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We introduce the concept of q-ordered proximal nonunique contraction
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1. Introduction

In 1922, a polish mathematician Stefan Banach [9] established the Banach
contraction principle (BCP) which has been a cynosure in the field of fixed
point theory. The principle states that every contraction self-mapping T on
a complete metric space (X, d) has a unique fixed point. It states the con-
traction condition as d(Tx, Ty) ≤ cd(x, y), where x, y ∈ X(0 ≤ c < 1). Also,
every Picard sequence in X converges to a fixed point of T . BCP has various
generalizations, extensions and applications given by eminent mathematicians.
Since, the solution of nonlinear systems that are frequently used to solve real-
life problems may not be unique. Therefore, theorems that do not guarantee
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the uniqueness of the fixed point are also considered. In 1974, Ćirić [18] proved
a nonunique fixed point theorem for self-mapping T on a complete metric space
(X, d) which satisfies the following contraction:

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(y, Tx)} ≤ qd(x, y)

for all x, y ∈ X and 0 < q < 1. But if T is not a self mapping, then the
solution of the equation Tx = x may or may not exist. This was one of the
major problem of research during the past few decades. In this case one tries
to find a point x that is close to Tx in some way. Basha and Veeramani
[12] introduced the following notion. Let A and B be nonempty subsets of
a metric space (X, d) and T : A → B is a non-self mapping. Then a ∈ A
is said to be a best proximity point if d(a, Ta) = d(A,B), where d(A,B) =
inf{d(a, b) : a ∈ A, b ∈ B}. Later, Basha [10] presented sufficient conditions to
get the existence and uniqueness of best proximity point of T by considering the
proximal version of the BCP. Recently, several mathematicians proved some
novel best proximity point results in different metric space settings (see, for
instance [3, 4, 5, 11, 21, 28, 30, 31, 32]).

Kurepa [26] introduced novel abstract metric spaces by defining a metric
which takes values on an ordered vector space. After that several mathe-
maticians introduced various vector valued metric spaces (see, for instance
[16, 17, 27]). In 2007, Huang and Zhang [23] replaced the set of real numbers
with an ordered Banach space to define the notion of cone metric spaces. Sev-
eral fixed point results have been obtained in the setting of cone metric spaces
using various contraction conditions ([1, 2, 6, 7, 8, 15, 19, 20, 22, 24, 25]). In
2014, Xin and Jiang [33] introduced a generalization of Banach spaces namely,
noncommutative Banach spaces, and proved some fixed point results. Recently,
Beg et al. [14] proved some best proximity point results in noncommutative
Banach spaces. Also, Rawat et al. [29] proved some fixed point results in
noncommutative Banach spaces.

In this paper, combining the ideas of Ćirić, Basha, and Xin and Jiang we ob-
tain some nonunique best proximity point results in noncommutative Banach
spaces. We first present the notion of q-ordered proximal nonunique contrac-
tions on noncommutative Banach spaces and prove several best proximity point
results for q-ordered proximal contractions. Examples are also provided to show
the significance of our results.

2. Preliminaries

In this section, we give some basic preliminaries regarding noncommutative
Banach spaces (see [33]).

Definition 2.1 ([33]). Let X be a group with a unit element e and (X, d) be
a complete metric space. Space X is called a noncommutative Banach space if
it satisfies the following conditions:

(1) d(xz, yz) = d(x, y) for any x, y, z in X.
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(2) There exists S : R × X → X, defined as S(α, x) = xα such that
S(−1, x) is inverse of x , S(0, x) is unit element e, in the group X, and

S(pq, x) = S(p, S(q, x)), S(p+ q, x) = S(p, x).S(q, x)

for all p, q ∈ R, x in X.
(3) For each x in X, there exists a constant Mx > 0 such that

d(xα, e) ≤Mx|α|, for all α ∈ R.

In case, if there exists M > 0 such that d(xα, e) ≤M |α|, for all x in X,α in
R, then X is called uniformly bounded.

Every uniformly bounded noncommutative Banach space X is bounded.
Take α = 1, then d(x, e) ≤ M , now using the triangle inequality we obtain
d(x, y) ≤ 2M. It further implies that X is bounded.

Example 2.2. Consider the group Rn with respect to addition with usual unit
element (0, 0, · · · , 0)︸ ︷︷ ︸

n− times

and define

d(x, y) =

n∑
i=1

1

2i
|xi − yi|

1 + |xi − yi|
,

for x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn. Obviously, Rn is a complete
metric space. For x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) and z = (z1, z2, ..., zn) ∈
Rn, we have

d(zx, zy) =

n∑
i=1

1

2i
|(xi + zi)− (yi + zi)|

1 + |(xi + zi)− (yi + zi)|
= d(x, y).

Now define S : R × Rn → Rn as S(α, x) = αx, we have S(−1, x) is additive
inverse of x, S(0, x) is unit element (0, 0, · · · , 0)︸ ︷︷ ︸

n− times

in the group Rn and it is

obvious that

S(pq, x) = S(p, S(q, x)), S(p+ q, x) = S(p, x).S(q, x),

for all p, q ∈ R. Now, we have to prove that for any x = (x1, x2, ..., xn) in Rn,
there exists a constant Mx > 0 such that d(kx, e) ≤ Mx|k|, for k ∈ R, where

e is unit element in Rn. We know that d(kx, e) =
∑n
i=1

1
2i
|k||xi|

1+|k||xi| . Taking

Mx =

{
1 if each xi = 0,∑n
i=1

1
2i−1

|xi|
1+|k||xi| otherwise

, the inequality clearly holds. Thus, Rn

is a noncommutative Banach space.

Definition 2.3 ([33]). Let E be a nonempty subset of a noncommutative
Banach space X satisfying:

(1) E is closed and E 6= {e}.
(2) x, y ∈ E and α, β ∈ R+ =⇒ xαyβ ∈ E.
(3) E ∩ E−1 = {e}, where E−1 = {x−1 : x ∈ E}.
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Then E is called a cone in X.

Let E be a cone in a noncommutative Banach spaceX, then an order relation
is introduced as follows:

x . y ⇐⇒ yβx−β ∈ E for all β ∈ [0, 1]. (2.1)

Order ‘.’ is a partial ordering with respect to E. Also we have:
(i) For x ∈ X, xβx−β = x0 = e ∈ E for all β ∈ [0, 1]. It further implies that

x . x.
(ii) If x . y and y . x, then yβx−β ∈ E and (yβx−β)−1 = xβy−β ∈ E for all

β ∈ [0, 1]. By E ∩E−1 = {e}, we obtain yβ = xβ , which further implies
that y = x.

(iii) If x . y and y . z, then yβx−β ∈ E and zβy−β ∈ E for all β ∈ [0, 1],
using condition 2 in definition 2.3 we have zβx−β ∈ E, i.e. x . z.

Definition 2.4 ([33]). A cone E ⊆ X is said to be normal, if there is a number
N > 0 such that

e . x . y =⇒ d(x, e) = Nd(y, e) for all x, y ∈ X.

Normal constant of E is the least number N satisfying the above condition.
Clearly N ≥ 1.

Remark 2.5. Let E be a cone in a noncommutative Banach space X and x ∈
E,α ∈ R, then the following condition holds:{

x . xα, α ≥ 1,

xα . x, α < 1.

Also, for any β ∈ [0, 1], if α ≥ 1, then (xα)βx−β = x(α−1)β ∈ E. Therefore we
have x . xα; if α < 1, then xβ(xα)−β = x(1−α)β ∈ E, which implies xα . x.

For x, y ∈ X, if either x . y or y . x holds, we say that x and y are
comparable, denoted

∨(x, y) =

{
y, x . y

x, y . x
and ∧ (x, y) =

{
x, x . y

y, y . x

Lemma 2.6 ([33]). Suppose that E is a cone in a noncommutative Banach
space X. For u, v ∈ X, we have:

(1) Let u . v, then uα . vα, for any 0 ≤ α ≤ 1.
(2) If u and v are comparable, then ∨(uv−1, vu−1) exists and furthermore

e . ∨(uv−1, vu−1).
(3) If u and v are comparable, then d(∨(uv−1, vu−1), e) = d(u, v) exists.
(4) Let {un}, {vn} be two sequences in X, un and vn be comparable for all

n ∈ N. If un → u0, vn → v0, then u0 and v0 are comparable.
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Henceforth, we give some notations for subsequent use. If F and G are
nonempty subsets of X, then

d(µ,G) = inf{d(µ, %) : % ∈ G}, where µ ∈ F,
F0 = {µ ∈ F : d(µ, %) = d(F,G) for some % ∈ G},
G0 = {% ∈ G : d(µ, %) = d(F,G) for some µ ∈ F}.

Whenever U and V are closed subsets of a normed space X and d(U, V ) > 0,
then U0 and V0 are subset of boundaries of U and V respectively.

Definition 2.7 ([13]). A set V is said to be approximately compact with
respect to U , if every sequence {%n} of V with d(µ, %n) → d(µ, V ) for some
µ ∈ U has a convergent subsequence.

Definition 2.8 ([14]). Let T : U → V be a mapping. T is said to be proximal
comparable if

x1 . x2
d(y1, Tx1) = d(U, V )
d(y2, Tx2) = d(U, V )

 imply y1 . y2,

where x1, x2, y1 and y2 ∈ U .

3. Main results

Throughout in this section, we always suppose that (X, d) is a noncommu-
tative Banach space with a partial ordering ‘.’ induced by a normal cone E
with the normal constant N .

Definition 3.1. Let (X, d) be a noncommutative Banach space, U, V (6= φ) be
two subsets of X, T : U → V be a mapping and x ∈ U . Then QT (x), the set
of iterative sequences such that

QT (x) = {xn ⊆ U : x0 = x, xn . xn+1 and d(xn+1, Txn) = d(U, V ) for all n ∈ N}

is called the comparable orbit of x.

Definition 3.2. Let (X, d) be a noncommutative Banach space, U, V (6= φ)
be two subsets of X. A mapping T : U → V is said to be best comparable
orbitally continuous at a point x∗ ∈ U if for every x ∈ U and {xn} ∈ QT (x)
the following holds

xni
→ x∗ implies Txni

→ Tx∗, as i→∞,

for any subsequence xni
of xn. If at every point of U , the mapping T is best

comparable orbitally continuous, then T is said to be best comparable orbitally
continuous on U .

Definition 3.3. Let (X, d) be a noncommutative Banach space, U, V (6= φ)
be two subsets of X, T : U → V be a mapping. The set U is said to be
T -best comparable complete, if for all x ∈ U and {xn} ∈ QT (x), every Cauchy
subsequence xni of xn converges to a point in U0.
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Definition 3.4. Let (X, d) be a noncommutative Banach space, U, V (6= φ) be
two subsets of X, T : U → V and g : U → R are two mappings, if for each
x ∈ U and {xn} ∈ QT (x) the following holds

xni
→ x∗ implies g(x∗) ≤ lim

i→∞
inf g(xni

), as i→∞,

for any subsequence xni of xn, then g is said to be best comparable orbitally
lower semicontinuous at x∗ in U . If the mapping g is best comparable orbitally
lower semicontinuous at every point in U , then it is said to be best orbitally
lower semicontinuous on U .

Lemma 3.5. Let (X, d) be metric space, T : U → V be a mapping, where
U, V (6= φ) ⊆ X. If mapping T is best comparable orbitally continuous on U ,
then g : U → R defined as g(x) = d(x, Tx) is best comparable orbitally lower
semicontinuous on U

Proof. By taking sequence {xn} in QT (x), following the lines of the proof of
Lemma 1 in [31]. �

Remark 3.6. The converse of above Lemma 3.5 may not be true. For this fact
we are presenting the following example.

Example 3.7. Let X = R2(R be the set of real numbers). Define

d(x, y) = |x1 − y1|+ |x2 − y2|

for every x = (x1, x2), y = (y1, y2) ∈ R2. Define comparability of (x1, x2) and
(y1, y2) as

(x1, x2) . (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2.

Suppose

U =

{(
− 1

n
, 0

)
: n ∈ N

}
∪ {(0, 0)}

V =

{(
− 1

n
, 1

)
,

(
− 1

n
,−1

)
: n ∈ N

}
∪ {(0, 1), (0,−1)}.

We have d(U, V ) = 1. Now, define T : U → V as T (0, 0) = (0, 1) and

T

(
− 1

n
, 1

)
=


(
− 1

n+ 1
, 1

)
, if n is odd(

− 1

n+ 1
,−1

)
, if n is even.

Let x = (−1, 0), then we have

QT (x) = {xn ⊆ U : x0 = x, xn . xn+1 and d(xn+1, Txn) = d(U, V ) for all n ∈ N}

=

{{
− 1

n
, 0

}
: n ∈ N

}
.
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Now, suppose {xn} =

{(
− 1

n
, 0

)}
∈ QT (x), as n → ∞, xn → (0, 0). But

lim
n→∞

Txn does not exist, i.e. mapping T is not best comparable orbitally

continuous at (0, 0). Notice that, g(x) = d(x, Tx) is best comparable orbitally
lower semicontinuous at each point of V .

Definition 3.8. Let (X, d) be a noncommutative Banach space, U, V (6= φ) be
two subsets of X, T : U → V be a mapping. Space (X, d) is said to satisfy
orbitally q−property, if for each x ∈ U and a sequence {xn} in QT (x) with
limxn → x∗ as n → ∞, there exists a subsequence {xnk

} of {xn} and an
element t ∈ U0, with d(t, Tx∗) = d(U, V ) such that

∨(xnk
t−1, tx−1nk

) . ∨(xnk
x∗−1, x∗−1x−1nk

)q

Definition 3.9. Let (X, d) be a noncommutative Banach Space and φ 6=
U, V ⊆ X. A mapping T : U → V is said to be q-ordered proximal nonunique
contraction if there exists q ∈ (0, 1) such that for all y1, y2, x1, x2 in U , if x1
and x2 are comparable, then

d(y1, Tx1) = d(U, V )

d(y2, Tx2) = d(U, V )

}
imply M(x1, x2, y1, y2)N−1(x1, x2, y1, y2) . ∨(x1x

−1
2 , x2x

−1
1 )q ,

(3.1)

where
M(x1, x2, y1, y2) = ∧{∨(y1y

−1
2 , y2y

−1
1 ),∨(x1y

−1
1 , y1x

−1
1 ),∨(x2y

−1
2 , y2x

−1
2 )}

and
N(x1, x2, y1, y2) = ∧{∨(x2y

−1
1 , y1x

−1
2 ),∨(x1y

−1
2 , x1y

−1
2 )}.

Theorem 3.10. Let U, V (6= φ) be two subsets of a noncommutative Banach
space (X, d) and V be approximately compact with respect to U . Suppose T :
U → V is a proximal comparable mapping satisfying the conditions:

1. T (U0) ⊆ V0.
2. There exist x0, x1 ∈ U0 such that d(x0, Tx1) = d(U, V ) and x0 . x1.
3. Mapping T satisfies q-ordered proximal nonunique contraction condition.
4. U is T -best comparable orbitally complete and g(x) = d(x, Tx) is best

comparable orbitally lower semicontinuous on U .
Then, T admits a best proximity point in U .

Proof. From condition (2), there exist x0, x1 ∈ U0 such that

d(x1, Tx0) = d(U, V ) and x0 . x1. (3.2)

Since T (U0) ⊆ V0, there exists x2 ∈ U0 such that

d(x2, Tx1) = d(U, V ). (3.3)

As T is proximal comparable mapping, therefore, from (3.2) and (3.3), we have

x1 . x2.

Again, T (U0) ⊆ V0, so there exists x3 ∈ U0 such that

d(x3, Tx2) = d(U, V ). (3.4)
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Now, T is proximal comparable mapping and x1 . x2, therefore, from (3.3)
and (3.4), we have

x2 . x3.

On repeating the above process, we get {xn} ⊆ U0 such that

d(xn+1, Txn) = d(U, V ) and xn . xn+1 for all n ∈ N ∪ {0}. (3.5)

Suppose d(xn0
, xn0+1) = 0 for some n0, then xn0

= xn0+1 and we have
d(xn0

, Txn0
) = d(U, V ), i.e. xn0

is a best proximity point of T . So, we as-
sume that d(xn+1, xn) > 0 for n ≥ 0. Now, as T is a q-ordered proximal
nonunique contraction, therefore, from (3.5), we have

M(xn−1, xn, xn, xn+1)N−1(xn−1, xn, xn, xn+1) . ∨(xn−1x
−1
n , xnx

−1
n−1)q,

for all n ∈ N ∪ {0} and so we have

(∧{∨(xnx
−1
n+1, xn+1x

−1
n ),∨(xn−1x

−1
n , xn−1x

−1
n )})(∧{∨(e, e),∨(xn−1x

−1
n+1,

xn−1x
−1
n+1)})−1 . ∨(xn−1x

−1
n , xnx

−1
n−1)q.

Now, by the reflexivity of partial ordering . in P , xn−1 and xn+1 are compa-
rable and using Lemma 2.6, we have

∧{∨(xnx
−1
n+1, xn+1x

−1
n ),∨(xn−1x

−1
n , xn−1x

−1
n )} . ∨(xn−1x

−1
n , xnx

−1
n−1)q.

Since q < 1, ∨(xn−1x
−1
n , xnx

−1
n−1) . ∨(xn−1x

−1
n , xnx

−1
n−1)q is impossible, so we

have
∨(xnx

−1
n+1, xn+1x

−1
n ) . ∨(xn−1x

−1
n , xnx

−1
n−1)q.

Again using Lemma 2.6, we have

e . ∨(xnx
−1
n+1, xn+1x

−1
n ) . ∨(xn−1x

−1
n , xnx

−1
n−1)q

.

.

.

. ∨(x0x
−1
1 , x1x

−1
0 )q

n

.

Since P is a normal cone with N as a normal constant,

d(∨(xnx
−1
n+1, xn+1x

−1
n ), e) ≤ N.d(∨(x0x

−1
1 , x1x

−1
0 )q

n

, e).

Using Definition 2.1 and Lemma 2.6, we have

d(xn, xn+1) ≤ Nqn.d(x0, x1), n = 0, 1, 2, · · ·
Then for n, p ∈ N we have

d(xn+p, xn) ≤ N.qn(qp−1 + qp−2 + · · ·+ q + 1)d(x1, x0)

=
N.qn

1− q
(1− qp)d(x1, x0).

Since q ∈ (0, 1), therefore, we conclude that {xn} is a Cauchy sequence. Now,
U is T - best comparable orbitally complete, then there exists x∗ ∈ U0 such
that

xn → x∗ as n→∞.
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In addition, from (3.5), we have

d(x∗, V ) ≤ d(x∗, Txn)

≤ d(x∗, xn+1) + d(xn+1, Txn)

= d(x∗, xn+1) + d(U, V )

≤ d(x∗, xn+1) + d(x∗, V ),

as n → ∞, d(x∗, Txn) → d(x∗, V ). Now, V is approximately compact with
respect to U , there exists {Txnk

} of Txn such that Txnk
→ γ for some γ in V .

Also, using (3.5), we have

d(x∗, γ) = d(U, V ).

On other hand, since g(x) = d(x, Tx) is best comparable orbitally lower semi-
continuous on U , we have

d(U, V ) ≤ d(x∗, Tx∗)

= g(x∗)

≤ lim inf g(xni
)

= lim inf d(xni
, Txni

)

= d(x∗, γ)

= d(U, V ).

Hence, we have d(x∗, Tx∗) = d(U, V ), i.e. x∗ is a best proximity point of T . �

Example 3.11. Let X = R2 (R be the set of real numbers). Define

d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2,

for every x = (x1, x2), y = (y1, y2) ∈ R2. Clearly, (R2, d) is a complete metric
space and it is also a noncommutative Banach Space. Let E = {(x1, x2) ∈ R2 :
x1, x2 ≥ 0}. The partial ordering in R2 with respect to cone E is defined as

(x1, x2) . (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2.

Now, suppose U = {(− 1
3n , 0) : n ∈ N}∪{(0, 0)} and V = {(− 1

3n , 2), (− 1
3n ,−2) :

n ∈ N} ∪ {(0, 2), (0,−2)}.
Define T : U → V such that

T (0, 0) = (0, 2),

T (− 1

3n
, 0) =

{
(− 1

3n+1 , 1), n is odd,

(− 1
3n+1 ,−1), n is even.

It is clear that d(U, V ) = 2, U0 = U and V0 = V .
We can easily observe that T (U0) ⊆ V0 and as V is compact, so it is also

approximately compact.
The only cases in which d(x, Ty) = d(U, V ) for any x, y ∈ X are d((0, 0), T (0, 0)) =

d(U, V ) and d(xn+1, Txn) = d(U, V ), where n ∈ N. In all the cases, clearly the
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contraction condition is satisfied, for example take x1 = (− 1
3 , 0), x2 = (− 1

32 , 0),

y1 = (− 1
32 , 0) and y2 = (− 1

33 , 0) then (3.1) becomes

M

((
−1

3
, 0

)
,

(
− 1

32
, 0

)
,

(
− 1

32
, 0

)
,

(
− 1

33
, 0

))
N−1

((
−1

3
, 0

)
,

(
− 1

32
, 0

)
,

(3.6)(
− 1

32
, 0

)
,

(
− 1

33
, 0

))
. ∨

((
−1

3
, 0

)(
− 1

32
, 0

)−1
,

(
− 1

32
, 0

)(
−1

3
, 0

)−1)q
.

Here,

M

((
−1

3
, 0

)
,

(
− 1

32
, 0

)
,

(
− 1

32
, 0

)
,

(
− 1

33
, 0

))
=

(
2

27
, 0

)
N

((
−1

3
, 0

)
,

(
− 1

32
, 0

)
,

(
− 1

32
, 0

)
,

(
− 1

33
, 0

))
= (0, 0).

Therefore, (3.6) reduces to
(

2
27 , 0

)
.
(
2
9 , 0
)q

, which is true for q = 1
2 since

2
27 ≤

2
9

1
2 and 0 ≤ 0. Similarly, in all the cases the contraction condition will

be satisfied. Also, all other conditions of Theorem 3.10 are satisfied. Hence, T
admits a best proximity point which is (0, 0).

Theorem 3.12. Let U, V ( 6= φ) be two subsets of a noncommutative Banach
space (X, d) with orbitally q−property and V be approximately compact with
respect to U . Suppose T : U → V is a proximal comparable mapping satisfying
the conditions:

1. T (U0) ⊆ V0.
2. There exist x0, x1 ∈ U0 such that d(x0, Tx1) = d(U, V ) and x0 . x1.
3. Mapping T satisfies q-ordered proximal nonunique contraction condition.
4. U is T -best comparable orbitally complete.
Then, T admits a best proximity point in U .

Proof. Following the lines of proof of Theorem 3.10, we have a Cauchy sequence
{xn} in QT (x0). Since U is T - best comparable orbitally complete, then there
exists x∗ ∈ U0 such that

xn → x∗ as n→∞.

In addition, we also have as n→∞, d(x∗, Txn)→ d(x∗, V ).
Now, V is approximately compact with respect to U , so there exists a subse-
quence {Txnk

} of {Txn} such that {Txnk
} → γ for some γ in V . Also, using

(3.5), we have

d(x∗, γ) = d(xnk+1, Txnk
) = d(U, V ) for each k,

which implies x∗ ∈ U0. Since T (U0) ⊆ V0 we have

d(t, Tx∗) = d(U, V ) for some element t ∈ U0. (3.7)

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 110



Best proximity point for q-ordered proximal contraction in noncommutative Banach spaces

Now, from orbitally q−property, there exists a sequence {xnk
} of {xn} such

that

∨(xnk
t−1, tx−1nk

) . ∨(xnk
x∗−1, x∗x−1nk

)q.

From Lemma 2.6 we have

e . ∨(xnk
t−1, tx−1nk

) . ∨(xnk
x∗−1, x∗x−1nk

)q.

Hence

d(t, xnk
) = d(∨(xnk

t−1, tx−1nk
), e) ≤ N.d(∨(xnk

x∗−1, x∗x−1nk
)q, e) ≤ N.qd(xnk

, x∗).

So d(t, x∗) = 0, as k →∞, i.e. t = x∗. From (3.7), we have

d(x∗, Tx∗) = d(t, Tx∗) = d(U, V ),

i.e. T has a best proximity point x∗ in U .
�

Theorem 3.13. Let U, V ( 6= φ) be two subsets of a noncommutative Banach
space (X, d). Suppose T : U → V is a proximal comparable mapping satisfying
the conditions:

1. T (U0) ⊆ V0.
2. There exist x0, x1 ∈ U0 such that d(x0, Tx1) = d(U, V ) and x0 . x1.
3. Mapping T satisfies q-ordered proximal nonunique contraction condition.
4. U is T -best comparable orbitally complete and T is best comparable or-

bitally continuous on U .
Then, T admits a best proximity point in U .

Proof. Following the lines of proof of Theorem 3.10, we have a Cauchy sequence
{xn} in QT (x0). Since U is T - best comparable orbitally complete, then there
exists x∗ ∈ U0 such that

xn → x∗ as n→∞.

Now as T is best comparable orbitally continuous on U . Therefore, we have

Txn → Tx∗ as n→∞.

So, we obtain

d(x∗, Tx∗) = lim
n→∞

d(xn+1, Txn) = d(U, V ),

i.e. T has a best proximity point x∗ in U . �

Example 3.14. Let X = R2 (R be the set of real numbers). Define

d(x, y) = |x1 − y1|+ |x2 − y2|

for every x = (x1, x2), y = (y1, y2) ∈ R2. Clearly, (R2, d) is a complete metric
space and it is also a noncommutative Banach Space. Let E = {(x1, x2) ∈ R2 :
x1, x2 ≥ 0}. The partial ordering in R2 with respect to cone E is defined as

(x1, x2) . (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2.
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Now, suppose

U = {(1, 0), (2, 0)} and V = {(1, 1), (2, 1)} ∪
{(

1 +
1

n
,−1

)
: n ∈ N, n ≥ 3

}
.

Define T : U → V such that T (1, 0) = (1, 1) and T (2, 0) = (2, 1). It is clear
that d(U, V ) = 1, U0 = U and

V0 = V \
{(

1 +
1

n
,−1

)
: n ∈ N, n ≥ 3

}
.

We can easily observe that T (U0) ⊆ V0 and other conditions of Theorem 3.13
can be easily verified. Hence, T admits a best proximity point. Indeed, every
point of U is a best proximity point.

It is important to notice that Theorem 3.10 and 3.12 can not be applied here,

because considering x = (1, 0) ∈ U and the sequence {xn} =

{(
1 +

1

n
,−1

)}
⊆

V , it is clear that lim
n→∞

d((1, 0), (1 +
1

n
,−1)) → 1 = d(U, V ), but the sequence

{xn} does not have any convergent subsequence in V , i.e. V is not approxi-
mately compact w.r.t. U .

Acknowledgements. The authors thank the reviewers for the critical com-
ments. The present version of the paper owes much to their precise and kind
suggestions to improve.
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[24] S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey, Nonlinear

Anal. Theory Methods Appl. 74, no. 7 (2011), 2591–2601.
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