
Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

A VIBROACOUSTIC MODEL OF THE STATIONARY RAILWAY
WHEEL FOR SOUND RADIATION PREDICTION THROUGH

AN AXISYMMETRIC APPROACH

V. T. Andrés∗, J. Mart́ınez-Casas, J. Carballeira and
F. D. Denia
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Abstract: In the literature, different dynamic models of the railway wheel have been developed
to predict its sound radiation; however, there are still certain aspects that can be improved.
Specifically, the high computational cost of these models, either because they solve the fluid-
structure interaction or because they solve the dynamics and acoustics of the three-dimensional
wheel, makes it difficult to carry out numerous simulations with the aim of achieving quieter
designs. In the present work, a vibroacoustic model of the stationary wheel is developed through
an axisymmetric approach, yielding an efficient and comprehensive acoustic prediction tool.
The calculation methodology consists of, firstly, adopting an axisymmetric approach to solve the
vibratory dynamics of the wheel from its cross-section, using finite element techniques; subse-
quently, the acoustic radiation of the three-dimensional wheel is calculated from the dynamics of
the aforementioned section through an analytical formulation. Finally, the vibroacoustic model
developed is validated via comparison with commercial software that solves the fluid-structure
interaction, showing the aforementioned computational advantages that the former has over the
latter.

1 INTRODUCTION

Wheel/rail interaction generates a dynamic contact force due to the roughness of their sur-
faces. This excites the wheel causing a vibrational response which, in turn, leads to a sound
radiation known as rolling noise. It is considered an important source of noise from railway
activities [1], especially in urban areas where the vehicle velocity is relatively low [2]. The
frequency range of interest for rolling noise radiation is approximately up to 6 kHz.

The interest in predicting the noise radiated by the railway wheel has resulted in the devel-
opment of vibroacoustic models [3]; in general, the sound radiation is evaluated through the
vibrational field of the wheel boundary. The wheel dynamic behaviour is commonly reproduced
by the Finite Element Method (FEM) [4], which allows considering the flexibility of the body.
Given the wheel geometry axisymmetry, a Fourier series expansion is feasible [5], solving an-
alytically the vibrational response in the circumferential direction and therefore reducing the
associated computational cost.

In this work, a vibroacoustic model of the axisymmetric wheel is presented. The description
of the dynamic response of the wheel along the circumferential direction by means of Fourier
series establishes a similar distribution of its modal properties. By adopting a modal approach,
analytical relations between the vibrational field on the wheel boundary and on the wheel
cross-section are found. This allows computing the acoustic problem also in a two-dimensional
frame, with the computational advantages that it entails.

The mathematical formulation of the vibroacoustic model is presented in Section 2. The

https://doi.org/10.4995/YIC2021.2021.12584

320



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

results of this model are compared with results from a commercial software in Section 3. Finally,
in Section 4 some conclusions are summarized.

2 VIBROACOUSTIC MODEL

2.1 Dynamics

Considering a cylindrical reference system, the displacement field of an axisymmetric wheel
due to its flexible behaviour is expanded along the circumferential direction using Fourier series
as follows [5]:

ur =ur,0 +
∑
n>0

(ur,n cos(nθ)− ur,n sin(nθ)) ,

uθ =− uθ,0 +
∑
n>0

(uθ,n sin(nθ)− uθ,n cos(nθ)) ,

uz =uz,0 +
∑
n>0

(uz,n cos(nθ)− uz,n sin(nθ)) ,

(1)

where subscripts r, θ and z indicate radial, tangential and axial direction, respectively. In
this expansion, harmonic amplitudes without bar represent symmetric displacements about
θ = 0 and those with a bar represent antisymmetric displacements about θ = 0, θ being the
circumferential coordinate; all harmonic amplitudes are function of the coordinates r and z.
Variable n symbolises each Fourier term. Similarly, the external forces applied on the flexible
wheel can be expanded as Fourier series.

Making use of the expansion in Eq. (1), the kinetic energy of the flexible wheel Ek is
analytically integrated over the circumferential direction. After that, it can be proved that the
kinetic energy can be divided into the contribution of each motion associated with a Fourier
harmonic and this, in turn, into the symmetric and antisymmetric displacements about θ = 0.
Thus, the kinetic energy can expressed as follows:

Ek = Ek,0 + Ek,0 +
∑
n>0

Ek,n +
∑
n>0

Ek,n. (2)

Similarly, the strain energy of the wheel accomplishes the following expression:

Ep = Ep,0 + Ep,0 +
∑
n>0

Ep,n +
∑
n>0

Ep,n. (3)

Applying the Lagrange Equations, a set of Equations of Motion (EoM) are obtained; each
of these describes the motion associated with a Fourier term and a type of motion (symmetric
or antisymmetric). The set of EoM for n = 0, considering a FE approach for the wheel cross-
section, is given by:

M0ü0 +K0u0 = F0,

M0ü0 +K0u0 = F0,
(4)

where u0 contains the amplitudes ur,0 and uz,0 for each node of the wheel cross-section mesh
while u0 contains the amplitudes uθ,0. The force vectors come from expanding the wheel/rail
interaction force; F0 represents the even Fourier coefficients and F0 the odd coefficients, both
defined for n = 0. Similarly, the EoM for motion with n > 0 are given by:

Mnün +Knun = Fn,

Mnün +Knun = Fn,
(5)

             321



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

where un contains the symmetric amplitudes ur,n, uθ,n and uz,n for each node of the wheel
cross-section while un contains the antisymmetric amplitudes ur,n, uθ,n and uz,n. Matrices
accomplish the following relations:

Mn = Mn,

Kn = K−n.
(6)

Matrix Mn is indeed independent of n whereas Kn is defined for each n.
A modal approach is adopted in order to solve the dynamics of the flexible wheel. A set

of modes coming from the EoM defined for a certain n is described in the literature as modes
with n nodal diameters [2]. The eigenproblem of the EoM for n = 0 gives as a result a set
of radial and axial modes with zero nodal diameters for the case of symmetric motion and a
set of circumferential modes with zero nodal diameters for the case of antisymmetric motion.
When considering the EoM for n > 0, for each vibration mode coming from the symmetric
EoM, an analogous mode is obtained from the antisymmetric EoM, both being in quadrature
of phase and with the same natural frequency. The wheel modeshapes can be also decomposed
into harmonic functions with the angular coordinate similar to Eq. (1).

After solving the modal problem, the dynamic response of the wheel due to the contact force
from the wheel/rail interaction is solved by modal superposition. Details of the interaction
model can be found in [6]; in this work, the radial and axial directions are solved in the
interaction problem. Although damping matrix is not considered in the EoM, spectral damping
is introduced in the model as proposed by Thompson in [2], where it is suggested that modes
with n = 0 have ξ = 10−3, modes with n = 1 have ξ = 10−2 and modes with n ≥ 2 have
ξ = 10−4. Thus, the velocity of a point of the wheel with coordinates (r, θ, z) formulated in the
frequency domain ω is given by:

vj(r, θ, z, ω) =
m∑
p=1

Ap(ω)ϕp
j(r, θ, z)

( ∑
k=r,z

Fk(ω)ϕ
p
k,c

)
, j = r, θ, z, (7)

where superscript p represents the pth vibration mode, m is the number of modes considered
as a basis of the response, ϕp

j is the pth modeshape particularized in the jth Degree of Freedom
(DoF) of the point, Fk is the kth component of the interaction force, ϕp

k,c is the pth modeshape
particularized in the kth DoF of the wheel contact point and Ap is defined as:

Ap(ω) =
iω

ω2
p − ω2 + 2iξpωpω

, (8)

with ωp and ξp being the natural frequency and damping ratio, respectively, of the pth
vibration mode.

2.2 Sound radiation

In this work, the acoustic model developed by Thompson [3] is employed. The sound radia-
tion of the wheel is evaluated by postprocessing the vibrational field on its surface. Particularly,
this model states that the acoustic power is the sum of the power associated with each set of
modes with the same number of nodal diameters n. Thus, the sound power of the wheel W is
given by:

W (ω) = ρc
∑
n

(
σz,n(ω)Szṽ2z,n(ω) + σr,n(ω)Srṽ2r,n(ω)

)
, (9)

where ρ is the density of air and c is the speed of sound. Functions σ are the radiation ratios
and a set of fitting expressions for them is proposed in [3]. Surfaces Sz and Sr are the projected
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surfaces of the wheel normal to the axial and radial direction, respectively. Squared velocities
v2z,n and v2r,n are the projected velocities in the axial and radial direction, respectively, and they
are averaged over time (˜) and over the wheel surface ( ). The former is evaluated in the
frequency domain as the Root Mean Square (RMS) value of the velocity amplitude v whereas
the latter is computed as an integral given by:

ṽ2j,n =
1

Sj

∫
S

ṽ2j,ndSj, j = r, z, (10)

where S is the wheel surface. Note that ṽj,n is the contribution to the velocity of a set
of modes with n nodal diameters, including both symmetric and antisymmetric ones, and it
can be computed through the modal superposition approach presented in Eq. (7), where m
is replaced by mn, the last being the number of modes with n nodal diameters. The integral
in Eq. (10) can be divided into an integral over the circumferential direction and an integral
over the wheel cross-section boundary. The former can be evaluated analytically by means of
Eq. (7) and the circumferential expansion of the displacements in Eq. (1). Furthermore, by
developing this over the wheel modeshapes, some relations are found between the vibrational
field of the three-dimensional wheel and the response of the wheel cross-section. Finally, a
numerical approach based on the FEM for the cross-section boundary is performed to complete
the evaluation of the integral in Eq. (10).

3 RESULTS

The vibroacoustic model presented in Section 2 is compared with the commercial software
Ansys. To perform this comparison, the Frequency Response Function (FRF) of the contact
point and the Sound poWer Level (SWL) of the wheel are evaluated with both approaches and
the results are shown in this section. The fluid-structure interaction model available in Ansys
computes the acoustic pressure field in the air surrounding the wheel, which requires a high
computational cost as the number of DoF increases. In this work, a straight web wheel with
a diameter of 900 mm and a S1002 profile [7] is considered, as well as a load per wheel of 50
kN. The receptances of the wheel contact point, computed with Ansys and with the proposed
model, are shown in Figure 1.
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Figure 1: Receptances in the wheel contact point from Ansys ( ) and axisymmetric approach ( ): direct
axial/axial (blue), cross axial/radial (green) and direct radial/radial (orange).

For the purpose of comparing the acoustic results from both approaches, the sound power
radiated by the wheel is evaluated considering unit roughness excitation, the result being there-
fore a transfer function. The SWL of the wheel is shown in Figure 2. The greater differences
between the proposed model and Ansys software appear at low and medium frequencies, where
the sound power levels are low and the radiation ratios influence is important; at high frequen-
cies, where the radiated levels are greater, the presented vibroacoustic model predicts the SWL
accurately. The proposed model needs approximately 15 seconds for solving the vibroacoustic
problem while Ansys software requires more than 24 hours, using a PC running with an ®Intel
i7-9700 processor with 64 GB RAM.

Figure 2: Wheel sound power level from Ansys ( ) and axisymmetric approach ( ).
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4 CONCLUSIONS

A vibroacoustic model for a stationary and axisymmetric railway wheel is presented in this
work, in which the displacement field is expanded using Fourier series. This allows solving
analytically the dynamics and acoustics of the wheel along the circumferential direction, re-
ducing the computational cost associated with numerical calculations. Also, the formulation
developed leads to some relations between the dynamic response of the three-dimensional wheel
and the response of the wheel cross-section, making it possible to employ the proposed acous-
tic methodology in combination with alternative three-dimensional dynamic models instead of
that presented here. The vibroacoustic model is compared with the commercial FE package
Ansys, which solves the fluid-structure interaction problem. The dynamic response and sound
radiation results of both approaches show an excellent agreement, the computational cost of
the presented methodology being much lower.
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