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Abstract

I’d far rather be happy than right any day.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy.

During the last decades the use of machine learning and artificial intelligence has shown an
exponential growth in many areas of science. The fact that computer’s hardware has increased its
performance while lowering the price and the availability of open source frameworks have enabled
the access to artificial intelligence to a broad range of researchers, hence democratizing the access
to artificial intelligence methods to the research community. It is our belief that multi-disciplinarity
is the key to new achievements, with teams composed of researchers with different backgrounds and
fields of specialization. With this aim, we focused this thesis in using machine learning, artificial
intelligence, deep learing, all of them being understood as part of a whole concept we concrete in
artificial intelligence, to try to shed light to some problems from the fields of mathematics and
physics.

A deep learning architecture was developed and successfully benchmarked with the character-
ization of anomalous diffusion processes. Whereas traditional statistical methods had previously
been used with this aim, deep learning methods, mainly based on recurrent neural networks have
proved to outperform these clasical methods. Our architecture showed it can precisely infer the
anomalous diffusion exponent and accurately classify trajectories among a given set of underlaying
diffusion models.

While recurrent neural networks irrupted in the recent years, convolutional network based
models had been extensively tested in the field of image processing for more than 15 years. There
exist many models and architectures, pre-trained and set to be used by the community. No further
investigation needs to be done since the architecture has proved its value for years and is very well
documented in the literature. Our goal was being able to used this well-known and reliable models
with anomalous diffusion trajectories. We only needed to be able to convert a time series into an
image, which we successfully did by applying gramian angular fields to the trajectories, focusing on
short ones. To our knowledge this is the first time these techniques were used in this field. We show
how this approach outperforms any other proposal in the underlaying diffusion model classification
for short trajectories.

Besides physics it is maths. We used our recurrent neural networks architecture to infer the
parameters that define the Wu Baleanu trajectories. We show that our proposal can precisely infer
both the µ and ν parameters with a reasonable confidence. Being the first time, to the best of our
knowledge, that such techniques were applied to this scenario. We extend this work to the discrete
delayed fractional equations, obtaining similar results in terms of precision. Additionally, we showed
that the same architecture can be used to discriminate delayed from non-delayed trajectories with
a high confidence.

Finally, we also searched fractional discrete models. We have considered Lubich’s quadrature
time-stepping schemes instead of the classical Euler scheme of order 1. As the first study with this
new paradigm, we compare the bifurcation diagrams for the logistic and sine maps obtained from
Euler discretizations of orders 1, 2, and ½.



2 Abstract

Resumen

Durante las últimas décadas el uso del aprendizaje automático (machine learning) y de la
inteligencia artificial ha mostrado un crecimiento exponencial en muchas áreas de la ciencia. El
hecho de que los ordenadores hayan aumentado sus prestaciones a la vez que han reducido su
precio, junto con la disponibilidad de entornos de desarrollo de código abierto han permitido el
acceso a la inteligencia artificial a un gran rango de investigadores, democratizando de esta forma
el acceso a métodos de inteligencia artificial a la comunidad investigadora. Es nuestra creencia
que la multidisciplinaridad es clave para nuevos logros, con equipos compuestos de investigadores
con diferentes preparaciones y de diferentes campos de especialización. Con este ánimo, hemos
orientado esta tesis en el uso de machine learning, inteligencia artificial, aprendizaje profundo o
deep learning, entendiendo todas las anteriores como parte de un concepto global que concretamos
en el término inteligencia artificial, a intentar arrojar luz a algunos problemas de los campos de
las matemáticas y la f́ısica.

Desarrollamos una arquitectura deep learning y la medimos con éxito en la caracterización de
procesos de difusión anómala. Mientras que previamente se hab́ıan utilizado métodos estad́ısticos
clásicos con este objetivo, los métodos de deep learning han demostrado mejorar las prestaciones de
dichos métodos clásicos. Nuestra architectura demostró que puede inferir con precisión el exponente
de difusión anómala y clasificar trayectorias entre un conjunto dado de modelos subyacentes de
difusión .

Mientras que las redes neuronales recurrentes irrumpieron recientemente, los modelos basados
en redes convolucionales han sido ámpliamente testados en el campo del procesamiento de imagen
durante más de 15 años. Existen muchos modelos y arquitecturas, pre-entrenados y listos para ser
usados por la comunidad. No es necesario realizar investigación ya que dichos modelos han probado
su vaĺıa durante años y están bien documentados en la literatura. Nuestro objetivo era ser capaces de
usar esos modelos bien conocidos y fiables, con trayectorias de difusión anómala. Solo necesitábamos
convertir una serie temporal en una imagen, cosa que hicimos aplicando gramian angular fields a las
trayectorias, poniendo el foco en las trayectorias cortas. Hasta donde sabemos, ésta es la primera
vez que dichas técnicas son usadas en este campo. Mostramos cómo esta aproximación mejora
las prestaciones de cualquier otra propuesta en la clasificación del modelo subyacente de difusión
anómala para trayectorias cortas.

Más allá de la f́ısica están las matemáticas. Utilizamos nuestra arquitectura basada en redes
recurrentes neuronales para inferir los parámetros que definen las trayectorias de Wu Baleanu.
Mostramos que nuestra propuesta puede inferir con razonable precisión los parámetros µ y ν.
Siendo la primera vez, de nuevo hasta donde llega nuestro conocimiento, que tales técnicas se
aplican en este escenario. Extendemos este trabajo a las ecuaciones fraccionales discretas con
retardo, obteniendo resultados similares en términos de precisión. Adicionalmente, mostramos que
la misma arquitectura se puede usar para discriminar entre trayectorias con y sin retardo con gran
confianza.

Finalmente, también investigamos modelos fraccionales discretos. Hemos analizado esquemas
de paso temporal con la cuadratura de Lubich en lugar del clásico esquema de orden 1 de Euler.
En el primer estudio de este nuevo paradigma hemos comparado los diagramas de bifurcación de
los mapas loǵıstico y del seno, obtenidos de la discretización de Euler de orden 1, 2 y ½.
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Resum

Durant les darreres dècades l’ús de l’aprenentatge automàtic (machine learning) i de la in-
tel.ligència artificial ha mostrat un creixement exponencial en moltes àrees de la ciència. El fet
que els ordinadors hagen augmentat les seues prestacions a la vegada que han redüıt el seu
preu, junt amb la disponibilitat d’entorns de desenvolupament de codi obert han permè l’accés
a la intel.ligència artificial a un gran rang d’investigadors, democratitzant aix́ı l’accés a mètodes
d’intel.ligència artificial a la comunitat investigadora. És la nostra creença que la multidisci-
plinaritat és clau per a nous èxits, amb equips compostos d’investigadors amb diferents prepara-
cions i diferents camps d’especialització. Amb aquest ànim, hem orientat aquesta tesi en l’ús
d’intel.ligència artificial, machine learning, aprenentatge profund o deep learning, entenent totes
les anteriors com a part d’un concepte global que concretem en el terme intel.ligència artificial, a
intentar donar llum a alguns problemes dels camps de les matemàtiques i la f́ısica.

Desenvolupem una arquitectura deep learning i la mesurem amb èxit en la caracterització de
processos de difusió anòmala. Mentre que prèviament s’havien utilitzat mètodes estad́ıstics clàssics
amb aquest objectiu, els mètodes de deep learning han demostrat millorar les prestacions d’aquests
mètodes clàssics. La nostra architectura va demostrar que pot inferir amb precisió l’exponent de
difusió anòmala i classificar trajectòries entre un conjunt donat de models subjacents de difusió.

Mentre que les xarxes neuronals recurrents van irrompre recentment, els models basats en
xarxes convolucionals han estat àmpliament testats al camp del processament d’imatge durant
més de 15 anys. Hi ha molts models i arquitectures, pre-entrenats i llestos per ser usats per la
comunitat. No cal fer recerca ja que aquests models han provat la seva vàlua durant anys i estan
ben documentats a la literatura. El nostre objectiu era ser capaços de fer servir aquests models
ben coneguts i fiables, amb trajectòries de difusió anòmala. Només necessitàvem convertir una
sèrie temporal en una imatge, cosa que vam fer aplicant gramian angular fields a les trajectòries,
posant el focus a les trajectòries curtes. Fins on sabem, aquesta és la primera vegada que aquestes
tècniques són usades en aquest camp. Mostrem com aquesta aproximació millora les prestacions de
qualsevol altra proposta a la classificació del model subjacent de difusió anòmala per a trajectòries
curtes.

Més enllà de la f́ısica hi ha les matemàtiques. Utilitzem la nostra arquitectura basada en xarxes
recurrents neuronals per inferir els paràmetres que defineixen les trajectòries de Wu Baleanu.
Mostrem que la nostra proposta pot inferir amb raonable precisió els paràmetres µ i ν. Sent la
primera vegada, novament fins on arriba el nostre coneixement, que aquestes tècniques s’apliquen
en aquest escenari. Estenem aquest treball a les equacions fraccionals discretes amb retard, obtenint
resultats similars en termes de precisió. Adicionalment, mostrem que la mateixa arquitectura es
pot fer servir per discriminar entre trajectòries amb i sense retard amb gran confiança.

Finalment, també investiguem models fraccionals discrets. Hem analitzat esquemes de pas tem-
poral amb la quadratura de Lubich en lloc del clàssic esquema d’ordre 1 d’Euler. Al primer estudi
d’aquest nou paradigma hem comparat els diagrames de bifurcació dels mapes loǵıstic i del sinus,
obtinguts de la discretització d’Euler d’ordre 1, 2 i ½.



1 Introduction

When Fortuna spins you downward, go out to
a movie and get more out of life.

John Kennedy Toole, A Confederacy Of Dunces.

1.1 Motivation

It was in 1826 that the Scottish botanist Robert Brown was studying a new plant, Clarkia pulchella
when he observed that some particles that came from the plant’s pollen grains followed an erratic
and continous motion when suspended in water. In order to discard biological sinergies between the
water and the particles that came from pollen grains, Brown conducted a similar experiemnt but
using inorganic dust particles. In this new experiment, he observed exactly the same behaviour. It
was not until 80 years later when Albert Einstein and Marian Smoluchowski gave the theoretical
framework to explain such behaviour. In plain words, what Einstein and Smoluchowski proposed
was an extension of the thermodynamics of molecular gases and liquids, which present a random
motion, to solids. Even that they did not have the experimental tools to prove it, they theorized
that atomic fluctuations were able to affect other bodies. That is, atoms and mollecules colliding
with other bodies affect the motion of these other bodies, even if they are big, with this collisions
being stochastic, as it was the affection to the bodies.

Brownian Motion presents an anomalous diffusion exponent α = 1, and the mean squared
displacement (MSD), or the variance of the displacements’ length, grows linearly with time. But
besides Brownian Motion, many other underlaying models have been described. Models such as an-
nealed transient time motion, continous time random walk, and other. They differ from Brownian
Motion in the possible values of α, which determines if the models are subdiffusive, superdiffusive,
balistic or Brownian. The different models usually have different behaviours even if they share the
same value for α. This behaviour can be determined, among others, by the underlaying sustrate
where the motion takes place. So, two main problem arise when working with anomalous diffus-
ing trajectories: inferring the anomalous exponent α, and identifying the underlaying model that
characterizes the trajectory.

During the last decade of last century, a machine learning revolution took place. Despite most
of the mathematical models and procedures had been available for years, by this time the compu-
tational resources achieved the required performance to implement those methods. An increasing
number of neural networks, which pretend to emulate the behaviour of the neurons in human
brains, were developed. Convolutional neural networks (CNN) were the first to show up, mainly
with application to the image processing field. Since CNNs were not able to properly process tem-
poral series data, recurrent neural networks (RNN) were developed. The first RNN underwent
problems when processing long temporal series, then Long Short Term Memory (LSTM) neural
networks emerged to fix the long term memory issues. And the process is still going on, with the
appearance of Transformers, Generative Adversarial Networks (GAN) and many other.

The main goal of this thesis is to explore the use of these machine learning methods to shed
light to physical processes like anomalous diffusion. The possibility of implementing a method to
learn how to characterize a given anomalous diffusing trajectory, that is inferring its anomalous
exponent α and determining the underlaying model is of high interest. Mainly because no previous
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knowledge about the physics inherent to the anomalous diffusion is required. After tackling this
problem the natural path is exploring other fields in which the provided solution could be applied,
for instance epidemiological predictions or mathematical problems. Which lead to propose the
following research questions:

RQ1 - Can anomalous diffusion behaviour be modeled without having any prior knowledge? Is it
possible to avoid using statistical methods which require in depth pyshics knowledge?

RQ2 - May machine learning methods use raw trajectories to infer the anomalous exponeent α and
determine the underlaying diffusion model?

RQ3 - Could we extend the use of these machine learning methods to other problems in mathematics
and physics fields?

The research work developed in this thesis aims to answer these questions. Machine learning
based models were developed to characterize anomalous diffusing particles in two senses. On the
one hand, the models predicted the anomalous exponent α and, in the other hand, the models
classified the underlaying model generating the anomalous diffusing trajectory among a set of
possible candidates or classes. Besides that, the same architecture (with some adjustements in
some cases) was used in completely different scenarios such us epidemiological temporal series
data, or mathematical problems. To this end, the following objectives were defined:

O1 - Review state-of-the-art in regards of machine learning methods applied to anomalous diffusion
characterization.

O2 - Review state-of-the-art of machine learning methods capable to deal with time series.
O3 - Participate in the AnDi Challenge to benchmark our proposed architecture with the worlwide

top solutions in the field.
O4 - Evaluate the proposed architecture with completely different temporal data using epidemio-

logical data related to the COVID-19 pandemic.
O5 - Explore the use of traditional image processing methods applied to time series data by applying

Gramian Angular Fields transformation.
O6 - Extend the application of the developed methods to other mathematical scenarios, specifically

the fractional logistic.

The aforementioned objectives enclose the main goal of this thesis: the study of how machine
learning methods can help in the characterization of anomalous diffusion processes. Additionally,
the objectives encompass other interesting applications of the product of the research, that is, the
use of machine learning to tackle time series data. The following scientific contributions support
the achievement of the proposed objectives:

1.2 Thesis contributions

This section presents the main contributions of this thesis. First, a succint presentation of the most
relevant aspects of each contribution is done. Next, the scientific publications in high impact factor
journals are presented.

1.2.1 Main contributions

C1 - Characterization of anomalous diffusion using machine learing methods
In this work we present the machine learning based architecture developed to precisely infer
the anomalous diffusion exponent α and accurately assign the underlaying model generating
an anomalous diffusing trajectory. The architecture was benchmarked in the first international
competition (AnDi Challenge, for Anomalous Diffusion Challenge) where the models achieved
honors by the performance they showed.
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C2 - Gramian Angular Fields for leveraging pre-trained computer vision models with
anomalous diffusion trajectories.
Gramian Angular Fields allows the representation of a time series as an image without loosing
temporal information, which allows the use of well-known image processing CNN models. To
the best of our knowledge, in this work we present the first application of Gramian Angular
Fields to characterize anomalous diffusion taking advantage of CNN based architectures which
have an outstanding performance with image classification and processing.

C3 - Benchmarking with epidemiological data: XPrize Pandemic Response Challenge
The COVID-19 pandemic arised as this work was in progress. A group of researchers from Co-
munitat Valenciana enrolled the XPrize Pandemic Response Challenge as the ValenciaIA4Covid
team, which won the challenge. The architecture proposed in this work (with slightly modifi-
cations) was used to predict daily COVID-19 cases in 236 countries or regions.

C4 - Inferring fractional logistic parameters
The architecture proposed in this work has also been used to shed light to the fractional
nature of the Wu-Baleanu trajectories. It has been possible to infer the µ and ν paremeters,
which define the fractional behaviour from unseen trajectories with a reasonable performance.
To the best of our knowledge, this has been the first time a machine learning approach to
this problem has been done. The same architecture was able to accurately classify fractional
trajectories among Wu-Baleanu class, and fractional delayed class, showing its versatility.

1.2.2 Scientific Publications

The scientific contributions of this thesis have been published in four scientific top-ranked journals
and two conference proceedings in the fields of Multidisciplinary Sciences, Clinical Neurology,
Computer Science, Biomedical Engineering, Medical Informatics, and Applied Mathematics. All
the following journal papers are either published, accepted or under review in journals included in
the Journal Citation Reports (JCR). The versions presented in this dissertation are adaptations
for the thesis due to university regulations. Each of them is covered as a chapter having the same
structure and bibliography as the original published version:

P1 - Òscar Garibo-i-Orts, Alba Baeza-Bosca, Miguel Ángel Garćıa-March, José Alberto Conejero.
“Efficient recurrent neural network methods for anomalously diffusing single particle short and
noisy trajectories”. Journal of Physics A-Mathematical and Theoretical (2021) 54(50).

IF: 2.331 (JCR 2021): 14/56 (Q1) Physics, Mathematical, 45/86 (Q2) Physics, Multidisci-
plinary.

P2 - Òscar Garibo-i-Orts, Nicolás Firbas, Laura Sebastiá, José Alberto Conejero. “Gramian An-
gular Fields for leveraging pre-trained computer vision models with anomalous diffusion tra-
jectories”. Physical Review E. Accepted for publication

IF: 2.707 (JCR 2021): 10/56 (Q1) Physics, Mathematical, 16/34 (Q2) Physics, Fluids &
Plasmas.

P3 - José Alberto Conejero, Òscar Garibo-i-Orts, Carlos Lizama. “Inferring the fractional nature
of Wu Baleanu trajectories”. Nonlinear Dynamics. (November 2022) Accepted for publication

IF: 5.741 (JCR 2021): 14/137 (Q1) Engineering, Mechanical, 13/138 (Q1) Mechanics.

P4 - José Alberto Conejero, Òscar Garibo-i-Orts, Carlos Lizama. “Recovering discrete delayed
fractional equations from trajectories”. Mathematical Methods in the Applied Sciences. Under
revision

IF: 3.007 (JCR 2021): 29/267 (Q1) Mathematics/Applied.

P5 - José Alberto Conejero, Òscar Garibo-i-Orts, Carlos Lizama. “On a new paragigm in the
Logistic and similar maps: time-stepping schemes”. Preprint
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1.3 Outline

This thesis is structured in nine chapters describing the research work carried out during the stage
of development of this dissertation. Chapter 1 introduces the motivation of this thesis, the research
objectives, and the main contributions. Chapter 2 presents the machine learning architecture used
in the compendium of articles included in this thesis. Chapter 3 describes the participation in
the Anomalous Diffusion Challenge, the real embryo of this Thesis. Chapter 4 introduces the
contribution made within the ValenciaIA4Covid team, winner of the XPRIZE Pandemic Response
Challenge during the COVID-19 pandemics and its relevance. Chapter 5 describes how our architec-
ture, ConvLSTM can capture the particularities of anomalous diffusing trajectories for anomalous
diffusion exponent inference and trajectory classification. Chapter 6 proposes Gramian Angular
Field based image representation for anolomalous diffusing trajectories and benchmarks the us-
age of state-of-the-art image models with short trajectories. Chapter 7 extends the application
of our model to infer the fractional nature of Wu-Baleanu trajectories. Chapter 8 introduces the
usage of ConvLSTM to retrieve the nature of fractional equation from trajectories, and its ability
to discriminate delayed from non-delayed trajectories. Finally, chapter 9 presents the concluding
remarks and proposes guidance to continue with the research developed in this thesis.



2 ConvLSTM

La única lucha que se pierde es la que se abandona.

Ernesto Che Guevara.

This thesis shares the objectives of the design science research paradigm, developing knowledge
that other professionals (let them be physicists, mathematicians, epidemiologists or even decission
makers) can use to design solutions for problems in their research fields. This is an engineer-like
approach which uses existing tools to build new approaches to some known problems.

The main tool used in this thesis is machine learning, in particular deep learning. In this chapter
machine learning is introduced, including required definitions to put them in the context of this
thesis. The architecture used is introduced and explained in detail in the following sections. First,
a brief introduction to machine learning is presented. Secondly, the deep learning methods used
in this thesis are introduced. Finally, the proposed architecture that has been used in this work is
presented.

2.1 Machine learning

As a starting definition, one can say that Machine learning is a discipline that builds algorithms
which are capable to learn from data. This relies in the assumption that procedures which worked
well in the past will, hopefully, also work well in the future. A dumb example can be: as sun has been
rising in the morning for the last 10,000 years, it is likely true that it will rise tomorrow morning
and all mornings in the future. That is, given some patterns that have been true in the past, one
can expect the same patterns be true in the future. And that is, roughly speaking, what machine
learning methods rely on, finding patterns in some amount of data, and apply these patterns to
unseen data. These methodology has widely been used by humans along history. Humans have
been able to find algorithms to extract these patterns, generally using (rules based) algorithms.
But the human eye (or grain) fails to find these patterns when data is very numerous, or complex,
involving millions or billions of records, or when dealing with high dimensional data. As a first
approximation, humans were able to write algorithms which were executed by machines (Pascal
calculator, earlier computers), thus being able to process bigger amounts of data than a human
could process, and not of less importance, processing this information in a more rapid way.

Going to an extensive description of machine learning as a discipline is not a purpose of this
thesis, nor getting the insight of the complete range of methods and approaches. But a brief
introduction is given of the main approaches, while deeper insights are offered in regards of the
methods used in this work.

Before diving into the machine learning methods, some definitions are needed and terminology
explained for the sake of understandability. The purpose of machine learning is building a model
which is capable of learning from available data and thus evaluate unseen data. To do so, available
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data that comes from an unknown probability distribution (hopefully representative of the space
of occurrences) has to be divided into three main data sets: 1) training, 2) validation and 3) test
data sets. 1) Training data set, the machine learning method builds a model from this data set,
and this model should generalize to the space of occurrences, so it can produce accurate predictions
for unseen data. 2) Validation data set, which is used during the learning process to validate the
model as it learns. And 3) test data set, is used to evaluate the model’s performance once the
learning process is finished. The test data set is of ultimate importance since this data set should
never be seen by the model during the training process and be representative (ideally) of the space
of recurrences the model has to generalize to. In fact, this is the best possible way to evaluate what
the behaviour of the model will be with all the existing, and to exist, unseen data.

Depending on the desired output of the algorithm or machine learning method, three main
categories can be described:

• Classification: the data is split into two or more classes or groups. Once the machine learning
model is trained and validated, it can assign unseen data to one of the classes it has seen during
the training process. No need to say that if a new class arises and the model has not seen this
class, none of the data belonging to the new class (or classes) will be correctly assigned. As
new classes show, the model will need of further training to learn the patterns defining this
new class. A classification model is evaluated using metrics like accuracy ( correct classifications

all classifications )
or the f1-score (see definition in Chapter 3, section 3.2 The Challenge: Evaluation).

• Regression: the desired output for the model belongs to the continuous space of R. So, the
model will learn from training and validation data sets a function to fit to the values given
during training. The model, as exposed for classification, is evaluated against the test data set,
usually using metrics like mean averaged error (MAE, the average of the errors made for each
sample), mean squared error (MSE, the mean of the squared errors made for each sample) or
root mean square error (RMSE, or the square root of the MSE).

• Clustering: in this case the data is not split into different data sets since the goal of clustering
methods is to divide the data into a known or unknown number of groups, so-called clusters.
Data is represented in some n-dimensional space (being n the number of features defining each
sample) and the model has to group the data according to a defined distance metric, usually
the euclidean distance.

According to how the machine learing algorithms or methods learn, they can be divided in two
main categories:

• Supervised learning: supervised algorithms need the data (training, validation and test) to
be labelled, either with the class they belong to (in the case of classification) or the value they
correspond to (in the case of regression). Technically it is possible to perform clustering with
labelled data, but the information clustering could provide is already present in the data labels
and therefore we do not consider clustering in the supervised learning.

• Unsupervised learning: unsupervised algorithms, such us clustering, learn patterns from
the training data (the complete available data set) without having any reference in the form
of label.

All the models used in this thesis were built using supervised training, both for classification and
regression. During the development of this thesis we had to work with different types of time series.
Some times in the form of successive points of a moving particle or object, thats is, a trajectory.
Some others in the form of time dependent data along a time period, like daily Covid-19 cases. No
matter what the information is representing, this information is time dependent, where the past
has to be considered in order to correctly predict the next steps (which represents a position in
some vectorial space, a number of Covid-19 cases in some country, a stock pricing, etc).

Recurrent neural networks (RNN) are one type of deep learning, so-called for the deep archi-
tectures that can be implemented by stacking layers over layers. RNN were created to deal with
this kind of information, where not just the last available piece of information needs to be taken
into account, but as much as possible back in the past. In the next sections we first introduce the
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Fig. 2.1: Activation functions. Linear (left). Sigmoid (center). Rectified Linear Unit (ReLU) (right).

deep learning methods that form the architecture proposed in this thesis, and afterwards we give
more details about the architecture we have used to address physics, mathematics and other kind
of problems. We go through the architecture, justifying our decission making and evaluating the
different alternatives.

2.2 Deep learning

Deep learning is a part of the machine learning methods based on artificial neural networks, which
were designed to resemble how human (or other animals) brain works. As mentioned before, the
main characteristic of deep learning is that multiple types of layers can be stacked sequentially
(can be seen as one ontop the other), so the output of one layer feeds the input of the next layer.
By mixing different kinds of layers, it is possible to achieve multiple different models with expertise
in different tasks, and offering different levels of abstraction.

In this thesis 4 different types of layers have been used: densely connected layers, dropout layers,
convolutional layers and long short term memory layers, which we introduce as follows:

2.2.1 Dense layer

A Dense is deeply connected to its previous layer, that is, every unit (or neuron) in a Dense layer
is connected to every neuron in the preceding layer. Every neuron in the Dense layer has its own
weight vector (or matrix) and each one performs a dot product between the input from the previous
layer and its own weight vector, producing a result which if forwaded to the next layer. If two Dense
layers are concatenated, each neuron from the first layer is connected to each neuron in the second
layer, making them fully connected, and because of that receiving the name of Dense layer, since
the density of connections is very high.

A Dense layer applies an activation function to its output, which determines the range of the
output. Depending on the task to be performed different activation functions are required. In our
architecture we use three different activation functions:

• Linear activation function: f(x) = x. Used at the final Dense layer for regression tasks.
• Sigmoid activation function: f(x) = 1

1+e−x . Used at the final Dense layer for classification
tasks.

• Relu activation function: f(x) = max(0, x). Used in intermediate Dense layer because it is easy
and cheap to compute.

The behaviour of these three activation functions is shown in Figure 2.1.
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Fig. 2.2: Basic representation of a CNN.

2.2.2 Dropout layer

When using deep learning, a model is prone to fit the training data during the training process.
That is, the model can specialize in the training data, losing its capabilities of generalizing with
unseen data. In order to avoid such scenario, Dropout layers can be used. A Dropout layer randomly
(with a given probability) removes connections between layers during training process. In other
words, the dropout layer hides a defined portion of the information to the next layer in the deep
learning model, preventing the model to overfit to the training data and easying the generalization
of the model.

2.2.3 Convolutional layer

Convolutional neural networks (CNN) preserve the spatial structure of data by connecting a patch
(or section) of data to a single neuron. Then, every neuron learns the properties from this single
patch, whose size is defined by the kernel size. This way, spatially close portions of data are likely
to be related and correlated to each other since only a small region of the input data influences
the output of each neuron [1, 2]. The patch is slid across the input sequence becoming an sliding
window, and each time we slide it, we have a new output neuron in the following layer. This lets
us consider the spatial structure inherent to the input sequence [3, 4]. The number of patches per
layer is defined as the number of filters, being each filter a patch with a different initialization for
its weight’s vector. Through these layers, we are able to learn trajectory features by weighting the
connections between the patches and the neurons so that particular features can be extracted by
each patch. In Figure 2.2 we depict the behaviour of a CNN and the patch sliding over it.
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Fig. 2.3: Basic representation of a general RNN (left). An RNN with an inner tanh activation function
(center). A scheme of an LSTM layer (right).

2.2.4 Long Short Term Memory Layers

Sequential information can be decomposed in single-time steps, such as words or characters in
language, notes in music, codons in DNA sequences, etc. So, if one considers sequential data it is
very likely that the output at a later time step will depend on the inputs at prior time steps. In
practice, we need to relate the information from a particular time step also with prior time steps
and pass this information to future times.

Recurrent neural networks (RNN) address this problem by adding an internal memory or cell
state, denoted by h, which is passed from the time t to the time t+ 1, that is from ht to ht+1. This
recurrent relation is capturing some notion of memory of what the sequence looks like. Therefore,
the RNN output is not only a function of the input at a particular time step but also a function
of the past memory of the cell state. In other words, the output yt = f(xt, ht−1), depends on the
current input xt and the previous outputs to the RNN ht−1, as it can be seen Figure 2.3.

An RNN adapts the internal hidden state (or memory state) ht through the result of multi-
plying two weight matrices Whh and Wxh to the previous cell state ht−1 and the current input xt,
respectively. The weight matrix Whh is modified at each time step to let the cell learn how to fit
the desired output, and Wxh is the weight matrix that modules the contribution of the input at
each time step to the learning process. The result is passed to an activation function tanh that
modifies the current state at each time step, i.e. ht = tanh

(
WT
hhht−1 + WT

xhxt

)
.

The problem with RNNs arises when dealing with long sequences, since composing multiple
tanh functions entails that the hidden state tends to extinguish by reaching values very close or
equal to zero. In practice, this means that only recent cell states will modify the current cell state
or, in other words, that RNNs have short-term memory.

Long short-term memory (LSTM) [5, 6] amend the aforementioned short-term memory problem
implicit to RNN by including gated cells that allow them to maintain long-term dependencies
in the data and to track information across multiple time steps. This improves the sequential
data modeling. LSTM structure is shown in Figure 2.3 where σ and tanh stand for the sigmoid
and the hyperbolic tangent activation functions The circles in red represent element-wise matrix
multiplication and additions. An LSTM incorporates a new cell state channel c which can be
seen as a transportation band where the information is selectively updated by the new gates and
is independent of the previously defined hidden state h and, therefore, independent of what is
outputted in the form of hidden state or current time step out.

One LSTM cell’s composition can be seen in Figure 2.3 (right), and the gates are used to control
the flow of information as follows:

• The first sigmoid gate decides what information is kept or rid of. Since the sigmoid output
ranges from 0 to 1, this can be seen as a switch that modulates how much information from
the previous state has to be kept.
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Fig. 2.4: Architecture of the model.

• The second gate, consisting of a sigmoid and a tanh functions store relevant information to the
newly added cell state channel (c).

• Then, the outputs of the two previous gates are used to update the cell state (c) selectively.
• And the last sigmoid and tanh functions produce two different outputs; the new cell state (c),

which is forwarded to the next LSTM cell, and the current time step output, which is a filtered
version of the cell hidden state (h).

Further details about LSTM functioning and implementation can be found in [7, 8].

2.3 Architecture of the method

We propose the architecture shown in Figure 2.4 to learn from time series, whatever their char-
acteristics are. The definition of the architecture has been extracted from our paper [9], which we
include in this Thesis.

1. First, we have two convolutional layers that permit the extraction of spatial features from the
trajectories. The first convolutional layer is set with 32 filters and a sliding window (kernel) of
size 5, which slides through each trajectory extracting spatial features from them. The second
convolutional layer has 64 filters to extract higher-level features.

2. Second, the output of the convolutional layers feeds three stacked bidirectional LSTMs layers
that permit learning the sequential information. After each of these layers, we include a dropout
layer of the 10% neurons to avoid over-fitting. We tested several dropout levels, from 5% to
20%, being 10% the one with the best performance.

3. Finally, we use two fully connected dense layers: the first one with 20 neurons and the second
one with 1 or 2 neurons. This last choice depends if we want to predict a single parameter or
both of them at the same time.
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Perquè hi haurà un dia que no podrem més
i llavors ho podrem tot.

Vicent Andrés Estellés.

The content of this section is partially extracted from the paper Muñoz-Gil et al., Nature
Commun. 12, 10.1038 (2021) [10], of which the author of this thesis is co-author.

Back in 1827, the botanist Robert Brown observed on the microscope that small particles
contained in the pollen of plants irregularly and fidgety moved while being suspended in water.
This phenomenon drew his attention to the point of repeating the experiment with dust particles,
showing the same result. He selected dust particles since he wanted to refute that the pollen
particles’ movement was not related to the pollen particles being alive. While several studies were
contucted in this area, the physics to describe this behaviour still took almost 80 years to show.
During the first decade of the 20th century Albert Einstein, Marian Smoluchowski and William
Sutherland provided with the theoretical foundation for the processes Robert Brown’s observations.

Fig. 3.1: Trajectories in spaces with different dimensionality. 1 dimension (1D), proteins sliding along DNA;
2 dimensions (2D), receptors diffusing in the plasma membrane; 3 dimensions (3D), cells migrating in a
three dimensional matrix. Extracted from [10] with Creative Commons License https://creativecommon
s.org/licenses/by/4.0/

A random walk is characterized by an arbitrary change of some observable item over time, let it
be a particle’s position, some measurable temperature or even stock pricing, among many others,
see Figure 3.1. In the same way, random walks happen at different scales (see Figure 3.2), from
atomic scale to complex organism, in the diffusion of cellular components, even in bacteria and
cells movement. They all share that their mean squared displacement (MSD) is not constant, but

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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grows linearly with time (MSD α t), and it is known as normal diffusion. It has also been observed
other kinds of diffusion that do not follow this distribution, but a power-law dependence (MSD
αtα) and we refer to this diffusion as anomalous diffusion, as opposed to normal diffusion. There
are five possible scenarios following this anomalous diffusion which depend on the possible values
of the diffusion exponent α:
• non mobility, when α = 0,
• subdiffusion, when 0 < α < 1,
• normal diffusion or Brownian motion, when α = 1,
• superdiffusion, when 1 < α < 2,
• balistic motion, when α ≥ 2.

Fig. 3.2: Examples of random walks in (a) magneto-optical traps; (b) diffusion of cellular components
(DNA, proteins, lipids, organelles); (c) the motion of bacteria and cells; and (d) animals. Extracted from
[10] with Creative Commons License https://creativecommons.org/licenses/by/4.0/

When an experiment is performed to understand diffusion, one typically disposes of some tra-
jectories from an observable item and there is the need to obtain information from these trajectories
about the item itself and the medium where the trajectoiries take place, what in practice means
inferring the anomalous diffusion exponent α, determining the underlaying diffusion model gener-
ating the trajectory, and determining if these properties show any change over space and time.

In order to tackle the inference of the anomalous diffusion exponeent α, we try to estimate the
anomalous diffusion exponent α by fitting the MSD to a power law in the form of MSD αtα. If
there are multiple trajectories from multiple items, MSD is defined as the average of the items or
ensemble average MSD (EA-MSD). If there are few but long trajectories, MSD can be calculated
as a time average MSD over the full trajectory, or time-averaged MSD (TA-MSD), that is, cutting
the long trajectory in a number of consecutive trajectories, computing the MSD and averaging
them. If both (EA-MSD and TA-MSD) result in the same value, we say that the trajectories are
ergodic, naming them non-ergodic if both values result different.

Determining the underlaying diffusion model is related to the driving physical mechanism. This
is of great importance, since different models result in different trajectories even if they share the
same exponent α.

And finally, the properties of trajectories can change over space and time because of changes
in the environment, such as patches with different viscosity on a cellular membrane, or because
of changes in the properties of the item the trajectory belongs to, for example having different
activation states of a molecular motor). In order to get deeper insights in these cases it is interesting
splitting the trajectories into smaller parts with different behaviours or characteristics, that is,
segmenting the trajectory in subtrajectories and inferring the α and their underlaying models.

With all this in mind, scientists from several institutions around Europe joined efforts to launch
the AnDi (AnDi stands for Anomalous Diffusion) Challenge in 2020 http://www.andi-challen
ge.org/, see Figure 3.3. These scientists came from reputed institutions as Institut de Ciències

https://creativecommons.org/licenses/by/4.0/
http://www.andi-challenge.org/
http://www.andi-challenge.org/
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Fig. 3.3: The AnDi Challenge.

Fotòniques (ICFO), the University of Gothenburg, the Universitat Politèctnica de València and
the University of Postdam. Since anomalous diffusion has received an increasing interest from the
research community during the last years, due to its convenience to describe an increasing amount
of physical scenarios, the main goal of the Challenge was to provide with a benchmark for the
current methods to characterize the annomalous diffusing trajectories available in different fields
of science.

The AnDi Challenge was publicy available as a competition in the widely known coding compe-
titions website Codalab. Any scientist worldwide was able to enroll the competition and participate.
Besides that, the organizers provided with an open-source framework https://github.com/AnD
iChallenge/ANDI datasets to create synthetic data sets to be used to develop the solutions to
be proposed in the Challenge.

The Challenge consisted of three main tasks:

• Inference of the anomalous diffusion exponent (a regression problem).
• Identification of the underlying diffusion model (a classification problem).
• Segmentation of the trajectories and characterizing the subsequent segments.

We show some examples to ilustrate this three tasks in Figure 3.4. Each of these tasks was
addressed in the vectorial spaces of 1, 2 and 3 dimensions, having a total of 9 subtasks. For
evaluation purposes an independent data set was used to rank the different participants, the top-
rank of them receiving a symbolic award. The main goal of the Challenge is scientific, challenging
the scientific community to benchmark their methods and evaluating which of them behave the
best, with the aim of establishing a well founded state-of-the-art in the field.

3.1 Data set

Since the procedure to obtain anomalous trajectories in real life is not trivial, the organizers pro-
vided with a Python package, and therefore open-source, to allow any participant in the Challenge
(or anybody interested in the field) to generate synthetic data sets. This package allowed to build
trajectories that follow the 5 underlaying models considered in the Challenge: Continous Random
Walk (CTRW), Annealed Transient Time Motion (ATTM), Fractional Brownian Motion (FBM),
Lèwy Walk (LW) and Scaled Brownian Motion (SBM), and the anomalous diffusion exponent α

https://github.com/AnDiChallenge/ANDI_datasets
https://github.com/AnDiChallenge/ANDI_datasets
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Fig. 3.4: Task 1: inference of the anomalous diffusion expoenent α. We show a normal diffusing trajectory
(α = 1) in black, a subdiffusive trajectory (0 < α < 1) in blue, and a superdiffusive trajectory (1 < α < 2)
in red. Extracted from [10] with Creative Commons License https://creativecommons.org/licenses/b
y/4.0/

could get values in the range [0.05, 2]. Additionally, in order to resemble experimental data, some
noise is added to the trajectories by adding a random number from a gaussian distribution N with
zero mean and standard deviation σnoise to every position in the trajectory. Three different levels
of noise were used to corrupt the synthetic trajectories, σnoise ∈ [0.1, 0.5, 1]. We then define the
signal to noise ratio (SNR) as the inverse of σnoise, resulting in SNR values of [10, 2, 1] respectively.
When working with 2 and 3 dimensional trajectories, different levels of noise could be applied to
each dimension, being the resulting SNR the average for all directions.

3.1.1 Building trajectories for each underlaying model

We go through the process of simulating the trajectories for each of the five underlaying models
considered in the AnDi Challenge, an implementatition of this process was done in a Python pack-
age which is avaliable at https://github.com/AnDiChallenge/ANDI datasets.

Continuous Time Random Walk (CTRW). This type of movement is characterized by
waiting times between steps which are sampled from a power-law distribution ψ(t) ≈ t−σ and
displacements are sampled from a normal distribution with variance D and zero mean.

Algorithm 1. Generate CTRW trajectory
Input:

length of the trajectory T
anomalous exponent α
diffusion coeficient D
Define:
~x→ empty vector
~t→ empty vector
N (µ, s)→ Gaussian random number generator with mean µ and
standard deviation s

i = 0; τ = 0
While τ < T do

ti ← sample randomly from ψ(t) ≈ t−σ
xi ← xi−1 +N (0,

√
D)

τ ← τ + ti
i← i+ 1

end while

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/AnDiChallenge/ANDI_datasets
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Return: ~x,~t

Annealed Transient Time Motion (ATTM). This movement behaves as a standard Brow-
nian motion, but its diffusion coefficient changes with time. That is, for a random time t1, the
movement follows a Brownian motion with diffusion coeficient D1, then assumes diffusion coeffi-
cient D2 for a time t2, and so on.

Algorithm 2. Generate ATTM trajectory
Input:

length of the trajectory T
anomalous exponent α
sampling time ∆t
Define:
while σ > γ and γ > σ + 1 do
σ ← uniform random number ∈ (0, 3]
γ = σ/α

end while
BM(D, t,∆t) → generates a Brownian motion trajectory of length t
with diffusion coeficient D, sampled at time intervals ∆t
~x→ empty vector

while τ < T do
Di ← sample randomly from P (D)Dσ−1

ti ← D−τi
number of steps Ni = round(ti/∆t)
i← i+Ni + 1
τ ← τ +Ni∆t

end while
Return: ~x

Fractional Brownian Motion (FBM). In FBM, x(t) is a Gaussian symmetric process and its
EA-MSD scales as 〈x(t)2〉 = 2KHt

2H , with H being the Hust exponent, that relates to the anoma-
lous diffusion exponent as H = α/2. Another way of understanding FBM is from the Langevin
equation with fractional Gaussian noise (fGn) with zero mean and power law correlations.

The FBM presents three regimes. One superdiffusive with 1 < α < 2, thus having values for
the Hurst exponent 1/2 < H < 1 and where the noise is positively correlated. A second regime
which is subdiffusive, with α ∈ (0, 1), hence the Husrt exponent taking values of 0 < H < 1/2, and
the noise being negatively correlated. And finally a third regime when α = 1, with H = 1/2 and
noise being uncorrelated, what makes FBM behave as pure Brownian motion.

The FBM (https://pypi.org/project/fbm/) Python package has been used to generate the
FBM trajectories, which uses the Davies-Harte [11] and the Hosking [12] methods. Further details
from the implementation can be found in the provided references.

Lévy Walk (LW). LW is a particular case of CTRW, with irregular lapses of time between
steps. The difference lies in the distribution of displacements, which in the case of LW is not
Gaussian. Instead, the times between steps, or flight times, are generated by the distribution
ψ(t) ≈ t−σ−1. The displacements are correlated to the flight times since the probability to make a
step ∆x at some time t and land in a new position, where there will happpen a new waiting period
until a new event happens, is Ψ(∆x, t) = 1

2δ(|∆x|, vt)ψ(t), where v is the velocity. The CTRW
output consists of two vectors of irregularly sampled positions and times (~x and ~t).

Algorithm 3. Generate LW trajectory
Input:

length of the trajectory T
anomalous exponent α

https://pypi.org/project/fbm/
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Define:
~x→ empty vector
~t→ empty vector
v → random number ∈ (0, 10]

i = 0
While τ < T do

ti ← sample randomly from ψ(t) ≈ t−σ−1

xi ← (−1)τvti, where random τ is 0 or 1 with equal probability
τ ← τ + ti
i← i+ 1

end while
Return: ~x,~t

Scaled Brownian Motion (SBM). SBM is defined by the Langevin equation, considering a
time-dependent diffusivity K(t)

dx(t)
dt

=
√

2K(t)ξ(t), (3.1)

where ξ(t) is a white Gaussian noise.

Algorithm 4. Generate SBM trajectory
Input:

length of the trajectory T
anomalous exponent α
Define:
erfcinv(~a)→ Inverse complementary error function of ~a
U(L) → returns L uniform random numbers ∈ [0,1]

Calculate:
~∆x← (1α, 2α, . . . Tα)− (0α, . . . , (T − 1)α)
~∆x← 2

√
2U(L) ~∆x

~x← cumsum( ~∆x)
Return: ~x

3.2 The Challenge: Evaluation

The evaluation of the performance for the participating teams was as follows:

Task 1: inference of the anomalous diffusion exponent α:
The results were evaluated using the mean absolute error (MAE) for all the predictions, which

is calculated as follows

MAE = 1
N

N∑
i=1
|αi,hat − αi,truth|, (3.2)

where N is the number of trajectories, αi,hat is the prediction and αi,truth the real value for
the anomalous exponent for each one of the trajectories.

Task 2: classification according to the 5 underlaying models:
In this task the results were evaluated using the micro F1 score, which is defined as

F1 = 2 ∗ precision * recall
precision + recall , (3.3)
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We introduce the notation TP for True Positive predictions, that is correct predictions, FP for
False Positive, incorrect positive predictions for each class, and FN as False negative, missclas-
sified predictions for each class. With that notation clear we can define precision as TP

TP + FP , or
the portion instances for each class that have been correctly predicted. Similarly, we define recall
as TP

TP+FN , which in practice is the portion of instances of one class that the model was able to
correctly classify.

Which is equivalent to defining F1 score as

F1 = 2TP
2TP + FP + FN , (3.4)

Task 3: segmentation of trajectories. In this task the goal was to perform a change point
detection in a given trajectory, and inferring α and assigning the underlying model for each of
the 2 resulting trajectories. MAE and F1 score were used to measure the performance once the
trajectory was split, and root mean squared error (RMSE) to evaluate the accuracy in finding the
changepoint localization. We define RMSE as follows:

RMSE =

√√√√ 1
N

N∑
i=1

(ti,hat − ti,truth)2 (3.5)

where ti,hat and ti,truth are the calculated and real changepoint localization in the trajectories.
In this task the rank was set by using the mean reciprocal rank which is defined as:

MRR = 1
3 ∗
(

1
rankMAE

+ 1
rankF1

+ 1
rankRMSE

)
, (3.6)

being each of the ranks the position in the ordered list based on the value of each of the metrics.
MAE and F1−score are calculated independently for each segment and results are averaged over
them.

3.3 The Challenge: Methods

A team could participate in any or all of the 9 subtasks during the Challenge. The participation
by task was as follows: 13 teams participated in task 1, 14 in task 2 and 3 in task 3. Each
task was proposed for trajectories in one, two or three dimensions, resulting in the 9 subtasks
aforementinoned. In Figure 3.5 we show a relation of the participants, including the following
information:

• Label: label assigned to each team in the plots.
• Team name: Name selected by the team for the competition.
• Method: a brief description of the method used by each team.
• Class: either if the team used machine learning or classical statistics approach.
• Input: input to the method, being raw trajectories (Traj) and/or features extracted from the

trajectories (Feat).
• Tasks: tasks in which every team participated (if necessary, also subtasks are indicated).
• L-specific: indicates if the proposed method is trajectory lenght specific or not.

As we can see in Figure 3.5, 13 out of 15 teams opted by using a variety of machine learning
methods, which included recurrent neural networks (RNN), convolutional neural networks (CNN),
a combination of these two, graph neural networks, extreme learning machines, sequnece learners
(transformers) and gradient boosting machines. While other methods used statistical approaches
like Bayesian inference, random interval spectral ensemble and temporal scaling. In this same Figure
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Fig. 3.5: Participants and their methods in the AnDi Challenge.

we can see what kind of input the teams used. With 7 teams using the raw trajectories, 6 using
engineered features, and 2 using a combination of both. Finally, we can group the teams taking
into account if the method they used was length specific (that is, they require specific training for
different trajectory lengths) or not, with just 4 teams presenting length specific methods.

We next give further details in the different teams’ methods:
Team A used an ensemble of CNN and RNN. For Task 2, they used CNN and RNN in parallel as

features extractor whose output was delivered to 2 fully connected layers which predicted the class.
For regression they used the same architecture but trained specific regressors per each underlaying
model. So, they firstly classify the trajectory by underlaying method and then infer the α exponent.
More detailed information and code can be found in https://github.com/BorjaRequena/AnDi
-unicorns.

Team B presented a solution based on Bayesian inferences with a uniform prior for the 5
underlaying models for Task 2, and 5 priors, one per underlaying models, according to the α ranges
for each underlaying model. Same approximation was done for Task 3. Additional information can
be found in https://github.com/mlomholt/andi.

Team C built a solution based on graph neural metworks. First they build a graph from
each trajectory, where each position is a node in the graph, and edges are drawn between nodes
based on their time difference. At this point, additional information is added to nodes from features
calculated from normalized positions such as cumulated distance covered from origin, maximal step
size from origin, etc. Then, these graphs were used to train a graph neural network (convolution)
used as an encoder whose output is then forwarded to specialized modules for the different tasks
(regression and classification). This solution accepts inputs of any length, which are encoded into
fixed length vectors in a latent space. For more information on this method please refer to [13] and
https://github.com/DecBayComp/gratin.

Team D used a combination of ResNet (deep CNN) and XGBoost. For the classification
task they split the data in 7 different classes, splitting FBM and SBM in two subclasses each,
one subdiffusive and one superdeiffusive, in order to better distinguish between those 2 different
behaviours inside one single (two, in fact) underlaying model. On the one hand they fed the
ResNet with portions of lenghth 100 from each trajectory, and XGBoost with up to 20 features
they engineered, merging both branches with fully connected branches to produce the model’s
output (either inference of α or classification). Further information about this method can be
found in https://github.com/TaegeunSONG/DeepSPT.

Team E proposed a method based on long short term memory (LSTM) RNN. They stacked
2 LSTM layers with dimensions 250 and 50, followed by 2 fully connected layers, a first one with
20 nodes and a second one with one node for Task 1 (inference of α) and 5 nodes for Task 2, one
per class. They trained up to 6 different models with independent data of different lengths for the
classification task (lenghts 25, 65, 125, 225, 425 and 825). And then, given a trajectory, they used the

https://github.com/BorjaRequena/AnDi-unicorns
https://github.com/BorjaRequena/AnDi-unicorns
https://github.com/mlomholt/andi
https://github.com/DecBayComp/gratin
https://github.com/TaegeunSONG/DeepSPT
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2 networks with lengths closer (up and down) to the trajectory length to provide with the prediction.
A similar approach was used for the inference task, but using 14 different networks with trajectory
lengths 25, 50, 65, 75, 125, 165, 225, 325, 425, 525, 625, 725, 825 an 925. Detailed information
about this method can be found in [14] and https://github.com/booste/andi for organizers.

Team F extracted 6 features that vary with the dimension (x, y or z axis displacements,
distances, mean of distances and/or angles) at each trajectory point and these features fed stacked
bidirectional LSTMs followed by 1 (regression) or 5 (classification) neuron/s fully connected layer
to produce the prediction. More detailed information about this method can be found in https:
//github.com/hkabbech/FEST AnDiChallenge.

Team G participated in Task 1 with a model based on LSTM. They trained 43 different
models for 43 trajectory length ranges in 1 dimension. For trajectories with dimension 2 and 3
they applied the 1 D models to each trajectory axis and computed the average of the α predicted
for each axis, resulting in their final prediction. For more detailed information about the method
see https://github.com/huangzih/AnDi-Challenge.

Team H presented a solution for task and 1 D trajectories based on a mixture of 2 CNN used
as feature extractors whose output fed 3 stacked bidirectional LSTM layers. More details can be
found in https://github.com/NicoFirbas/ConvLSTM AnDI.

Team I joined task 1 for 1 dimensional trajectories and opted for a solution based in extreme
learning machine from extracted features such as absolute displacement, logarithmic mean displace-
ment, logarithmic mean squared displacement and correlation of displacement. Further details can
be seen in [15] and https://github.com/qubilab/AnDi ELM.

Team J proposed a method for all tasks and dimensions 1 and 2 based on up to 4 blocks of
CNN, each of them consisting of 4 stacked convolutional layers followed each one of them by a
batch normalization layer. To obtain the prediction the model used 3 fully connected layer of size
512, 256 and 1 for the regression task, or 5 for the classification task. For more information about
this method see https://github.com/tsmbland/andi challenge.

Team K participated in task 1 and 2 for 1 dimensional trajectories performing the statistical
method scaling analysis over computed features. More details can be seen in https://github.c
om/ErezAgh/ANDI-challange-codes-.

Team L combined feature engineering based on classical statistics (momenta and statistics at
different combinations of steps, displacement relative change, normalized power spectral density
statistiscs and others) with fully connected layers. They implement the machine learning method
in 3 different steps: in the first one they consider 2 classes, LW and the rest of underlaying models.
Then they look for ATTM trajectories and finally classify the remaining between the rest of classes.
Detailed information about the method can be found in [16] and https://github.com/sam-lab
UCL/CONDOR.

Team M was our team. We used 2 CNN layers to extract features from the trajectories and
3 bidirectional LSTMs followed by 2 fully connected layers to get the prediction. Our method has
beed discussed in the previous chapter in this Thesis, but more information can be seen in [17] and
in https://github.com/OscarGariboiOrts/ANDI Challenge.

Team N participated only in the task 2. They performed feature engineering and used statis-
tical methods to classify trajectories within the 5 underlaying models. For 1 diemnsional tra-
jectories they used the Random Interval Spectral Ensemble (RISE), that uses several feature
extraction transformers like fitted auto-regressive coefficients, power spectrum coefficients and
estimated correlation coefficients. For 2 and 3 dimensional trajectories they used Mr-SEQL, a
univariate time series classifier which trains logistic regressions with features extracted from sev-
eral symbolic representations of trajectories. More infromation about this method can be found in
https://github.com/szwabin/ANDI-challenge/.

Team O used gradient boosting method (xgboost from Python’s sklearn) using extracted fea-
tures from the trayectories using statistics. They used features like fractal dimension, Gaussianity,
MSD ratio, normalized maximum excursion, among other. For further details on this method see
[18] and https://github.com/HannaLochOlszewska/ANDI challenge.

https://github.com/booste/andi_for_organizers
https://github.com/hkabbech/FEST_AnDiChallenge
https://github.com/hkabbech/FEST_AnDiChallenge
https://github.com/huangzih/AnDi-Challenge
https://github.com/NicoFirbas/ConvLSTM_AnDI
https://github.com/qubilab/AnDi_ELM
https://github.com/tsmbland/andi_challenge
https://github.com/ErezAgh/ANDI-challange-codes-
https://github.com/ErezAgh/ANDI-challange-codes-
https://github.com/sam-labUCL/CONDOR
https://github.com/sam-labUCL/CONDOR
https://github.com/OscarGariboiOrts/ANDI_Challenge
https://github.com/szwabin/ANDI-challenge/
https://github.com/HannaLochOlszewska/ANDI_challenge
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3.4 Our results

We participated in the Challenge in the first two tasks, using a combination of convolutional and
recurrent neural networks, whose architecture was defined in the previous Chapter, ConvLSTM.
For Task 1 we trained 12 different models for each subtask, being each model specialized in a
fraction of the possible trajectories lengths. Thats is, we trained one model for each of the following
trajectories’ length ranges: [10, 20], [21, 30], [31, 40], [41, 50], [51, 100], [101, 200], [201, 300], [301,
400], [401, 500], [501, 600], [601, 800], [801, 1000]. We used different amount of trajectories to
train each specific model, depending on the memory required to process them, adjusting to our
equipment limitations. The range of trajecotries used to train the models varies from 8, 000, 000 for
shorter trajectories and 1 dimension, to 2, 000, 000 for larger trajectories and 3 dimensions. And
for Task 2 we used one single model for each subtask, capable to deal with trajectories in the whole
range considered in the Challenge (i.e. [10, 1000]). In this case we used 2, 000, 000 trajectories to
train all models (1 per subtask). 10% of the data available for training was used for validation
at each epoch. It is worth mentioning that the complete training process for Task 1 and 2 took
us 3 months, due to the aforementioned limititation inherent to our equipment. The Challenge
organizers created an on-line tool to measure the performance of each of the participating team ht
tp://andi-challenge.org/interactive-tool/) where they show how every team’s predictions
rate, being able to split by trajectory length, α, underlaying diffusion model and dimension, for
Task 1 and Task 2. Figure 3.6 shows our team’s model performance for Task 1 and Task 2 in the
1 dimensional trajectories case.

Our method was awarded with the first position in the Task 1, subtask 1 dimension, and
ranked in positions 2nd, 4th and 3rd in the subtasks related to Task2. In Figure 3.6 we present the
performance of our model in the case of 1 dimensional trajectories, both for Task 1 (bottom) and
Task 2 (up). For Task 2 results, our result has been pointed by an arrow, since in order to ease
the identification. It is easy to see how close the 4th best performing teams were one to the other,
probably indicating that we have reached the top possible performance of the current machine
learning methods.

3.5 Corollary

As a result of the good performance we were invited to present our job in the AnDi Workshop
(http://andi-challenge.org/workshop/), where we received our award 3.7, gave a talk
explaining our method and presented a poster of a research project that resulted in our second
paper in this Thesis, Gramian Angular Fields for leveraging pre-trained computer vision models
with anomalous diffusion trajectories.

The participation in the AnDi challenge was the embryo of this Thesis. We dived into the
anomalous diffusion problem and realized how machine learning methods can help to shed light to
some problems in the field of physics and mathematics. The celebration of the AnDi Workshop was
intented to happen during December 2020, but the event was postponed due to Covid-19 pandemic
restrictions of mobility and gathering. We were willing to attend the Workshop to know the rest of
participant, since we developed a very interesting and amazing competition. But, as usual in life,
Covid-19 also opened some new doors to the usage of machine learning, as we show in the next
chapter of this Thesis.

Additionally, I supervised the work of a master student who also took part in the AnDi Chal-
lenge (Team H). His work evolutioned to the implemetation of a transformer which can be used to
infer the anomalous exponent α and to classify the underlaying model for one dimensional trajec-
tories. I co-authored the paper [19] which is currently under revision for publishing in Journal of
Physics E. This paper has not been included in this Thesis since the main author is Nicolás Firbas
(the student) but I contributed with supervision and advicing.

http://andi-challenge.org/interactive-tool/
http://andi-challenge.org/interactive-tool/
http://andi-challenge.org/workshop/
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Fig. 3.6: The AnDi Workshop.

Fig. 3.7: The AnDi Workshop.
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I’ve got a theory that if you give 100% all of the time,
somehow things will work out in the end.

Larry Bird, GOAT.

The Covid-19 pandemic came abruptly for everyone of us, in every country, for any professional
job. In front of it, scientists found ourselves in front of a crossroads: try to use our knowledge to
help or stay away from front edge, to avoid introducing more noise. No one had a good answer
on what to do, and most scientists did what they thought was the best. In our case, we had in
our hands a tool that was extremely successful in the AnDi Challenge. On top of this, we had
collaboration with worldwide recognized scientist like Nuria Oliver. The XPrize challenge came to
our knowledge and we found that participating again in a collaboration effort was a reasonable
way of contributing, within our strengths.

To put things in context, from Wikipedia we know that “XPrize Foundation is a non-profit
organization that designs and hosts public competitions intended to encourage technological de-
velopment to benefit humanity. The XPRIZE mission is to bring about radical breakthroughs for
the benefit of humanity through incentivized competition. It fosters high-profile competitions to
motivate individuals, companies and organizations across all disciplines to develop innovative ideas
and technologies that help solve the world’s grand challenges.”

The XPrize foundation has been setting prizes from 1996, with the common characteristic to
all prizes that they would somehow help to develop a better society. We can check Wikipedia
(https://en.wikipedia.org/wiki/X Prize Foundation#Prizes and events overseen) for a
complete list, but to mention some of them:

• Wendy Schmidt Oil Cleanup XPrize (2010-2011) wanted to inspire innovative solutions that will
speed the pace of cleaning up seawater surface oil resulting from spillage from ocean platforms,
etc.

• Water Abundance XPrize (2016-2018) focused in addressing water scarcity in the developing
world.

• The Global Learning XPrize (2014-2019) pushed the creration of mobile apps to improve
reading, writing and arithmetic in developing nations.

In October 30th the XPrize foundation started the early registration for the XPrize Pandemic
Response Challenge (see Figure 4.1), where teams should face two challenges in one. First, the
teams should build a prediction model that was able to predict up to 90 days in the future the daily
reported Covid-19 cases in 236 countries and regions world wide. Second, the teams should create a
Non-Pharmaceutical Interventions (NPI) prescriptor, as a tool for the decision makers to ponder the
trade-off between new Covid-19 daily cases and social cost for the NPI implementations. Where NPI
were non-pharmaceutical interventions which decission makers (a.k.a. goverments) could decide to
implement or not, such as school closing, lockdowns, etc. In opposition to the normal extension of

https://en.wikipedia.org/wiki/X_Prize_Foundation#Prizes_and_events_overseen
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Fig. 4.1: Pandemic Response Challenge from XPrize.

XPrize challenges, wich usually extend over several years, the Pandemic Response Challenge was
designed to last just for 3 months. Obviuosly, if the aim of the competition was to build models to
help decision makers during the pandemic, the whole process had to be fast.

The following content is extracted from the paper I co-author Open Data Science to fight
COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge [20], which was presented
during the 2021 edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD). I emphasize here that our paper
was awarded as the Best Applied Data Science Paper Award https://2021.ecmlpkdd.org/inde
x.html@p=2148.html.

Data for the challenge consisted of time series data where we had to consider not just the
reported daily cases from every country or region, but the applied NPIs established in each of
them. The XPrize organization provided with a baseline model and due to our expertise working
with time series data and LSTM recurrent neural networks (an expertise built in previous research
and sharpened in the AnDi Challenge), we decided to look for mates to join this new adventure.

Since March 2020, the Valencian Goverment worked together with a group of local scientists
from universities in the territory. This group was so called Data Science for Covid-19 Group and
helped the local goverment by implementing SIR models to identify how the pandemic spread,
such work can be found in [20–26]. This group was the embryo for the ValenciaIA4Covid team
(see Figure 4.2) that registered into the challenge just a couple of days before the deadline, after
having implemented a functional predictor.

4.1 Data

Historically there has not been data available in a daily basis for most countries worldwide, but
during Covid-19 global pandemic extensive data was captured and openly shared for the general
population and for the scientific community in particular. During the XPrize Pandemic Response
Challenge we could use the Oxford COVID-19 Government Response Tracker set1 as the main data
source. In this data repository we could find daily reported Covid-19 cases (that is, case-related
data), and NPIs being implemented (action or NPI -related data) in 186 countries, the 50 US states
and the 4 countries in the United Kingdom, having a grand total of 236 countries or regions, which
we denoted as GEO. The action or NPI -related data included the level of activation for each NPI
for each GEO and day. In Table 4.1 we show the 12 NPIs we cosidered during the Challenge, which
we split in two main groups: confinement-based and public health-based. For a more detailed view
of NPIs and the meaning of the different levels of activation, please see Table 4.2 for confinement
NPIs and Table 4.3 for public health NPIs.

1 https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker

https://2021.ecmlpkdd.org/index.html@p=2148.html
https://2021.ecmlpkdd.org/index.html@p=2148.html
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
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Fig. 4.2: ValenciaIA4Covid team.

Table 4.1: NPIs considered in the Challenge and their possible activation values.

NPI name Values NPI name Values
C1. School closing [0,1,2,3] C7. Internal movement restrictions [0,1,2]
C2. Workplace closing [0,1,2,3] C8. International travel controls [0,1,2,3]
C3. Cancel public events [0,1,2] H1. Public information campaigns [0,1,2]
C4. Restrictions on gatherings [0,1,2,3] H2. Testing policy [0,1,2,3]
C5. Close public transport [0,1,2] H3. Contact tracing [0,1,2]
C6. Stay at home requirements [0,1,2,3] H6. Facial coverings [0,1,2,3,4]

4.2 Predictors of COVID-19 cases

As stated before, the main goal of the first part of the Challenge was to build a predictor for 236
GEOs and for up to 180 days in the future. We will be using the next notation:
1. Population (P j): P j is the reported population for GEO j. We consider each GEO’s popula-
tion being constant.
3. NewCases (Xj

n): Reported daily number of new cases on day n and GEO j, is denoted by Xj
n.

We consider March 11th as the first day in our temporal data.
4. ConfirmedCases (Y jn ): Cumulative confirmed cases until day n in GEO j and denoted by
Y jn =

∑n
i=1X

j
i .

5. SmoothedNewCases (Zjn): Averaged number of new cases between days n−K + 1 and n in
GEO j as Zjn = 1

K

∑K−1
i=0 Xj

n−i. We implemented this measure since different GEOs had different
imputation polices (some report cases on weekends, some not; some reports in a daily basis, some
3 days per week). We decided to use the week as the smoothing unit, so we set K = 7.
6. CaseRatio (Cjn): Cases ratio for two consecutive days is computed as Cjn = Zjn/Z

j
n−1. It shows

if the number of cases is growing or decreasing in a daily basis.
7. Susceptible Population (Sjn): Number of individuals in a given population who are keen to
be infected with coronavirus on day n and for GEO j.
8. ScaledCaseRatio (Rjn): CaseRatio Cjn harmonized by the proportion of susceptible individu-



28 4 ValenciaIA4Covid

Table 4.2: Confinement Intervention Policies and the meaning for each value.

NPI name Level 0 Level 1 Level 2 Level 3 Level 4
C1. School clos-
ing

Nothing Recommend clos-
ing

Partial closing Complete closing

C2. Workplace
closing

Nothing Recommend clos-
ing (or work from
home)

Require closing
(or work from
home for some
sectors/categories
of workers)

Require clos-
ing (or work
from home all-
but-esential
workplaces)

C3. Cancel pub-
lic events

Nothing Recommend can-
celling

Require can-
celling

C4. Restrictions
on gatherings

Nothing Cancel very large
gatherings (above
1000 people)

Cancel gatherings
between 100-1000
people

Cancel gatherings
between 11-100
people

Cancel gather-
ings of 10 or less
people

C5. Close public
transport

Nothing Recommend
closing (or sig-
nificantly reduce
volume, routes
and/or means
of transport
available)

Require closing
(or prohibit most
citizens from
using it)

C6. Stay at home
requirements

Nothing Recommend not
leaving home

Require not leav-
ing home with ex-
ceptions for daily
exercise, grocery
shopping and es-
sential trips

Require not leav-
ing home with
minimal excep-
tions (e.g. allowed
to leave once a
week, or only one
person can leave
at a time, etc)

C7. Restric-
tions on internal
movement

Nothing Recommend not
to travel between
regions/cities

Internal move-
ment restrictions
in place

C8. Internal-
tional travel
controls

Nothing Screening arrivals Quarantine ar-
rivals from some
or all regions

Banning on ar-
rivals froms some
regions

als in GEO j, Rjn = Cjn
P j

Sjn
. Since it depends on the propotion of susceptible individuals, it captures

the effects of a finite population.
9. Action (Ajn): Applied NPIs in GEO j on day n.

Predictions (or estimations) are denoted by the use of̂ symbol, that is, X̂j
n is the estimated

new cases and R̂jn the estimated scaled case ratio, both for GEO j and day n.

4.2.1 Baseline predictor.

The Challenge organization provided with a baseline model which we show in Figure 4.3. This
model consists of 2 Long Short Term Memory (LSTM) based branches, one for processing daily
cases (context branch) and the other in charge of the NPIs (action branch), with a lambda merge
layer to combine both.

We feed the context LSTM h with the values of Rn in the previous T days in GEO j, or
Rj
n−1 = (Rjn−T , . . . , R

j
n−1), while the action branch LSTM g is fed with the NPIs 12-dimensional

matrix with NPIs applied in the previous T days in GEO j, or Aj
n−1 = (Ajn−T , . . . , A

j
n−1).

In order to mitigate the noise induced by the different Covid-19 cases reporting policies between
GEOs we set T = 21 (as in [27]), that is, three weeks. Having this value also permits the model to
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Table 4.3: Public Health Intervention Policies and the meaning for each value.

NPI name Level 0 Level 1 Level 2 Level 3 Level 4
H1. Public in-
formation cam-
paigns

No Covid-19
public infor-
mation cam-
paigns

Public officials
urging caution
about Covid-19

Coordinated pub-
lic information
campaign (e.g.
across traditional
and social media

H2. Testing pol-
icy

No testing
policy

Only those who
both (a) have
symptoms AND
(b) meet spe-
cific criteria (e.g.
workers, admitted
to hospital, came
into contact with
a known case,
returned from
overseas)

Testing of ev-
eryone showing
Covid-19 symp-
toms

Open public test-
ing (e.g. drive
through test-
ing available to
asymptomatic
people)

H3. Contact
tracing

No contact
tracing

Limited contact
tracing; not done
for all cases

Comprehensive
contact trac-
ing; done for all
identified cases

H6. Facial cover-
ings

No policy Recommended Required in some
specified shared
or public spaces
outside the home
with other people
present, or some
situations when
social distancing
is not possible

Required in all
shared or public
spaces outside the
home with other
people present
or all situations
when social dis-
tancing is not
possible

Required outside
the home at all
times regardless
of location or
presence of other
people

Fig. 4.3: ValenciaIA4Covid model.

observe the whole incubation period for Covid-19, which is agreed to be of 12-15 days from being
exposed to the virus to being tested and confirmed [28].

The lambda layer for day n is the predicted R̂jn given by
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R̂jn = f(Aj
n−1,R

j
n−1) = (1− g(Aj

n−1))h(Rj
n−1), (4.1)

with g(Aj
n−1) ∈ [0, 1] and h(Rj

n−1) ≥ 0. See [27] for in-detail description of the baseline model. It
is worth mentioning that when making predictions into the future, the Rjn−i values in the vector
Rj
n are replaced by the estimations provided by the predictor, or R̂jn−i, for n − i > current day,

i = 1, . . . , T .

4.2.2 ValenciaIA4COVID (V4C) predictor

Starting from the baseline architecture, our model consisted of LSTM-based branches: a con-
text branch, to model the Rn time series and an action branch, where the time series of Non-
pharmaceutical Interventions were modeled. Although we did not consider public health-based
NPIs, we included some major modifications to the baseline predictor which lead us to our Valen-
ciaIA4COVID or V4C predictor. We get into details for the modifications to each of the branches.

4.2.2.1 Context branch

Since the confirmed cases time series were very divergent for the different GEOs, one single LSTM
network resulted in its weight matrices being full rank. To deal with the variability inherent to the
difference between GEOs (stationality differences between north and south, population density,
etc) we decided to build a bank of LSTM for the context branch, as it can be seen in Figure
4.4(up).

Bank of context models. We wanted to find sets of GEOs with similar behaviour with
respect to the number of confirmed cases, and to do so we clustered the GEOs using the K-Means
algorithm applied to the time series of reported number of COVID-19 cases per 100K inhabitants.
In Figure 4.5 (left) we show the result of applying K-means algorith from 1 to 40 clusters. In the
x axis we represent the number of desired clusters k while in the y axis we have the summation of
the squared distances from each point in each cluster to its centroid. We set the optimal number
of clusters being 15 since the squared distance reaches an stability point, having a good trade-off
between squared root distance (precision) and number of clusters (computational cost). Also in
Figure 4.4 (right) we plot the distribution of the number of cases per day for the GEOs in one of
the 15 resulting cluster. This cluster contains the GEOs Colombia, Mexico, South Africa, Florida
and Texas.

Fig. 4.4: Results of applying the Elbow Method to the K-Means clustering (left) and example of the GEOs
in one of the resulting clusters (right).

With the aim of assuring our clustering was correct we performed a t-distributed neighbor
embedding (t-SNE) analysis. t-SNE is a statistical method that models each high-dimensional
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point by a 2 or 3 dimensional point. Similar high dimentional points in the 2 o 3 dimensional
vector space are projected in the new 2 or 3 dimensional space in such a form that the resulting
points are close to each other, and dissimilar points in the high-dimensional space result in distant
point in the projected vector space, both with high probability.

t-SNE consists of 2 main stages:

1. Given a set of N elements from the high-dimensional space, t-SNE computes the probabilities
pij , which are proportional to the similarity of each pair xi and xj as

pj|i = exp(−‖xi − xj‖2 /2σ2
i )∑

k 6=i exp(−‖xi − xk‖
2
/2σ2

i )
, (4.2)

where, by definition pi|i = 0, and
∑
j pj|i = 1 for all i. We then define

pij =
pj|i + pi|j

2N , (4.3)

where pij = pji, pii = 0 and
∑
i,j pi,j = 1

2. t-SNE searchs for a 2 o 3 dimensional map y1, . . . , yN that preserves the similarities previously
computed. To do this, it computes similarities between points in the projected space yi and yj
with a similar method. For every pair (i,j) where i 6= j, a distance metric qij is calculated as
follows

qij = (1 + ‖yi − yj‖2)−1∑
k

∑
l 6=k(1 + ‖yk − yl‖2)−1

. (4.4)

The position of the points y in the 2 or 3 dimensional space vector are calculated by minimizing
the Kullback-Leibler divergence of the distribution P form the distribution Q, which writes as

KL(P‖Q) =
∑
i 6=j

pij log
pij
qij
, (4.5)

where the minimization of the Kullback-Leibler divergence from the yi points is done using
gradient descent. Obtaining a map that preserves the similarities between the high-dimensional
points.

In Figure 4.5 we depict the distribution of the GEOs according to the tSNE representation of
the clusters they are assigned to.

Once the GEOs were clustered, we trained a LSTM model with data from the 20 most-affected
GEOs, which we call reference, and 15 different LSTM models using data from all the GEOs in
each of the 15 clusters, which we call cluster. We used March 11th, 2020 as the starting date
for training the models. After training we evaluated the reference and all the cluster models on
testing data for all the GEOs. We set two different periods for the testing, a short-term evaluation
(from December 1st to December 21st) and a long-term evaluation (from from November 1st to to
December 21st) in 2020. In order to minimize the number of models in our bank (we wanted less
than 15 models for the sake of avoiding overfitting) we selected the model with the lowest MAE per
100K inhabitants in each GEO, applying Occam’s razor principle. With the aim of lowering the
number of clusters we compared the performance of the reference model with the best performing
cluster model, assigning a GEO to the reference model when similar performance was achieved,
ending with a bank of nine models: the reference model, applied in 135 GEOs; and eight cluster
models applied in the remaining GEOs. In Figure 4.6 we show the result of the clustering of GEOs
using 15 clusters, with the geographical distribution of each cluster. And in Figure 4.7 we show
the final predictor model assigned to each GEO.

A visualization of the cluster and model assignments can be found here2.
2 https://tinyurl.com/cjstz4yc

https://tinyurl.com/cjstz4yc


32 4 ValenciaIA4Covid

Fig. 4.5: tSNE spatial distribution of the clusters.

LSTMs Architecture. We implemented two different LSTM-based architectures, as shown
in Figure 4.8 (right): one for the reference model and the other for each of the eight cluster
models. The reference model includes a convolutional layer with ReLu activation function and a
bidirectional LSTM followed by a dense layer. Each convolutional layer has 64 filters of size 8. This
reference model generalized well for 135 GEOs.

The cluster models consist of a stacked version of the architecture of the reference model, with
two convolutional layers and two stacked bidirectional LSTMs. Each convolutional layer also has
64 filters of size 8 with ReLu as the activation function and add a final dense layer. After the
double 1D convolution spans the characterization of the input sequence, the first LSTM encodes
such a characterization in states of 64 dimensions (bidirectional) and feeds into the second LSTM,
whose units can now operate at a different time scale. This added complexity enabled the models
to perform well in the GEOs where the reference model did not. After model selection, we obtained
a bank of eight different cluster models.

4.2.2.2 Action branch

In this case we set a configuration with one LSTM followed by two dense layers to smooth the
output. As in [27], a sigmoid activation function was used to fit the action layer’s output in the
range [0,1]. Considering that the increase of the stringency of an NPI should not decrease its
effectiveness, g is constrained to satisfy the condition: if min(A − A′) ≥ 0 −→ g(A) ≥ g(A′).
This constraint is enforced by using the absolute value of all trainable parameters of g after each
parameter update. In order to keep the raw NPI constraints no convolution is considered here.
The ValenciaIA4COVID predictor just takes into account the confinement NPIs, so each Ajn is an
8-dimensional vector with the level of activation of the eight confinement NPIs (see Table 4.2).

4.2.2.3 Merge function.

Both the context and the action branches are fed with the data from the last 21 days that are
combined into a final dense layer to get the predicted R̂n. The outputs of each branch (h and g) are
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Fig. 4.6: Clusters obtained by using KMeans algorithm with k = 15, to the reported number of Covid-19
cases time series.

merged by the lambda function defined in 4.1. This means that the predicted R̂n provided by the
context branch is modified by the output from the action branch. The stronger the NPIs (higher
values), the larger the output from the action layer, thus reducing the context layer’s output.

4.3 Results.

For comparison purposes, we benchmark our model with the LSTM architecture provided by the
organizers of the XPRIZE Challenge trained with data from the 20 most affected countries. All
models were trained with data between March 11th and October 31st for the long-term predictions,
and between March 11th and November 30th for the short-term predictions. Below are the MAE
per 100k and the MeanRank results when testing our model in the short-term (≈ 3 weeks ahead
in December) and the long-term (7-8 weeks ahead since November 1st until December 21st before
submission and December 27th after submission). In all experiments, the Valencia IA4COVID
model outperformed the basic LSTM model in both metrics, as we show in Table 4.4.

These are the results we obtained with the bank of models we submitted to the Challenge,
but soon after uploading the bank of models we realized that our predictor funcion was calling
the wrong model in two countries (we had to adjust the models in a last call procedure, that is,
few minutes before the deadline closed). Belize and Tunisia were not assigned to the right models,
which in fact were present in the bank of models. These countries being miss-assigned caused our
MAE per 100K grow in an undesired and unexpected way. We show the predictions for these two
countries obtained with the wrong and the right models in Figure 4.9.

ValenciaIA4Covid team was awarded with the 1st place of the competition (https://www.xpri
ze.org/challenge/pandemicresponse/winners-results) and $250.000 reward, being the first
time an Spanish team won an XPrize foundation prize. We appeared in media and social networks,
including the news at my alma mater http://www.upv.es/noticias-upv/noticia-12746-gana
dores-del-es.html.

https://www.xprize.org/challenge/pandemicresponse/winners-results
https://www.xprize.org/challenge/pandemicresponse/winners-results
http://www.upv.es/noticias-upv/noticia-12746-ganadores-del-es.html
http://www.upv.es/noticias-upv/noticia-12746-ganadores-del-es.html
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Fig. 4.7: Predictor model assigned to each GEO. Models 0 and 1 correspond to the reference model, 2 to
9 to the clustering models in our bank of models. Null corresponds to Mauritania and Yemen, GEOs in
which we use an heuristic based on their historical Covid-19 cases because of the abundance of noise in
their reported data.

Table 4.4: Short-term and long-term model evaluation.

MAE per 100K MeanRank
Dates LSTM ValenciaIA4COVID LSTM ValenciaIA4COVID

Short-
term
eval

2020-12-01 -
2020-12-27

241.646586 163.031368 1.557692 1.442308

2020-12-01 -
2020-12-21

181.185431 122.563651 1.580508 1.419492

Long-
term
eval

2020-11-01 -
2020-12-27

922.339700 935.791199 1.587607 1.412393

2020-11-01 -
2020-12-21

829.750857 801.340524 1.593220 1.406780

But most important, we provided to the local Government with predictions during the worst
part of the pandemic, including evaluating different NPIs scenarios. Our models were able to predict
the start (day) and the peak (number of cases) of the third wave of the Covid-19 virus infection.
Our predicting models show to handle efficiently time series data, as it did with anomalous diffusing
trajectories. Beyond the awards, the media exposure, the papers, beyond all that, we contributed
to fight the pandemic.
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Fig. 4.8: ValenciaIA4Covid model, from our paper [20].

Fig. 4.9: Corrected and used model predictions for Belize and Tunisia.
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It’s the job that’s never started
as takes longest to finish.

Sam Gamgee, The Lord of the Rings.

Efficient RNN methods for anomalously diffusing trajectories

Garibo-i-Orts, Ò1, Baeza-Bosca, A.1, Garćıa-March, M.A.1, Conejero, J.A.1

1 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino
de Vera s/n, 46022 Valencia, Spain.

Abstract. Anomalous diffusion occurs at very different scales in nature, from atomic sys-
tems to motions in cell organelles, biological tissues or ecology, and also in artificial mate-
rials, such as cement. Being able to accurately measure the anomalous exponent associated
to a given particle trajectory, thus determining whether the particle subdiffuses, superdif-
fuses or performs normal diffusion, is of key importance to understand the diffusion process.
Also it is often important to trustingly identify the model behind the trajectory, as it this
gives a large amount of information on the system dynamics. Both aspects are particularly
difficult when the input data are short and noisy trajectories. It is even more difficult if
one cannot guarantee that the trajectories output in experiments are homogeneous, hin-
dering the statistical methods based on ensembles of trajectories. We present a data-driven
method able to infer the anomalous exponent and to identify the type of anomalous dif-
fusion process behind single, noisy and short trajectories, with good accuracy. This model
was used in our participation in the Anomalous Diffusion (AnDi) Challenge. A combination
of convolutional and recurrent neural networks was used to achieve state-of-the-art results
when compared to methods participating in the AnDi Challenge, ranking top 4 in both
classification and diffusion exponent regression.

5.1 Introduction

Randomly moving particles, in some cases, diffuse anomalously in their surrounding medium. The
concept of anomalous diffusion is defined in opposition to normal diffusion: since the movement
is random, that is stochastic, the probability P (x, t) of finding a particle at time t and position
x ∈ Rd, d = 1, 2, 3 determines the dynamics. For normally diffusing particles, its width 〈x2〉, known
as Mean Squared Displacement (MSD), grows linearly with time. This occurs e.g. in the traditional
Brownian motion and is described by a partial differential diffusion equation (e.g. see a beautiful
modern discussion on Fick, Einstein, and Smoluchowski Diffusion Equations in [29, 30]). If the
MSD does not grow linearly with time, that is 〈x2〉 ∝ tα, with α 6= 1, then the particles following
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such movement are said to anomalously diffuse in their medium. The coefficient α is known as the
anomalous diffusion coefficient.

A great variety of systems can show anomalous diffusive behavior. Furthermore, the theoretical
models best explaining such systems are also extremely heterogeneous. For example, some of the
models describe particle motion as a sequence of displacements of random lengths occurring at
stochastic times, as in Brownian motion. Hence, both positions and times are stochastic variables
whose behavior is determined by their corresponding Probability Distribution Functions (PDFs).
This behavior occurs in a wide class of models termed as continuous-time random walks (CTRWs)
[31]. A kind of CTRW showing anomalous diffusion is that in which the PDF describing the random
time intervals between successive jumps is a power-law distribution ψ(t) ≈ t−σ, and displacements
are sampled from a Gaussian PDF with variance D and zero mean. Another class of models is
obtained when, on top of a power-law PDF for the waiting times, the PDF for displacements is not
Gaussian [32]. These models are known as Lévy walks, and here the stochastic times are known as
flight times. For example, in one dimension the displacements length is |∆x| = |xi+1 − xi|, where
xi is the position at time ti, are correlated with the flight times with the conditional probability
Ψ(∆x|t) = 1

2δ(|∆x| − vt) where v is the velocity. A model which results from the motion of a
Brownian particle whose diffusion coefficient varies in time is the annealed transient time motion
(ATTM) model [33]. Other models are obtained considering a variety of situations and geometries,
like the bouncing of a particle in a set of regions with partially transmitting boundaries of stochastic
heights [34], interactions between heterogeneous partners [35], the movement of a particle in an
environment with critical behavior [36], etc. Another class of models can be defined from the
Langevin equation: the stochastic differential equation governing the movement of a single particle
with stochastic noise driving its movement (and modeling an environment interacting with the
particle). Here, one may consider that the noise is non-white (termed as fractional Gaussian noise),
with a normal distribution with zero mean but power-law correlations between the noise at different
times. The resulting models are known as fractional Brownian motion (FBM) models [37, 38]. Yet
another class of models is obtained when, in the Langevin equation, one considers time-dependent
diffusivity, even with white Gaussian noise [39]. This is known as scaled Brownian motion (SBM).
For the anomalous diffusing case, the diffusivity has power-law dependence with respect to t. See
a review of anomalous diffusion models in [40].

The anomalous diffusing behavior is diverse and, indeed, it can be best explained with many
different theoretical models. The behavior is very different attending at the anomalous diffusion
coefficient, α. A limiting behavior occurs when α is close to 0, as then the width of the PDF
describing the position and times of particles does not change in time, being regarded as a trapping
situation. If α lies in the interval 0 < α < 1, the diffusion is called subdiffusive, while if α > 1,
it is called superdiffusive. The larger α we consider here is α = 2, which is conventionally called
ballistic motion and, of course, α = 1 corresponds to normal diffusion. We do not consider here
values of α larger than two, which are of course possible, and correspond to stochastic acceleration.

Then, a diffusing process of which one has access to the series of positions and times of a
randomly moving particle, can be characterized by the anomalous diffusion coefficient and the
model which betters explains its behavior. The tools which permit to do this characterization
depend strongly on the availability of data. First, a possible situation is that we can guarantee the
following two conditions in the experiment: i) a large quantity of long-enough trajectories can be
obtained; ii) one can assure a homogeneity condition. This last condition means that all particles
correspond to the same process over the whole experiment and can be assigned the same model
and anomalous diffusion coefficient. In such a case, one can characterize the system performing
an ensemble average between all trajectories [40, 41]. A second possible situation is that one can
assure the following conditions: i) one can obtain a very long trajectory; ii) one can assure that
the particle’s behavior does not change during the whole experiment; iii) one can assure that the
behavior is ergodic, that is, that, with sufficient time, one realization of the experiment explores
all possible configurations of the system. In such a case, one can use time averages to extract
information of the process. But a third possible scenario is that in which the experiment is such
that it may happen one or more of the following: i) the trajectories one can access are short; ii) one
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cannot assure that all trajectories of different particles are homogeneous; iii) one can only access
to one or a few trajectories. In such case, to assign a single short trajectory to a diffusion process
characterized by a theoretical model and an α one has to find alternative tools to ensemble and
time averages of high-quality data. One possible route is to use an approach based on a machine
learning tool. In this paper, we present a high accuracy tool based on a particular kind of artificial
recurrent neural network that has shown its utility and good performance when dealing with time
series: the Long short-term memory (LSTM) architecture [5, 6].

Large theoretical efforts have built a battery of statistical techniques to find out the anomalous
exponent given these difficulties. A non-comprehensive list includes Ref. [42] where a method based
on the mean maximal excursion method was proposed, Refs. [43, 44] where a Bayesian estimation
was proposed and tested for FBM processes, Ref. [45] where a method based in a fractionally
integrated moving average was introduced, Ref. [46] where the large deviation theory of time-
averaged statistics [47] was used to find some stochastic properties of measured trajectories, Ref.
[48] where a statistical inference approach designed to find interactions between moving particles
was used in experimental data, and Ref. [49, 50] where a method based in the information contained
in the power spectral density of a single trajectory was proposed (for reviews and other methods see
also [51–53]). Also, a Bayesian approach to test among different types of motion, which includes free
motion (normal diffusion) and subdiffusion, was proposed in [54]. This paper considers other two
types of motion: (i) confined diffusion, where particles cannot exit some structure, say a sphere
in three dimensions [55]; and (ii) directed motion, where there is some flow in the ensemble of
Brownian particles, for example, due to Brownian motors [56], which results in a ballistic MSD.
On the other hand, statistical methods have been used to distinguish among models. For example
in [57, 58] methods were introduced to distinguish among FBM and CTRW; in [59] an algorithm to
identify and characterize FBM was introduced; Ref. [60] presents a Bayesian method to distinguish
among Brownian motion, SBM and FBM (see also [61]); finally in Refs. [62, 63] it is discussed a
method to distinguish among different physical origins for subdiffusion, which in turn point out to
the different possible theoretical models.

Very recently, there has been a sudden growth of proposals that face this same problem with
machine learning tools. A random forest classification algorithm was used to distinguish among
directed motion, normal and anomalous diffusion, was introduced in [64] and was extended to
include confined motion in [65]. A random forest was also used to classify trajectories as CTRW,
ATTM, FBM, and LWs in [66] and also to assign an α single trajectories (see also [67, 68] where
random forest and gradient boosting was used to classify among normal, super- and subdiffusion).
In [69] a recurrent neural network was used to extract the exponent from a single short trajectory,
even when the trajectory is sampled at irregular times. Also, in [14] a recurrent neural network is
used to classify between the five models described above (CTRW, FBM, ATTM, LW, SBM) and
obtain the anomalous exponent. In [70] a recurrent neural network was used to estimate the Hurst
exponent of an FBM. A set of convolutional neural networks used to classify among Brownian
motion, FBM, and CTRW, with simultaneous estimation of Hurst exponent H (which is related
to the anomalous exponent α as H = α/2) for FBM and the diffusion coefficient for Brownian
motion, was presented in [71]. A convolution neural network was also used in [72] to classify
trajectories as normal diffusion, anomalous diffusion, directed motion, or confined motion, and
compared with random forest and gradient boosting. A combination of classical statistics analysis
with supervised deep learning (a deep feed-forward neural network to cluster parameters extracted
from the statistical features of individual trajectories) was used to classify among FBM, ATTM,
CTRW, SBM, and LWs, and to infer α was introduced in [16]. A recent review on machine learning
in the nearby field of active matter can be consulted in [73].

This research effort was the reason why the Anomalous Diffusion (AnDi) Challenge was
launched in March 2020 (http://www.andi-challenge.org) [10, 74]. Similarly, as References [14, 16],
the research described in this paper was a response to this challenge. The tasks in this challenge
were, for short, noisy trajectories either in one-, two- or three dimensions: i) to propose and test a
method able to distinguish among FBM, CTRW, ATTM, SBM, and LWs; ii) to propose and test
a method to get the anomalous exponent. Here we present the tool which performed among the
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best ones in all these tasks and was best in the first task in one dimension. After a brief discussion
of the experimental context for anomalous diffusion in next subsection, we describe in Sec. 5.2 the
details of the method. In Sec. 5.3 we present the results obtained for both tasks, that is, inference
of anomalous diffusion and classification according to theoretical model. We offer our conclusions
in Sec. 5.4.

Fig. 5.1: Schematic of the methods. Top: Schematic of the method used for regression. Down: Schematic of
the method used for classification.

5.1.1 Anomalous diffusion in experiments

Anomalous diffusion occurs in a plethora of experimental situations, ranging all scales [75, 76].
The smallest scale we are aware of occurs at the level of atoms, particularly in experiments with
ultracold atoms [77–79] and also of quantized vortices in Bose-Einstein condensates [80]. Also,
examples exist for ions in solutions [81]. Many experiments show anomalous diffusion in biological
systems. For example, transient anomalous diffusion occurs for telomeres motion in the nucleus of
cells [50, 82, 83]. Generally speaking, the recent developments in single-particle tracking techniques
have boosted a revolution in cell biology [84], and several experiments have found anomalous
diffusion, e.g. in the plasma membrane [85, 86] or in the cytoplasm [87–90]. Also, anomalous
diffusion occurs in larger systems, like in worm-like micellar solutions [91], yeast cells [92], water
in porous biological tissues [93–95], in cement-based materials [96], or ecology (see e.g. [97]).

The characterization of the kind of model that better explains the data obtained in an experi-
ment and the associated anomalous exponent takes on key importance in many of these systems.
For example, there has been large discussion on the underlying diffusion model and ergodicity
which occurs in the experiments in [92, 98] (see [57, 99–101]). Also, since diffusion is the cen-
tral transport mechanism in biological cells, if it is anomalous, it impacts how the system works.
For example, it has been discussed that it may have an impact in chemical reactions [102]. Also,
anomalous diffusion is compatible both with ergodic behaviors and non-ergodic behaviors, where
a single realization does not explore all possible configurations (realizations) of the system. In the
context of diffusion, one has weak ergodicity breaking if the averages taken over a single realization
in infinite time do not equal ensemble averages over many realizations [40]. Also, for ultra-weak
ergodicity breaking time and ensemble averages differ by a constant factor [103, 104]. Processes like
CTRW, ATTM and SBM show weak ergodicity breaking [33, 86, 105], whereas Brownian motion
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and FBM are ergodic (this should be taken with care, as for example, it is shown in [106–108], the
ergodicity of FBM requires a closer analysis). This is thus an important feature that may mark
the ability to distinguish between models. Experimental signals are always noisy (e.g. in single-
particle tracking, due to localization precision [109]). Often noise hides non-ergodic behavior [110]
and hinders statistical analysis. Also, experimental trajectories are often short, depending of the
kind of experiment [111]. Finally, one may not be able to assure that, in a biological system, that
the measure trajectories are homogeneous. Therefore, a tool able to characterize diffusion from a
single trajectory which is the output of an experiment, which is short and noisy, will find a great
utility in a plethora of applications.

5.2 Description of the method

5.2.1 Generation of training and validation sets

The performance of a supervised machine-learning technique depends greatly on the quality of the
data used to train. In this subsection, we discuss how we designed the training and validation sets,
with the goal to have an homogeneous enough training set, that is, containing enough instances of
all five models and a variety of anomalous coefficients, α, and trajectories lengths, yet being not
too big, and hence computationally tractable.

To build the training and validation data set, we used the code provided in the AnDi Challenge
[10, 74] that is freely available at https://github.com/AnDiChallenge on GitHub. We thus
considered trajectories generated by the five classes (ATTM, CTRW, FBM, LW and SBM), with
lengths ranging from 10 to 1,000. Considering steps of size 10, it makes 100 possible different
trajectory lengths. Taking into account that in some models, a change in the regime is likely to
show at some point in the trajectory, multiplying by a factor of 100 we can ensure at least one
trajectory of each type in each part of the trajectory. Not all models can cover the whole range of
diffusion coefficients. We considered values of α in the range from 0.02 to 1.95 with increments of
0.05, which means 19 different possible values for α. Note that the resulting set is imbalanced with
respect to the models (e.g. CTRW is more represented than FBM in the subdiffusive regime, and
LW is more represented than FBM in the superdiffusive regime). Putting all together, a data set
of size 106 to ensure that, on average, at least one trajectory of each possible type will be present
in the data set. We also consider trajectories with signal-to-noise ration (SNR) equal to 1 and 2,
so this increases the recommended dataset size up to 2 ·106. We use then sizes equal or larger than
this number. As it can be seen in [10, Fig.2] the performance of the models is not improved if we
increase the SNR from 2 to 10.

In Table 5.1 we show the number of trajectories used for regression. In both tasks, we split
available training data into training (90%) and validation (10%) independently at each epoch.
The models are trained until no improvement was achieved after 10 consecutive epochs. We point
out that when training and testing models were imbalanced. The reason is that when testing our
models against the validation set provided by the organizers and some other validation datasets
generated by us, we notice an improvement in the performance with the size of the training dataset.
Moreover, it is worth mentioning that the validation dataset provided by the organizers contained
only 10k trajectories, and in our case, our validation datasets were at least of size 200k trajectories.

5.2.2 Architecture of the method

The basic architecture used for both classification and regression consists of two convolutional
layers used to extract spatial features from the trajectories. An initial convolutional layer is set
with 32 filters with a kernel size of 5, making a sliding window of size 5 which slides through each
trajectory extracting spatial features from them.

A second convolutional layer is used with the number of filters increased to 64 to extract
higher-level features. Depending on the task, we reduce the dimensionality by applying a maxpool

https://github.com/ AnDiChallenge
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Task Trajectory length 1D 2D 3D
Regression L ∈ [10, 20[ 8 4 4
Regression L ∈ [20, 50[ 18 12 12
Regression L ∈ [20, 100[ 4 3 3
Regression L ∈ [100, 1000] 2 2 2
Classification L ∈ [10, 1000] 4 2 2

Table 5.1: Number of trajectories per task, dimension, and length used as data set. Number of trajectories
scaled in millions, ×106.

layer (in the classification task, not in the regression task) after each convolutional layer. The
resulting encoded trajectories are fed in three stacked bidirectional LSTMs to learn the sequential
information, with a drop-out layer of the 10% of the nodes to avoid incurring into overfitting.
Different levels of dropout were considered while experimentation was in progress, ranging from
5% to 20%, being the selected 10% the one which outperformed the rest. Finally, we use several
fully connected dense layers to predict the desired information (exponent regression or model
classification).

5.2.2.1 Particularities of the method used for regression

We have used a trajectory length dependent approach by building models for different trajectory
lengths. The following bins have been used based on trajectory length: [10, 20], ]20, 30], ]30, 40],
]40, 50], ]50, 100], ]100, 200], ]200, 300], ]300, 400], ]400, 500], ]500, 600], ]600, 800] and ]800, 1000],
what makes a total of 12 different models, all sharing the same architecture. We set two convolution
layers followed by 4 stacked bidirectional LSTM layers. During experimentation having 4 stacked
LSTM layers outperformed the 3 stacked LSTM option. We have two convolutional layers followed
by 4 bidirectional LSTM blocks. After each block, a dropout layer is set. The output of the last one
feeds a one node fully connected dense layer with linear activation function to get the estimated
diffusion exponent (see Fig. 5.1, top panel).

5.2.2.2 Particularities of the method used for classification

Here we use a single model for all possible trajectories lengths and apply lead zero padding to
each trajectory to make them of the same length (1,000). During the experimentation we found
that applying dimensionality reduction layers (maxpool) at the output of each convolutional layer
helped the LSTM layers to extract better sequential information to classify the trajectories, since
doing so allowed to reduce the level of noise in the extracted features. The output of the last LSTM
layer feeds a fully connected twenty-nodes dense layer with Relu activation function to capture non-
linearity. This layer is followed by the final five nodes dense layer with softmax activation function
to obtain five different probabilities for each trajectory to belong to one of the five possible models
(see Fig. 5.1, bottom panel).

5.3 Results

5.3.1 Inference of the anomalous diffusion exponent

Here we present the results for one dimensional trajectories, while this tool was also used in two
and three dimensions. The results in two and three dimensions are qualitatively similar, so for
clarity and brevity we choose to discuss only the one dimensional case. The tool is available in
the web site of the AnDi Challenge http://andi-challenge.org/ and therefore results in all
dimensions can be accessed there. Additionally, the code is available in https://github.com/AnD
iChallenge/AnDi2020 TeamM UPV-MAT.

http://andi-challenge.org/
https://github.com/AnDiChallenge/AnDi2020_TeamM_UPV-MAT
https://github.com/AnDiChallenge/AnDi2020_TeamM_UPV-MAT
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To evaluate the accuracy of our results, we calculate the Mean Absolute Error (MAE) between
predicted numerical αnum and the ground truth value αGT. For N trajectories in the test set we
compute the MAE as

MAE = 1
N

N∑
j=1
|αj,num − αj,GT|, (5.1)

where the subindex j refers to the j-th trajectory. In the test set we included N = 2000 trajecto-
ries of increasing length L ∈ {20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 800, 1000}, resembling the
binning carried out in the training.

We used a pool of models: trajectories generated with a CTRW, FBM, LW, SBM, and ATTM.
The trajectories produced with ATTM and CTRW are subdiffusive, i.e. 0 < α ≤ 1 while the
trajectories produced with LWs model are only superdiffusive, i.e. 1 ≤ α ≤ 2. Those produced
with SBM and FBM cover the whole range of anomalous exponents, 0 < α ≤ 2. Each trajectory
is corrupted with some noise. To this end we consider the standard deviation of the displacements
σD and add some Gaussian noise, with a standard deviation σnoise, which is some portion of the
σD. The SNR is thus SNR = σD/σnoise. We evaluate moderate and high noise, that is SNR = 2
and SNR = 1, which therefore means that σnoise is half of σD or coincides with it. In Fig. 5.2 we
plot the MAE as a function of length for different lengths of the trajectory and the two different
noise levels.
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0.30

M
A
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Fig. 5.2: Inference of the anomalous exponent α as a function of length. MAE as a function of length for
SNR = 2 and SNR = 1 (that is σ = 0.5 and σ = 1).

As expected, the MAE gets better as the trajectories get larger. Mean absolute error improve-
ment stabilizes around L = 500. Also as expected the results for SNR = 2 (σ = 0.5) are better
than for SNR = 1 (σ = 1), for all lengths. For the length L = 20, with the current architecture,
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MAE between 0.3 and 0.45 are reached, which we set as a validity limit of the model. In Fig. 5.3
we plot the MAE as a function of length for the different models and those above two different
levels of noise.
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Fig. 5.3: Inference of the anomalous exponent α as a function of length for different theoretical models.
MAE as a function of length for (a) SNR = 2 and (b) SNR = 1. Vertical dotted lines signal results at
L = 50, 100, 200, to help discussion.

The results show an abrupt change in accuracy in the range 20 < L < 300 for the SBM model
for both levels of noise. For short trajectories (L < 50) and lower level of noise, SNR = 2, ATTM
and SBM behave similarly but worse than CTRW, FBM, and LW. We recall that, by definition,
both models display diffusive properties that vary with time and, therefore, they are the most
challenging models to be determined. It seems that the deterministic time-dependent changes in
the diffusivity of the SBM can be captured when trajectories are long enough L > 300. However,
the ATTM is worse identified than the others, for L > 200, due to the random diffusion coefficient
changes in time. This is probably because deterministic changes can be better identified and random
changes as long as enough information is provided. Surprisingly, for larger noise (SNR = 1) and
short trajectories (L < 50), ATTM have similar performance as the rest of models, while SBM
keeps performing worse than any model. Nevertheless, ATTM reduces MAE as L is increased
quite slowly (L > 50). Conversely, FBM, LW and CTRW quickly improve their MAE for short
trajectories (L < 50), showing already reasonably good MAEs starting at lengths around L = 100.
Finally, since ATTM, FBM, LW and CTRW show quite stable MAEs in the range 100 < L < 300,
we note that most of MAEs change in Fig. 5.2 in this range is due to the trajectories generated
with the SBM model.

It is interesting to fix length, and have a closer look on how the model works for different
values of the anomalous exponent. This is what we show in Fig. 5.4. Here, given a length L
and a SNR value, we perform calculations for ground truth values of the anomalous exponent in
the interval αGT ∈ [0.1, 1.9], in discrete increments of ∆α = 0.1. Here, we have also calculated
the f1-score, which is defined as f1 = 2TP

2TP+FP+FN , that is, twice the ratio of true positives (TP)
over twice the true positive plus the number of false positives and false negatives of trajectories
in the test set, N . We consider a TP when the predicted value of α, αnum, lies in the interval
[αGT −∆α/2, αGT +∆α/2].

With regards to the f1-score, we observe that there is an abrupt change at normal diffusion,
where α = 1, which is more abrupt for long trajectories. We remark that not all models are used
at all values of α (as we commented, ATTM and CTRW are restricted to α ≤ 1 and LW to α ≥ 1).
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Fig. 5.4: Inference of the anomalous exponent α for different values of the ground truth. f1-score and MAE
for SNR = 2 (a) and (c) and SNR = 1 (b) and (d), for L = 20, 50, 200, 500 and 1000 (see legend) and
trajectories in one dimension. Dotted vertical line signals normal diffusion.

We note then that at α = 1 calculations are made with all five models. Also, the results are slightly
better for α > 1, which is also due to the existence of three models in this range, instead of the
four models in the range α < 1. Also, notice that below α = 1 we consider the ATTM model,
which as shown in Fig. 5.3 has a lower accuracy. We also appreciate, that the longer the trajectory
is, the higher the f1-score is. However, from L = 500 up to L = 1000 it seems that the gain is
very small when increasing the trajectory length. Respect to the MAE, the results are more or less
stable around α = 1 and get worse for shorter trajectories. Nevertheless, it shows pronouncedly
that for short trajectories and closer to α = 0 and α = 2 the error increases. This also occurred in
the figures for f1-score, but only for α < 1. For longer trajectories this effect is reduced and even
inverted close to α = 2.

We plot in Fig. 5.5 the distribution of α predicted as a function of the ground truth α, for the
pool of models and two different lengths and noise levels. Since the dataset is generated with an
equal number of trajectories of each model, and there are 4 models in the subdiffusive regime and
3 in the superdiffusive one, there are more trajectories in the left part of the pictures. The spread
around the correct value in the diagonal is similar at both sides of α = 1. Also, the distribution is
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Fig. 5.5: Distribution of the predicted anomalous diffusion coefficient as a function of the ground truth, for
all models. In (a) and (b) we plot the distributions for L = 20 and SNR = 2 and SNR = 1, respectively.
In (c) and (d) we plot them for L = 500 and again SNR = 2 and SNR = 1, respectively.

wider for shorter trajectories than for longer trajectories (top panels versus bottom panels). Noise
seems not to have a large impact in the results shown here. Finally, the decrease in the performance
around α = 1 agrees with the results in Figure 5.4.

To get further insight, we fix the length and SNR and we plot, for each model, the MAE and
f1-score for different values of the α in the interval [αGT−∆α/2, αGT +∆α/2], for L = 20 and two
different levels of noise (see Figs. 5.6 and 5.7). Notice that the range of α covered by each model
is different.

In Fig. 5.6, we observe that the anomalous exponent inference of ATTM and SBM is poorer
that in the rest of models. Similarly, the MAE gets worse as long as we approach to the limits
of the exponent range: α = 0 and 1 for ATTM and α = 0 and 2 for SBM. On the contrary, the
CTRW and LW, that they not cover the whole exponent range, respond better when approaching
to the limits away different from α = 1. Lastly, the anomalous exponent is easier to identify for
the FBM in the subdiffussive regime.

In Fig. 5.7 we plot the same for L = 500. Here, the better predictions are obtained for the
CTRW and LW models. The worst results are exhibited for the FBM and SBM around the normal
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Fig. 5.6: Inference of the anomalous exponent α for different values of the ground truth and for different
theoretical models. For L = 20, F1-score and MAE for different values of ground truth anomalous exponent
for SNR = 2 in (a) and (c); and the same for SNR = 1 (b) and (d).

diffusion regime. This is probably due to the fact that around α = 1 we can find trajectories of
all models, which confuses the predictions of the models that really exhibit trajectories with this
diffusion exponent. We also see that the performance of the FBM decreases a lot around α = 0
with high noise. Lastly, an increase of the length neither helps to improve the performance of the
ATTM around α = 0.

We finally plot in Fig. 5.8 the average of the α predicted as a function of the ground truth α
for each model and two different lengths and noise levels, which disaggregates the results shown in
Figure 5.7. Interestingly, in short trajectories, the predicted values of α in the subdiffusive regime
tend to be higher than the ground truth. Conversely, in the superdiffusive regime, they tend to be
slightly smaller than ground truth α. Nevertheless, we only find a clear bias for long trajectories
in the ATTM model, which tends to predict smaller values than the real ones close to α = 0, and
in the LW around α = 1.
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Fig. 5.7: Inference of the anomalous exponent α for different values of the ground truth and for different
theoretical models. (a) F1-score and (c) Mean absolute error for different values of ground truth anomalous
exponent for L = 500 and SNR = 2; (b) and (d) same for SNR = 1.

5.3.2 Diffusion model classification

The second task is to predict the model which explains better the trajectory at hand. In Fig. 5.9 we
plot the f1 score as a function of trajectory length, showing the expected behavior (better results
for longer trajectories and less noise). Similarly to the previous task there is a stabilization of the
improvement of f1 score around L = 400.

We also plot the f1 score as a function of trajectory length for the different models and two noise
levels in Fig. 5.10. Here, one can observe that the f1 score is always larger for LWs and stabilizes in
a large value for both levels of noise even at shorter lengths. Again, ATTM is the one that behaves
the worst for all lengths. Finally, SBM also behaves worse than all other models except ATTM
but, reminiscently of previous task, it improves faster than the rest of models for the larger level
of noise.

We plot some exemplary confusion matrices in Fig. 5.11, for different lengths and noise levels.
As shown before, the identification of the LW is very clear, even in short trajectories. In this
case, the short trajectories of the rest of the models are often confused with the FBM. Again, the
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Fig. 5.8: Average of the predicted amomalous diffusion coefficient as a function of the ground truth, for
each models. In (a) and (b) we plot the average for L = 20 and SNR = 2 and SNR = 1, respectively. In
(c) and (d) we plot them for L = 500 and again SNR = 2 and SNR = 1, respectively.

CTRW and FBM are more accurately classified than the ATTM and SBM models. Finally, for long
trajectories, we also observe that the ATTM is the worst classified method. We also note that the
performance of the SBM was equally bad as the ATTM in short trajectories but increases quite a
lot when the trajectories length increases.

Finally, we note that the results showed in Fig. 5.2 gave some hints on the model classifier. As
commented, for moderate noise, SNR = 2, ATTM and SBM follow the same behavior (abrupt
change below L = 300 and stabilization for L > 300). As we see now, the SBM is harder to identify
with smaller noise than ATTM in short trajectories. However, the model classifies a little better
ATTM. We can see that for short trajectories, with a larger SNR, the confusion between ATTM
and SBM decreases.
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Fig. 5.9: Diffusion model classification’s f1 score as a function of length for two levels of noise in one
dimension.
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Fig. 5.10: Diffusion model classification as a function of the trajectories’ length for different models f1
score as a function of length for (a) SNR = 2 and (b) SNR = 1 for one dimension.
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Fig. 5.11: Confusion matrices, calculated for L = 20 with SNR= 2 (a) and SNR= 1 (b), and for L = 500
with SNR= 2 (c) and SNR= 1 (d).

5.4 Conclusions

We presented the computational tool we used to participate in the AnDi challenge, which took
place in 2020 (http://www.andi-challenge.org) [10, 74]. In the challenge the tools presented
here ranked among the top 4 in all tasks, being the best in the regression task in one dimension.
Besides, in the classification task, it ranked fourth in one dimension. With a similar model used
with vectors containing all the trajectory coordinates, the model ranked third in two dimensions
and second in three dimensions. The tool is a combination of convolutional and recurrent neural
networks based on bidirectional LSTM blocks.

For task 1, i.e. inferring the anomalous exponent for a single trajectory, we obtain good MAEs
below 0.2 for trajectories over length L = 200, even for the largest level of noise considered here.
Also, for shorter trajectories we obtain reasonably good MAEs, finding a limit around L = 50. No
further information is supposed to be at disposal when analyzing a single trajectory, if one wants
to infer the associated anomalous coefficient. Anyhow, it is illustrative to study whether the MAE
is different if we test the model only with trajectories generated with one model. We found that

http://www.andi-challenge.org
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the worst performing for short trajectories are ATTM and SBM. Also, it is informative to see if
the behavior error is larger if the analyzed trajectory has an α close to one or zero. We found that
the error is much closer to normal diffusion, as expected, and in some cases closer to the limit of
very trapped trajectories (α = 0) and close to ballistic motion (α = 2). Also, we showed that the
dispersion on the predicted values of α is larger for shorter trajectories, as expected.

For task 2, i.e. classification of trajectories, the code should be able to assign a theoretical model
to a given trajectory with large accuracy. Again, we found that we were able to obtain f1-scores
above 0.8 for long enough trajectories, with the accuracy dropping down for shorter trajectories
and finding again a limit around L = 50. Again, no further information is supposed to be associated
to the trajectory. But for academic information, we studied how f1-score changes if we consider
only trajectories of one of the models. We found again that the worst behaving models are ATTM
and SBM. Finally, the confusion matrices show LW is easily identified and not confused with other
models. This is to be expected as this model has peculiarities very different to other models, i.e. the
correlation between step length and time waited. Also, all models are often confused with FBM.
Finally, CTRW and FBM are more accurately classified than the ATTM and SBM models, and
for long trajectories, the ATTM is the worst classified method.

In summary, the tool presented here offers good accuracies in both tasks. Dimensions two and
three have not been discussed here, but the results are shown in [10]. The model shows, in higher
dimensions, similar performances as the best performing methods in the challenge. As an outlook,
we aim at using this tool in the task 3 of AnDi-Challenge, where one has a trajectory which changes
behavior (anomalous coefficient or diffusion model) in an intermediate point, and the goal is to
find accurately this point. First trials with our tool showed good results, and we will explore this
in the future.
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A room without books is like
a body without a soul.

Marcus Tullius Cicero.
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Abstract. Anomalous diffusion is present at all scales, from atomic to large scales. Some
exemplary systems are; ultra-cold atoms, telomeres in the nucleus of cells, moisture trans-
port in cement-based materials, the free movement of arthropods, and the migration pat-
terns of birds. The characterization of the diffusion gives key information about the dy-
namics of these systems, and provides an interdisciplinary framework with which to study
movement. Thus, the problem of identifying underlying diffusive regimes and inferring
the anomalous diffusion exponent α with high confidence is critical to physics, chemistry,
biology, and ecology.

Classification and analysis of raw trajectories combining machine learning techniques with
statistics extracted from them have widely been studied in the Anomalous Diffusion Chal-
lenge (Muñoz-Gil et al, 2021). Here we present a new data-driven method for working
with diffusive trajectories. This method utilizes Gramian Angular Fields (GAF) to en-
code one-dimensional trajectories as images (Gramian Matrices), while preserving their
spatio-temporal structure for input to computer-vision models. This allows us to lever-
age two well-established pre-trained computer-vision models, ResNet and MobileNet, to
characterize the underlying diffusive regime, and infer the anomalous diffusion expo-
nent α. Short raw trajectories, of lengths between 10 and 50, are commonly encoun-
tered in single-particle tracking experiments and are the most difficult to characterize.
We show that by using GAF images we are able to outperform the current state-of-
the-art, while increasing accessibility to machine learning methods in an applied setting.
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6.1 Introduction

Computer vision models, by themselves, are unsuitable for sequence processing since the temporal
structure of sequential data has few similarities with static images. An image of a dog is an image
dog irrespective of its orientation. On the contrary, when dealing with sequences, like natural
language, the order of words is highly relevant to the meaning of a sentence. Similarly, in a diffusive
trajectory, the order in which features appear is highly relevant to the type of diffusion. Imagine
that we have a sequence of confined diffusion. If we play the sequence backward, then it would
appear as super diffusion, as the particle would increase its mobility with time.

Recurrent neural networks (RNNs) are widely used to combat the loss of temporal information
when working with sequential data. However, RNNs have a key disadvantage since they must be
trained sequentially. This greatly increases model training time, particularly when working with
very large training data sets. Following Vaswani et al. 2017 [112], Transformers have largely taken
the place of RNNs in natural language processing (NLP), with increased performance over RNNs
and the ability to be trained in parallel [113]. However, there exists limited work in tokenizing
and positionally encoding diffusive trajectories for use with Transformers, which prevents easy
deployment of these models with one-dimensional data.

The difficulty and impracticality of designing, training, and tuning a custom machine learning
(ML) model for a limited use scenario, where no pre-trained models are available, often discard the
use of ML models in experimental settings. This has traditionally been true in diffusive studies,
where the entry barrier to deploying ML models for the characterization of anomalous diffusion
largely kept them out of the field. In fact, until the Anomalous Diffusion Challenge (AnDi Chal-
lenge1) 2020 [10], it was widely speculated that traditional statistical analysis could outperform
ML-based methods. For instance, it took several weeks for our group to develop our ML model
(ConvLSTM) based on convolutional neural networks (CNN) [1], and Long Short-Term Memory
networks (LSTM) [5]. While our model produced excellent results, it is easy to see how such a
time-consuming process could prevent the deployment of a similar solution.

The AnDi challenge showed that short trajectories were the most difficult to work with in both
classification of the underlying diffusive model and inference of the anomalous diffusion exponent
α. In this work, we will address this difficulty directly by working with short trajectories of lengths
between 10 and 50. By working with these short trajectories, we will show that by using Gramian
Angular Fields (GAFs) to leverage pre-trained computer vision models, natively available in Keras,
we can outperform custom state-of-the-art models in a way that is accessible to those without an
extensive machine learning background.

The paper is organized as follows: In Section 6.2 we review some preliminaries about anomalous
diffusion, some examples in which it can be appreciated in experiments, and a revision of some
existing machine learning models used for analysing the diffusive nature of the trajectories. In
Section 6.3, we show how to convert a trajectory into different image representations through
Gramian Angular Fields. Then, in Section 6.4 we describe the generation of the trajectories for
training and validation of the models. Later, in Section 6.5, we compare the results of the new GAF
fed computer vision models to our previous ConvLSTM model presented in the Andi Challenge
[17], and we will benchmark the best of these new models using the AnDi Interactive tool 2. Finally,
we draw some conclusions in Section 6.6.

1 http://www.andi-challenge.org
2 http://andi-challenge.org/interactive-tool/

http://andi-challenge.org/interactive-tool/
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6.2 Anomalous Diffusion

6.2.1 Intro to Anomalous Diffusion

In 1827, Brown discovered that pollen grains placed in a fluid would move randomly and diffuse
throughout the medium [114]. Due to the stochasticity of the movement, the probability P (x, t) of
finding a particle at time t and position x ∈ Rd, d = 1, 2, 3 is used to determine the dynamics of
the particle. A traditional metric, relying on the underlying stochastic nature of diffusion, is the
Mean Square Displacement (MSD). The MSD of a system (an ensemble of particles) is defined as
the average width or variance of its trajectories MSD(0, t) ≡ 〈x(t) − x(0)〉2 with respect to two
points in time. The MSD is assumed to be taken with respect to a time t and the initial time t = 0,
as such it is commonly abbreviated as 〈x2〉. For a single particle, we approximate MSD with the
time average of the MSD (taMSD)

taMSD(τ) = lim
T→∞

∫ T−τ

0
MSD(t, t+ τ)dt, (6.1)

where τ is some time interval. If MSD grows linearly with time, 〈x2〉 ≈ t, then we say that the
system diffuses normally. In contrast, anomalous diffusion happens when the MSD does not grow
linearly with time, 〈x2〉 ≈ tα with α 6= 1, where α is known as the anomalous diffusion exponent.

The diffusive behavior of a particle is known to vary greatly with α. As such, it has commonly
been used to characterize anomalous diffusion. In general there are two kinds of anomalous diffusion;
sub-diffusion, when 0 < α < 1, and super-diffusion, when α > 1. At the lower end of sub-diffusion,
α close to zero, we have particle trapping. When α is small, the width of the probability density
function (PDF) P (x, t) governing a particle’s displacements becomes small. With the subsequent
loss of variance between displacements, we have particle arrestation. At the upper end of the
super-diffusive exponent range, we have what is referred to as ballistic motion, for α = 2, and
hyper-ballistic motion for α > 2 [115]. Ballistic motion is characterized by unimpeded movement
in a single line. In this work we will only consider the case 0 < α < 2.

The exponent α alone cannot be used to characterize a trajectory. While a change in α does
indicate a different diffusive pattern, it is possible to have different underlying diffusive behaviors
with the same anomalous diffusion exponent. For example, messenger RNA (mRNA) trajectories
in a living E. coli cell can have very similar anomalous diffusion exponents while having distinct
trajectories [40]. As such, there exists a need to be able to further describe a trajectory beyond its
α.

The need to further describe the underlying movement of a subject undergoing diffusion inspired
the classification task of the AnDi challenge. Classification of a trajectory based on similarity
to a well-understood underlying diffusive regime can give more detailed information, such as its
ergodicity, than knowing the MSD or anomalous diffusion exponent α alone. Ergodicity informs
us about a possible difference between the local behavior and global behavior of a particle. In the
event that a trajectory is non-ergodic, researchers may find it important to investigate the local
behavior of the particle further to discover the source of the ergodicity breaking. In movement
ecology, ergodicity breaking can result from variation among individuals, changes in behavior in
the same individual, or the inherent heterogeneity of the landscape where resources are not evenly
distributed; see for instance [116].

Following the precedent set by the AnDi Challenge, and in order to facilitate benchmarking, we
will consider five underlying diffusive regimes, which we have summarized below. Further details
regarding the computational implementation of these models can be found in [10, 117].

• Continuous-Time Random Walk (CTRW) happens when a particle motion can be described
as a sequence of displacements sampled from a Gaussian distribution with zero mean. The
waiting times between displacements are sampled from a power-law distribution ψ(t) = t−σ

[31].
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• Lévy Walk (LW) can be considered a special case of CTRW where dispersal lengths are cor-
related with waiting times. The probability density function (PDF) that describes the ran-
dom time intervals between successive jumps is a power-law distribution ψ(t) ≈ t−σ−1 (as in
CTRW), and the probability of a dispersal of length∆x at time t is Ψ(∆x, t) = 1

2δ(|∆x|−vt)ψ(t)
[10, 32].

• Annealed Transient Time Motion (ATTM) occurs when a particle undergoes Brownian motion,
with Diffusivity coefficient Di for an interval ti. The length of the interval ti varies with Di

such that Pti(ti|Di) has mean E[ti|Di] = D−γ . Thus, for γ > 0, we would expect to see longer
periods of low dispersal Brownian motion punctuated by shorter periods of high dispersal [33].

• Fractional Brownian Motion (FBM) is defined by the Langevin equation, which is the stochastic
differential equation governing the movement of a single particle with stochastic noise driving
its movement. If the noise is not white but follows a normal distribution with zero mean and
power-law correlations between the noise at different times (fractional Gaussian noise) [37, 38].

• Scaled Brownian Motion (SBM) also derives from the Langevin equation, but in this case,
diffusivity depends on time, even with white Gaussian noise [39].

6.2.2 Anomalous diffusion in experiments

Anomalous diffusion happens in a broad range of experimental situations at all scales [75, 76]. At
the lowest scale, anomalous diffusion has been stated in experiments with ultra-cold atoms [77–79].
Experiments also show anomalous diffusion in biological systems such as the telomers’ motion in
the cell’s nucleus, where transient anomalous diffusion happens [50, 82, 83]. A revolution in cell
biology has been boosted by the developments achieved in single particle tracking techniques [84]
with experiments finding anomalous diffusion in the cytoplasm [87–89] or in the plasma membrane
[85, 86].

One can also find anomalous diffusion in bigger systems such as living yeast cells [92], worm-like
micellar solutions [91], water in porous biological tissues [94, 95], and cement based materials [96].
Anomalous diffusion can even be observed in the migration patterns of storks between Africa and
Europe. Tail winds on the storks return to Africa speeds up their journey giving a higher α for the
trajectory from Europe to Africa than from Africa to Europe [118]. Thus, given an experiment, it
is of paramount importance to characterize the model behind the data that best explains it and to
infer the associated exponent α. For example, there is an ongoing discussion about the ergodicity
and diffusion models at experiments in [57, 92, 98–101].

In the context of diffusion, a process is said to be ergodic if the behavior of a single trajectory
can be said to summarize the whole system. More concretely a system is ergodic if taMSD(τ) =
MSD(t, t+ τ). In experiments, the possibility to perform time averages for limT→∞ does not exit.
Therefore the integral in Equation 6.1 converges to a fixed constant. In this case, because Equation
6.1 cannot converge to all MSD(t, t + τ) simultaneously, the process is said to be trivially non-
ergodic [119]. Another special case of ergodicity breaking is where taMSD and MSD differ by a
constant factor. This is referred to as ultra-weak ergodicity breaking [103, 104].

The five diffusive processes explained in Section 6.2.1, have different ergodic properties. We
know that CTRW, ATTM, and SBM show weak ergodicity breaking [33, 86], whereas Brownian
motion and FBM are ergodic (the ergodicity of FBM requires a closer analysis [106–108]). Thus,
understanding the underlying diffusive model of a process is important as it can help direct further
study. For instance, if a trajectory follows ATTM it will be locally Brownian, with sharp changes
of the diffusivity coefficient D. In the context of research it may be of interest to study the cause
of the shifts in D, as this may shed light on an important behavior.

With regard to signals resulting from Single Particle Tracking (SPT), it is important to remem-
ber that these experimental signals have inherent noise, and localization precision error [109]. This
noise is problematic, as it has been known to hide non-ergodic behavior [110] and interfere with
statistical analyses. More broadly, the difficulties resulting from the realities of experimentation
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–short trajectories, noisy trajectories, and few replications– necessitate versatile tools, like those
based on ML, to be able to characterize diffusion in experiments.

6.2.3 Machine Learning and Anomalous Diffusion

The difficulty of characterizing anomalous diffusion has given rise to diverse statistical methodolo-
gies to infer the anomalous exponent for a given trajectory. To name a few: Bayesian estimation for
FBM processes [44, 120]; a statistical inference approach for finding interactions between moving
particles [48]; a method based on fractionally integrated moving averages [45]; and a method based
in the information contained in the power spectral density of a trajectory [49, 50]. Similarly, sta-
tistical methods have been used to discriminate between different diffusion models. For example,
in [60] the authors present a Bayesian method to distinguish between Brownian motion, SBM, and
FBM; and in [57, 58] we can find different methods to differentiate between FBM and CTRW.

The disadvantage of such statistical methods, both for the inference of α and determination of
the underlying regime, is that they are specific to a particular type of diffusion. Machine learning-
based inference and characterization methodology can be more flexible in that, since they can be
applied to trajectories without prior knowledge of the underlying diffusion regime. However, such
flexibility comes with the cost of lower interpretability and explainability (black box effect). Thus,
when possible, we should strive to use well-established statistical methodology as we are able to
make additional inferences based on these metrics.

The new wave of ML methods can be seen as a direct response to the realities of experimental
design, current Single Particle Tracking (SPT) technology, and the inherent noise that exists in
nature. Some of the first works in this line, include the use of random forests (RFs), which let
some interpretability. In [64] RF were used to discriminate between direct motion, normal, and
anomalous diffusion. Also, RFs were able to classify trajectories as CTRW, ATTM, FBM, or LW and
to infer the exponent α [66], and RFs together with gradient boosting trees were used in [67, 68] to
classify among normal, super and sub-diffusive trajectories. Complementary, in [72], convolutional
neural networks were used to classify trajectories as normal diffusion, anomalous diffusion, directed
motion, or confined motion and compared with RFs and gradient boosting trees.

Beyond explanatory machine learning approximations, we also find works in which a combina-
tion of classical statistics analysis and supervised deep learning (a deep feed-forward neural network
to cluster parameters extracted from the statistical features of individual trajectories) are used to
classify among the aforementioned five diffusive model, and to infer the anomalous exponent α
[16]. Some other approaches to both problems lay in the use of deep learning methods, mainly
based on LSTMs [14, 17, 69]. The role of the LSTM layers can be exchanged with Transformers,
as it has been recently shown in [19] with very competitive results for short trajectories.

6.3 Gramian Angular Fields

First discovered by J.P. Gram, Gramian Angular Fields (GAFs) provide a methodology for con-
verting a time-series, sequence, or vectors, to a matrix representation while retaining the existing
spatial and temporal relations between the terms. GAF were first used, together with Markov
Transition Fields, to feed computer vision models in Wang et al. 2015, where they were used for
time series classification and imputation [121]. Since then, it has been extensively used to perform
such diverse tasks. We only indicate a piece of them: regression of the day ahead solar radiation
[122], prediction of the myocardial infarction risk from electroencephalogram signals [123], epilepsy
detection [124], classification of human activity from sensor data [125], analysis of near infra-red
spectroscopy signals [126, 127] and photoplethysmography signals [128]. However, to the best of
our knowledge, this is the first use of GAF using computer vision models with anomalous diffusive
trajectories.
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Fig. 6.1: A normalized super diffusive Lévy flight trajectory (a). (b) The polar encode of the trajectory in
(a).

In order to encode a time series x = {x1, x2, x3, . . . , xN} of length N , we first normalize x, as
x̃ such that all its values belong to [−1, 1], see (6.2).

x̃i = (xi −max(x)) + (xi −min(x))
max(x)−min(x) , 1 ≤ i ≤ N. (6.2)

Once normalized, we convert each element in the sequence to polar coordinates. These are
encoded by the angular cosine and are stored in φ. Likewise, the temporal positions of each value
is stored in the radius r of the polar coordinates

{
φi = arccos(x̃i), x̃i ∈ x̃
ri = i

N , 1 ≤ i ≤ N,
(6.3)

where N ensures that all ri ∈ [0, 1]. As time increases, the values twist around the origin, as seen
in Figure 6.1(b). This way of encoding a time series has two important properties: (1) it is bijective
since cos(φi)) is monotonic when φi ∈ [0, π] and (2) the polar coordinates system preserves absolute
temporal relations in contrast to Cartesian coordinates.

We can benefit from the angular perspective and consider the trigonometric sum/difference
between each pair of points in the sequence in order to identify the temporal correlation within
different time intervals. This yields two representations known as Gramian Angular Summation
Field (GASF) (6.4) and Gramian Angular Difference Field (GADF) (6.5)

GASF =


cos(φ1 + φ1) . . . cos(φ1 + φN )
cos(φ2 + φ1) . . . cos(φ2 + φN )

... . . . ...
cos(φN + φ1) . . . cos(φN + φN )

 (6.4)

GADF =


sin(φ1 − φ1) . . . sin(φ1 − φN )
sin(φ2 − φ1) . . . sin(φ2 − φN )

... . . . ...
sin(φN − φ1) . . . sin(φN − φN )

 . (6.5)

In Figure 6.2, we show a sequence in its raw format (A), and the GASF (B) and GADF (C)
representations of that sequence. These GASF and GADF representations are then used to train
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two computer vision models: ResNet and MobileNet. To show how these representations maintain
spatiotemporal relations, in Figure 6.3, we can see an example of a CTRW sequence (A), the same
sequence backwards (B), and their GASF representations (C) and (D) respectively. Figure 6.3(D)
is a 180 degree rotation of Figure 6.3(C). Additionally, both images are symmetric with respect to
the main diagonal. This tells us that, for both GASF and GADF, time is encoded along the main
diagonal of the GAF matrix and the x and y axes contain the spatial relations between terms of
the sequence.

(a). Raw trajectory of length 40.

(b). GASF representation of raw trajectory

(c). GADF representation of raw trajectory

Fig. 6.2: We have a one-dimensional trajectory of length time 40 units (in a certain dimensionalized system
scale) of a particle that is initially located in the origin (a). The time steps from 1 to 40 are indicated on
the x-axis and the displacement of the points in the trajectory on the y-axis. In the GASF representation
(b), the peak on the first time step in the trajectory is converted into 2 strong vertical and horizontal lines
(index 1 and 2), as a result of the sum. In the GADF (c), we also have these stronger lines as a result of
the difference, but in the rest of the picture, these differences are almost 0.
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Fig. 6.3: In (upper left, A) we have a CTRW trajectory of length 30 time units and α = 0.2. In (upper
right, B), we have the same trajectory but reversed. In (lower left, C) and (lower right, D) we have the
GASF image associated with the trajectory and its reversed copy. We see that these images are symmetric
with respect to the main diagonal. Furthermore, we see that image (lower right, D) is a π/2 rotation of
image (lower left, C), indicating that time is encoded along the same main diagonal.

6.4 Methodology

In this work, we use Gramian Angular Summation/Difference Fields (GASF/GADF) to represent
trajectories as images in order to classify them according to their generating modeling to the five
different classes (ATTM, CTRW, FBM, LW, and SBM) mentioned above (classification task) and
for inferring the anomalous exponent α (regression task). In particular, we will focus on short
trajectories of lengths 10 to 50, since these trajectories are the hardest ones to classify [10].

With the GASF/GADF images, we will train and validate two well-known models for dealing
with the images ResNet [129] and MobileNet [130]. ResNet was created to address a loss in accuracy
as convectional networks become deeper [129]. On the other hand, as the name implies, MobileNet is
a small and efficient convolutional architecture that was designed to work well in mobile computer
vision deployments. MobileNet is composed of depth wise separable convolutions and has two
hyper-parameters, a width multiplier and resolution multiplier [130].

In order to benchmark our GASF/GADF fed Resnet and Mobilenet networks, we will primarily
use the ConvLSTM method presented in [17], which placed in the top 2 at the AnDi Challenge
2020 both in underlying diffusion model classification and α regression tasks in one dimension [10].
In short, this method combines two convolutional layers, three bidirectional LSTM layers, and a
last dense layer. It is described in Figure 6.4. Other models that present very good results can be
found in [16], [14] [19].
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Fig. 6.4: ConvLSTM model architecture used for anomalous diffusion analysis in [10, 17].

6.4.1 Generation of training and validation datasets

The quantity and data training quality greatly determine the performance of supervised machine-
learning techniques. We pretend to have enough samples of each of the five models and, simultane-
ously, cover the whole range of the anomalous exponent α. For generating the trajectories, we have
used the code provided by the organizers of the AnDi Challenge [117] which is publicly available
on GitHub at https://github.com/AnDiChallenge. The details on how these trajectories are
generated can be found in [10, 117].

In order to train our GASF/GADF fed models we generated two different training data sets
consisting of 4 · 106 trajectories each, of lengths ranging between 10 and 50. In order to work
with images of the same size, all trajectories were padded with zeros at the end of the trajectory
to ensure they were all of length 50. The first data set was used for classification purposes and
considered the five aforementioned classes (ATTM, CTRW, FBM, LW, and SBM) as labels. The
second one was built for the α exponent regression with α ∈ [0.05, 1.95] with increments of 0.05.
In cases where the type of diffusion was only super or sub-diffusive a subset of the α interval was
used. In both classification and regression, we have considered trajectories with Gaussian noise at
SNR = 1 and SNR = 2. Gaussian noise has an standard deviation σnoise which is some portion
of the standard deviation of the trajectory displacements σD. We then define the signal to noise
ratio (SNR) of a trajectory as SNR = σD

σnoise
. This means that in our noisier trajectories (SNR =

1) σnoise = σD, and in SNR = 2 σnoise = 1/2 ∗ σD.

In regression and classification, the training data sets were independently split into training
(95%) and validation (5%) at each epoch. We trained the models until we got no improvement after
ten consecutive epochs. Despite it breaks the 80/20 rule, the abundance of trajectories prevents us
from over-fitting and permits us to deploy a more robust model. Finally, we have also generated
two other data sets of 104 trajectories for testing the models and presenting the results.

6.5 Results

6.5.1 Diffusion model classification

The classification task consists in predicting which model best explains each trajectory best among
five different classes (ATTM, CTRW, FBM, LW and SBM). It is worth mentioning that the tra-
jectories following models ATTM and CTRW are always sub-diffusive, with α in the interval ]0, 1[,
while all the trajectories from model LW are super-diffusive, with α in ]1, 2[. Finally, trajectories
from FBM and SBM models take α in the full range ]0, 2[. Gaussian noise was added to each
trajectory to investigate the effect of noise in the classification. Throughout the discussion of the
classification problem, we will just show the results for SNR = 1. As expected, results will always
be better for SNR = 2, (σnoise = 0.5) than for SNR = 1, (σnoise = 1), that is trajectories with lower
noise are more accurately identified than noisier trajectories.

In order to study the performance of the different models, we consider the F1-score that is
defined in (6.6), as the harmonic mean of precision and recall

https://github.com/AnDiChallenge
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F1score = 2 ∗ precision ∗ recall
precision + recall (6.6)

We remember that the precision measures the classifier’s ability to correctly label positive
samples; see (6.7)

precision = ] correctly predicted instances
] predicted labels (6.7)

and the recall measures the classifier’s ability to find all the positive samples, see (6.8)

recall = ] correctly predicted instances
] labels in the gold standard (6.8)

It is worth mentioning that any of the combinations ResNet/MobileNet with GASF/GADF
outperforms the benchmark ConvLSTM model in classification, for every trajectory length and
noise level, as it can be seen in Figure 6.5 and in the Appendix. On average, GASF-GADF/ResNet
models achieve the best results, so we will compare them against the ConvLSTM in detail.

Fig. 6.5: F1-score is plotted against the trajectory length, with line color indicating performance for each
of the ML models tested. In (a) we see the results for SNR = 1 and in (b) and the results for SNR = 2.

In Figure 6.5 we plot F1-score as a function of trajectory length and the ML model used.
Our results from Figure 6.5 show that all of our GAF fed models are able to outperform our
ConvLSTM in classification at any trajectory length. This is important as the ConvLSTM was
the best overall model in one-dimensional classification at all trajectory lengths and at restricted
lengths [10, 50] during the AnDi challenge (Table 6.1). When we focus on F1-score as a function
of the anomalous diffusion exponent α and the trajectory length, as in Figure 6.6, we can see that
F1-score improves with increased length. Though, if we focus on the interaction of length and
α we can see that increasing length has a disproportionate effect on the F1-score for α close to
1.9 and for α ≈ 0.3. The source of this interaction is unclear. Though we do know that CTRW
and LW classification performs best and the sub and super-diffusive extremes respectively, and
FBM performs dramatically better at α ≈ 0.4 and α > 1.75 (Figure 6.7). Thus, the interaction in
question is likely due to the pooling of model performance across the five diffusive regimes.

Upon closer inspection of model performance by trajectory type (Figure 6.7, we see that the
GASF and GADF ResNet models (in (a) and (b)) perform roughly the same. However, the differ-
ence in architecture between our GAF fed computer vision models and our ConvLSTM is imme-
diately evident when we compare performance across the different trajectory types. Most notably,
classification performance of SBM trajectories nearly doubles from the ConvLSTM to either ResNet
Model. While performance across different trajectory types was found to deviate between the GAF
fed ResNet models and the ConvLSTM the relative shape of the performance curves stayed the
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Fig. 6.6: F1-scores for the GASF/ResNet (a), GADF/ResNet (b), and ConvLSTM (c) models for different
trajectory lengths and values of the anomalous exponent α for noisy trajectories with SNR = 1.

same. For instance, the curve of FBM F1-score α is roughly sinusoidal and the performance of
CTRW and LW are approximately mirror images of each other. In particular, the association of
F1score to α in CTRW and LW trajectories was also observed in the ConvTransformer [19]. Similar
performance curve shapes across different ML architectures seems to indicate that certain values
of α make some diffusive regimes appear as others. Though, it should be noted that all three of
the mentioned architectures (ResNet, ConvLSTM, and ConvTransformer) have a convolutional
component, so more would have to be done to determine that this is not the cause of the similarly
shaped curves.

While overall performance was significantly improved with our GASF and GADF ResNet mod-
els over the ConvLSTM, the greatest improvements from ResNet came from α ∈ [0.25, 0.6] and
from α >= 1.5. With smaller improvements in the classification of trajectories with α ≈ 1 (Figure
6.6). It should be noted that there are two cases where GADF/GASF ResNet classification perfor-
mance was worse than in the ConvLSTM. Most notably, the ResNet models have great difficulty
with the identification of ATTM trajectories, with F1-scores dropping below 0.2, which is what
one would expect from guessing. Then the sinusoidal shape of F1-score ≈ α of the FBM trajecto-
ries is exacerbated in the ResNet models leading to a loss of performance around α ≈ 1.25, with
performance gains elsewhere (Figure 6.7).

We have separately analyzed each diffusion type in terms of the trajectory length; see Figure 6.9.
The GADF/ResNet model significantly outperforms the benchmark for any length and anomalous
diffusion exponent α for all models. This can be clearly appreciated for LW and ATTM trajectories
of lengths greater or equal to 30. The unique exceptions are ATTM and FBM trajectories of lengths
higher or equal to 20. It seems that ResNet models try to concentrate on increasing the accuracy of
CTRW, LW, and SBM diffusion types in comparison with ConvLSTM, which is more distributed
within the five diffusion models.
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Fig. 6.7: F1-scores for the different models on noisy trajectories, SNR = 1, of all the five classes (ATTM,
CTRW, FBM, LW, and SBM) with GASF/ResNet (a), GADF/ResNet (b), and ConvLSTM (c).

Fig. 6.8: F1-scores of GASF/ResNet (a) and GADF/ResNet (b) models for SNR = 1, 2.

Finally, we have bench-marked our model using the AnDi interactive tool for trajectories of
length 10 to 50. The resulting confusion matrix can be seen in Figure 6.10 and it largely summarizes
the results we discussed in this section, where the model is best at identifying CTRW and LW
trajectories, with difficulty identifying ATTM trajectories. From the outputs of the AnDi interactive
tool we can verify that our GADF and GASF ResNet models significantly outperform the previous
top models (Table 6.1) in overall F1-score and AUC. We were able to achieve these performance
increases, without sacrificing ease of implementation in order to mantain our goal of increasing
accessibility to ML methods for characterization of anomalous diffusion. In fact, the GASF and
GADF models were significantly easier to deploy than ConvLSTM previous state of the art, and
as such should be very useful in an applied setting.



64 6 Journal article (ii)

Fig. 6.9: F1-scores of noisy trajectories, with SNR = 1, by trajectory length for GASF/ResNet (a),
GADF/ResNet (b), and ConvLSTM (c) for each model (ATTM, CTRW, FBM, LW, and SBM)

Fig. 6.10: Results of the GASF/ResNet model under the andi interactive tool.
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Team F1-score AUC Model Type
eduN 0.499 0.82 RNN + Dense NN [14]
FCI 0,525 0,86 CNN [71, 131]

UPV-MAT 0.560 0.87 CNN + biLSTM[17]
GADF/ResNet 0.581 0.89 GADF/ResNet

Table 6.1: Performance comparison of GADF/ResNet model with best AnDi Challenge models at classifi-
cation of the underlying diffusive regime in trajectory lengths 10 to 50.

6.5.2 Inference of the anomalous diffusion exponent

The anomalous diffusion exponent highly conditions how the diffusion occurs. In this section,
we will analyze and compare the performance of our GASF and GADF ResNet Models to our
ConvLSTM. In order to assess accuracy, we will use the mean absolute error (MAE) between the
exponent used to generate each trajectory αtruth and the predicted exponent value αpred. Given a
data set containing N samples, the general MAE is defines as:

MAE = 1
N

N∑
j=1
|αj,pred − αj,truth (6.9)

As with the classification task, we will compare the performance of our GAF models with the
ConvLSTM, but this time for the regression of the anomalous exponent α. Once again, GASF
and GADF fed ResNet models performed the best for noisy trajectories with SNR = 1. For
trajectories with SNR = 2, the performance of all five models tested is remarkably close, but
the ConvLSTM provides better performance at shorter trajectory lengths (Figure 6.11). Still the
difference in performance is quite marginal and we would favor the GASF and GADF ResNets
for their ease of deployment and marginally better performance in noisier trajectories. When we
consider trajectory length we have the same story. MAE is inversely proportional to the trajectory
length with all diffusive regimes following the same trend of increased performance (lower MAE)
with longer trajectory length across GASF/GADF ResNet models and the ConvLSTM (Figure
6.14)

Fig. 6.11: Models’ performance comparison for noisy trajectories with SNR = 1 (a) and SNR = 2 (b).

With regards to model performance as a function of the anomalous diffusion exponent alpha. We
can see that all three models struggle are best able to infer the α of trajectories with α ∈ [0.5, 0.8]
(Figure 6.12). We do not know what the reason for this is, but it is in opposition to the classification
task, where all models struggled to classify trajectories that were roughly normal. This seems to
indicate that the different diffusive regimes behave similarly at α ≈ 1, which is equivalent to
increasing the amount of training data at α ≈ 1. This is because our models no longer have to
account for which of the five models it is looking at in order to infer the α. Again in contrast to
what we observed in the classification task, the worse performance was had at both extremes of
each trajectories α domain. For instance MAE for CTRW was highest in all three models when
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α ≈ 0.1 and α ≈ 1.0. Likewise SBM performed worst when it was at its most super and sub-
diffusive extremes (Figure 6.14). Again we believe that this is because diffusive regimes are at their
most distinct (easiest to classify) at the extremes of their α domain. This in turn confuses our
models as they must learn specifically to infer α for a specific underlying regime. This effect would
be equivalent to decreasing the amount of training data.

Fig. 6.12: MAE of GASF/ResNet (a), GADF/ResNet (b) and ConvLSTM (c) for different trajectory
lengths and values of the anomalous exponent α on noisy trajectories with SNR = 1.

Team MAE
eduN 0,385 RNN + Dense NN [14]
FCI 0,369 CNN [71, 131]
UCL 0.367 feature engineering + NN [16]

UPV-MAT .326 CNN + biLSTM[17]
GADF/ResNet 0.33 GADF fed ResNet

Table 6.2: Regression: performance comparison of GASF/ResNet model with best AnDi Challenge models.

Lastly we show a heat map of the inference results generated using the AnDi interactive tool
in Figure 6.15. The heat map shows the distribution of the predicted α as a function of the ground
truth. More heat maps, that predicted α as a function of true α as well as the underlying diffusive
regime can be seen in Figure 6.16. Furthermore, Table 6.2 shows a summarized output of the AnDi
interactive tool for the 3 best performing models in the AnDi challenge 2020 compared to our
GADF ResNet. We can see that our GADF/ResNet outperforms the majority of them, except of
UPV-MAT, but the difference in performance is small and we can say that both models behave



6.5 Results 67

Fig. 6.13: MAE of GASF/ResNet (a), GADF/ResNet (b) and ConvLSTM (c) for different anomalous
exponents α and (ATTM, CTRW, FBM, LW, and SBM) models of noisy trajectories with SNR = 1.

Fig. 6.14: MAE of GASF/ResNet (a), GADF/ResNet (b) and ConvLSTM (c) for different trajectory
lengths of noisy trajectories with SNR = 1.
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Fig. 6.15: Results of the GASF/ResNet model under the andi interactive tool for trajectory lengths 10 to
50.

roughly the same, with the GADF ResNet model being far easier to implement, as the ConvLSTM
for inference of α is actually a compilation of 12 individually trained ConvLSTMs.

6.6 Conclusions

We set out with the objective of matching or improving the current methodology for the charac-
terization of short and noisy diffusive trajectories, while increasing accessibility to ML methods by
decreasing the difficulty of deployment. Our GASF and GADF ResNet Models outperformed the
current state of the art by a wide margin in trajectory classification, and were negligibly worse than
the best method for regression of the anomalous diffusion exponent α. These results, especially
for classification, exceeded our hopes, particularly considering the ease of implementation. ResNet
can be natively implemented by using Keras in Python, and the pyts.image package allows one to
convert time series to Gramian matrices with a single function.

Diffusion is all around us, and perturbations to a normal diffusive regime, such as confining
movement to a room, diffusion on a fractal, or even a breeze have the capability to make this
diffusion anomalous. Traditionally, particularly in a more applied setting like ecology, the lack of
tools and availability of data lead researchers to assume that movement was normal. The lens
of diffusion provides an interdisciplinary framework for the characterization of movement, which
should increase collaborations between traditionally insular fields. We hope that with the rise of
flexible tractable ML models, such as our GASF/GADF fed ResNet, facilitate a new wave of
applied interdisciplinary diffusive studies, which advance our knowledge of diffusion regardless of
scale.
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Fig. 6.16: Plots (a) and (b) show the results for the GASF and GADF ResNet models in the inference of
the anomalous diffusion exponent α. The blue star line represents the median prediction for each of the
true values and the cyan dashed line represents the true value line.
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Who in the world am I?
Ah, that’s the great puzzle.

Alice, from Alice in Wonderland.
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Abstract. We infer the parameters of fractional discrete Wu-Baleanu time series by using
machine learning architectures based on recurrent neural networks. Our results shed light on
how clearly one can determine that a given trajectory comes from a specific fractional dis-
crete dynamical system by estimating the fractional exponent and the scaling factor. With
this example, we also show how machine learning methods can be incorporated into the
study of fractional dynamical systems.

7.1 Introduction

The logistic equation introduced by May [132] models the behavior of a population that grows
exponentially, but some constraints of the environment limit this growth. We can express it as

v(n+ 1) = ηv(n)(1− v(n)), for n ∈ N0, (7.1)

where v(0) ∈ [0, 1] and η ∈ R. This equation provides the simplest example of a one-parameter
nonlinear dynamical system with nontrivial dynamics. It is very well-known that if 0 ≤ η ≤ 4, we
have a well-defined dynamical system on [0, 1]. For η > 4, we still can have a discrete dynamical
system, but this will only be defined on the complementary of a particular Cantor set in [0, 1]; see
for instance [133].

In order to incorporate some difference operator that we can later extend naturally with a
discrete fractional derivative, we can transform the logistic equation by applying the change of
variable v(n) = η

η−1u(n). In this way, instead of having a formula for computing the term u(n+ 1)
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by recurrence, we express that the forward Euler operator ∆ is equal to the nonlinear right term
of the logistic, that is

∆u(n) := u(n+ 1)− u(n). (7.2)
So, we obtain the logistic equation of parameter µ := η − 1 with the initial condition rescaled

by a factor µ+1
µ . More precisely, we have

∆u(n) = µu(n)(1− u(n)), u(0) = µ+ 1
µ

v(0). (7.3)

Wu and Baleanu [134] considered a fractional version of the dynamical system generated by (7.2)
replacing the Euler operator by the left Caputo discrete difference operator ∆α. It is interesting to
observe that with the given definition of ∆α, the fractional version of the logistic equation adopts
a convolutional form and reads as follows

u(n) = u(0) + µ

Γ (ν)

n∑
j=1

Γ (n− j + ν)
Γ (n− j + 1)u(j − 1)(1− u(j − 1)). (7.4)

Given an arbitrary condition u(0) ∈ [0, 1], the trajectory {u(n)}Nn=1 obtained with (7.4) will
be called a Wu-Baleanu trajectory. It is worth to mention that for ν = 1 and n = 1 we have
∆u(0) = µu(0)(1− u(0)), recovering (7.2) for n = 0.

There is an alternative way of deducing this equation by convolution, using the Cesàro numbers
of order ν, kν(j) = Γ (ν+j)

Γ (ν)Γ (j+1) with j ∈ N0, as kernels [135]. This representation gives an inter-
pretation of the fractional version of the logistic equation as the one that incorporates a memory
kernel in terms of a discrete parameter, thus incorporating a different measure of the trajectories.

Fixing an initial condition and a scaling factor, we can generate Feigenbaum diagrams in order
to illustrate the dynamics of this dynamical system in terms of the parameter µ, see Figures 7.1
and 7.2.

Anomalous diffusion trajectories {u(n)}Nn=1 are those whose average width or variance, com-
puted as the Mean Square Displacement (MSD) 〈u(n) − u(0)〉 do not grow linearly with respect
to n, that is 〈u2〉 ≈ nα, with α 6= 1. The exponent α is known as the anomalous diffusion ex-
ponent. Examples of models generating anomalous diffusion trajectories are: Annealed Transient
Time Motion (ATTM) [33], Continuous Time Random Walk (CTRW) [31], Fractional Brownian
Motion (FBM) [37, 38], Lévy Walks (LW) [10, 32], and Scaled Brownian Motion (SBM) [39].

Recently, within the frame of the Andi Challenge [117], machine learning methods, alone or com-
bined with some statistical measures, have demonstrated their efficiency in (i) classifying anomalous
diffusion noisy trajectories according to one of the previous five generative models and (ii) inferring
the anomalous diffusion exponent. We refer the reader to [10] and some subsequent works in which
some of these models were fully developed [14, 16, 17]; see also [19, 66, 136]. It is also worth men-
tioning the recent interest in incorporating machine learning methods and intelligent algorithms
in the study of formal mathematical problems. We can find some examples of this approach incor-
porating these techniques for the solution of nonlinear models, such as artificial neural networks,
swarm optimization, and active-set algorithms [137], or neuro-swarming heuristics [138]

Therefore, we wonder if this approach lets us infer some fractional-related trajectories’ charac-
teristics. In this work, we study if we can infer the µ parameter and the scaling factor ν of Wu-
Baleanu trajectories. We have chosen an architecture based on recurrent neural networks (RNN),
the same that provided the best results in inferring the exponent α of one-dimensional trajectories
in the Andi Challenge [10, 17], for trying to infer these parameters and measuring up to which
point there is a straightforward relation any given trajectory of this type and the corresponding
parameters µ and ν involved in generating it. To the best of our knowledge, this paper is the first to
seek this type of approach. In Section 7.2, we give some details of the model architecture, revisiting
some basic fundamentals of our machine learning models. We set the training, validation, and test
data sets, as long as the results, in Section 7.3. Finally, we draw some conclusions in Section 7.4.
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Fig. 7.1: Feigenbaum plots for the dynamical system given by (7.4) for u0 = 0.3 and ν = 0.01 (top left),
ν = 0.2 (top right), ν = 0.6 (bottom left), and ν = 1 (bottom right), For each value µ, we compute 200
terms of the sequence, and we plot the last 100 values.

7.2 Architecture of the method

We propose the architecture shown in Figure 7.3 to infer the parameters µ and ν of a given
trajectory are introduced as input. We will consider trajectories of length between 10 and 50,
which are the most frequent in experiments and the hardest to be classified [10]. Such architecture
has been successfully applied for analyzing trajectories [17] and time series [20]. It consists of three
parts:

1. First, we have two convolutional layers that permit the extraction of spatial features from the
trajectories. The first convolutional layer is set with 32 filters and a sliding window (kernel) of
size 5, which slides through each trajectory extracting spatial features from them. The second
convolutional layer has 64 filters to extract higher-level features.

2. Second, the output of the convolutional layers feeds three stacked bidirectional LSTMs layers
that permit learning the sequential information. After each of these layers, we include a dropout
layer of the 10% neurons to avoid over-fitting. We tested several dropout levels, from 5% to
20%, being 10% the one with the best performance.

3. Finally, we use two fully connected dense layers: the first one with 20 units and the second one
with 1 or 2 units. This last choice depends if we want to predict a single parameter or both of
them at the same time.

Let us briefly describe each part of the model:

7.2.1 Convolutional neural networks (CNN)

Convolutional neural networks preserve the spatial structure of data. They do so by connecting
a patch (or section) from data to single neurons, so every neuron learns the properties from this



7.2 Architecture of the method 73

Fig. 7.2: Feigenbaum plots for the dynamical system given by (7.4) for u0 = 0.8 and ν = 0.01 (top left),
ν = 0.2 (top right), ν = 0.6 (bottom left), and ν = 1 (bottom right), For each value µ, we compute 200
terms of the sequence, and we plot the last 100 values.

Fig. 7.3: Machine learning used for inferring the generating µ and ν parameters of Wu-Baleanu trajectories.

single patch, whose size is defined by the kernel size (5 in our model). By doing so, spatially close
portions of data are likely to be related and correlated to each other since only a small region of
the input data influences the output from each neuron [1, 2]. The patch is slid across the input
sequence, and each time we slide it, we have a new output neuron in the following layer. This lets
us consider the spatial structure inherent to the input sequence [3, 4]. Through these layers, we are
able to learn trajectory features by weighting the connections between the patches and the neurons
so that particular features can be extracted by each patch. By using multiple filters (32 and 64
in our case) the CNN layers are extracting multiple different features (linear and non-linear), that
feed our LSTM layers.

7.2.2 Recurrent Neural Networks (RNN)

Sequential information can be decomposed in single-time steps, such as words or characters in
language, notes in music, codons in DNA sequences, etc. So, if one considers sequential data it is
very likely that the output at a later time step will depend on the inputs at prior time steps. In
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Fig. 7.4: Basic representation of a general RNN (left). An RNN with an inner tanh activation function
(center). A scheme of an LSTM layer (right).

practice, we need to relate the information from a particular time step also with prior time steps
and pass this information to future times.

Recurrent neural networks (RNN) address this problem by adding an internal memory or cell
state, denoted by h, which is passed from the time t to the time t+ 1, that is from ht to ht+1. This
recurrent relation is capturing some notion of memory of what the sequence looks like. Therefore,
the RNN output is not only a function of the input at a particular time step but also a function
of the past memory of the cell state. In other words, the output yt = f(xt, ht−1), depends on the
current input xt and the previous inputs to the RNN ht−1, as it can be seen Figure 7.4.

An RNN adapts the internal hidden state (or memory state) ht through the result of multi-
plying two weight matrices Whh and Wxh to the previous cell state ht−1 and the current input xt,
respectively. The weight matrix Whh is modified at each time step to let the cell learn how to fit
the desired output, and Wxh is the weight matrix that modules the contribution of the input at
each time step to the learning process. The result is passed to an activation function tanh that
modifies the current state at each time step, i.e. ht = tanh

(
WT
hhht−1 + WT

xhxt

)
.

The problem with RNNs arises when dealing with long sequences since composing multiple
tanh functions entails that the hidden state tends to extinguish by reaching values very close or
equal to zero. In practice, this means that only recent cell states will modify the current cell state
or, in other words, that RNNs have short-term memory.

7.2.3 Long short-term memory (LSTM)

Long short-term memory (LSTM) [5, 6] amend the aforementioned short-term memory problem
implicit to RNN by including gated cells that allow them to maintain long-term dependencies in
the data and to track information across multiple time steps. This improves the sequential data
modeling. LSTM structure is shown in Figure 7.4 where σ and tanh stand for the sigmoid and
the hyperbolic tangent activation functions The circles in red represent matrix multiplication and
additions. An LSTM incorporates a new cell state channel c which can be seen as a transportation
band where the info is selectively updated by the new gates and is independent of the previously
defined hidden state h and, therefore, independent of what is outputted in the form of hidden state
or current time step out.

One LSTM cell’s composition can be seen in Figure 7.4 (right), and the gates are used to control
the flow of information as follows:

• The first sigmoid gate decides what information is kept or rid of. Since the sigmoid output
ranges from 0 to 1, this can be seen as a switch that modulates how much information from
the previous state has to be kept.

• The second gate, consisting of a sigmoid and a tanh functions store relevant information to the
newly added cell state channel (c).
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• Then, the outputs of the two previous gates are used to update the cell state (c) selectively.
• And the last sigmoid and tanh functions produce two different outputs; the new cell state (c),

which is forwarded to the next LSTM cell, and the current time step output, which is a filtered
version of the cell hidden state (h).

Further details about LSTM functioning and implementation can be found in [7, 8].

7.3 A general model for inferring µ and ν parameters

We have built three independent data sets to infer both µ and ν simultaneously. The train, vali-
dation, and test data sets have been built with the following parameters:

• µ ∈ [2, 3.2] with increments of 0.001.
• ν ∈ [0.01, 1] with increments of 0.01.
• trajectory length N , with N ∈ [10, 50] randomly selected.
• u0 ∈ [0, 1] randomly chosen with a resolution of 10−2.

We visit the µ range with higher accuracy, in order to capture the chaotic dynamics that appears
at some regions, see Figures 7.1 and 7.2. We iterate over the values of µ and ν for building the
aforementioned data sets. At each iteration, per each combination of µ and ν values we randomly
select 5 length value N and 5 different values of u0, one in each one of these intervals [0.0, 0.2], (0.2,
0.4], (0.4, 0.6], (0.6, 0.8] and (0.8, 1.0], thus producing 5 trajectories of different lengths. When
computing the trajectories, if we attain a value lower than -0.5 or greater than 2.0 in the trajectory,
we stop the trajectory generation and save the trajectory as it is, provided it has a length greater
than 10. The whole pool of trajectories is split into training (65%), validation (15%), and test
(20%). As a result of this procedure, we get a training data set containing 618199 trajectories, a
validation data set of 142822 trajectories, and a test data set with 190334 trajectories. The data
sets can be found in the supplementary material.

In all data sets, we pad each trajectory with 0’s at its beginning to make them of a fixed length
equal to 50. This permits homogenizing the lengths and feeding the first convolutional layer of
our proposed architecture, see [139, Ch. 5 & Ch. 9]. We used an early stopping callback with a
patience value of 20, which in practice means that the model stops training when validation mean
average error (MAE) does not improve after 20 consecutive epochs. We have used a computer with
16 cores configured with 128 GB RAM and Nvidia RTX 3090 GPU with 22 GB RAM, running
Ubuntu 20.10. The complete training process took less than 2 hours, running up to 23 epochs.

First, we provide a description of the MAE distribution in terms of the true value to be predicted
in Figure 7.5. The diagonal spot along the diagonal represents that the model predicts very well
the parameters µ and ν. On the one hand, when inferring the parameter µ, the best results are
given for medium values of µ, between 2.24 and 2.96; on the other hand, the results behave more
homogeneously for ν.

We point out that the results in Figure 7.5 do not shed light on the importance of the trajectory
length to improve the accuracy of the predictions. It is expected that the longer the trajectories
are, the lower the MAE is. In order to check it, we compare the MAE results for the shortest
trajectories, lengths between 10 and 19, and the longest ones, lengths between 40 and 50, in Figure
7.6.

Here, it is not easy to appreciate at first sight; however, looking at Table 7.1, we can see that
it really holds. We can see that, except in the last case, as we increase the trajectory length, the
results improve since the parameters can be better identified. In all cases, we are in MAEs of the
order of 10−2, that is the same order of magnitude of the ν parameter discretization, and one order
less than the µ one. This justifies our choice of a thinner discretization for µ with respect to ν.
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Fig. 7.5: Truth vs predicted values of µ and ν in the validation data set.

Length MAE (µ) MAE (ν)
10-19 0.0276 0.0211
20-29 0.0234 0.0173
30-39 0.0233 0.0164
40-50 0.0262 0.0186
All 0.0253 0.0186

Table 7.1: µ and ν MAE in the test data set.

In order to look for more insightful descriptions of the MAE, for each truth value of µ and ν
we have represented the quartiles Q1, Q2, and Q3 of the MAE error distribution in Figure 7.7.
We can see that the predictions for µ are less accurate at the extremes than in the inner region,
as we have already noticed in Figure 7.5. However, we see here more clearly, that the models are
less accurate close to the extreme values of ν = 0 and 1 due to the strong connection existing
between both scaling values. We provide a comparative of these MAE distributions for short and
long trajectories in Figure 7.8.

Due to the fractional nature of equation (7.4), the model has a memory component that is
strongly dependent on the initial condition u(0). We show boxplots of the MAE distribution in
terms of u(0) in Figure 7.9. We can see that initial conditions are more influential for µ predictions
since boxes (green) and whiskers (grey) are higher than for ν. Despite of this, in both cases, the
results are slightly worse for initial conditions closer to 1, due also to the nonlinear term of the
logistic terms of (7.4). The same conclusion can be extracted when evaluating trajectories by
length, as shown in Figure 7.10.

7.4 Conclusions

The success of machine learning and deep learning models has arrived in almost all scientific fields.
The development of mathematical proofs and arguments seems to be one of the most difficult
challenges. Nevertheless, some barriers have already fallen with the discovery of new multiplication
algorithms [140].

Machine learning methods can also help us in modeling tasks and in the search and fitting of
parameters. In this line, we have shown these methods permit us to infer the fractional nature of
a given trajectory. In particular, we have seen that such a model permits us to elucidate if, given
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Fig. 7.6: Truth vs predicted values for µ and ν in the validation data sets for trajectory lengths [10-19]
(left) and [40-50] (right).

Fig. 7.7: Quartiles Q1 (red), Q2 (blue), and Q3 (green) of the MAE distribution on the evaluation data
for µ (left) and ν (right).

a set of trajectories, we can propose a fractional model based on the logistic equation that would
represent the underlying process with reliability. Moreover, with reasonable use of resources, we
can tune the model in order to estimate the parameter of the model µ and the scaling factor ν of
the fractional discretization, within a similar order of magnitude.
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Fig. 7.8: Quartiles Q1 (red), Q2 (blue), and Q3 (green) of the MAE distribution on the evaluation data
set associated with every single value of µ and ν for trajectory lengths [10-19] (left) and [40-50] (right).

Fig. 7.9: MAE of µ (left) and ν (right) on the evaluation data set as a function of u0. The darkest region
coincides with the boxes, the medium grey stands for the whiskers and the light grey for the outliers.

We expect that this study will foster the incorporation of machine learning tools into the study
of dynamical systems and the modeling of real-life problems.
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Fig. 7.10: MAE of µ (up) and ν (down) on the evaluation data set as a function of u0 for trajectory lengths
[10-19] (left) and [40-50] (right). The darkest region coincides with the boxes, the medium grey stands for
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I remember that I am here not because of the path that lies before me,
but because of the path that lies behind me.

Morpheus, The Matrix Reloaded.

Recovering discrete delayed fractional equations from trajectories
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Abstract. We show how machine learning methods can unveil the fractional and delayed
nature of discrete dynamical systems. In particular, we study the case of the fractional
delayed logistic map. We show that given a trajectory, we can detect if it has some delay
effect or not, and also to characterize the fractional component of the underlying generation
model.

8.1 Introduction

Discrete Fractional Calculus (DFC) has recently attracted increasing attention from a growing
number of researchers. In the last years, several papers concerning this theory have appeared in
the literature and they have been essential for building its theoretical foundations.

In 1956, Kutter [141] mentioned for the first time differences of fractional order. In 1974, Diaz
and Osler [142] introduced a discrete fractional difference operator defined as an infinite series. In
1988, Grey and Zhang [143] developed a fractional calculus for the discrete ∇ (backward) difference
operator. Miller and Ross [144] defined a fractional sum via the solution of a linear difference
equation. Their definition is the discrete analog of the Riemann-Liouville fractional integral, which
can be obtained via the solution of a linear differential equation. In 2007, Atici and Eloe [145]
introduced the Riemann-Liouville like fractional difference by using the definition of a fractional
sum of Miller and Ross, and developed some of its properties that allow one to obtain solutions of
certain fractional difference equations. The presence of chaos in these models was first studied for
the logistic map [134]; see also [146] for sine maps.

Later, Wu and Baleanu also studied the chaos in a delayed version of the logistic map. They
started from an expression where the forward Euler operator ∆ was equal to the nonlinear right
term of the logistic, that is ∆x(n) := x(n+ 1)− x(n), and then they replaced the Euler operator
with the left Caputo discrete difference operator ∆α, obtaining
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x(n) = x(0) + µ

Γ (ν)

n∑
j=1

Γ (n− j + ν)
Γ (n− j + 1)x(j − 1)(1− x(j − 1)), (8.1)

where µ is a parameter and ν is a scaling factor. Such a relationship can also be obtained by
convolution, using the Cesàro numbers of order ν, kν(j) = Γ (ν+j)

Γ (ν)Γ (j+1) with j ∈ N0, as a memory
kernel in terms of the scaling factor ν [135]. Wu and Baleanu later introduced a two-dimensional
dynamical system including a delay term in [147], that reads as

x(n) = x(0) + µ

Γ (ν)

n∑
j=1

Γ (n− j + ν)
Γ (n− j + 1)x(j − 1)(1− y(j − 1))

y(n) = x(n− 1).
(8.2)

This delayed fractional discrete dynamical system also presents chaos as it can be noticed in
the Feigenbaum diagrams computed in terms of the parameter µ. As a matter of fact, in Figures
8.1 8.2, we show the Feigenbaum diagrams computed for the initial conditions x(0) = y(0) = 0.3
and x(0) = y(0) = 0.8.

Fig. 8.1: Feigenbaum plots for the dynamical system given by (8.1) for x(0) = y(0) = 0.3 and ν = 0.01 (top
left), ν = 0.2 (top right), ν = 0.6 (bottom left), and ν = 1 (bottom right), For each value µ, we compute
200 terms of the sequence, and we plot the last 100 values.

The emergence of machine learning as a research tool has been extended to almost all research
fields. It has shown its potential in Physics being used for studying anomalous diffusion noisy
trajectories, which are characterized as the ones whose variance of the mean square displacement
grows with respect to the time in terms of tα, with α being the fractional diffusion exponent [117].
Examples of models generating those types of trajectories are Annealed Transient Time Motion
(ATTM) [33], Continuous Time Random Walk (CTRW) [31], Fractional Brownian Motion (FBM)
[37, 38], Lévy Walks (LW) [10, 32], and Scaled Brownian Motion (SBM) [39].
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Fig. 8.2: Feigenbaum plots for the dynamical system given by (8.1) for x(0) = y(0) = 0.8 and ν = 0.01 (top
left), ν = 0.2 (top right), ν = 0.6 (bottom left), and ν = 1 (bottom right), For each value µ, we compute
200 terms of the sequence, and we plot the last 100 values.

Several models have been developed in the frame of the Andi Challenge for inferring the frac-
tional exponent α and for determining the generating model of 1D, 2D, and 3D noisy trajectories,
see for instance [14, 16, 17]. We refer the reader for a full comparison between these models to [10].

Machine learning and artificial intelligence methods have been also successfully incorporated
in the study of formal mathematical problems, as is the case of finding the solution of nonlinear
models [137, 138] or the recent success of discovering new multiplication algorithms [140].

Fractional models are suitable for representing dynamical systems with a memory effect, either
in space or time, due to the non-local character of fractional operators, as it can be shown in the
following examples [148–152]. There is not a universal definition of fractional derivative [153] and
in some cases, it is not straightforward to know which definition would be better to choose [154].

Recently, we have studied how machine learning models can be used in connection with frac-
tional models in order to infer the µ parameter and the scaling factor ν of the fractional version
of the logistic equation [9]. In this work, we study up to which point we can predict the µ and ν
parameters from short trajectories generated by the discrete fractional delayed dynamical system
given by (8.2). We also analyze if we can discriminate if trajectories contained a delayed component
by comparing trajectories generated by the aforementioned systems described in (8.2) and (8.1).

For this purpose, we have used a model that combines convolutional and recurrent neural
networks, that presented successful results for inferring the exponent α of anomalous diffusion
trajectories [17] and for predicting the number of new COVID19 cases [20]. We will show in which
cases we can clearly determine from a given trajectory (1) which were the parameters used for
generating them, and (2) if we can affirm that it contains a delay component or not.
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In Section 8.2, we briefly outline the architecture of the machine learning model used. We also
show how we construct the training, validation, and test data sets. We introduce the results in
Section 8.3, and we draw some conclusions in Section 8.4.

8.2 Methodology

Fig. 8.3: Machine learning architecture used for inferring the generating µ and ν parameters of the delayed
logistic model trajectories.

We start by describing our network architecture we depict in Figure 8.3 and that consists of 3
parts:

1. First, a trajectory is processed by two convolutional layers. They are intended for feature
extraction since they retain spatial structure inherent to trajectories by setting a patch, which
behaves as a sliding window, that goes along the complete trajectory, connecting each patch of
size kernel size, to a single neuron. By doing so, different neurons specialize in different regions
in the trajectory [3, 4].

The first convolutional layer consists of 32 filters, and the second one of 64, with a sliding
window (kernel) of size 5, following the doubling rule [3, 4]. The different number of filters
returns features at different scales while retaining the spatial structure.

2. Secondly, the features feed 3 stacked bidirectional Long Short Term Memory (LSTM) of 64
inputs and 32 units each one [5, 6]. This type of recurrent neural network is able to learn
sequential dependencies from the extracted features. For this purpose, LSTM layers include
gated cells to avoid short-term memory or gradient vanishing, allowing the layer to learn from
the complete trajectory, even from positions at the beginning of it. A cell state channel is
selectively updated to allow getting rid of irrelevant information while retaining the important
pieces.

In other words, they are able to retain memory about early positions in the trajectory, thus
considering the complete trajectory while adjusting to the target (µ and ν). We also include a
dropout layer after each of these LSTM of the 10% neurons to avoid over-fitting.

3. Lastly, the output of the LSTM blocks is passed to two dense layers of 20 and 1 unit. This
last choice depends if we want to predict a single parameter or both of them at the same time.
The activation function of this last dense layer depends on the problem to be addressed: It is a
linear function for regression of the µ and ν parameters and a sigmoid function for determining
whether a trajectory comes from a delayed model or not, that is, for the classification problem.
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In order to train this model, we built two separate data sets for training and validating while
training, the previous model. Once the model was trained, we also constructed an additional data
set for testing. These data sets are generated according to the following indications:

• µ ∈ [0.0, 2.0] with increments of 0.001.
• ν ∈ [0.01, 1] with increments of 0.01.
• trajectory length N , with N ∈ [10, 50] randomly selected.
• u0 ∈ [0, 1] randomly chosen with a resolution of 10−2.

We point out that in order to capture the chaotic dynamics that appear in some regions of the
µ parameter (see Figures 8.1 and 8.2), the resolution of µ is increased by 10 times respect to the
one of ν. We summarize the data generation procedure in the algorithm ??.

Algorithm 1 Data sets creation algorithm
1: for <every µ> do
2: for <every ν> do
3: <i = 0>
4: while i < 5 do
5: <Select random index>
6: <Select random x(0)>
7: <Select random trajectory length between 10 and 50
8: <Generate trajectory>
9: if trajectory length > 9 then

10: if index ≤ 0.20 then
11: <Save test trajectory>
12: else
13: if index ≤ 0.35 then
14: <Save validation trajectory>
15: else
16: <Save train trajectory>
17: end if
18: end if
19: else
20: <pass>
21: end if
22: <i += 1>
23: end while
24: end for
25: end for

As described in Algorithm 1, for every pair of (µ, ν) values, we generate 5 trajectories or random
length (between 10 and 50), each one with a random initial condition chosen in each one of these 5
ranges [0.0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8] and (0.8, 1.0]. We also have set some restrictions on
the admissible values in a trajectory: no value in the trajectory can be smaller than −1 nor greater
than 3. If one of these conditions is satisfied, we remove the last point added to the trajectory and
save the trajectory provided that it has a length greater than 9. Once a trajectory is generated, it
is randomly assigned to the train, validation, or test data sets, resulting in a train-validation-test
split with 1,110,266 trajectories in the train data set (65%), 255,667 trajectories in the validation
data set (65%), and 341,374 in the test data set (20%).

Since the first layer in our neural network architecture is a convolutional layer, all trajectories
have to be padded (if needed) with zeroes to reach the maximum length (50). In other words, zeroes
are inserted to the left of the trajectory to make all of them have a length equal to 50, see [139, Ch.
5 & Ch. 9]. We also set a patience value equal to 20 to allow the training to end before the selected
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maximum number of epochs (200) if the training process does not improve the validation mean
average error (MAE) after 20 consecutive epochs, thus saving training time. Finally, and for the
sake of completeness, we have used a computer with 16 cores configured with 128 GB RAM and
Nvidia RTX 3090 GPU with 22 GB RAM, running Ubuntu 20.10. The complete training process
took less than 3 hours, running up to 24 epochs.

8.3 Results

In Figure 8.4, we depict the MAE distribution for µ and ν, comparing the ground truth (x-axis) and
the predicted values (y-axis). The more values we have in the diagonal, the better the models can
infer these values. The inference of the µ and ν parameters is very consistent along the entire range
of possible values of each parameter. However, the MAE results for the inference of ν are slightly
worse than the results for µ. We also notice that the trajectory length affects the accuracy of the
predictions. Since we are dealing with time series and recurrent neural networks, it is expected
that long trajectories will return lower MAE values.

Fig. 8.4: Truth vs predicted values of µ and ν in the validation data set (top) and for trajectories of length
between 40 and 50 (bottom).
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Length MAE (µ) MAE (ν)
10-19 0.0284 0.0318
20-29 0.0209 0.0229
30-39 0.0188 0.0217
40-50 0.0216 0.0227
All 0.0233 0.0259

Table 8.1: µ and ν MAE’s in the test data set.

Fig. 8.5: Histograms of x(0), trajectory lengths, µ, and ν values for trajectories with ν MAE higher than
0.05 (left) and for trajectories with ν MAE higher than 0.05 and length greater than 15 (right).

In Table 8.1, we show the MAE results for different lengths bins. MAEs both for µ and ν are
in the same order of magnitude (10−2). This is the order taken for the ν discretization. This also
supports the use of a thinner discretization for µ (10−3) respect to the one used for ν.

MAEs for short trajectories are in fact considerably larger than for the rest of lengths for
instance, more than 20000 thousand for length equal to 10 but around 6000 for lengths between
40 and 50. As it was also noticed in [9] the MAE slightly increases for trajectories with lengths
between 40 and 50. It is worth to mention, that as the length increases, the number of trajectories
in each bin decreases due to the bounds set for stopping the generation of trajectories (no term
can be smaller than -1 nor greater than 3).

In order to get deeper insights into the predictions obtained for the parameter ν, we explore in
more detail the ones that result in high values of MAEs. In Figure 8.5, we represent the frequency
of trajectories with MAEs higher than 0.05 (left) in terms of the initial conditions x(0), trajectory
length, and the µ and ν parameters. We appreciate than in most cases, the main causes are short
trajectory lengths, values of µ near to 0 and an initial condition x(0) close to 0.0 or to 1.0. On
Figure 8.5 (right), we show the same histograms but just for trajectories of length greater than 15.
Here, we see that despite the trajectory length disappears, we still appreciate the same conclusions
for the values of x(0) and µ. Besides, we also notice that whereas trajectories with values of µ
between 0.4 and 1.1 return low MAEs for ν, values of µ close to 0 result in high MAE values for ν.

We also confront the values of the initial conditions with the values of µ and ν. In Figure 8.6,
we represent the average MAE for pairs of initial conditions and values of the µ (left) and ν (right)
parameters. The dark horizontal lines represent initial conditions that provide systematically higher
values of MAE. On the one hand, for predictions of µ, it seems that the initial condition is much
more relevant for values of µ smaller than 1.66 than for greater ones. On the other hand, for the
predictions of ν, we can find initial conditions returning high values of MAE, mainly for values of
ν smaller than 0.4.
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Fig. 8.6: µ (left) and ν (right) values vs x(0) by µ and ν MAE respectively.

Fig. 8.7: Quartiles Q1 (red), Q2 (blue), and Q3 (green) of the MAE distribution on the evaluation data
for µ (left) and ν (right).

We also study the MAE distribution for every µ and ν truth value. In Figure 8.7, we show the
Q1, Q2, and Q3 quartiles of these error distributions for each value of µ (left) and ν (right). On the
one hand, it can be clearly seen that MAE error has greater variance for µ than for ν, in particular
for values of µ greater than 1.25, which is consistent with what we observed in Figure 8.6. On the
other hand, MAEs are considerably higher for ν rather than for µ, as we have previously deduced
from the Feigenbaum diagrams in Figures 8.1 and 8.2, and from the comparison of predicted and
truth values of µ and ν in Figure 8.4.

Due to the fractional nature of equation (8.2), the model has a memory component that is
strongly dependent on the initial condition x(0). In Figure 8.8, we show boxplots of the MAE
distribution for each initial condition x(0). The initial condition is more influential in predicting µ
rather than in predicting ν, since boxes (green) and whiskers (grey) are wider if we compare with
the corresponding ones for ν. Again, we see that the results are worse for initial conditions close
to 0 and to 1, due in part to the form of the nonlinear logistic terms in (8.2).

Finally, we wonder if machine learning methods are able to determine which trajectories are
generated from (8.1) and which ones are given by (8.2). In other words, we want to see if they can
determine if a delayed is incorporated to the model or not. To do so, we have used the data set
described in this work jointly with the data set used in [9]. This second data set was also generated
following the same procedure described in Algorithm 1 but with the following specifications.

• µ ∈ [2, 3.2] discretized with a step size of 10−3,
• ν ∈ [0.01, 1] discretized with a step size of 10−2,
• trajectory lengths between 10 and 50,
• and initial conditions x(0) ∈ [0, 1] randomly chosen with a resolution of 10−2.

Since the range of values for µ is bigger in the present work than in the other, we have randomly
sampled the train, validation and test data sets in order to obtain 3 perfectly balanced pairs of
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Fig. 8.8: Box and whiskers plots for the MAE distribution obtained from predictions of µ (left) and ν
(right) on the evaluation data set in terms of the initial condition x(0). The boxes are painted in green
and the whiskers on grey.

Fig. 8.9: Receiver Operating Characteristic (ROC) curve on the test data set for the classification problem
of fractional logistic trajectories with and without delay.

sets, consisting of 618,199 trajectories for each training data set, 142,800 for each validation data
set, 190,334 for each the testing data set. For this classification task we have used the architecture
shown in Figure 8.3 but changing the activation function in the last dense layer to a sigmoid
function. The training finishes after 43 epochs and 3 hours and 30 minutes because the 20 epochs
of patience are reached. The accuracy in the validation data set is of a 99.38%, which is very close
to the area under the curve (AUC) value obtained for the test data set of 99.375%, see Figure 8.9
where we show the receiver operating characteristic (ROC) curve and the AUC value.
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8.4 Conclusions

In this work, we have considered a delayed version of the fractional logistic equation introduced by
Wu and Baleanu in [147]. We have seen that a combination of convolutional and recurrent neural
networks succeeds in training a model that given an new trajectory produced by this model is able
to infer the µ and ν parameters of the model. We have seen that the MAE of the predictions falls
almost in the order of magnitude of the discretization used. It would be interesting to check up
to which point the results can be improved using other deep learning models, training with larger
data sets, and with data sets of longer trajectories.

In our results, we have seen the importance of the initial condition, as the main contributor to
the memory effect of the generating model. We have seen, that the initial conditions near 0 and 1
tend to accumulate predictions with higher errors in comparison with other values. However, we
have detected some bins of initial conditions that produce higher errors than other neighbour bins,
and this happens almost independently of the values of the parameters µ and ν, see Figure 8.6.
We have also seen that the predictor of the parameters provides pretty accurate predictions for
trajectory lengths greater than 15 and, in general, the accuracy of the predictions increases as long
as the trajectory length increases.

Finally, we have seen that these methods almost perfectly detect if a trajectory comes from a
particular model with or without delay. It would be interesting to study whether this approach is
able to determine the effect of the delayed term and of the fractional component in other fractional
dynamical systems.
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Abstract.
We propose the mathematical analysis of discrete models that consider Lubich’s quadrature
time-stepping schemes instead of the classical Euler scheme of order 1.
As the first study with this new paradigm, we compare the bifurcation diagrams for
the logistic and sine maps obtained from Euler discretizations of orders 1, 2, and 1/2.

We analyze discrete models that consider Lubich’s quadrature time-stepping schemes instead
of the classical Euler scheme of order 1. We show the existence of chaos for the logistic and sine
maps obtained from Euler discretizations of orders 1, 2, and 1/2.

9.1 Introduction

Since Verhulst’s introduction of the logistic equation and later popularized by May, a great deal
of research has been done from a mathematical and applied point of view. An essential task to
understand this model’s dynamics is to construct its bifurcation diagram. In fact, given an initial
condition y0, the iterations obtained through

yn+1 = ηyn(1− yn), n ∈ N0, (9.1)

show regimes of stability, periodicity, and chaos, depending on the values of the control parameter
η > 0. It can be noted that after the change of variable xn = η

η−1yn the equation (9.1) is equivalent
to

xn+1 − xn = µxn(1− xn) (9.2)
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where µ := η − 1, see [9, 134]. Our key observation - and starting point - in this article is that the
term xn+1 − xn represents a discretization of the first order derivative, say u′, inherited from the
continuous model

u′(t) = µf(u(t)), t ≥ 0, (9.3)

where f is a given real-valued function. The discretization with step size one used on the left-hand
side of (9.2) corresponds to what is commonly known as Euler’s method in numerical analysis.
From this observation, it is natural to ask: what happens if we change the Euler discretization
method for another?

In this work, we start with the formula

n+1∑
j=0

bn+1−jxj = µf(xn), n ∈ N0, (9.4)

where (bn)n is a given sequence, and we compare bifurcation diagrams of the associated dynamical
systems for some representative cases. It is worth noting that the left-hand side of (9.4) contains
an important number of classical time-stepping schemes. For example, if we take bn = δ0n − δ1n,
where δjn denotes the Kronecker delta, we get (9.2) for f(x) := µx(1−x). From a numerical point
of view, the sequences bn are called quadrature weights. They arise from Lubich’s quadrature
methods [155], and we can determine them from the following generating power series (with step
size τ = 1)

G(ξ) =
∞∑
n=0

bnξ
n, (9.5)

named the symbol, or characteristic function, of the scheme [156]. For example for G(ξ) = 1 − ξ
we must have bn = δ0n− δ1n, described previously. Other examples are the second order difference
scheme which is given by the symbol G(ξ) = (1 − ξ) + 1

2 (1 − ξ)2 (see [156] ) and that produces
bn = 3

2δ0n− 2δ1n + 1
2δ2n; and the Euler scheme of order 1/2 given by the symbol G(ξ) = (1− ξ)1/2

that produces bn = Γ (n−1/2)
Γ (−1/2)n! . The first two cases are named local because they have a finite number

of bn different from zero. The third case is named non-local, and they usually incorporate memory
effects in the model. For other examples, we refer to the works of Jin [156], Murillo-Arcila and
Lizama [157] about maximal regularity of time-stepping schemes, the works of Wu and Baleanu
that introduced a discrete version of the left Caputo differential operator [134, 147], and the work
of Nieto for the solution of the logistic differential equation of fractional order without singular
kernel [158, 159].

9.2 Methodology

In order to solve (9.4), we assume that there exists a sequence an such that an ∗ bn = δ0n where
an ∗ bn =

∑n
j=0 an−jbj denotes the convolution product between an and bn. Then, given x0 and

convolving with an in (9.4) we obtain

xn = µ

n∑
j=1

an−jf(xj−1), n ∈ N. (9.6)

Note that an always exists if b0 6= 0 and is given by the recurrence

a0 = 1
b0

an = − 1
b0

n∑
j=1

an−jbj . (9.7)

We will compare the bifurcation diagrams of the logistic map f(x) = µx(1 − x) and sine map
f(x) = µ sin(x) for the Euler approximation schemes for the first derivative operator of orders 1, 2,
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and 1/2. Using in (9.7) the sequences bn obtained in the previous section, note that we have an = 1
in the first case, an = 1− 1

3n+1 in the second case [160, Example 4.2], and an = (2n)!
4n(n!)2 in the third

case [160, Example 4.1]. In this way, we obtain, respectively, the general schemes shown in Table
9.1.

Scheme General solution
Euler (1st order) xn = µ

n∑
j=1

f(xn−1)

Euler (2nd order) xn = µ

n∑
j=1

(
1−

(1
3

)n−j+1
)
f(xj−1)

Euler (1/2 order) xn = µ

n∑
j=1

(2(n− j))!
4(n−j) ((n− j)!)2 f(xj−1)

Table 9.1: Euler approximation schemes of orders 1, 2 and 1/2, with the explicit formulas of the general
solution.

9.3 Results: Bifurcation diagrams

For constructing the bifurcation diagrams, we consider pairs (x0, µ), where x0 is an initial condition
and µ is taking in an interval where we want to illustrate the dynamics. For some diagrams presented
in this work, we have taken several initial conditions, not only one, to improve the illustration of
the dynamics. Given a pair (x0, µ), we have computed the first 200 terms of each trajectory and
represented the last 50 terms, namely x151, . . . , x200. In Figure 9.1, we have the bifurcation diagrams
for first-order Euler models, xn = µ

∑n
k=1 xk−1(1− xk−1) and xn = µ

∑n
k=1 sin(xk−1).
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Fig. 9.1: Bifurcation diagrams for the logistic map (top left), the first-order logistic map (top right), and
the first-order sine map for x0 = 0.3 (bottom left) and x0 ∈ {0.3, 0.5} (bottom right). The µ step size is
10−4.

The first is the logistic map diagram; the second can also be found in [146]. We can observe
that they are very similar since, as we have commented with the equivalences of (9.1) and (9.2),
we can pass from one to the other one with a change of variable.

In order to avoid numerical precision problems in the computation of the bifurcation diagrams of
second-order models, we have used the recurrent formula xn = 2

3
(
2xn−1 − 1

2xn−2 + µf(xn−1)
)

that
directly appears from (9.4). Although a second-order model is numerically more stable than a first-
order one, we can still find chaos in some regions, as shown in Figure 9.2. We have simultaneously
used several initial conditions to get better bifurcation diagram plots. For the case of the logistic
term, we can find a chaotic region for µ ∈ [3.83, 3.85]. Here, the step size for µ has been decreased
up to 10−5. For the sinus term, we show chaos in some regions of µ ∈ [6, 7] with a µ step size of
10−4. For better plotting the behavior in the interval [6.18, 6.22] we have used 100 initial conditions,
x0 ∈ {0.01, 0.02, . . . , 0.99}, computing the first 200 times of each trajectory, and plotting the last
25 terms of each one.
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Fig. 9.2: Bifurcation diagrams for the second-order logistic map (top left) and for the second-order sine
map (top right). In this second case, we can find smaller regions in the interval [6.18, 6.22] (bottom left
and right).

For the half-order case, where we have introduced the memory effect, the model resembles the
fractional logistic models inspired by the fractional version of (9.2) [147], showing a blurry part in
the region of chaos, as we can see in Figure 9.3.

Fig. 9.3: Bifurcation diagrams for the half-order logistic map (left) and for the half-order sine map (right).

9.4 Analysis and conclusions

We have performed a comparative analysis of the dynamics exhibited by some time-stepping
schemes originating from quadrature methods. From the recent literature, it is known that these
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methods are related to some linear viscoelasticity models. For instance, the Euler method is linked
with a Newtonian fluid, the second order difference scheme is related to a Maxwell fluid, and the
Euler scheme of order 1/2 with a power type material function, see [160]. On the other hand, from
[161], it is well known that each one of the above-mentioned models has an associated material
function. For instance, for a Newtonian fluid, the material function is a(t) = 1, for a Maxwell
fluid a(t) = 1 − e−ct where c ∈ R is a constant, and for a power type material, the function is
a(t) = tα

Γ (α+1) where α ∈ (0, 1), see [161, Section 5.2].
Now, we observe that each sequence an obtained for the time-stepping schemes in (9.6) corre-

sponds in some sense to a discrete version of this material functions, namely, for a(t) := 1 we have
an = 1; for a(t) := 1 − e2t/3 we have an = 1 − 1

3n+1 and for a(t) := t1/2

Γ (3/2) we have an = (2n)!
4n(n!)2 .

We can even give a mathematical argument to prove this correspondence. For that, we consider
the Poisson transformation [162] of a real-valued function f : [0,∞)→ R defined by

f̂(n) :=
∫ ∞

0
pn(t)f(t)dt, n ∈ N,

where pn(t) = tn

n! e
−t and note that a computation produces â(n) = 1 = an, â(n) = 1− 1

3n = an−1

and â(n) = Γ (1/2+n)
Γ (1/2)n! = (2n)!

4n(n!)2 = an, respectively. We summarize the characteristic of the models
and diagrams in Table 9.2.

Scheme Viscoelastic Model Material function Discrete kernel Bifurcation diagram
Euler Newtonian fluid a(t) = 1 an = 1 Figure 9.1
Second order Maxwell fluid a(t) = 1− e−2t/3 an = 1− 1

3n+1 Figure 9.2
Half order Power type a(t) = t1/2

Γ (3/2) an = Γ (1/2+n)
Γ (1/2)n! Figure 9.3

Table 9.2: Comparative table of the numerical schemes and properties.

In all cases, we have obtained explicit formulas for computing all the terms of the trajectory,
as shown in 9.1. We have also shown the chaos phenomena in all these cases through bifurcation
diagrams. In the models from half and first-order schemes, the bifurcation diagrams given by the
logistic and sine functions present similar shapes, albeit with different parameter values. However,
the similarities disappear when we observe the same maps with the second-order difference schemes.
In these last cases, chaos is also present, but one has to look for small regions where it is present.
Such dynamical systems show less chaotic behavior and are less powerful for encryption [163]. It will
be interesting to study the dynamical properties of these dynamical systems and the connections
with the physical properties of the associated viscoelastic models.
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Love is the one thing that transcends time and space.
Maybe we should trust that, even if we cannot understand it.

Amelia, Interstellar.

This chapter ends the work carried out in the development of this thesis. A summary of the
main concluding remarks is presented below, as well as a set of recommendations to continue the
scientific research based on this work.

10.1 Concluding remarks

There is a plethora of problems in the field of physics or mathematics where machine learning can
help to shed light. We have focused in problems represented by time series with the aim to target the
application of machine learning methods. Anomalous diffusion is a wide spread phenomenon that
is present at all scales, from microscopic to macroscopic scale. While statistics based methods were
available to characterize the anomalous diffusion, there was a shy appearance of machine learning
methods being applied to the problem. The recent availability of new deep learning methods
suitable to learn from time series pushed the community to launch an international challenge to set
a new state-of-the-art scenario where different methods could be benchmarked. This challenge was
the embryo of this thesis. In this thesis we tackle the anomalous diffusion characterization problem
from a deep learning perspective, since a deep learning architecture was designed and benchmarked,
receiving honors in both the anomalous exponent α regression task and in the classification of
the underlying diffusing model task. The defined architecture showed some weakness with short
trajectories in both tasks (regression and classification), as the rest of the proposed solutions
did. This fact motivated the evaluation of a new approach to the same problem using well-now
and widely-used models based on convolutional neural networks which have been used in the
field of image processing. Taking advantage of the possibility to represent a time series as an
image without loosing temporal information allows the use of these aforementioned deep learning
methods. Additionally, using the architecture proposed in this thesis as foundation to develop a
model that precisely predicted epidemiological information during the Covid-19 pandemic under
the scope of the international XPrize Pandemic Response Challenge showed the robustness of the
method. Finally, the extension of the use of the proposed architecture to the logistic map problem,
from the field of mathematics, confirms the versatility of the architecture to handle time series and
retrieve key paramters that define the behaviour of the logistic map, even at chaotic zones.

This thesis has contributed to the fields of Computer Science, Applied Mathematics and Applied
Physics by the innovative application of deep learning technologies. The publication of this work
in top-ranked journals and their diffusion in international conferences endorses the community
research interest.

The specific concluding remarks of this thesis are listed as follows.
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CR1 - Statistical methods to characterize anomalous diffusion motion are being replaced by the use
of machine learning methods, mainly deep learning methods. In this work, we have presented
our ConvLSTM architecture, a combination of convolutional and recurrent neural networks
to accurately characterize anomalous diffusing processes using raw data, with no previous
preprocessing or feature extraction. Two key ideas can be highlighted:
– RQ1 and RQ2 were answered with the work presented in chapters 5 and 6. In chapter 6

we presented our architecture ConvLSTM which scored state-of-the-art results during the
AnDi Challenge.

This key idea fulfill research objectives O1, O2 and O3, and derived in the journal publica-
tion P1.

– In chapter 6 we introduced the use of Gramian Angular Fields in combination with deep
convolutional models which had previously used in the image processing field to improve
the performance of the state-of-the-art models for classification of short anomalous diffusing
trajectories.

This key idea fulfill research objective O5, and derived in the journal publication P2.

CR2 - The architecture implemented in this thesis proved to achive an state-of-the-art performance
in the characterization of anomalous diffusing processes. But our aim was to extend the use of
this architecture to other problems of a different nature. The ConvLSTM architecture was used
in the XPrize Pandemic Response Challenge to accurately predict Covid-19 daily cases for 236
regions and countries with minor modifications. Additionally, the same architecture was used
to infer the parameters that define the Wu-Baleanu trajectories, related to the logistic map.
To the best of our knowledge this has been the first time a deep learning model was used in
this problem. Two key ideas can be highlighted:
– RQ3 was answered with the work presented in chapter 4, 7 and 8. In chapter 4 we introduced

our participation in the XPrize Pandemic Response Challenge, being awarded as winners.

This key idea fulfills research objective O4, and derived in two publications which have not
been included in this thesis. One of them received honors as the Best Applied Data Science
Paper in the ECML-PKDD conference.

– In chapters 7 and 8 the ConvLSTM architecture was used to infer the µ and ν parameters
from Wu-Baleanu trajectories, with and without delay. Additionally, the same architecture
was used to classify between them achieving optimal performance.

This key idea fulfills research objective O6, and derived in the journal publications P3, P4
and P5.

10.2 Recommendations

The use of machine learning methods, to be more precise, deep learning methods, can help
to shed light to some problem in mathematics and physics. We have proved that a correctly
designed architecture can achieve state-of-the-art performance both in regression and classifica-
tion tasks when handling time series data. Since new deep learning approaches arise continuosly
this work can not be considered as an end point, but as an starting point. In this sense, the
following lines are suggested for future investigations.
R1 While LSTM recurrent neural networks have proved long term memory and good perfor-

mance, Transformers are gaining more importance nowadays. In fact, a work that has not
been included in this thesis but which I have coauthored presented a transformer used with
one dimensional anomalous diffusing trajectories.
In this regard, it would be desirable to work in the extension of the Transformers to two
and three dimensional trajectories, which to our knowledge is not yet possible.
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R2 We have proved that representing time series by using Gramian Angular Fields, in combi-
nation with deep convolutional neural networks architectures achieves outstanding perfor-
mance with short one dimensional trajectories.
As for the Transformer, it would be interesting to explore the use of this pipeline with
two and three dimensional trajectories. Additionally, including Markov Transition Fields
images to Gramian Angular Fields could help to improve the yet excelent performance of
the method.

R3 Wu-Baleanu trajectories have accurately being characterized by the regression of their µ
and ν parameters. In this work we have showed how to infer them for non-delayed and
delayed Wu-Baleanu trajectories.
As the continuation of this work one could think of other mathematical problems repre-
sented by time series. One could also not try to infer the paremeters but predict the n next
terms for a given trajectory.
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[20] M. Lozano, O. Garibo-i Orts, E. Piñol, M. Rebollo, K. Polotskaya, M. Garcia-March, J. Cone-
jero, F. Escolano, and N. Oliver, “Open data science to fight COVID-19: Winning the 500k
Xprize pandemic response challenge,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 384–399, 2021.
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count data in R packages. a case study of COVID-19 data,” Mathematics, vol. 9, no. 13,
p. 1538, 2021.

[27] R. Miikkulainen, O. Francon, E. Meyerson, X. Qiu, D. Sargent, E. Canzani, and B. Hodjat,
“From prediction to prescription: evolutionary optimization of nonpharmaceutical interven-
tions in the COVID-19 pandemic,” IEEE Trans. Evol. Comput., vol. 25, no. 2, pp. 386–401,
2021.

[28] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G.
Reich, and J. Lessler, “The incubation period of coronavirus disease 2019 (COVID-19) from
publicly reported confirmed cases: estimation and application,” Ann Intern Med., vol. 172,
no. 9, pp. 577–582, 2020.

[29] M. Islam, “Einstein–Smoluchowski diffusion equation: a discussion,” Phys. Scr., vol. 70, no. 2-
3, p. 120, 2004.
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