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ABSTRACT. A critical group for a class of groups X is a minimal non-X-group.
The critical groups are determined for various classes of finite groups. As a
consequence, a classification of the minimal non-nilpotent groups (also called
Schmidt groups) is given, together with a complete proof of Gol’fand’s theorem
on maximal Schmidt groups.

1. INTRODUCTION

Given a class of groups X, we say that a group G is a minimal non-X-group,
or an X-critical group, if G ¢ X, but all proper subgroups of G belong to X. It is
clear that detailed knowledge of the structure of minimal non-X-groups can provide
insight into what makes a group belong to X. All groups considered in this paper
are finite

Minimal non-X-groups have been studied for various classes of groups X. For
instance, minimal non-abelian groups were analysed by Miller and Moreno [10],
while Schmidt [T4] studied minimal non-nilpotent groups. The latter are now known
as Schmidt groups. 1t6 [9] considered the minimal non-p-nilpotent groups for p a
prime, which turn out to be just the Schmidt groups. Finally, the third author [12]
characterised the minimal non-T-groups (T-groups are groups in which normality
is a transitive relation). He also characterised in [I3] the minimal non- PST-groups,
where a PST-group is a group in which Sylow permutability is a transitive relation.

The aim of this paper is to give more precise information about the structure
of Schmidt groups and show how to construct them in an efficient way. As a
consequence of our study, a new proof of a classical theorem of Gol’fand is given.

Our approach depends on the classification of critical groups for the class of PST-
groups given in [13]. Recall that a subgroup H is said to be Sylow-permutable, or
S-permutable, in a group G if H permutes with every Sylow subgroup of G. We
mention a similar class Y,, which was introduced in [2]. If p is a prime, a group
G belongs to the class ), if G enjoys the following property: if H and K are p-
subgroups of G such that H is contained in K, then H is S-permutable in Ng(K).
Clearly every PST-group is a Y,-group.

There is a close relation between the class of groups just introduced and p-
nilpotence, as in shown by the following result, which was proved in [2, Theorem 5].
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Theorem 1. A group G is a Yp-group if and only if either it is p-nilpotent or it
has an abelian Sylow p-subgroup P and every subgroup of P is normal in Ng(P).

Our first main result is:

Theorem 2. The minimal non-Y,-groups are just the minimal non-PST-groups
with a non-trivial normal Sylow p-subgroup. Such groups are of the types described
in 1 to IV below. Let p and q be distinct primes.

Type I: G = [P]Q, where P = {(a,b) is an elementary abelian group of order
p?, Q = (z) is cyclic of order q", with q a prime such that ¢’ divides p—1,
¢f > 1 andr > f, and a® = a', b* = b", where i is the least positive
primitive ¢f -th oot of unity modulo p and j =1+ kq? =1, with 0 < k < q.

Type II: G = [P|Q, where Q = (z) is cyclic of order q" > 1, with q a prime
not dividing p—1 and P an irreducible Q-module over the field of p elements
with centralizer (z9) in Q.

Type III: G = [P|Q, where P = {(agp, a1, ...,aq-1) is an elementary abelian
p-group of order p?, Q = (z) is cyclic of order q", with q a prime such that
q’ is the highest power of q dividing p — 1 and r > f. Define a; = ajt1
Jor0<j<qg-—1andag ;= al, where i is a primitive g7 -th root of unity
modulo p.

Type IV: G = [P]Q, where P is a non-abelian special p-group of rank 2m,
the order of p modulo q being 2m, Q = (z) is cyclic of order ¢" > 1, z
induces an automorphism in P such that P/®(P) is a faithful irreducible
Q-module, and z centralizes ®(P). Furthermore, |P/®(P)| = p*™ and
|P'| < p™.

Since a group is a soluble PST-group if and only if it belongs to ), for all
primes p [2l Theorem 4], Theorem 2 may be regarded as a local approach to the
third author’s classification of minimal non-PST-groups [13].

An interesting consequence of Theorem 2 is the following classification of Schmidt
groups. In order to describe the classification, we must introduce one further type
of group:

Type V: G = [P]Q, where P = (a) is a normal subgroup of order p, Q = (z)
is cyclic of order ¢" > 1, and a® = a’, where i is the least primitive g-th
root of unity modulo p.
Our main result can now be stated as:

Theorem 3. The Schmidt groups are exactly the groups of Type 11, Type IV and
Type V.

Our next result shows that p-soluble groups with Sylow p-subgroups isomorphic
to a normal subgroup of a minimal non-Y,-group have a restricted structure.

Theorem 4. Let G be a p-soluble group with a Sylow p-subgroup P. If P is iso-
morphic to a non-trivial normal Sylow subgroup of a minimal non-Y,-group, then
G has p-length 1.

In [4] Gol’fand stated the following result:

Theorem 5. Let p and q be distinct primes, let v be a given positive integer, and
let a be the order of p modulo q. Then there is a unique minimal non-p-nilpotent
group Gg of order p®q", where ag = a if a is odd and ag = 3a/2 if a is even, such
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ON FINITE MINIMAL NON-NILPOTENT GROUPS 3457

that all minimal non-p-nilpotent groups of order ptq"” are isomorphic to quotients
of Gy by central subgroups.

Only a sketch of a proof of this theorem is given in Golfand’s article. In Sec-
tion Bl we show how to construct the Schmidt groups of Gol’'fand, and we also
give a complete proof of Theorem [l We remark that Rédei [I1] has given another
construction of the Schmidt groups of maximum order.

2. PROOFS OF THEOREMS 2, 3 AND 4

Proof of Theorem 2. Assume that G is a minimal non-),-group and let P be a
Sylow p-subgroup of G. Since G does not belong to ), there exist subgroups H
and K of P such that H < K and H is not S-permutable in N (K). Consequently
there is an element z € Ng(K) such that z does not normalise H. Here it can be
assumed that z has order ¢" for some prime ¢ # p. Then G = K(z) because G is
a minimal non-),-group. This implies that K = P is a normal Sylow p-subgroup
of G and Q = (z) is a cyclic Sylow g-subgroup of G. Then G is not a PST-group,
yet every proper subgroup has Y, and V,, and thus is a PST-group by [2].
Conversely, if G is a minimal non- PST-group, then G does not have )Y, for some
prime p. Since all its proper subgroups satisfy ), the group G is a minimal non-
Yp-group. The classification of minimal non-PST-groups given in [I3] completes
the proof. (Note that the groups of Types IV and V of [I3] are both of Type IV
above.) O

Proof of Theorem[3l Let G be a minimal non-nilpotent group. Then G is a minimal
non-p-nilpotent group for some prime p. Suppose that G is not a Y,-group, so that
G is a minimal non-),-group. By Theorem 2, the group G is of one of Types I-1V.
By examining the group structure, we see that groups of Type I and III are not
minimal non-p-nilpotent. Therefore G must be of Type II or IV.

Assume now that G belongs to ),. Then by [I, Theorem A] and [3, VII, 6.18],
the p-nilpotent residual P of G is an abelian minimal normal Sylow subgroup which
is complemented in G by a cyclic Sylow g-subgroup . Moreover () normalises each
subgroup of P. This implies that P is cyclic of order p, say P = (a). In addition,
a® = a' for some 0 < i < p and 29 centralizes a. This implies that i must be a
primitive g-th root of unity modulo p and, by taking a suitable power of 2z as a
generator of (), we can assume that i is the least such positive integer. Hence G is
of Type V. O

Proof of Theorem . Assume that G is a p-soluble group with p-length > 1 and G
has least order subject to possessing a Sylow p-subgroup P which is isomorphic
to a non-trivial normal Sylow subgroup of a Schmidt group. By [6, VI, 6.10],
we conclude that P is not abelian. Thus P is a Sylow p-subgroup of a group of
Type IV in Theorem 2. By minimality of order O, (G) = 1 and Op/(G) =G. In
addition, since the class of groups of p-length at most 1 is a saturated formation,
we have ®(G) = 1 and hence G has a unique minimal normal subgroup which is an
elementary abelian p-group. Let D = O,(G); then D is a non-trivial elementary
abelian group and Cg(D) = D. Moreover ®(P) = Z(P) < D and so P/D is
elementary abelian.

Let T be the subgroup defined by T'/D = O,/ (G/D). Since P/D is an elementary
abelian p-group, G/D has p-length at most 1 by [6 VI, 6.10]. It follows that
(T'/D)(P/D) is a normal subgroup of G/D. Therefore TP is a normal subgroup of
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G. Assume that TP is a proper subgroup of G. Now O, (TP) < Oy (G) =1, so
P is a normal subgroup of TP and hence of G, a contradiction which shows that
G=TP.

Assume now that P/D is a non-cyclic elementary abelian group. By [8, X, 1.9],
we have T'//D = (Cp/p(xD) | xD € P/D,xD # D). Let x € P\D. Since P/D cen-
tralizes 2D, we have P/D < Ng/p(Cr/p(zD)). Let T,/D = Cr;p(xzD). Assume
that PT, = G; then T,, = T is a normal subgroup of G and thus O, (G/D) = T,/ D.
This implies that (x)D/D < Z(G/D) and (z) D is a normal p-subgroup of G, so that
(x)D is contained in D, a contradiction. Consequently PT, is a proper subgroup
of Gfor all 1 £ 2D € P/D. Hence PT, has p-length at most 1 by minimality of G.
Since Cg(D) = D and O, (PT,) centralizes D, we conclude that O, (PT,) = 1.
Therefore P is a normal subgroup of PT,, which shows that T" normalizes P and
thus P is a normal subgroup of G. This contradiction shows that P/D is cyclic.

Since P has class 2, we see from [7, IX, 5.5] that, if p > 3, then G has p-length at
most 1. Therefore p < 3. Let X be a minimal non-)),-group such that P is a Sylow
p-subgroup of X. Note that P/®(P) is an irreducible X-module. In particular D,
the subgroup of the previous paragraphs, is not normal in X and so P = DD9Y
for some g € X. Since D is abelian, D N DY < Z(P) = ®(P), and it follows that
P/®(P) has order p?. This implies that P is an extra-special group of order p3. If
p = 2, then, since Cg(D) = D, we see that G must be a symmetric group of degree
4. Hence P is dihedral of order 8, which cannot lead to a group of Type IV since
Aut(P) is a 2-group. Hence p = 3. But a non-abelian group of order 3% cannot
occur as the normal Sylow 3-subgroup of a Schmidt group, because the only prime
divisor of 32 —1 is 2 and the order of 3 modulo 2 is 1. This contradiction completes
the proof of the theorem. O

3. THE CONSTRUCTION OF GOL'FAND’S GROUPS
AND A PROOF OF GOL’FAND’S THEOREM

We begin by constructing groups of Type IV with a Sylow p-subgroup P of order
p3™ and |P/®(P)| = p*™. These groups were constructed in [13] by a different
method, but the present approach is more convenient when p = 2. We will use the
following result on linear operators.

Lemma 6. Let p be a prime and let r be a positive integer such that ged(p,r) =
1. Let B be a linear operator of order p“r on a wvector space V over the field
of p-elements, where u is a non-negative integer. If B has irreducible minimum
polynomial f, then BP" also has minimum polynomial f.

Proof. Let g be the minimum polynomial of 37". Now f(8*") = f(8)"" = 0, so
that g divides f. Since f is irreducible, f = g. O

Construction 7. Let p and ¢ be distinct primes such that the order of p modulo
q is 2m, m > 1. Let F be the free group with basis {fo, f1,.-., fom—1}. Write
R = F'FP and R* = [F,R]RP. Then F/R is an elementary abelian p-group of
order p>™ and H = F/R* is a p-group such that R/R* = ®(H) is an elementary
abelian p-group contained in Z(H). Moreover H is a non-abelian group because an
extra-special group of order p>™*! is an epimorphic image of H.

Denote by g; the image of f; under the natural epimorphism of F onto H =
F/R*, 0 <i<2m—1. Since H has class 2, we know that ®(H) is generated by all
[9i, 9;], with ¢ < j, and ¢¥. Therefore ®(H) has dimension as GF(p)-vector space
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at most £ (2m(2m —1))+2m = m(2m+1). Assume that the dimension is less than
m(2m + 1). Then there exists an element
r= 1P s £ € &2

J i<k

with some A; or p;j not divisible by p. It is clear that p | A; for all j since FPF’/F’
is a free abelian group with basis {ffF’ | 0 < j <2m —1}. Suppose that p 1
for some i < k and let p; be the endomorphism of F defined by f/* = f2, ff' = f;
for [ # 4. Then r?i R* = R* and so 7?ir "1 R* = R*. This implies that

w = [l £# T T e € R7
Jj<i i<l
On the other hand, by applying px we find that
ww ' R* = [f;, fe"*R* = R*.

Since p t ik, it follows that p;, has an inverse modulo p. This means that [f;, fx] €
R*. Now since permutations of the generators of F' induce endomorphisms in F
and R* is fully invariant, it follows that F’ < R* and H is abelian, a contradiction.
Therefore ®(H) has dimension m(2m + 1) and so |®(H)| = p™m+1),

Let f(t) = co + cit + -+ + com_1t>™ 1 + t?™ be an irreducible factor of the
cyclotomic polynomial of order g over GF(p) and let a be the endomorphism of
F given by f& = fiy1 for 0 < i <2m —2, f&. 1 = fo Off - fo2m7'. Since
R* is a fully invariant subgroup of F, it follows that a induces an endomorphism
B on H = F/R*. In turn, 8 induces an automorphism 3 on H/®(H). Since
H/®(H) = (H/®(H))" < HO®(H)/®(H), it follows that H = H®(H), whence
H = HP. Consequently (3 is an automorphism of H.

It is clear that 8 induces the linear operator 3, with minimum polynomial f,
on the vector space H/®(H). Now by [6] III, 3.18], we conclude that 59 has order
p* for a some u and hence 3 has order p*q. By Lemma [6 there is a GF(p)-basis
{96, 94+ Ghm_1} of H/®(H), where g, = g;®(H), such that g}”" = g/, for
0<i<2m-—2and g;[:i_l = gy g - gy, ®m . Hence we can replace 3 by
BP" and assume without loss of generality that £ has order q.

It follows that ®(H) is a GF(p)T-module, where T = (f3) is a cyclic group of
order q. By Maschke’s Theorem ®(H) is a direct sum of irreducible T-modules. Let
N be the sum of all non-trivial irreducible submodules in the direct decomposition
and write P = H/N. It is clear that N is S-invariant and therefore 8 induces an
automorphism + of order ¢ in P. Let Q = (z) be a cyclic group of order ¢" acting
on P via z — 7. Let G = [P]Q be the corresponding semidirect product.

It is easily checked that G is a Schmidt group. Next we show that P has
order p*>™. From Theorem [J] we see that ®(P) has order at most p™, where
|P/®(P)| = p?™. On the other hand, |®(H)| = p™™+D and N has order a
power of p>™ because every faithful irreducible (3)-module over GF(p) has dimen-
sion 2m. Therefore |®(P)| = p™.

Remark 8. In the group of Construction [} we may assume that g3,,,_; = g, °g; ©

——C2m —

e o, where g; = ¢;N.

Proof. We know that g3,,_1 = gy g7 < = Gop "y ', where w € ®(P). Since f(t)
is irreducible, 1 is not a root of f(¢) and it follows that ¢ = co+c1+- - +com—1+1 Z 0
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(mod p). Consequently there exists an integer d such that cd = —1 (mod p). Put
wo = w? and consider the automorphism & of P defined by gf = g;wg for 0 < i <
2m — 1. If we write 79 = dvd~!, it is easily checked by an elementary calculation
that g% = g1 for 0 <i <2m —2, and §3°,_; = Go g1+ Gory *- Let (20) be
a cyclic group of order ¢", with zy acting on P via zg — 7. Since (zg) and (z) are
conjugate in Aut(P), it follows by [3, B, 12.1] that the groups P(z) and P(zo) are
isomorphic. O

Remark 9. The group in Construction [7]does not depend on the choice of irreducible
factor f(t).

Proof. Assume that the group Gy = [P1](z1) has been constructed by using another
irreducible factor g(t) of the cyclotomic polynomial of order ¢ over GF(p). Since
G and G; have the same order, it will be enough to find a set of generators of
G for which the relations of G hold. Since z centralizes ®(P) and z; centralizes
®(Py), we have G/®(P) = [P/®(P)|(z) and G1/P(P1) = [P1/P(P1)]{#1). But
P/®(P) and P, /®(Py) are faithful irreducible modules for a cyclic group of order
q. Therefore [P/®(P)]({z)/(z%)) is isomorphic to [P1/®(P1)]({21)/(z})) by [3, B,
12.4]. Let ¢ be an isomorphism between these groups. Then it is clear that ¢
induces an isomorphism 1t between G/®(P) and G1/®(P).

Let h; = h;®(P), 0 <i<2m — 1. Put k; = B;p and @ = z¥. We show how to
extend the isomorphism % to an isomorphism between G and G1. In order to do so,
we choose representatives k; of k; and v of @ such that the order of u is ¢". There
is no loss of generality in assuming that k' = k; 41 for 0 < i < 2m — 2. Indeed, if
]{37 = ki+1wi+1 with Wi41 S (I)(Pl), then ]{3; = klwl Wy for 1 S ) S mel, k(/) = k?()
are representatives of k; and k;u = k; 11 for 1 <14 < 2m — 1 because u centralizes
®(P;). By using the same argument as in Remark B we may also assume that
kY = kg kT koo™, Therefore G and Gy satisfy the same relations and

m—1

by Von Dyck’s theorem they are isomorphic. O

Remark 10. In Construction [ it is not necessary to assume that 3 has order ¢. In-
deed, it can be proved that (5 fixes all elements of ®(H ) and that the automorphism
v induced by 8 in H/N has order gq.

Gol’fand’s result (Theorem [Bl) can be recovered with the help of Construction [7]
and Theorem Bl

Proof of Theorem[Bl Let p and ¢ be distinct primes and let a be the order of p
modulo ¢g. Then a is the dimension of each non-trivial irreducible module for a
cyclic group of order ¢ over GF(p). Assume that a is odd. Then every Schmidt
group G with a normal Sylow p-subgroup P such that |P/®(P)| = p® is of Type Il or
Type V. Then the theorem holds in this case because all Schmidt groups of the same
type with isomorphic Sylow g-subgroups are actually isomorphic.

Assume now that a is even, with say a = 2m. Then we are dealing with Schmidt
groups of Type II or Type IV. Let Gg be the group of Construction [l Then
|Go| = p®>™q" and |Py/®(Py)| = p*™, where P, is a normal Sylow p-subgroup of
Go. Tt is clear that Go/®(Pp) is a Schmidt group of Type II. Therefore, if G is a
Schmidt group of Type II with order p‘q" and a normal Sylow p-subgroup, then
G = Go/P(Py) and ®(FPy) < Z(Gy). Consequently, we need only show that all
Schmidt groups of Type IV and order ptq”, t < 3m, which have a normal Sylow
p-subgroup are isomorphic to quotients of Gy by central subgroups.
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Let G be a Schmidt group of Type IV and order p'q” with a normal Sylow p-
subgroup P. Then Go/®(P,) and G/®(P) are isomorphic. Let us choose generators
z and Z of Sylow g-subgroups Q of G and Q of G such that the minimum poly-
nomials of the actions of z on Py/®(Py) and z on P/®(P) coincide. Also choose
generators go, g1, ---, gam—1 of the Sylow p-subgroup Py of GGy and generators g,
G1,- - Joam—1 of the Sylow p-subgroup P of G such that g7 = gj+1 and gjf = gj+1

for 0 < j < 2m — 2. Since ®(Py) = P} and ®(P) = P, and both P, and P have
class 2, the subgroup ®(F) can be generated by the commutators [g;, g;|, while
®(P) is generated by the commutators [g;, g;]. On the other hand, if u; = [go, ggi],
we have u; = ufk = [gk,g,ii]. It is easy to see that u; = [go,ggi] = [ggq,ggi] = u;l

Observe that ¢ is odd since 2m divides ¢ — 1: write ¢ = 2s 4+ 1. By definition of
the g; and u;, and use of the minimum polynomial of the action of z on Py/®(Fp),
it may be shown that for [ > 1,

— — —Com— —Com—
Uspmt = Ug g U i - Ug g0 Ug g1

-1

Now this formula and the relations u; = u_ . allow us to show by induction that

q—1
each Usym4; can be expressed in terms of elements of the set B = {us—mti,
Us—m42; - - > Usy. Since ®(Fp) has dimension m over GF(p), this expression is

unique. It follows that each u; can be uniquely expressed in terms of the elements
of B, and so this is also true for each generator of ®(F,). The same argument
shows that the generators of ®(P) have a similar unique expression subject to the
same relations.

The arguments of Remark [0 allow us to assume that

c m—1 ——C2m—1

z __ ., —Co _,—C1 —C2 -z _ =—Cpop=—C1
Gom—1="90 91 " Gom—1 and G5, 1 =30y "1 " Jom1

Consequently, all relations of G¢ are satisfied by G. By Von Dyck’s theorem, it
follows that G is an epimorphic image of Gy by a central subgroup of Gjy. (]
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