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Abstract: FastSim is the most widely used tangential contact method due to its accuracy
and computational efficiency. However, its use is limited to elliptic contact areas, as it needs
results from Kalker’s Linear Theory, a Hertzian contact theory, to obtain the so-called elastic
parameters. This makes FastSim unable to face some of the current railway challenges, such as
wear, corrugation, Rolling Contact Fatigue (RCF), wheel flats, etc. Taking this limitation into
account, in the present work, an alternative methodology to Kalker’s Linear Theory is proposed,
which will enable FastSim to deal with non-Hertzian conditions.

1 INTRODUCTION

Solving the tangential wheel-rail contact problem is always complex. Depending on the ap-
plication, a trade-off between accuracy and computational cost is required. The most accurate
tangential contact model existing is CONTACT [1, 2], but, because of its high computational
cost, it is mainly used as a reference theory for validation. In railway dynamics simulation,
simplified contact theories [3, 4, 5, 6] are usually required. These theories are much more
computationally efficient, although they are less accurate. Among all the simplified theories,
the most widely used is FastSim [6], due to its high-level performance and accuracy, and its
ability to predict tangential stresses distribution and the stick-slip boundary [7]. FastSim is a
contact theory that assumes that the surface displacements on a point are only related to the
tangential stress on that point through the so-called elastic parameters [8]. To obtain these
parameters, creep forces resulting from the full adhesion solution [8] (simplified contact theory
which assumes adhesion over the entire contact area) are equalled to the ones obtained through
Kalker’s Linear Theory (KLT) [9] (exact contact theory but limited to Hertzian contact condi-
tions). It is this limitation which has led various authors to find alternative methods to obtain
these elastic parameters under non-Hertzian contact conditions [8, 10, 11], and so, to be able to
extend FastSim validity to non-elliptic contact areas. The elastic parameter calculation under
non-Hertzian condition has been carried out according to two different approaches [11]: a first
approach, based on associating the contact area to one or several equivalent ellipses [12, 13];
and a second approach, in which, for each particular contact geometry, elastic parameters are
obtained by solving the exact contact problem [8, 10]. Despite the methods based on the sec-
ond approach are quite more accurate, their computational cost is much higher than the ones
based on the first approach. That is the reason why equivalent ellipse based methods are used
nowadays to study the influence of the non-Hertzian contact in actual railway vehicle dynamics
[14, 15], as well as in complex tangential contact phenomena, such as wear [16, 17], Rolling
Contact Fatigue (RCF) [18], wheel out-of-roundness [19, 20], etc.

In the present work, an alternative tangential contact model to KLT which allows the elastic
parameters calculation under non-Hertzian hypothesis is proposed. This model derives from
Kalker’s Variational Theory [8], to which steady-state and full adhesion hypothesis are imposed.
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Since the exact contact is solved to obtain the elastic parameters using this model, it is included
within the second approach described above. Nevertheless, this model presents some advantages
compared to existing alternatives [8, 10], as its resolution is not iterative, nor stress solutions
are approximated to any polynomic function. These advantages make this model more suitable
to face the new railway challenges, as the ones listed above.

The mathematical model of this work is developed in Section 2. In Section 3, the accuracy
of the proposed contact model is analysed, when results are compared to the ones obtained
with KLT on elliptic contact areas. Finally, in Section 4, according to presented results, the
contribution of this work is concluded and justified.

2 MATHEMATICAL MODEL

In the present work, a mobile reference frame X1X2X3 is assumed, with origin at the the-
oretical contact point, and it moves with it as the vehicle travels along the track. X1 axis is
parallel to the rolling direction, X3 axis is normal to the contact, being positive to the wheel,
and X2 axis corresponds to the lateral direction in order to form a right-handed rectangular
frame, as it is shown in Figure 1.

Figure 1: Mobile reference frame X1X2X3 at the theoretical contact point between rail (green)
and wheel (blue).

As it is done in Kalker’s Variational Theory [8], the kinematic equation that relates the rigid
body displacements of the bodies in contact with the slip velocities and the elastic deformations
can be written

s = w + 2
Du

Dt
= w + 2

∂u

∂t
+ 2V

∂u

∂x1
, (1)

where s are the local slip velocities, u are the displacements related to the elastic deformation
of the bodies in contact, V is the vehicle speed, and w are the velocities associated to the
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undeformed configuration, which can be calculated from the creepages [8]. Assuming the steady-
state hypothesis

(
∂
∂t

= 0
)

and the full adhesion hypothesis (s = 0), Eq. (1) re-writes

w = −2V
∂u

∂x1
. (2)

Including the constitutive relationships in Eq. (2), it is possible to obtain an expression,
which provides tangential stresses under steady-state and full adhesion conditions p̄τ :

w = −2V

(∫
S

∂c1 (x,y)

∂x1
p̄1 (y) +

∂c2 (x,y)

∂x1
p̄2 (y)

)
ds (y) , (3)

where c1 (x,y) and c2 (x,y) are two vectors that contain the elastic influence functions, and S
is the contact surface. To solve Eq. (3), the contact area is discretised analogously as it is done
in the TANG algorithm [8], assuming constant stresses on each element. For the j-th element
of the mesh, Eq. (3) writes

wj = −2VCjp̄, (4)

where Cj is the vector which contains the elastic influence coefficients derivatives, and p̄ is the
column vector which contains tangential stresses under adhesion conditions of every element of
the mesh. Figure 1 shows a scheme of the mesh used for solving Eq. (4), where a and b are
half the size of the element on longitudinal and lateral directions, respectively. This equation
is solved by a collocation method [1, 21], where the location of the collocation point can be
controlled with a parameter α, which takes values in the range [−1, 1].

Once the tangential stresses have been obtained, the tangential contact forces can be obtained
by summation of these stresses. As it is assumed that every element on the contact area is
under adhesion, the tangential stresses and forces will be linear with creepages. By analogy
with KLT, tangential forces under adhesion conditions F̄τ can be written as

F̄1 = −f ∗
11ξ (5)

F̄2 = −f ∗
22η − f ∗

23φ, (6)

where f ∗
11, f

∗
22 and f ∗

23 are the analogous coefficients to the creep coefficients f11, f22 and f23
defined by Kalker in Ref. [9]; and ξ, η and φ are longitudinal, lateral and spin creepages,
respectively.

3 RESULTS

Using KLT creepage coefficients as a reference, it is possible to study the influence of the
collocation point and the number of elements N on the accuracy of the results provided by
the proposed method, for different ellipse axes ratio, r. Figure 2 shows the ratio between the
creepage coefficients obtained by the proposed method and the ones obtained from KLT as
a function of the location of the collocation point, for a mesh size of N = 6400. Results for
coefficients f ∗

11 and f ∗
22 are quite similar: the optimum collocation point is located at the centre

of the element. Instead, to achieve higher accuracy on the f ∗
23 coefficient, it is convenient to

move the collocation point forward to a value of parameter α = 0.5.
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Figure 2: Mesh scheme with collocation points (green dots).

Figure 3 shows the evolution of the creepage coefficients ratio as a function of the number
of elements of the mesh, N , for a collocation point at the centre of the element. According
to these results, despite the ratio is close to 1 for a sufficient number of elements, thus being
the error acceptable, the method does not present convergence. Assuming the full adhesion
hypothesis leads to infinite tangential stress at the trailing edge of the contact area, which
produces numerical errors, and the non-convergence of the method, as it is also concluded in
Ref. [22].

Figure 3: Creep coefficients ratio as a function of the collocation parameter α for three different
ellipse ratios r. The number of elements of the mesh is N = 6400.
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As coefficients f ∗
11 and f ∗

22 are the most relevant for tangential forces calculation, optimum
collocation point is located at the centre of the element. The optimum mesh size is conditioned
by the computational cost. To solve Eq. (4), it is needed to invert a 2N × 2N matrix, so that,
increasing the mesh size, exponentially increases the calculation time. Increasing mesh size
from N = 60 × 60 toN = 80 × 80 elements implies four times more calculation time, but only
a reduction of creep coefficients absolute error calculation of 0.2%. Therefore, as N = 60 × 60
is the smallest mesh size with absolute errors on f ∗

11 and f ∗
22 calculations below 1%, authors

propose an optimum mesh size of N = 60 × 60 elements.

Figure 4: Creepage coefficients ratio as a function of the number of elements of the mesh N for
three different ellipse ratios r. The collocation point is located at the centre of the element.

4 CONCLUSION

The FastSim algorithm is limited to elliptical contact areas because of the calculation of
the elastic parameters based on Kalker’s Linear Theory results. In this work, an alternative
model has been proposed to deal with that restriction, allowing the calculation of the creep
coefficients for non-Hertzian contact conditions, which can be used to obtain the elastic param-
eters according to the FastSim methodology. Based on results shown in this work, it has been
proved that, combining both optimum collocation point (α = 0) and mesh size (N = 60×60 el-
ements), sufficient to minimize the numerical error associated with the full adhesion hypothesis
assumption, without considerably increasing the computational calculation time, the present
model gives fairly accurate results on creep coefficients calculation for elliptic contact areas,
without assuming Hertzian contact hypothesis. So, on future research, this method will be
used together with FastSim to obtain results on tangential forces and stress distributions on
non-Hertzian contact conditions.
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