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Abstract

This paper introduces proximal path cycles, which lead to the main
results in this paper, namely, extensions of the Mitsuishi-Yamaguchi
Good Covering Theorem with different forms of Tanaka good cover
of an Alexandrov space equipped with a proximity relation as well as
extension of the Jordan curve theorem. In this work, a path cycle is a
sequence of maps h1, . . . , hi, . . . , hn−1mod n in which hi : [0, 1] → X
and hi(1) = hi+1(0) provide the structure of a path-connected cycle
that has no end path. An application of these results is also given
for the persistence of proximal video frame shapes that appear in path
cycles.
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1. Introduction

A bounded surface region results from a path-connected sequence of paths
that has no end path. A homotopic path (briefly, path) is a continuous map
from the unit interval into a space. For a space S, h : [0, 1]→ S can be either
a straight line from a point h(0) ∈ S to a surface point h(1) ∈ S or surface
curved line [22] or a cross cut (also called an ideal arc [8, §3, p.11]), which is a
line that punctures a surface boundary at h(0), passing through the interior of
the surface without self-intersections and exiting at a point h(1) on the surface
boundary [28], [8]. The focus here is on finite, bounded, simply-connected
surfaces. A planar surface S is simply connected, provided every path h lies
entirely on S, i.e., every path has all its interior points h(t) ∈ int(S), t ∈ (0, 1)
and its end points h(0), h(1) ∈ S and h has no self-loops.

Paths are stitched together in a sequence (aka path cycle, also called a train
track [8, p.53]) to delineate a bounded surface region. A path cycle E (denoted

by hCycE) in a space S is a sequence of continuous path maps {hi}(n−1)[n]
i=0 ,

hi : I → K, [n] = mod n with no end path map.
This paper introduces proximal path cycles considered in terms of a Tanaka

good covering of an Alexandrov space [26], leading to extensions of the Mitsuishi-
Yamaguchi Good Covering Theorem [7] as well as extensions of the Jordan
Curve Theorem [6].

This paper considers the homotopy of paths [25, §2.1,p.11] in Čech proximity
spaces [27, §2.5,p 439] in which nonvoid sets are spatially close, provided the
sets have nonempty intersection and in descriptive proximity spaces [17] in
which nonvoid sets are descriptively close, provided the sets have the same
descriptions. A biproduct of this work is the extension of recent forms of good
coverings of topological spaces [26] [7] as well as a fivefold extension of the
Jordan curve theorem [6].

The main results of this paper are

Theorem (cf. Theorem 5.13). For every descriptive proximity space M on a
finite collection of intersecting homotopic cycles,

(1) M has a good cover.
(2) The nerve of M and the union of the sets in M have the same homotopy

type.

Theorem (cf. Theorem 5.15). Every finite collection of intersecting homo-
topic cycles in a proximity space M satisfies the Jordan curve theorem.

2. Preliminaries

This section introduces notation and basic concepts underlying proximal
homotopy.

Let I = [0, 1], the unit interval. A path in a space X is a continuous map
h : I → X with endpoints h(0) = x0 and h(1) = x1 [25, §2.1,p.11]. A homotopy
of paths h, h′ : I → X with fixed end points (denoted by h ∼ h′), is a relation
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between h and h′ defined by an associated continuous map H : I × I → X,
where H(s, t) = ht(s) with H(s, 0) = h(s) and H(s, 1) = h′(s). In effect, in a
homotopy of paths h, h′, path h is continuously transformed into path h′. For
h ∼ h′, paths h, h′ are said to be homotopic paths.

From the Čech proximity δ in A, we can consider the closeness of homotopy
classes in a proximity space (X, δ).

2.1. Proximally Continuous Maps and Gluing Lemma. This section in-
troduces gluing lemma for proximity spaces, defined via proximally continuous
maps over a pair of Čech proximity spaces defined in terms of the proximity δ
(for the details, see A).

Definition 2.1 ([23, 2]). A map f : (X, δ1) → (Y, δ2) between two proximity
spaces is proximally continuous, provided f preserves proximity, i.e., A δ1 B
implies f(A) δ2 f(B) for A,B ∈ 2X .

Remark 2.2. Proximally continuous maps were introduced by V.A. Efremovič [2]
and Yu. M. Smirnov [23, 24] in 1952 and elaborated by S.A. Naimpally and
B.D. Warrack [10] in 1970 and by S.A. Naimpally and J.F. Peters in 2012 [13]
and 2013 [11, 12].

Lemma 2.3 shows that the composition of two proximally continuous maps is
proximally continuous but it is also true for any types of proximally continuous
maps.

Lemma 2.3. Composition of two proximally continuous maps is proximally
continuous.

Proof. Let f : (X, δ1) → (Y, δ2) and g : (Y, δ2) → (Z, δ3) be proximally con-
tinuous maps and A δ1 B in X. Then f(A) δ2 f(B) since f is proximally
continuous and g ◦ f(A) δ3 g ◦ f(B), since g is proximally continuous. �

Figure 1. Gluing diagram for Proximity Spaces. Here, the
black arrows represent inclusion maps and all triangles in the
diagram commute.

A diagram for the gluing Lemma 2.4 for proximity spaces is given in Fig. 1.
This Lemma provides a basis for the proof of Theorem 3.2.
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Lemma 2.4. Suppose (X, δ1) and (Y, δ2) are proximity spaces and A and B
are closed subsets of X such that A ∪ B = X. If f : (A, δ1) → (Y, δ2) and
g : (B, δ1)→ (Y, δ2) are proximally continuous maps such that f(x) = g(x) for
all x ∈ A ∩B, then the map h : (X, δ1)→ (Y, δ2) defined by

h(x) =

{
f(x), x ∈ A,
g(x), x ∈ B

is also proximally continuous.

Proof. Let C,D be subsets of X such that C δ1 D so that these two sets are
near. That is, there exist c ∈ C and d ∈ D that are either equal c = d or near
to each other {c} δ1 {d}. If c = d, then we are done. Assume {c} δ1 {d}. Note
that c ∈ A (∈ B) implies d ∈ A (∈ B), since A (B) is closed. Therefore we
have the following three cases.

Case 1: c, d ∈ A.
In that case, we have h({c}) = f({c}) δ2 h({d}) = f({d}) so that
h(C) δ2 h(D).

Case 2: c, d ∈ B.
In that case, we have h({c}) = g({c}) δ2 h({d}) = g({d}) so that
h(C) δ2 h(D).

Case 3: c, d ∈ A ∩B.
In that case, we have h({c}) = f({c}) = g({c}) δ2 h({d}) = f({d})) =
g({d}) so that h(C) δ2 h(D).

In all cases, h satisfies the proximal continuity property. �

2.2. Descriptive Proximity spaces. Let (X, δΦ) be a descriptive proximity
space (see Appendix B). Then the descriptive closure of A ⊂ X (denoted by
c`ΦA) is the set of all points in X descriptively near to A, i.e.,

c`ΦA = {x ∈ X : x δΦ A}
= {x ∈ X : Φ(x) ∈ Φ(A)}.

Note that A is descriptively closed, provided c`ΦA = A.
The following corollary is straightforward.

Corollary 2.5. Suppose A is a descriptively closed subset of a descriptive
proximity space (X, δΦ). Then

x ∈ A⇔ Φ(x) ∈ Φ(A).

Definition 2.6 ([14]). The descriptive intersection A ∩
Φ
B of two nonempty

subsets A and B of a descriptive proximity space (X, δΦ), is the set of all points
in A ∪B such that Φ(A) and Φ(B) have common descriptions, i.e.

A ∩
Φ
B = {x ∈ A ∪B : Φ(x) ∈ Φ(A) ∩ Φ(B)} .

Definition 2.7. A map f : (X, δΦ1
) → (Y, δΦ2

) is descriptive proximally con-
tinuous (dpc), provided A δΦ1 B implies f(A) δΦ2 f(B) for A,B ⊂ X.
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Theorem 2.8. Composition of two dpc maps is dpc.

Proof. Let f : (X, δΦ1
)→ (Y, δΦ2

) and g : (Y, δΦ2
)→ (Z, δΦ3

) be dpc maps and
A δΦ1 B in X. Then f(A) δΦ2 f(B), since f is dpc and g ◦ f(A) δΦ3 g ◦ f(B),
since g is dpc. �

Figure 2. Gluing diagram for Descriptive Proximity Spaces.
Here, the black arrows represent inclusion maps and all trian-
gles in the diagram commute.

We adapt the gluing Lemma 2.4 for descriptive proximally continuous maps.

Theorem 2.9. Let (X, δΦ1
) and (Y, δΦ2

) be two descriptive proximity spaces
and let A and B be two descriptively closed subsets of X with A ∪ B = X.
If f : (A, δΦ1) → (Y, δΦ2) and g : (B, δΦ1) → (Y, δΦ2) are dpc maps such that
f(x) = g(x) for all x ∈ A ∩B, then the map h : (X, δΦ1

)→ (Y, δΦ2
) is defined

by

h(x) =

{
f(x), Φ1(x) ∈ Φ1(A) (≡ x ∈ A by Corollary 2.5),

g(x), Φ1(x) ∈ Φ1(B) (≡ x ∈ B by Corollary 2.5)

is also dpc.

Proof. Let C,D be subsets of X such that C δΦ1 D (so, these two sets are
descriptively near). That is, there exist c ∈ C and d ∈ D that are either equal
c = d or descriptively near to each other {c} δΦ1

{d}. If c = d, then we are
done.
Assume {c} δΦ1

{d}. Note that c ∈ A (∈ B) implies d ∈ A (∈ B) since A (B)
is descriptively closed. Therefore we have the following three cases.

Case 1: c, d ∈ A.
In that case, we have h({c}) = f({c}) δΦ2

h({d}) = f({d}) so that
h(C) δΦ2

h(D).
Case 2: c, d ∈ B.

In that case, we have h({c}) = g({c}) δΦ2 h({d}) = g({d}) so that
h(C) δΦ2 h(D).

Case 3: c, d ∈ A ∩B.
In that case, we have h({c}) = f({c}) = g({c}) δΦ2

h({d}) = f({d})) =
g({d}) so that h(C) δΦ2

h(D).

In all cases, h satisfies the descriptive proximal continuity property. �
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3. Proximal homotopy

For two proximity spaces (X, δ1) and (Y, δ2), let X×Y denote their product.
Then the subsets A × B and C ×D of X × Y are near, provided A δ1 C and
B δ2 D.

Definition 3.1. Let (X, δ1) and (Y, δ2) be proximity spaces and f, g : (X, δ1)→
(Y, δ2) proximally continuous maps. Then we say f and g are proximally ho-
motopic, provided there exists a proximally continuous map H : X× [0, 1]→ Y
such that H(x, 0) = f(x) and H(x, 1) = g(x). Such a map H is called a proxi-
mal homotopy between f and g. In keeping with Hilton’s notation [5], we write
f ∼
δ
g, provided there is a proximal homotopy between them.

Proposition 3.2. Every proximal homotopy relation is an equivalence relation.

Proof. A check that ∼
δ

is reflexive and symmetric is straightforward.

Now let F and G be proximal homotopies between f and g and between g and
h, respectively. Then the function H : X × [0, 1]→ Y defined by

H(x, t) =

{
F (x, 2t), t ∈ [0, 1

2 ]

G(x, 2t− 1), t ∈ [ 1
2 , 1]

is proximally continuous by Theorem 2.4, so that this defines an proximal
homotopy between f and h. �

Definition 3.3. Let (X, δ1) and (Y, δ2) be proximity spaces and A ⊂ X.
Then two proximally continuous maps f, g : (X, δ1) → (Y, δ2) are said to be
proximally homotopic relative to A, provided there exists an proximal homotopy
H between f and g such that H(a, t) = f(a) = g(a) for all a ∈ A and t ∈ [0, 1].
We write f ∼

δ
g (rel A), provided there is a proximal homotopy relative to A.

Proposition 3.4. Suppose f, g : (X, δ1) → (Y, δ2) are proximally homotopic.
If h : (Y, δ2)→ (Z, δ3) is proximally continuous, then the maps h ◦ f and h ◦ g
are also proximally homotopic.

Proof. Let F : X × [0, 1] → Y be the proximal homotopy between f and g
so that F (x, 0) = f(x) and F (x, 1) = g(x). Note that h ◦ f and h ◦ g are
proximally continuous by Lemma 2.3 and the map H : X × [0, 1]→ Y defined
by H(x, t) = h ◦ F (x, t) is the desired proximal homotopy between them. �

Proposition 3.5. Suppose f, g : (X, δ1) → (Y, δ2) are proximally homotopic.
If k : (W, δ0)→ (X, δ1) is proximally continuous, then the maps f ◦ k and g ◦ k
are also proximally homotopic.

Proof. Let F : X × [0, 1] → Y be the proximal homotopy between f and g
so that F (x, 0) = f(x) and F (x, 1) = g(x). Note that f ◦ k and g ◦ k are
proximally continuous by Lemma 2.3 and the map K : Z × [0, 1]→ Y defined
by K(z, t) = F (k(z), t) is the desired proximal homotopy between them. �
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Definition 3.6. A proximally continuous map is proximally nullhomotopic,
provided it is proximally homotopic to a constant map.

Definition 3.7. A proximity space is proximally contractible, provided the
identity map on it is proximally homotopic to a constant map.

Definition 3.8. Two proximity spaces (X, δ1) and (Y, δ2) are proximally homo-
topy equivalent, provided there exist proximally continuous maps f : (X, δ1)→
(Y, δ2) and g : (Y, δ2) → (X, δ1) such that g ◦ f and f ◦ g are proximally
homotopic to the identity maps on X and Y, respectively.

3.1. Homotopy between descriptive proximally continuous maps. The
results for pairs of proximity spaces given so far hold for proximity spaces
without restrictions.

Proposition 3.9. The product of descriptive proximity spaces is a descriptive
proximity space.

Proof. Let {(Xi, δΦi
)}i∈J be a family of descriptive proximity spaces spaces,

where J is an index set. Then we can define a descriptive nearness relation δΦ
on the product space X :=

∏
i∈J Xi with the probe function Φ :=

∏
i∈J Φi by

declaring that two subsets A,B of X are descriptively near, provided A δΦ B
if and only if pri(A) δΦi

pri(B) for all i ∈ J , where pri is the ith projection
map of X onto Xi. �

Remark 3.10. To define the descriptive homotopy between dpc maps, we im-
pose a descriptive nearness relation on the closed interval [0, 1] in the follow-
ing manner. Two subsets A and B of [0, 1] are descriptively near, provided
D(A,B) = 0 (that is, the descriptive proximity relation and the (metric) prox-
imity relation coincide).

The descriptive nearness relation introduced in Remark 3.10 leads to de-
scriptive homotopic maps.

Definition 3.11. Let (X, δΦ1) and (Y, δΦ2) be descriptive proximity spaces
and f, g : (X, δΦ1) → (Y, δΦ2) dpc maps. Then we say f and g are descriptive
proximally homotopic, provided there exists a dpc map H : X× [0, 1]→ Y such
that H(x, 0) = f(x) and H(x, 1) = g(x). Such a map H is called a descriptive
proximal homotopy between f and g. We denote f ∼

Φ
g, provided there exists a

descriptive proximal homotopy between them.

Proposition 3.12. Every descriptive proximal homotopy relation is an equiv-
alence relation.

Proof. It’s easy to check that ∼
Φ

is reflexive and symmetric. Let F and G are

the descriptive proximal homotopies between f and g and between g and h,
respectively. Then the function H : X × [0, 1]→ Y defined by

H(x) =

{
F (x, 2t), t ∈ [0, 1

2 ],

G(x, 2t− 1), t ∈ [ 1
2 , 1]
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is dpc by Theorem 2.9, so that this defines a descriptive proximal homotopy
between f and h. �

Definition 3.13. Let (X, δΦ1
) and (Y, δΦ2

) be descriptive proximity spaces and
A ⊂ X. Then two dpc maps f, g : (X, δΦ1

)→ (Y, δΦ2
) are said to be descriptive

proximally homotopic relative to A, provided there exists a descriptive proximal
homotopy H between f and g such that H(a, t) = f(a) = g(a) for all a ∈ A
and t ∈ [0, 1]. We write f ∼

Φ
g (rel A), provided there is a descriptive proximal

homotopy relative to A.

3.2. Paths in proximity spaces. From Remark 3.10, we know that the de-
scriptive nearness relation also induces a descriptive proximity relation on [0, 1].
This leads to the introduction of (descriptive) proximal paths in a (descriptive)
proximity space.

Definition 3.14. Let (X, δ) be a proximity space and x0, x1 ∈ X. Then a
proximal path between x0 and x1 is an proximally continuous map α : [0, 1]→
X such that α(0) = x0 and α(1) = x1, i.e., for two subsets of A,B in [0, 1],
D(A,B) = 0 implies α(A) δ α(B).

In this section, we introduce constant proximal paths and their descriptive
forms.

Definition 3.15. For a proximity space (X, δ), the constant proximal path
c : [0, 1] → X at x0 ∈ X is the proximal path such that c(t) = x0 for every
t ∈ [0, 1].

Definition 3.16. Let (X, δΦ) be a descriptive proximity space and x0, x1 ∈ X.
Then a descriptive proximal path between x0 and x1 is a dpc map α : [0, 1]→ X
such that α(0) = x0 and α(1) = x1, i.e., for two subsets of A,B in [0, 1],
D(Φ(A),Φ(B)) = 0 implies α(A) δΦ α(B).

Descriptive proximally continuous maps were informally introduced in [16],
defined here in terms of path descriptions, utilizing the descriptive proximity
relation δΦ (see B).

Definition 3.17. Let h, k be proximally homotopic paths in a proximity space
X.

Φ(h) =

set of feature vectors that describe path h︷ ︸︸ ︷
{ Φ(h(s)) : s ∈ [0, 1]} ⊆ Rn .

Φ(h) = Φ(k)

descriptively close paths︷ ︸︸ ︷
⇔ h δΦ k.

Similarly, for descriptively close homotopy classes [h], [k], we write

Φ([h]) = Φ([k])

descriptively close path classes︷ ︸︸ ︷
⇔ [h] δΦ [k].
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In other words, the closeness of descriptions of paths (and path classes) is
expressed using the descriptive proximity relation δΦ.

Definition 3.18. Let [h], [k] be nonempty classes of paths in a proximity space
X. A map f : (2X × I, δΦ)→ (2X × I, δΦ) is descriptive proximally continuous
(dpc), provided

[h] δΦ [k] implies f([h]) δΦ f([k]).

Unlike the constant proximal path, descriptive proximal paths (from Defi-
nition 3.16) fall into two niches, namely, (ordinary descriptive) constant paths
and degenerate descriptive constant paths, introduced in this section. These
proximal paths lead to introduction of descriptive contractibility and an ex-
tended form of Tanaka good cover.

Figure 3. The identity map on H(X) is degenerate descrip-
tive constant.

Definition 3.19. Let (X, δΦ1) and (Y, δΦ2) be descriptive proximity spaces.
Then a map d : X → Y is said to be a descriptive constant, provided, d(x) = y0

for all x ∈ X and for some y0 ∈ Y .

Definition 3.20. A descriptive proximity space is descriptive proximally con-
tractible, or descriptively contractible for short, provided, the identity map on
it is descriptive proximally homotopic to a descriptive constant map.

Definition 3.21. Let (X, δΦ1) and (Y, δΦ2) be descriptive proximity spaces.
Then a map d : X → Y is said to be a degenerate descriptive constant, provided
Φ2(d(x0)) = Φ2(d(x1)) for all x0, x1 ∈ X.

From Def. 3.21, observe that the degenerate descriptive constant map need
not map every element to a fixed element, but instead it fixes the description.
That is |im d| ≥ 1 but |Φ2(d(X))| = 1 so that the image of Φ2 ◦ d consists
of a single element, say ∗ ∈ Rn (see Figure 4). We say that d is an ordinary
descriptive constant map, provided |im d| = 1.
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X Y {∗} ⊂ Rnd Φ2

Figure 4. Φ2 ◦ d is a constant map on X, provided d is de-
generate descriptive constant.

Example 3.22. Let H(X) denote the path homotopy classes in X given in
Figure 3 and the paths in each of the homotopy class be described in terms
of the color of their initial points. Then the identity map id : (H(X),Φ) →
(H(X),Φ) is a degenerate descriptive constant map since the initial points of
all paths are red.

Theorem 3.23. A degenerate descriptive constant map is a dpc map.

Proof. For two subsets A and B of X, suppose that A δΦ1
B. From Def. 3.21

for a degenerate descriptive constant map, we have Φ2(d(A)) = Φ2(d(B)) so
that d(A) δΦ2

d(B), which completes the proof. �

Definition 3.24. A descriptive proximity space is a degenerate descriptively
contractible, provided, the identity map on it is descriptive proximally homo-
topic to a degenerate descriptive constant map.

Proposition 3.25. Suppose that (X, δΦ) is a descriptive proximity space and
cd is a degenerate descriptive constant map on X with x0 ∈ Im(cd). Then cd
and the descriptive constant map cx0 at x0 are descriptively homotopic.

Proof. The desired homotopy H : X × I → X is a map such that H(x, t) =
x0. �

Since descriptive proximal relation is transitive, we have the following corol-
lary.

Corollary 3.26. A degenerate descriptively contractible space is also a de-
scriptively contractible.

(a) |hcycE| : h(0)→ · · · → h(n− 1[n]) (b) |HcycE| : |[h]| → |[j]| → |[`]|

Figure 5. Two Forms of Homotopic cycles
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Figure 6. |hSysE|, a homotopic cycle system.

4. Homotopic cycles

This section introduces three forms of homotopic cycles (briefly, path cycles,
namely, simple path cycles, multi-path cycles and path cycle systems. Geomet-
rically, a path cycle has the appearance of the boundary of a Vigolo Hawaiian
earring [29]. These path cycles lead to extensions of the Jordan Curve Theorem.

Recall that a path in a space X is a continuous map h : I → X [25, §2.1,p.11].

Definition 4.1. In a space X in the Euclidean plane, let h : I → X be a
path (briefly, hpath). A path cycle E (denoted by hCycE) is a collection of
hpath-connected vertexes attached to each other with no end vertex.

Remark 4.2. In general, path cycles have empty interiors. However, in the
case where a path cycle is constructed on the boundary of a physical shape
recorded by a camera, the path cycle will have a nonvoid interior. From a
descriptive proximity perspective, the nonvoid interior is useful in cases where
one or more features in a feature vector quantify distinguishing characteristics
of parts of a shape interior such as centroidal vector field. See an illustration,
see Example B.1 in Appendix B.

Example 4.3. A geometric realization of a simple path cycle |hCycE| is shown
in Fig. 6. Each edge in |hCycE| is an hpath |hi| , i ∈ [0, . . . , n− 1[n]].

An enriched form of a path cycle is derived from the paths in homotopic
classes that provide path-connected cycle vertexes.

Definition 4.4. In a space X in the Euclidean plane, let [h] be a homotopic
class containing multiple hpaths. A multi-path homotopic cycle E (denoted
by HCycE) is a collection of homotopic classes containing hpaths-connected
vertexes attached to each other with no end vertex and HCycE has a nonvoid
interior.
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Example 4.5. A geometric realization of a multi-path homotopic cycle |HcycE|
is shown in Fig. 6. There are multiple homotopic paths between each pair of
vertexes in |HcycE|. For example, between vertexes |hi(0)| , |hi(1)|, there are
multiple hpaths in class [h].

A system of path cycles results from a collection of Hcyc-cycles that have
nonvoid intersection.

For a space X in the Euclidean plane, let H(X) denote the set of all homo-
topy classes [h] in X.

Definition 4.6. In a space X in the Euclidean plane, a homotopic cycle system
E (denoted by hSysE) is a collection of Hcyc-cycles such that

hSysE =
{

HcycE ∈ 2H(X) :
⋂

HcycE = vertex v ∈ H(X)
}
.

Example 4.7. A geometric realization of a path cycle system |hSysE| is shown
in Fig. 6. This system contains a pair of multi-path cycles HcycE, HcycE′

attached to each other, i.e., we have

`i ∈ [`] ∈ HcycE,

k′j ∈ [k] ∈ HcycE′,

hSysE = {HcycE,HcycE′}
HcycE ∩HcycE′ = `i(0) = k′j(1).

5. Good coverings and Jordan Curve Theorem extension

This section introduces good coverings of descriptive proximity spaces and
an extension of the Jordan Curve Theorem in terms of the boundary of a path
cycle.

Definition 5.1. Let A ∈ 2X (nonvoid subset A in a Hausdorff metric space [3,
4] X) and D(x,A) = inf {|x− a| : a ∈ A} be the Hausdorff distance between a
point x ∈ X and subset A [4, §22,p. 128]. The closure of A [15, §1.18,p. 40] is
defined by

c`(A) = {x ∈ X : D(x,A) = 0} .

Definition 5.2. For a Hausdorff metric space X,A ∈ 2X , let c`A be the closure
of A. Then the boundary of A (denoted by bdyA) is the set of all points on
the border of c`A and not in the complement of c`A (denoted by ∂c`A). Also,
the interior of A (denoted by intA) is the set of all points in c`A and not on
the boundary of A, i.e,

∂(c`A) = X \ c`A, all points in X and not in c`A.

int(A) =
{
E ∈ 2X : E ⊂ c`A and E ∩ bdyA = ∅

}
.

bdy(A) = X \ (intA ∪ ∂c`A).

c`A = bdy(A) ∪ int(A).
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Remark 5.3. Geometrically, a path cycle system is a necklace. The clasp of the
necklace is the vertex in the intersection of the system cycles. This is the case
in Fig. 6.

Recall that a cover of a space X is a collection of subsets E ∈ 2X such that
X =

⋃
E [30, §15.9,p. 104 ].

Definition 5.4. A cover of a space X is a good cover, provided, X has a collec-
tion of subsets E ∈ 2X such that X =

⋃
E and

⋂
finite

E 6= ∅ is contractible, i.e.,

all nonvoid intersections of the finitely many subsets E ∈ 2X are contractible.

Example 5.5. For a spaceX in the Euclidean plane, let hSysE = {HcycE,HcycE′}
a system of path cycles in X with nonempty intersection such that a geometric
realization |hSysE| is shown in Fig. 6. This is an example of planar Tanaka
good cover of a H(X), since

H(X) = HcycE ∪HcycE′, and

HcycE ∩HcycE′ = `i(0).

Definition 5.6. Let X be a descriptive proximity space with a probe function
Φ : 2X → Rn. A descriptively good cover of (X,Φ) is a collection of subsets

E ∈ 2X such that X =
⋃
E and

⋂
Φ,finite

E 6= ∅, i.e., all nonvoid descriptive

intersections of the finitely many subsets E ∈ 2X are descriptively contractible.

Definition 5.7. Let X be a descriptive proximity space with a probe function
Φ : 2X → Rn. A degenerate descriptively good cover of (X,Φ) is a collection

of subsets E ∈ 2X such that X =
⋃
E and

⋂
Φ,finite

E 6= ∅ is degenerate de-

scriptively contractible, i.e., all nonvoid descriptive intersections of the finitely
many subsets E ∈ 2X are degenerate descriptively contractible.

Proposition 5.8. For a space X in the Euclidean plane, hSysE is a good cover
of H(X).

Proof. Observe that each element HcycE in hSysE is a subset of H(X) and
by the nature of hSysE, H(X) =

⋃
HcycE and

⋂
HcycE is a single vertex so

that it is contractible. �

Theorem 5.9. Let F be a finite collection of closed, convex sets in Euclidean
space. Then the nerve of F and union of the sets in F have the same homotopy
type.

Let ∠
κ
bac denote the inner angle of a geodesic triangle of length |ab| , |bc| , |ca|,

at the vertex with opposite side of length |bc|, in a simply connected complete
surface of curvature κ.

A geodesic complete metric space M is an Alexandrov space (of curvature
bounded locally from below) [7, §2.1,p. 3], provided, for each p ∈ M , there
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exist an r > 0 and κ ∈ R such that for any distinct four points ai ∈ B(p, r),
i = 1, 2, 3, 4 with max1≤i<j≤3 {|a0ai|+ |a0aj |+ |aiaj |} < π√

κ
, if κ > 0, we have∑

1≤i≤j≤3

∠
κ
aiaoaj ≤ 2π.

Proposition 5.10. For a closed subset X in the Euclidean plane with a probe
function Φ, the descriptive proximity space (X, δΦ) is an Alexandrov space.

Proof. X is complete since it is a closed subset of the Euclidean plane. For an
element p ∈ X, consider the unit ball B(p, 1) and take the points a1, a2, a3 on
the boundary of B(p, 1) and let κ = 1 (the curvature of B(p, 1), the reciprocal
of the radius). Then |pa1| + |pa2| + |pa3| = 3 ≤ π√

1
and we have ∠

κ
a1pa2 +

∠
κ
a1pa3 + ∠

κ
a2pa3 = 2π. �

A main result in this paper is a extension of the Mitsuishi-Yamaguchi The-
orem 5.11.

Theorem 5.11 ([7, Theorem 1.1(2), p. 8108]). Every open covering γ of an
Alexandrov space M has the same homotopy type as the nerve of any good
covering of M .

Proposition 5.12. Every descriptive proximity space (X, δΦ) with a probe
function Φ : 2X → Rn in the Euclidean plane has an open covering.

Proof. For x ∈ X and positive number ε > 0, define the descriptive ε neigh-
borhoud of x by letting BΦ(x, ε) = {y ∈ X : d(Φ(x),Φ(y)) < ε} where d is a
Euclidean distance on Rn. Observe that BΦ(x, ε) is open in X, since, for an
element y ∈ X, we have BΦ(y, r) ⊆ BΦ(x, ε), where r = ε − d(Φ(x),Φ(y)).
Then the collection of open sets {BΦ(x, ε) : x ∈ X, ε > 0} is an open covering
of X. �

Theorem 5.13. Let X be a descriptive proximity space in the Euclidean plane
with an open covering and with a probe function Φ : 2X → Rn. Also, let H(X)
be the collection of all homotopy classes covering space X and X = H(X).

1o If nerve of E ∈ 2H(X) in space X is descriptively contractible, then X
has a descriptively good cover.

2o If nerve of E ∈ 2H(X) in space X is degenerate descriptively con-
tractible, then X has a descriptively good cover.

3o If H(X) is an Alexandrov space with an open covering, then the nerve
of H(X) and the union of sets in H(X) have the same homotopy type.

4o If H(X) is a finite collection of closed, convex sets in Euclidean space.
Then the nerve of H(X) and union of the sets in H(X) have the same
homotopy type.

Proof. 1o: For E ∈ 2H(X) in (X, δΦ), we have X =
⋃
E, since X = H(X). We

also know that all nonvoid descriptive intersections of finitely many subsets
E ∈ 2H(X) are descriptively contractible. Hence, from Def. 5.6, H(X) is a
descriptively good cover of X.
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2o: For E ∈ 2H(X) in (X, δΦ), we have X =
⋃
E, since X = H(X). We

also know that all nonvoid descriptive intersections of finitely many subsets
E ∈ 2H(X) are degenerate descriptively contractible. Hence, from Def. 5.7,
H(X) is a degenerate descriptively good cover of X.

3o: From Prop. 5.10, X is an Alexandrov space. If X has an open covering,
then from Theorem 5.11, the desired result follows.

4o: If H(X) is a finite collection of closed, convex sets, then the desired
result follows from Theorem 5.9. �

A another main result in this paper is a fivefold extension of the Jordan
curve theorem.

Theorem 5.14 (Jordan Curve Theorem [6]). A simple closed curve lying on
the plane divides the plane into two regions and forms their common boundary.

Theorem 5.15. Let hcycE (simple homotopic cycle), HcycE (multi-homotopic
cycle), hSysE (path cycle system) be in the Euclidean plane. Then

1o The boundary bdy(c`(hcycE)) satisfies the Jordan Curve Theorem.
2o The boundary bdy(c`(HcycE)) satisfies the Jordan Curve Theorem.
3o The boundary bdy(c`(hSysE)) satisfies the Jordan Curve Theorem.
4o If X = H(X) in (X, δΦ) has a descriptively good cover, then

bdy(c`Φ(H(X))) satisfies the Jordan Curve Theorem.
5o If X = H(X) in (X, δΦ) has a degenerate descriptively good cover, then

bdy(c`Φ(H(X))) satisfies the Jordan Curve Theorem.

Proof. 1o: The boundary bdy(c`(hcycE)) is a sequence of paths on a curve
that is simple (no loops) and closed (the sequence begins and ends with the
same vertex). Hence, by Theorem 5.14, bdy(c`(hcycE)) divides the plane into
two regions and forms their common boundary.

2o: Replace bdy(c`(hcycE)) in 1o with bdy(c`(HcycE)) and the proof is
symmetric with the proof of 1o.

3o: Replace bdy(c`(hcycE)) in 1o with bdy(c`(hSysE)) and observe that
curve on each boundary HcycE ∈ hSysE is a simple, closed curve attached
to the other homotopic cycle boundaries by a single vertex. Then curve on
the boundary continues along the curves of the other cycle boundaries, form-
ing an elongated curve that is both simple and closed. Hence, the boundary
bdy(c`(hSysE)) satisfies Theorem 5.14.

4o: Observe that if E ∈ 2H(X) is an element in a descriptively good covering
of H(X), then it is descriptively contractible. This is equivalent to saying that
E contains a sequence of paths on a curve that is simple and closed so that it
constitutes a multi-path cycle E, namely, HcycE, and the descriptively good
covering is also a path cycle system, hSysE. Then the proof follows from 3o.

5o: Observe that if E ∈ 2H(X) is an element in a degenerate descriptively
good covering of H(X), then it is degenerate descriptively contractible and
hence it is descriptively contractible by Corollary 3.26. Then the proof follows
from 4o. �
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(a) Vigolo Hawaiian butterfly
HbEt.00 in video frame space
(frE, δΦ) at time t at the beginning
of a temporal interval [t, t + 0,5sec],
Betti no. β(HbEt.00) = 3,
HbEt.00 δΦ HbEt.1.

(b) Vigolo Hawaiian butterfly HbEt.1

in video frame space (frE′, δΦ)
at time t + 0.1sec in temporal
interval [t, t + 0,5sec], Betti no.
β(HbEt.1) = 3, HbEt.00 δΦ HbEt.1.

Figure 7. Persistent butterfly shapes [20] in a pair of video
frame descriptive proximity spaces

6. Application

This section briefly introduces an application of descriptively proximal nerves
in a topology of data approach to detecting close good covers of video frame
shapes that appear, disappear and sometimes reappear in a sequence of video
frames. The basic approach is to track the persistence of descriptively proximal
video frame shapes that have homotopic nerve presentations.

Definition 6.1. Let B = {g1, ...} be the basis for a free group G. Also let
H(X) = {hcycE}, a collection of path cycles hcycE with nonvoid intersection
in a planar space X. A path nerve presentation is a continuous mapping

f : H(X)→ G

v =
∑
k∈Z
g∈B

kg : v ∈ hcycE


→ G(B,+),

from H(X) to a corresponding free group G.

Theorem 6.2 ([18]). Every homotopic cycle in a CW space has a free group
presentation.

Recall that a Betti number is a count of the number generators in a free
group [9, §4,p. 24].

Theorem 6.3 ([20]). Every free group presentation of nested 1-cycles nerve
has a Betti number.
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The result from Theorem 6.3 provides a stepping stone to tracking the per-
sistence of good covers of video frame shapes. A frame shape persists, provided
it continues to appear over a sequence of consecutive video frames.

Example 6.4. A pair of descriptively contractible nerves in two video frames,
each identified with a descriptive proximity space, is shown in Fig. 7. For each
frame X, let the descriptive proximity space X = H(X). From Theorem 5.13.
1o, each frame has a descriptively good cover. In that case, from Theorem 5.15.
4o, the bdy(c`Φ(H(X))) satisfies the Jordan Curve Theorem.

In this example, a nerve is a collection of time-constrained Hawaiian butterfly
path cycles (denoted by HbEt at time t) with nonvoid intersection such as those
in Fig. 7. Let δΦ be defined in terms of the Betti number of the free groups
derived from each nerve, i.e.,

Φ(HbEt) = B(HbEt)

Since the free group presentations of the hcyc cycles of the Hawaiian butterflies
in Fig. 7 have the same Betti number, namely,

B(HbEt.00) = B(HbEt.1) = 3,

then we have
HbEt.00 δΦ HbEt.1.

Hence, the persistence of a particular butterfly over a sequence of video frames
can be tracked in terms of its Betti number. In this example, the butterfly
represented in Fig. 7 persists for a 10th of a second.

The motivation for considering free group presentations of polytopes (e.g.,
nested cycles with nonvoid intersection) covering frame shapes is that we can
then describe frame shapes in terms of their Betti numbers.

Frame shapes are approximately descriptively close, provided the difference
between the Betti numbers of the free group presentations of the corresponding
homotopic nerves is close. Determining the persistence of frame shapes then
reduces to tracking the appearance, disappearance and possible reappearance of
the shapes in terms of their recurring Betti numbers. For an implementation of
this approach to tracking the persistence of polytopes covering brain activation
regions in resting state (rs)-fMRI videos, see [19].

Appendix A. Čech proximity

A nonempty set X equipped with the relation δ is a Čech proximity space
(denoted by (X, δ)) [27, §2.5, p.439], provided provided the following axioms
are satisfied.

Čech Axioms

(P.0): All nonempty subsets in X are far from the empty set, i.e., A 6 δ ∅
for all A ⊆ X.

(P.1): A δ B ⇒ B δ A.
(P.2): A ∩ B 6= ∅⇒ A δ B.
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(P.3): A δ (B ∪ C)⇒ A δ B or A δ C.

The closure of a subset A, denoted by c`A, of the proximity space X is the
set of all points in X which are near A:

c` = {x ∈ X : x δ A}.
Note that A is closed, provided c`A = A.

Lemma A.1 ([23, p. 9]). The closure of any nonempty set E in a proximity
space X is the set of all points which are close to E.

We define a nearness relation on R as follows [12, §1.7, p. 48]. Two
nonempty subsets A and B of R are near if and only if the Hausdorff dis-
tance [3] D(A,B) = 0, where

D(A,B) =

{
inf{|a− b| : a ∈ A and b ∈ B}, if A,B 6= ∅,
∞, if A = ∅ or B = ∅.

Note that R is symmetric (or weakly regular), since R satisfies the following
condition [12, §3.1, p. 71].

(∗) x is near {y} ⇒ y is near {x}.
In that case, this nearness relation defines a Lodato proximity δL on R by

[12, §3, Theorem 3.1]

A δL B :⇔ c`A ∩ c`B 6= ∅,
where c`E = {x ∈ R : D(x,E) = 0}.

The topological space X satisfying (∗) becomes a Čech-Lodato proximity
space (X, δL) where δL is defined by

A δL B :⇔ c`A ∩ c`B 6= ∅,
and c`E is the closure of E ⊂ X with respect to the topology on X.

We assume that the proximity on the closed interval [0, 1] is the subspace
proximity [12, §3.1, p. 74] induced by the (metric) proximity on R.

Appendix B. Descriptive proximity

This section briefly gives an introduction to a framework for the introduc-
tion of descriptive proximities [1] between shapes such as profiles of faces and
butterfly wings represented as nonempty sets. A description of a shape is a
feature vector Φ(E) ∈ Rn of n real-values whose components are probe func-
tion values representing quantifiable shape characteristics. Let shE be a planar
shape of interest and f : shE → R is a probe function that returns a real value
that quantifies a characteristic of shE such as the magnitude and direction of
a distinguished vertex, which is a vector field in shE.

Example B.1. Let HbEt.00 be the butterfly shape with vertex v0 in Fig. 7.
In this case, v0 is distinguished, since cycHa ∩ cycHa′ = v0 (i.e., v0 is in the
intersection of a pair of cycles on the boundaries of the wings of the butterfly
shape). This vertex is an example of a vector field at a known location (x, y),
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since v0 is a physical picture element with magnitude |v0| and direction θv0 in
a video frame, e.g.,

|v0| = ‖v0‖ .

θv0 = tan−1
[y
x

]
.

Then

Φ(HbEt.00) = (|v0| , θv0) description of butterfly

provides a basis for checking the descriptive proximity of a pair video frame
butterfly shapes. For example, construct a similar feature vector for butterfly
shape HbEt.1 that appears in a video frame a 10th of second after the appear-
ance of shape HbEt.00 in Fig. 7. This pair shapes will be descriptively proximal,
provided

‖Φ(HbEt.00)− Φ(HbEt.1)‖ < ε,

for some small number. In that case, we write

Φ(HbEt.00) δΦ Φ(HbEt.1), i.e.,

this pair of butterflies is descriptively proximal.

Let f(x) ∈ ~v be a characteristic such as the magnitude and direction of
the centroid that is a vector field of shE. Let x ∈ shE. A probe function
f : shE → R such that, for each x, f(x) ∈ ~v quantifies a characteristic of shE.

Nonempty sets A,B ⊂ X with overlapping descriptions are descriptively
proximal (denoted by A δΦ B), i.e.,

ε ∈ R+.

A δΦ B, provided |δΦ(A,B)| < ε.

The descriptive intersection [14] of nonempty subsets in A ∪ B (denoted by
A ∩

Φ
B) is defined by

A ∩
Φ
B =

i.e., Descriptions Φ(A) & Φ(B) overlap︷ ︸︸ ︷
{x ∈ A ∪B : Φ(x) ∈ Φ(A) ∩ Φ(B)} .

Let 2X denote the collection of all subsets in a nonvoid set X. A nonempty
set X equipped with the relation δΦ with non-void subsets A,B,C ∈ 2X is
a descriptive proximity space, provided the following descriptive forms of the
Čech axioms are satisfied.

Descriptive Proximity Axioms

(dP.0): All nonempty subsets in 2X are descriptively far from the empty
set, i.e., A 6 δΦ ∅ for all A ∈ 2X .

(dP.1): A δΦ B ⇒ B δΦ A.
(dP.2): A ∩

Φ
B 6= ∅⇒ A δΦ B.

(dP.3): A δΦ (B ∪ C)⇒ A δΦ B or A δΦ C.
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Recently, a result for the descriptive conjugacy between a pair of dynamical
systems.

Definition B.2 ([21, §2, p. 388]). Let Φ(E) ∈ Rn be a vector of n real-values
that describe a nonempty set E. Two proximal descriptive continuous maps
f : (X, δΦ1

)→ (X, δΦ1
) and g : (Y, δΦ2

)→ (Y, δΦ2
) are said to be proximal de-

scriptive conjugates, provided there exists a proximal descriptive isomorphism
h : (X, δΦ1) → (Y, δΦ2) such that g ◦ h(A) =

des
h ◦ f(A) for any A ∈ 2X . The

function h is called a proximal descriptive conjugacy between f and g.

Corollary B.3 ([21, §2, p.391]). If there exists a descriptive proximal con-
jugacy between two descriptive dynamical systems, then they have isomorphic
descriptive fixed sets.
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