrete load steps, starting with a force of 0 N. These load
steps are added until the total downward force resulting from the slope’s weight is reached. The
discretized system of equation, describing the displacement, that needs to be solved iteratively
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by a Newton—Raphson solver is given as
KAu = f + Af — k, (1)

where Au stands for the displacement increment and K the global stiffness matrix resulting
from the assembly of element stiffness matrices K®. The right hand side of Eq. (1) stands for
the residual. Here, f is the sum of the external force increments applied in the previous steps,
Af is the applied load increment of the current step and k is the internal force resulting from
the stresses. For a more thorough explanation on the methods used to solve the slope stability
problem we refer to [7, Chapter 2 §4 and Chapter 7 §3 and §4].

3 SAMPLING AND MESH HIERARCHIES

The expected value of a function P against an s-dimensional probability density function ¢ is
defined by

//xl qﬁ(a:l,...,xs)da:l--dxs:/SP(X)¢(x)dx. 2)

In order to approximate the integral in Eq. (2), an equal-weight quadrature rule can be used.
An example of such an equal-weight quadrature rules is the Monte Carlo method. In our case,
the function P is obtained by means of a Finite Element method on a chosen discretization
level L, which leads to a first approximation of the integral, E[P] ~ E[P,]. The computation
of the integral itself is performed by defining an estimator, leading to a second approximation,
E[P,] ~ Q(MC

3.1 Multilevel Monte Carlo

In multilevel methods, the expected value of E[P] is written as a telescoping sum

B[R] =E[R] + ZE[Pz — Pr). (3)

(=1

The resulting MLMC estimator used for the approximation of Eq. (2) is then given as

MEME ZPO n) +Z{N€Z< )) Pra(x gn)))}7 (4)
(n)

where x,” stands for the nth sample point. In the MLMC estimator the Xén) are (pseudo-
Jrandomly chosen points, which are distributed according to ¢(-), see Eq. (2). The expected
value of the quantity of interest on the finest level £ = L, is expressed as the sample average of
the quantity of interest on the coarsest level £ = 0, plus a series of correction terms on levels

¢ = {1,...,L}, hence the name ‘telescoping sum’. The variance of the MLMC estimator is

given by
2
L L L L N (AP™ — AQ >
VAP, \Z 1 < ¢ ¢

v [OMLMC] _ MLMC — = — , (O

A= vis ZN IR AP P P

where AQ = ]\lle ZN" AP(n , with AP = Pg(Xgn)> — Pg_l(Xén)) and P_; := 0. Multilevel

methods rely on a variance reduction across the levels in order to achieve a computational
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speedup. This means that the sample variance of the difference for increasing level ¢ contin-
uously decreases, i.e., V[AP| > V[AP)] > --- > V][AP.]. This variance reduction is only

obtained when a Strong positive correlation is achieved between the results of two successive
levels, Py := Pg(Xé ) and P,_; := Pg(xé )1) ie.,

V[AP] = V[P, - Py

=V [Pg] + V [Pz_l] — 2cov (Pg, Pg_l) s (6)

where cov (P, Pr—1) := pro—1+/V [P] V [P,_1] is the covariance between P, and Py—; with pgs—1
the correlation coefficient.

3.2 Multilevel quasi-Monte Carlo
The MLQMC estimator is given by

L
MLQMC: ZNOZP rn)_i_;l

with its variance given by

Ny

i{ ; Z(Pe( I = Pra(x <"">>)}, (7)

£

V[ LMLQMC} ZV [AQMLQMC] (8)

In order to estimate V[AQMIOMC] we use the sample variance V, over the R, independent shifts,
see [§]

i 1 1 i
_ Z (rm) _
Ve= Zﬁ Re (R, — 1) (Ne S AQ@) ’ )

where AQy == = Y = S AP with AP = Py(u)™) — Pp_y(u)™) and P_; == 0.

While the MLMC method is based on (pseudo )random dlstrlbuted sample points, the MQLMC
method uses deterministic sample points (QMC points), Xy’n). More specifically, here we
use a rank-1 lattice sequence. In order to recover unbiased estimates of the estimator, the
computation of the estimator and its variance include an averaging over a number of shifts
r =1,2,..., Ry on each level {. The procedure of random shifting consists of adding to each
point of the lattice sequence, a uniformly distributed number =, € [0,1)%, after which the
fractional part is taken. This is illustrated in Figure 2. In our implementation R, = 10 for each
0,0 <¢<L.

The shifted version of the lattice points is given by

x(rm) . — p1 (frac (p2(n)z+Z,)) ,n € N, (10)

where &1 is the inverse of the univariate standard normal cumulative distribution function,
frac (x) := x — [z],x > 0, ¢ is the radical inverse function in base 2, and z is an s-dimensional
vector of positive integers. The generating vector z was constructed with the component-by-
component (CBC) algorithm with decreasing weights, v; = 1/52, see [9].

3.3 Mesh Hierarchies

In the multilevel setting, the levels 0 < ¢ < L refer to the meshes in the mesh hierarchy. The
coarsest mesh is denoted as level 0, while subsequent refinements of the coarse mesh are denoted
as level 1, level 2, ... Classically, the mesh hierarchy in the ML(Q)MC method is constructed
starting from a coarse Finite Element mesh, to which h-refinement is recursively applied, see

28



Book of Extended Abstracts of the 6 ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

. « ° ° °
. . °
1 ‘..‘ e ‘...1. ..w..\ .\_ \..1

. %os N T (X T T ( F
“lo6 Lol N X L.l B X6
* e loa 3 . ° : . . L0,_’1 b : . ° : o ° . %04

102 - 102 b Lo . e T2

0 o0z o4 05 o8 1" 0 02 04 06 08 1Y 0 02 04 06 08 10

Figure 2: Random shifting procedure applied to points belonging to a rank-1 lattice sequence.

[10]. Here, we use a mesh hierarchy based on a p-refinement approach, i.e., increasing polyno-
mial order of the elements’s shape function with increasing level. This mesh hierarchy applied
to the slope stability problem, is shown in Figure 1. The Finite Element nodal points are rep-
resented as black dots. In Figure 1, we also present the h-refined mesh hierarchy of the slope
stability problem.

3.4 Number of Samples

In Multilevel methods, the error is controlled by imposing a tolerance, €2, on the Mean Square
Error (MSE) of the of the estimator. This MSE is defined as,

MSE | QM| = {( MLQME _ E[P]ﬂ

= VIQIHOM 4 (B [QMOMC] —EP]) ()
= V[ + E[R, - P)*.

The right-hand side of Eq. (11) consists of two parts, i.e., the variance of the estimator,
V[Qi/[L(Q)MC], and the squared bias, (E[P, — P])*. The stopping criterion for multilevel schemes
. . . 2 .

is typically based on the requirements that both terms are less than . In order to achieve the
requested tolerance for the variance of the estimator, the number of samples is increased. In
the MLMC method, the optimal number of samples per level is given as

2 [V, ¢
Ne= éZ\/VeCe, (12)
=0

where V, stands for the sample variance, see Eq. (5), and Cy is the cost to compute one sample
on level ¢, see [2]. However, in the MLQMC method, the number of samples to be taken is
determined by means of a ‘doubling’ algorithm, see [4]. The procedure starts by computing a
number of warm-up samples together with a user-defined number of shifts on each level. From

these samples V [AQ?&LQMC] is estimated on each level ¢, see Eq. (9). The iterative step consists

of selecting the level 7 on which the ratio of the variance of the estimator with the sample cost

is maximal, i.e., argmax (V;/C;). On this level 7 the number of samples is multiplied with a
T€L
constant factor. This procedure is repeated until V [ Q“QMC] < % In our approach, this

constant is chosen as 1.2.
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4 UNCERTAINTY MODELING AND INCORPORATION

The uncertainty present in the cohesion of the soil of the slope stability problem is modeled
as a lognormal random field, i.e., the exponential of a Gaussian random field. Realizations
of the Gaussian random field are computed by means of the truncated Karhunen-Loeve (KL)
expansion,

Z(x,w) = Z(x) + Y /0 () ba(), (13)

where s is the number of terms in the expansion, i.e., the number of stochastic dimensions.
Here, Z(x) is the mean of the field and &, (w) denote i.i.d. standard normal random variables.
The eigenvalues 6,, and eigenfunctions b, (x) are the solutions of the eigenvalue problem

/D C(%,7) baly) dy = 8 b (), (14)

where C(x,y) is a given covariance kernel. The kernel we consider for the random field is the
Matérn covariance kernel

) = g (m— ||>;—y||2> . (m— Ix— y||2) | (15)

- ov-1D

where v is the smoothness parameter, K, (-) is the modified Bessel function of the second kind,
['(-) is the gamma function, o2 is the variance, A is the correlation length, and |-||, is the L?
norm. The integral in Eq. (14) is approximated by means of a numerical collocation scheme.
For more information, we refer to [11, Chapter 7 Section 2|. The lognormal representation
of the random field is obtained by applying the exponential to the field obtained in Eq. (13),
Zlognormad(X? w) = eXp<Z<X7 (U))

In order to incorporate the uncertainty in the Finite Element model, we consider two different
methods, the midpoint method and the integration point method. In both methods the uncer-
tainty resides in the elastoplastic constitutive matrix D. This matrix is used for constructing
the element stiffness matrices by integrating the following expression,

lal
K® = / B"DBdQ. ~ Y B/D;Bw;. (16)
Qe

=1

The matrix B contains the derivatives of the element shape function, and |q| is the number
of quadrature points used for the numerical integration. The assembly of the element stiffness
matrices results in the global stiffness matrix, see Eq. (1). In practice, the matrix K¢ is
computed by means of a quadrature rule, where B, stands for the matrix B evaluated at
quadrature point q; € q, i.e., B(q;), D; the matrix D containing the uncertainty, i.e., D (w;),
and w; the quadrature weight.

We will now present the two methods used to account for the uncertainty in the Finite Element
method. The goal consists of selecting the random field evaluation points x used for the
evaluation of Eq. (13). Because we are considering a multilevel approach, a set of random field
evaluation points must be selected for each level, i.e., x, for ¢ = {0, ... ,L}.

4.1 Midpoint Method

The midpoint method is often used in conjunction with the h-ML(Q)MC method. The random
field evaluation points are selected as the centroids of the elements, i.e., Eq. (13) is evaluated
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at the centroids of the elements and the resulting values are assigned to the elements. This is
shown in Figure 3, where @ represent the spatial locations of the centroids of the elements. In
case of the midpoint method, the uncertainty inside each element is assumed to be constant,
ie., Dy =Dy =--- =Dy, see Eq.(16). Note that the resolution of the random field increases
with each level, i.e., |xo| < |x1] < --- < |xL].

Level 0 Level 1
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Figure 3: Locations of the random field evaluation points @ for the midpoint method.

4.2 Integration Point Method

In the p-MLQMC method, the number of elements in the hierarchy of mesh discretizations
remains the same. Therefore, the midpoint method can not be used if we want the resolution
of the random field to increase with increasing level. In order to obtain a higher resolution of
the random field per increasing level, we use the integration point method, see [12], with the
added condition that the number of quadrature points used to numerically integrate Eq. (16)
also increases with increasing level. In the integration point method, Eq. (13) is evaluated
at the locations of the quadrature points, or integration points, meaning that the uncertainty
varies inside each individual element, i.e., Dy # Dy # --- # Diq.

4.2.1 Non-Nested Approach

The Non-Nested Approach is the most simple way to select random field evaluation points. In
this approach, the random field evaluation points are chosen equal to the quadrature points
used for the numerical integration of Eq. (16). In practice, these quadrature points are first
selected on a reference triangular element, see Figure 4, before being mapped to the global
coordinates of the mesh. Note that the sets of quadrature points are not nested across the
different levels, i.e., qo € q1 € --- € qr. Hence the sets of random field evaluation points are
not nested across the levels either, ie., xg € x; € -+ € x,. The obtained sets of random
field evaluations points x,, with 0 < ¢ < L, are then used to compute discrete instances of
the random field according to Eq. (13). As such, the random field Z(x,w) is approximated on
each level by a discrete set of random variables. Defining Z, := (Z(xy,w), %) as the the set of
random variables representing the random field and their locations, we see that those are not
nested across levels, i.e., Zg £ Zy € - -+ € Zy,. This impacts the variance reduction, see Eq. (6),
as it leads to a weak correlation between the solutions on successive levels.

—— Level 0 —— —— Level 1 —— —— Level 2 ——
., ., £,
7O by A, 2o A
A A : ;A’x A A : Aﬁ* ? : k.,
. .A.A ....... .A,A N - Aﬁ‘ &AAAA Aéi&.

Figure 4: Locations of the quadrature points /A and the random field evaluation points @ on
a reference triangular element for NNA.
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4.2.2 Local Nested Approach

In the Local Nested Approach we try to improve the correlation between the solutions on
different levels. Ideally, one would have Zg C Z; C --- C Z, i.e., the random field on each
level is represented by using an exact subset of the information used to represent the random
field on the finest level. Such an approach has been tried in [13], with limited success. Here,
we suggest an alternative in which we only aim at a good correlation between each set of two
successive levels in the mesh hierarchy. Such a two-by-two correlation is sufficient for multilevel
sampling methods to achieve a rapid reduction of V[AP,].

Consider the correction E[AP)]| := E[P, — P,_;], which is one of the terms in the telescopic
sum, Eq. (3). The integral for computing the element stiffness matrices in P, makes use of the
quadrature point set q,. At those points, we evaluate the random field Z(x,w), i.e., we set
Xy = q¢. The integral for computing the element stiffness matrices in F,_; makes use of the
quadrature point set q,_;. However, we do not evaluate the random field at those locations,
but rather evaluate the random field at points which are a subset of xy, i.e., X¢_1 sups € X¢, such
that they have minimal distance with q,_;. This is illustrated in Figure 5. (Note that this
approximation is done on the level of the reference triangular element, before the mapping to
the actual elements of the mesh.)

Define again Z, := (Z(xy,w),x¢), here with x, = q;, and Xy main := X¢. The local nested ap-
proach ensures that, for each correction E[A P, separately, a relation Zy_1 suns € Zy is satisfied.
Here, Zy_1 sups is a 'substitute random field’, which approximates Z,_;. The substitute field
correlates well with the discrete field on the £’'th level as it shares part of that field’s random
variables.

— Level 0 — E— Level 11— — Level 22—
Main Substitute Main Substitute Main
7 i, ., ., £a
A w A n a B, N
o P A, A, o b

& e, A &, By A Ay A 2o B,

A i A ™, i A, i A A
A A, 2 y , A e,
i A A, A A ’ﬁé A A4 AA"".. A NN ’AA"".. A A A 4 Aﬁ
Boan b, b Bk, B A b BB, Bl WS-y

Figure 5: Locations of the quadrature points /A and the random field evaluation points @ on
a reference triangular element for LNA.

An important note must be made concerning the LNA approach. While it successfully correlates
the solutions of two successive levels, the expected value obtained from the telescoping sum is
biased. We have observed a small bias of the order of 10~% with respect to the actual values, an
error that is well below the discretization error of the finite element discretization. The reasons
behind this additional bias stems from the fact that substitute random fields are used. We are
currently investigating how this additional bias can be avoided.

5 RESULTS

In this section we discuss the results obtained with the p-ML(Q)MC-LNA/NNA and the h-
ML(Q)MC methods. The quantity of interest (Qol) is taken as the vertical displacement in
meters of the upper left node of the model. This location of the Qol is depicted in Figure 1
by M. The mesh hierarchies shown in Figure 1 are generated by using a combination of the
open source mesh generator GMSH, see [14], and MATLAB, see [15]. In this paper we consider
two-dimensional Lagrange triangular elements. The random field, computed by means of the
Julia package GaussianRandomFields.jl [16] has the following parameters v = 0.4, 0% = 1.0,
A = 1.5. The characteristics of the lognormal distribution used to represent the uncertainty
of the cohesion of the soil are as follows: a mean of 8.02kPa and a standard deviation of
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400 Pa. The spatial dimensions of the slope are: a length of 20m, a height of 14m and a
slope angle of 30°. The material characteristics are: a Young’s modulus of 30 MPa, a Poisson
ratio of 0.25, a density of 1330 kg/m? and a friction angle of 20°. The number of stochastic
dimensions considered for the generation of the Gaussian random field is s= 400, see Eq. (13).
With a value s = 400 at least 99% of the variability of the random field is accounted for.
The stochastic sampling was performed with the Julia packages MultilevelEstimators.jl, see
[17]. The Finite Element code used, is an in-house MATLAB code developed by the Structural
Mechanics Section of the KU Leuven. All the results have been computed on a workstation
equipped with 2 physical cores, Xeon Gold 6240 CPU’s, each with 18 logical cores, clocked at
2.60 GHz, and a total of 192 GB RAM.

5.1 Displacement of the Mesh

In Figure 6 we show the displacement of the mesh and the value of the Qol for four samples of
the random field computed on the first four levels.

Level 0 Level 1 Level 2 Level 3

Qol = 0,0536m Qol = 0,0591m Qol = 0,0625m Qol = 0,0628m

Figure 6: Displacement of the mesh and Qol for different samples of the random field.

5.2 Variance and Expected Value

In Figure 7 we show the sample variance over the levels V [P], the sample variance of the
difference over the levels V[AP,|, the expected value over the levels E [P;] and the expected
value of the difference over the levels E [AFP].

—Variance— ~Expected Value—
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Figure 7: Variance and Expected Value over the levels.

As expected, we observe that | [P;] remains constant over the levels, while E [AF,] decreases
with increasing level. As explained in §3.1, multilevel methods are based on a variance re-
duction. In practice this means that the sample variance V [P] remains constant across the
levels, while the sample variance of the difference over the levels V[AP,] decreases per in-
creasing level. This is indeed what we observe for p-ML(Q)MC-LNA and h-ML(Q)MC. For
p-ML(Q)MC-NNA we observe that V[APF,] does not decrease, but oscillates. From Figure 7,
we can conclude that the choice of the evaluation points for the random field greatly influences
the behavior of V[AF] in the p-MLQMC method.

33



Book of Extended Abstracts of the 6 ECCOMAS Young Investigators Conference
7th_9th July 2021, Valencia, Spain

5.3 Runtimes

We show the absolute and relative runtime as a function of the user requested tolerance ¢ on
the RMSE in Figure8.

—Runtime —Relative Runtime—
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Figure 8: Absolute runtimes in function of requested user tolerance.

The results for the absolute runtime are expressed in seconds. For the relative runtime, we
have normalised the computational cost of all the methods such that the results for p-MLQMC-
LNA have unity cost for each tolerance. We observe that p-MLQMC combined with the LNA
approach outperforms all other considered methods. p-MLQMC-LNA outperforms p-MLQMC-
NNA by a factor 2 to 8. In addition, the p-refined Multilevel methods outperform the h-refined
Multilevel methods. p-refined MLQMC achieves a speedup up to a factor 60 with respect to
h-MLQMC and a factor 100 with respect to h-MLMC.

6 CONCLUSION

In this work, we have benchmarked the p-MLQMC method on a slope stability problem where
the soil has a spatially varying uncertainty. We also investigated how the evaluation points
of the random field are to be selected in the p-MLQMC method in order to obtain a lower
computational cost. We distinguished two different approaches, the Non-Nested Approach and
the Local Nested Approach. We showed that the approaches impact the variance reduction over
the levels, and thus the total computational cost. p-MLQMC combined with LNA exhibits a
much better decrease of V[APF,| due to a better correlation between the levels than with NNA.
This is reflected in the total computational cost where the LNA approach outperforms NNA
by a factor between 2 to 8. We also showed that the p-MLQMC-LNA method outperforms
h-Multilevel Monte Carlo (h-MLMC) by a factor ranging between 60 and 100, and classic
Multilevel quasi-Monte Carlo (h-MLQMC) by a factor 25 to 60. Of the considered approaches,
the p-MLQMC-LNA method offers the lowest computational cost for a given tolerance on the
RMSE.
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