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Abstract: Assessing the probability of failure of a structure under seismic loading requires
the simulation of a great number of similar nonlinear computations. A model-order reduction
strateqy is proposed for decreasing the computational cost associated to each nonlinear simu-
lation. In this contribution, the method is illustrated to evaluate the damage evolution in a
primary circuit piping component of a pressurized water reactor, subjected to accidental seismic
mput. Piping components are described with a damageable elasto-plastic material exhibiting a
preliminary damage pattern.

1 INTRODUCTION

Fragility curves are one of the main tools for characterizing the resistance of civil engineering
structures, such as nuclear facilities, to seismic hazard. These curves describe the probability
that the response of a structure exceeds a given criterion, called “failure criterion”, as a function
of the expected seismic loading level. Their computational cost is expensive as a large number
of loading scenarii must be considered to model seismic input variability, but also due to the
inherent uncertainties (material parameters, geometry, modelling errors, etc.) that must be
taken into account for reliability assessment. Their construction therefore falls into the scope
of the many-queries problems where the need to reduce the numerical cost of each simulation is
imperative. Another point is that the final aim of the study is to add a preliminary structural
damage as a parameter of those charts. Decreasing the computational costs of solving large
dimensional problems has long been studied and decreasing the dimension of the solution space
has shown to be of great interest. Among the several existing methods, one finds Model-Order
Reduction (MOR) techniques. Some of them (referred to as a posteriori methods) require
beforehand the computation of a given reduced basis, while others (referred to as a priori
methods) consist in building the reduced basis simultaneously with the computation. The first
kind, including among others the use of Ritz vectors [1] or the Proper Orthogonal Decomposition
(POD) [2], has greatly been studied in [3] where a wide range of reduced basis choices have
been examined. In this last reference, computation time saving and robustness of the basis
considered are looked over. It highlights that the choice of the basis proves to be decisive and
when dealing with numerous computations, finding an ideal reduced basis on which to project
the solutions to these various problems may not be an obvious task. To overcome this difficulty
it is relevant to build the reduced basis on-the-fly, as the solver progresses, to optimize the choice
of new modes. Such a priori model-order reduction methods include the Proper Generalized
Decomposition (PGD) [4] which is used in the present work.
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Herein, the focus is on the implementation of a strategy based on a priori model-order
reduction for the calculation of the nonlinear dynamics problem at stake. Among the different
possible approaches, the PGD coupled with the LATIN method [5] is particularly well suited
for solving parameterized problems in nonlinear mechanics in order to build numerical charts
[6]. The LATIN-PGD method is an iterative approach that seeks the solution of a given
problem by building, in a greedy way, a dedicated reduced-order basis. This basis can be
reused and enriched, allowing a good numerical efficiency. It has been applied to solve a wide
range of problems in mechanics (and more recently for earthquake-engineering applications [7]).
Here we develop this method to solve the low-frequency dynamics problem that arises when
applying seismic loading to metallic piping structures with a nonlinear behaviour while taking
into account their possibly pre-damaged state.

2 DYNAMIC EQUATIONS

The spatial domain on which the problem is written is denoted §2. On that body of density
p, body forces f; and surface forces F; are applied on €2 and on 02, respectively while imposed
displacements u, are applied on 0€2; as described in Fig. 1.

Figure 1: Reference problem on the domain {2

Let us then define the three sets defining admissibility:

(V u+t'V 'u,) ,ul,_y =0, ul,_,=0in Q,
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u=0o0ndQ and & =0o0n 0},
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U (respectively U°) is the kinematically admissible (respectively to zero) displacements set
and § is the dynamically admissible stress set. o is Cauchy’s stress tensor while € is the strain
tensor. Omne then needs to find admissible displacement and stress fields s = (u,0) € U X S
that also satisfy the constitutive relations.

The weak formulation of the dynamic equilibrium then reads

- / o :e(u*)dQdt + fa-u"dQdt +/
Qx1I

Fy-u*dSdt :/ p i - w*dQdt Vu* € U, (1)
oOxI

QxI QxIT
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In addition to this dynamic equation, the material behaviour of the structure is described through
nonlinear equations which motivates the methodology introduced in this work.

3 DUCTILE DAMAGE MODEL INCLUDING CRACK CLOSURE EFFECT

The damage evolution in the structure is governed by a plastic model [8] with linear kinematic and
isotropic hardening along with isotropic damage contribution [9]. In order to account for crack-closure
effect, an effective stress tensor & [10] is introduced to read

&=t HiHj)j - <_UH>] 1, (2)

with o4 the deviatoric part of Cauchy’s stress o and o7 its hydrostatic part, D the damage variable, 1
the identity tensor and () = max ([0, 0) defining the positive part. Doing so leads to Hooke’s relation
between stress and elastic strain reading

c=K:e (3)

with K the Hooke’s tensor. Thus, the damage variable is no more explicitly apparent in the elastic
constitutive relation.

When the solicitation is high, some non reversibilities appear and plastic laws as well as new
variables are required. The yield function f,(o) describes the elastic domain. When the stress is
small enough for the function to be negative then the material follows an elastic behaviour but when
the yield function increases to the point that it reaches zero, non reversibilities appear and plasticity
laws become necessary. The plasticity yield function f, verifies

fp S O) (4)
and is written using von Mises equivalent stress Js (O) as follows
o
fr=n(i=p5-X) -0~ R (5)

with o, the yield stress, ? the isotropic hardening variable and X the kinematic hardening tensor.

The model chosen to describe those irreversibilities, following the lines of [8], involves both kinematic
and isotropic hardening. The elastic strain tensor reads €® = € — P with P being the plastic strain.
The plasticity level is described by an internal variable called the cumulative plastic strain p which is
a strictly increasing quantity. State equations relative to linear hardening read

R = hp,
) (6)

with h the rate at which the isotropic hardening increases, C' a material coeflicient and a the kinematics
internal variable.
Lemaitre’s damage evolution law reads as a function of the elastic energy density Y defined as

1 Jo (6)?
Yzﬁse:K:se:Ry 22(E) ,

(7)

where the triaxiality function R, = 2 (1 +v) +3 (1 — 2v) <J;i(%)>2 is introduced.
In order to predict the temporal evolution of these quantities, evolution laws are needed. Plasticity
evolution laws are derived using normality rule, leading to

. (6-X)

& =03 7eK) (®)
. o—X

a=p(l-D) fg’}z(a_;fl)] :

As for the damage variable, the evolution is written as
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. v\*
with Wy the so-called corrected stored energy [9], Wp a given energy threshold, s and S material
parameters. This set of equations allows to describe finely the damage state evolution of the structure
but the resulting problem is nonlinear and involves a large number of degrees of freedom.

4 THE LATIN-PGD

Using the finite element method, the mechanical problem gives a detailed description of the evo-
lution of the quantities of interest but its computation requires solving nonlinear equations at each
Gauss point at each given time step. That leads to a high computational cost that could be driven
down by using model-order reduction techniques.

4.1 The PGD method

For solving linear problems, the idea of the PGD technique is to look for the solution as the sum
of products of single-variable functions. Thus, a displacement field w is approximated by uy(x,t)
reading

N
u(e,t) ~uy (@, t) = Y (@) A (t). (10)
=1

The reduced basis {@;} is not a priori known and is built during the computation using a greedy
algorithm. New modes are added on the fly. In order to perform a PGD, the used greedy algorithm
requires that one solves a linear space-time problem. Hence having a method turning the nonlinear
problem into solving linear equations on such a domain is mandatory.

4.2 The LATIN solver

The LATIN method, first introduced in [11] has been singled out as it is an iterative non incremental
solver that allows seeking a solution on the entire space-time domain while some of the computations
involve linear equations. Each LATIN iteration is decomposed in so-called local and global stages. At
the local stage, the nonlinear part of the constitutive relations is solved at each Gauss point and at
the global stage, admissibility is imposed on the whole time-space domain leading to a linear problem.
The PGD can be used for an efficient computation of the solution at the linear stage. Those solutions
belong respectively to the manifold I" gathering solutions of the nonlinear equations and the manifold
Ay gathering solutions of the linear equations. The final solution Sexact, Which is naturally found at
the intersection of these two manifolds, is thought alternatively in both spaces A4 and T’ involving
two search directions H™ and H~ linking the manifolds through Eq. (11),

{(0n+1 - &n+1/2) —H- (€n+1 - én+1/2) =0, (11)
(6pt1j2—on) +HY (€12 —€n) = 0.
This iterative scheme can be sketched by Fig. 2 where 5, /9 is the solution belonging to I' and s, 41
is a solution of A4, both computed at the (n + 1)th stage of the method.

The solution can be initialized to a kinematically and dynamically admissible elastic solution. Then
one loops over finding alternatively a solution in I' and in Ay until a stopping criterion is reached.
Such a criterion is satisfied when an error indicator

2 _ ||'§n+1/2 - 5n+1H2
1/2]|sn1l* + 1/20|8541/201*

based on the distance between two consecutive solutions, is lower than a chosen threshold. The norm
IIs|| is defined as

n (12)
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Figure 2: Working principle of the LATIN method, modified from [11]

||s||2:/ e:K:sdet—i—/ o Ko dOdt. (13)
QxT QxI

Such a methodology has recently been suggested for a dynamic resolution [7] where the material is
considered to be described by a visco-plastic behaviour without considering damage evolution.

4.2.1 The global stage

The global stage consists in finding a solution in A4 which means solving the dynamic equilibrium
defined by Eq. (1). Subtracting that equation written in two successive steps of the LATIN method
gives the admissibiblity equation written in corrective terms reading

— Ao : e(u”)dQdt = / pAd - w*dQdt Yu* e U°, (14)
QxI QxI
with AO = 0O+ — O
To solve that equation the descending search direction given by Eq. (11) is injected in the latter,
leading to,

H™ : e(Au) :e(u”)dQdt +/ pAl - u*dQdt

QxT QxT

:/Q 1 [(a” - &”+1/2> “H (e” - gnh/z)} - e(u?)d0dt Yt e 20, (19)
y

~f

One may notice that terms in the second hand f of that equation are already known quantities. The
displacement field is the only unknown.

Because the global stage consists in solving linear equations over the whole time-space domain, a
greedy algorithm can advantageously be set up in order to find the solution under a PGD form. To
do so, the PGD decomposition C(x, t) = Zf\i L O (z)N(t) of the displacement field is injected into the
previous equation to compute the corrections, N being the number of PGD modes used to describe
the solution.

4.2.2 The local stage

The local stage consists in solving the local and possibly nonlinear equations of the problem. That
means finding 8,11/ € I' knowing s, € Ag. The ascendant search direction is chosen vertical, i.e.
€nt+1/2 = €n. Technically, the local stage consists in a radial feedback algorithm to compute the
plastic and damage evolution of the structure while taking into account normality law and the von
Mises criterion defined by Eq. (4).
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5 NUMERICAL RESULTS

In order to illustrate the method, two cases are investigated. First the dynamic aspects of the
problem are exposed with a 3D beam under flexion loading. Then a pre-damaged 3D plate with a
hole is investigated with various initial damage states. Both geometries are described in Fig. 3 and
their dimensions are summarized in Table 1.

(a) Geometry of the beam (b) Geometry of the plate

Figure 3: Two test cases geometries

Table 1: Dimensions of the geometries

Geometry L 1 H U R
Plate 60mm 20mm 2mm 2mm 1mm
Beam 40mm 8mm 8mm 5Hmm -

The material parameters are given in Table 2.

Table 2: Material parameters

Name Parameters
Young’s modulus E =200GPa
Poisson’s ratio vr=20.3
Kinematic hardening modulus ~ C = 2.21 x 10* MPa
Yield stress o, = 200 MPa
[sotropic hardening ratio h = 0MPa
Damage law exponent 5 =2
Parameter for damage evolution S = 0.6 MPa
Density p = 7900 kg/m?>
Damage threshold energy Wp =0Jm’/kg

5.1 Dynamic behaviour

A cantilever beam loaded by an imposed vertical displacement Uy at its end, as shown in Fig.
3a, is studied. The beam is submitted to a triangular load for the first half of the simulation then
the displacement at the end of the beam is kept equal to zero for the second half. From an initial
undamaged state, the damage increases along the beam. The damage maps at t = 2.5 x 107 s,
t=6x10"*sand t = 8 x 10~*s are presented in Fig. 4a, 4b and 4c respectively. It can be noted
that the first instant corresponds to the maximum amplitude of the external perturbation while the
two other instants of interest are posterior to the external load, as shown in Fig. 4d.

417



Book of Extended Abstracts of the 6 ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

(a) t =2.5x 107*s (b) t=6x10"%s (c)t=8x10"%s
s .
Al
3
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Time (s) %1073

(d) Loading

Figure 4: Evolution of the damage map in the beam

One may notice that, even though the last two showcased results (Fig. 4b and 4b) are taken when
there is no more external loading, the damage map keeps on progressing. This evolution is therefore
only due to inertial forces because waves propagate through the structure as observed in Fig. 4b and
Fig. 4c.

The convergence of the LATIN-PGD implementation leading to this result is plotted in Fig. 5
which shows the evolution of the error indicator 1 with respect to the number of PGD modes. It may
be noted that the number of modes is rather large at convergence. Indeed, currently the global stage
of the method only consists in adding a PGD mode but a more efficient strategy would be to first
update the temporal modes associated with the existing spatial modes and only add a supplementary
PGD mode if that update did not prove to be effective enough.

107 ¢

10'2 L

Indicator of error

10 -4 L L L L
0 20 40 60 80 100 120

Number of PGD modes

Figure 5: Evolution of the indicator of error for the beam scenario
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5.2 Influence of the initial damage state

As previously stated our long term ambition is the construction of virtual charts in which the
pre-damage is a parameter. To illustrate the role of a pre-damaged zone on the final solution two
simulations with distinct initial damage states have been carried out. The common structure is a
plate shown in Fig. 3a and the loading is a 1s ramp loading directed along the y-axis. The first
case scenario (illustrated in Fig. 6a, 6b and 6¢) shows the structure with a pre-damaged zone below
the hole while the second case scenario (illustrated in Fig. 6d, 6e and 6f) shows the structure with
a pre-damaged zone facing the hole. Only a part of the whole structure is shown as to focus on the
damaged zones, which are of interest.

When observing the damaged maps projected on the deformed structure in Fig. 6, one can see that
damage tends to grow in the surrounding area of the initial damaged zone and near the hole. In the
second case scenario similarly damage increases near the hole and the pre-damaged zone first. But a
coalescence arises between those two zones. A significant influence of pre-damage zones is therefore

observed.

(a) 1%* scenario, t = 0's ) 15 scenario, t = 0.5 ) 15 scenario, t = 15

(d) 274 scenario, t = 0s e) 2" scenario, t = 0.5s f) 284 scenario, t = 1

Figure 6: Evolution of the damage map in the plate

As it has been done for the plate, the convergence of the method is plotted in Fig. 7 which shows
the evolution of the error indicator 7 while the number of PGD modes increases. The previous remark
about the number of modes at convergence remains valid as a great number of modes is needed here
too.
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Figure 7: Evolution of the indicator of error for the plate scenario

A few other cases have been implemented showing similar convergence curves, proving the method-
ology robust enough to investigate a vast variety of scenarii.

6 CONCLUSIONS

The LATIN-PGD framework has been presented for damageable materials in dynamics. Predicting
the damage evolution of a plastic structure under a dynamic loading is possible and the computation
of the solution gives access to a PGD basis. The next step will be to implement the update strategy
in the global stage in order to be able to take advantage of previously computed spatial modes. The
LATIN-PGD methodology will then provide a favorable framework for the computation of fragility
curves where the seismic performances of quasi-identical structures have to be computed for a family
of similar inputs defining the seismic risk. Both initialization of the solution and re-use of reduced

order PGD basis enable one to take full advantage of the possible redundancy contained in those
virtual charts.
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