
Academic Master in Geomatic Engineering and
Geoinformation

WEB DEVELOP AND GEOPORTALS

Guide of developed contents in lectures.

J. Gaspar Mora Navarro.

Univesitat Politècnica de València.
Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría Department of Cartographic

Engineering and Photogrametry

Valencia, February 2017

WEB DEVELOP AND GEOPORTALES.

J. Gaspar Mora Navarro

10 de julio de 2023

Índice general

1 Evaluation 1
1.1 Evaluation . 2

2 Dynamic sites with Python and WSGI 4
2.1 Introduction . 5
2.2 Backend software and libraries . 6
2.3 Python necessary previous knowledge . 7

2.3.1 How to import Python modules . 7
2.3.1.1 Practical example . 9

2.3.2 Proposal exercise . 11
2.3.3 Solution with Object Oriented Programing (OOP) 12

2.3.3.1 OOP proposal exercise . 16
2.3.3.2 OOP proposal exercise solution . 18

2.3.4 Python string formatting . 20
2.3.4.1 Formatting a string using the order of the variables 20
2.3.4.2 Formatting a string using names in the formatted string 21
2.3.4.3 Proposal exercise . 21

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library 21
2.4.1 Insert rows with geometry . 23

2.4.1.1 Proposed exercise: insert . 24
2.4.2 Update rows . 24

2.4.2.1 Proposed exercise: update . 26
2.4.3 Code optimization . 26
2.4.4 Delete rows . 28

2.4.4.1 Proposed exercise: optimize the modules building_insert.py and buil-
ding_update.py . 28

2.4.5 Select rows . 28
2.4.5.1 Select rows . 28
2.4.5.2 Select rows getting a dictionary for each row 30
2.4.5.3 Proposed exercise . 32

2.5 Managing JSON strings . 32
2.5.1 Communication client - server . 32
2.5.2 Creating JSON strings with Python . 32
2.5.3 Decode a JSON string to obtain a Python dictionary 33
2.5.4 Decode a JSON string to obtain a JavaScript object 34

2.6 Create functions to easily insert, delete update and select buildings 34
2.6.1 Function to insert a building from a Python dictionary 34
2.6.2 Function to update a building from a Python dictionary 36
2.6.3 Function to delete a building from gid . 37
2.6.4 Function to select a building from gid . 37

2.7 Exercise 1. 38

I

ÍNDICE GENERAL

2.7.1 Part 1. Test. Value 2 points . 38
2.7.2 Part 2. Project. Value 1 point. Create functions to modify your own Postgis data-

base with JSON strings. 38
2.8 Connect Python functions to Internet with Django 2.2 39

2.8.1 Create an Django project and app . 40
2.8.2 Configuring the Django project . 42
2.8.3 Initial configuration of the app urls and views . 45
2.8.4 Creating the app urls and views to access to the database 47

2.8.4.1 Select a building by gid . 47
2.8.4.2 Insert a building . 49
2.8.4.3 Update a building . 52
2.8.4.4 Delete a building . 54

2.9 Sending data to the views: POST or GET . 55
2.9.1 Postman . 55
2.9.2 Python requests . 56

2.10 Django file and functions structure . 56
2.11 Users management and authentication . 57

2.11.1 Create users and groups with the Django admin site 57
2.11.2 Create super-user from command . 59
2.11.3 Create normal users from command . 59
2.11.4 Change users password from command . 59
2.11.5 Protect some views from unauthenticated users 59
2.11.6 Authenticate users . 62
2.11.7 Session expiration time . 66
2.11.8 Logout a user . 66
2.11.9 Limit the access to views to users that belongs to some groups 67
2.11.10Users management with Python. Official documentation 67
2.11.11Create users with Python . 67
2.11.12Add a user to a group with Python . 68
2.11.13Active - deactive users with Python . 68
2.11.14Change users password with Python . 68

2.12 Publish a Django app with Apache2. WSGI application 69
2.12.1 Give permission to Apache to be able to read the wsgi file 69
2.12.2 Change the Apache configuration . 70
2.12.3 Enable the Django admin site with Apache . 71

2.13 Debugging Python WSGI applications . 73
2.13.1 Debugging Python code. Apache file error.log 73
2.13.2 Remote debugging with PyDev . 75

2.14 In case of error 1 . 75
2.14.1 How to make a question . 76
2.14.2 How to know where the Python error is . 76

2.15 Geometry checks (optional) . 77
2.15.0.1 Function to select the gid of the geometries nearer of a geometry 78
2.15.0.2 Use the geometry check function before insert or update 79

2.15.1 Intersection check considerations . 80

II

ÍNDICE GENERAL

3 Database update through Internet. Ajax 81
3.1 Goals in this chapter . 82
3.2 Create a minimal web page . 82
3.3 Visit the web page . 84
3.4 Create form to get the user data in order to login . 84
3.5 Styling with Bootstrap . 85
3.6 Create form to insert a building . 87
3.7 Add a paragraph and a div for the future map . 87
3.8 Link javascript code to the page . 88

3.8.1 Link a Javascript file to the web page . 88
3.8.2 First JS code. Window on load event . 88
3.8.3 Link button click events to a function . 89

3.9 What to do in case of error 2 . 91
3.9.1 See the console messages . 91
3.9.2 Stop the JavaScript execution . 92
3.9.3 Check if all the files are being loaded . 93
3.9.4 Check the order of the JavaScript files . 94

3.10 Create an interactive navigation menu with Bootstrap and JavaScript 95
3.11 Get the form data . 98

3.11.1 Get a form control value . 98
3.11.2 Set a form control value . 99
3.11.3 Get all form control values at once . 99

3.12 Use Ajax to send the form data to the server and wait for its response 99
3.12.1 Login the user . 99

3.13 Solve the CORS error of Google Chrome . 101
3.14 Use a Javascript settings file to configure the Javascript application. mySettings.js 102

3.14.1 Login . 104
3.14.2 Logout . 105
3.14.3 Insert a building . 105

3.15 What to do in case of error 3 . 106
3.15.1 Where I am sending the data . 106
3.15.2 What I am sending to the server . 107
3.15.3 What is the server responding . 108
3.15.4 My JavaScript code does not refresh . 108

3.16 Whether to use Django developing server or Apache server 109
3.17 Change the page content to show to the user the server answer 109
3.18 Create an Apache alias for the web page . 109
3.19 Hide the JavaScript code . 109
3.20 Exercise 2. 110

3.20.1 Part 1. Test. Value 2 points . 110
3.20.2 Part 2. Project. Value 1 point. Create a web page to update the tables of your

database. 110

4 Create a map with OpenLayers 6.1.1 112
4.1 Goals . 113
4.2 Download and install the libraries . 113
4.3 Create the WMS service of the layer buildings . 114
4.4 Create a map with the Spanish Cadastre and The Spanish ortophoto (PNOA) 114

III

ÍNDICE GENERAL

4.5 How to use the OpenLayers examples . 118
4.6 Draw polygons in the map . 118

4.6.1 Add the draw interaction to the map . 118
4.6.2 Enable or disable the draw interaction . 119
4.6.3 Clear the content of the vector layer . 119
4.6.4 Reload a WMS Layer . 120
4.6.5 Call the addDrawPolygonInteraction function . 121
4.6.6 Add buttons to enable and disable the draw interaction 121

4.7 Send the drawn polygons in the web page to the database 122
4.7.1 Link the draw end event of the geometry with a callback function 122
4.7.2 The callback function gets the geometry coordinates and puts them into the form . 123

4.8 Add draw interaction of different geometry types to the map 123
4.9 Exercise 3. 124

4.9.1 Part 1. Test. Value 2 points . 124
4.9.2 Geoportal project requirements and evaluation. 124

IV

Índice de figuras

2.1 Geoportal parts schema . 5
2.2 Importing modules project . 9
2.3 Virtualenv Python interpreter selection in Eclipse . 11
2.4 Virtualenv Python interpreter selection in Eclipse . 11
2.5 PgAdmin 4 showing the buildings database . 22
2.6 Execute a Python program in Eclipse . 24
2.7 The two buildings inserted seen in PgAdmin . 25
2.8 Inserted buildings in in Qgis . 26
2.9 Postgis connection definition in Qgis . 26
2.10 Get the WKT coordinates with Qgis . 27
2.11 Add some more buildings, digitizing blocks from the Spanish cadastre 29
2.12 File structure created by the command django-admin startproject djdesweb 41
2.13 File structure created by the command python manage.py startapp appdesweb 42
2.14 Django project edited with Eclipse . 42
2.15 File structure created by the command python manage.py startapp appdesweb 44
2.16 Django HelloWorld view answer . 46
2.17 Current project files . 48
2.18 Building select result . 48
2.19 You can not send a post request with the web browser 51
2.20 Create a collection with Postman . 51
2.21 Set the collection name with Postman . 52
2.22 Add a request to a collection with Postman . 52
2.23 Set the request type with Postman . 53
2.24 Set the formData variable with Postman . 53
2.25 Set the formData variable with Postman . 54
2.26 Django file structure . 56
2.27 Django admin site. Login . 57
2.28 Django admin site. Add group . 58
2.29 Django admin site. Add user . 58
2.30 Django admin site. Add user to a group . 59
2.31 Login with PostMan . 64
2.32 Session ID stored in a cookie, in the headers of the request, and in the database, in the

django_session table . 65
2.33 Django app running under an WSGI application, so accessible by Apache 71
2.34 Django admin site without styles . 72
2.35 Django admin site collect static files . 72
2.36 Django admin site published with Apache2 and been able to get the static files 73
2.37 Internal server error showed when the DEBUG setting is set to False 73
2.38 Enabling insecure access to the email Google account 74
2.39 Remote debugging with Pydev . 75

V

ÍNDICE DE FIGURAS

2.40 Remote debugging with Pydev 2 . 77

3.1 Project structure for the front-end project . 83
3.2 Page previsualization 1 . 84
3.3 Form login preview . 85
3.4 Form styling with bootstrap . 85
3.5 Page with the Login and Buildings forms . 88
3.6 Message when the page is completely loaded . 89
3.7 Show Google Chrome Developer Tools . 90
3.8 Message in the console tag of the web developer tools 90
3.9 Console with the error message and the lines where the error was triggered 91
3.10 First line where the error was triggered . 91
3.11 Reference error . 92
3.12 Reference error . 92
3.13 Stop the code execution in a line . 93
3.14 Buttons to advance the execution . 93
3.15 Local vars values . 94
3.16 Navigation menu with Bootstrap . 95
3.17 Chrome CORS error . 101
3.18 Chrome CORS security disabled for development . 102
3.19 Login answer,and session ID cookie . 104
3.20 How to see the requests that my web does . 106
3.21 How to see the where I am sending the data . 107
3.22 How to see what I am sending to the server . 107
3.23 How to see the server response . 108
3.24 Disable Chrome cache to use the last version of the js code 108

4.1 OpenLayers map . 117
4.2 Draw polygons with OpenLayers . 122

VI

CAPÍTULO 1
Evaluation

1.1 Evaluation

1.1 Evaluation

The evaluation consists in three exercises, each of which is also divided in two parts, a written exam
and a practical exercise.

Exercise 1. Total value 30% = 3 points. (On 30 of March)

• Teorical written exam 2 points.

• Practical exercise or project 1 point. In this exercise you will create Pyhton functions to
connect with PostGIS and be able manage spatial data.

Exercise 2. Total value 30% = 3 points. (On 25 of May)

• Teorical written exam 2 points.

• Practical exercise or project 1 point. In this exercise you will create a basic web, and will
make requests to the server with Ajax. The request will execute your Python functions of
the exercise 1, to manage the database spatial data.

Exercise 3. Total value 40% = 4 points. (On 14 of June)

• Teorical written exam 2 points.

• Practical exercise or project 2 point. In this exercise you will add to your basic web, made in
the exercise 2, a map that publishes your database spatial data. You will add the functionality
of draw new elements on the map, and add them to the spatial database in the server.

Last chance. All course content 3 July.

Practical exercises requeriments:

There are three practical exercises in total. The practical exercises must be related forming a
geoportal project. The practial exercise 2 must continue the work done in the practical exercise1,
and the practical exercise 3 must continue the exercise 2. On finishing the practical exercise 3
you must have a geoportal with some minimum requeriments. This is the project specified in the
subject guide.

The practical exercises can be done individualy, in pairs or in groups of three people. You must
form groups at the beginning of the course, inform the teacher of the group members. This groups
can not be changed.

The exercises are the ones which appears in this document. The delivery of the exercises consists
in showing the exercise to the lecturer, and to answer some questions about them. Before this, the
code of the exercise must have been uploaded to the shared space in Poliformat, otherwise you
will lose the corresponding point or points. The exercises consist in to make functions. They have
to work and you have to have a demonstration prepared, with proper data to run these functions.

The written exams consist in individual online written exams, where you will be able to use any
document, but not your mobile. Mostly you will have to type some small functions to demonstrate
you master the subject contents. The functions will be similar, but not equal, to those developed in
your practical exercises. The small differences are thouth to you demonstrate your understanding
about important concepts.

2

1.1 Evaluation

The three practical exercises must form a geoportal at the end of the course. The subject and
data of the geoportal must be chosen by the student at the beggining, at the exercise 1. The
geoportal has a minimum requirements.

If you are doing the Gestores de contenidos Geoespaciales y Smart Cities subject, you will learn
about web servers. You will have the opportunity of set the server to publish you geoportal in
a real server, so anyone will be able to visit your geportal. This connect also Desarrollo Web y
Geoportales subject with the subject Distribucion de la informacion espacial.

We also recommend to use the same student groups in all these three subjects, but this is not
fundamental.

The minimum number of tables to use, to make the exercises, and the geoportal are three, and
at least two of them must have a geometry column of different geometry type (point, polygon or
linestring).

The geoportal will be showed to the teacher and will be evaluated at that moment. If the geoportal
does not work you will not get any point.

3

CAPÍTULO 2
Dynamic sites with Python and WSGI

2.1 Introduction

2.1 Introduction

A geoportal y composed by may parts. In the figure 2.1 you can find a schema:

Figura 2.1: Geoportal parts schema

As you can see at first sight it is not a simple task to build a geoportal. Is is composed by many
parts and each part is composed by many parts, each of which needs a good level of developing skills.
Its a too big task for one solely subject. The goal of the subject is to see all the parts, so that the student
will have a good overview of how a geoportal works. Of course we can not see each part in deep, but
knowing how is the philosophy the student will be able to go more deep if he needs it. The good thing is
that once the geoportal is built all the user have access and all of them are working with the same data,
so the editions of one users are inmediatelly seen by the rest of the users.

The teacher will explain how to create a basic geoportal to add polygons to a database. To pass this
subject you will have to do the same with your own tables. What the teacher is expecting about you, as
minimum, is you understand the examples and you be able to modify them for your own project. These
tables will come from the subject Distribución de la Información Espacial, in order to continue your work
about INSPIRE.

To learn we are going to build a simple geoportal, but which contains all the parts showed in the
schema. You can access to the geoportal with the url https://gisserver.car.upv.es/desweb/.

You can form groups of one, two or three people. I recommend you groups of two people, because
it is good for you to be forced to join code from others. Also it is good to work in group because you can
share knowledge.

You have to keep in mind that 6 out of 10 points of this subject are in written tests where you are
alone, so you have to understand all the code of your project or exercises.

5

2.2 Backend software and libraries

2.2 Backend software and libraries

In this section it is listed the software used in the server.
The server programming part, called backend, its going to be done with Python 3.6.8, with WSGI

applications. One application WSGI is a Python program connected to Apache server with a WSGI
directive. Apart of this is a normal Python program.

To help as to manage http requests and user sessions, we are going to use Django 2.2 and its
dependencies if you want to deploy an app with this technology, for example in a Ubuntu Server you will
have to install the following in the system:

Python >= 3.5

Pip3

libpq-dev: sudo apt-get install libpq-dev

Apache2: sudo apt-get install apache2

mod_wsgy para python 3: sudo apt-get install libapache2-mod-wsgi-py3

Enable Apache2 Headers module: sudo a2enmod headers

The recommended way to make a Python develop environment is to use a python virtual environ-
ment, which are isolated Python environments. The first step is to install the virtualenv program in the
system (https://virtualenv.pypa.io/en/latest/):

sudo pip3 install virtualenv

You can create a virtualenv, called env in the current folder with:

virtualenv env

To install Django and its dependencies you must activate the virtualenv and use pip to install the
python libraries:

source env/bin/activate /*Activate the virtual env*/
pip3 install Django==2.2.0
pip3 install Pillow /*dependencia de django*/
pip3 install psycopg2 /*dependencia de django*/

Of course you need a geospatial database and a web server. So you have to install PostgreSQL +
Postgis and GeoServer, which runs under Apache Tomcat which have to be installed first.

All these software is difficult to install, so we are going to use a virtual machine which has all the
software installed. You will deploy your geoportals probably in a ubuntu server. We are going to use a
Ubuntu desktop 18.04 virtual machine (VM). It is exactly equal that an Ubuntu Server but has a visual
environment to develop. So we are going to develop and publish at the same machine. In a real case
you will develop in one machine and deploy, or publish your geoportals in other machine.

In the VM it is installed

PostgreSQL 11 + Postgis 2,5 + Pgrouting + adminpack and PgAdmin 4

Tomcat 9

GeoServer 2.16

6

2.3 Python necessary previous knowledge

The previous programs are quite more difficult to install. Bot have detailed steps in its main pages.
Also, to code, it is installed the following IDEs:

Eclipse + PyDev

Visual Studio Code

2.3 Python necessary previous knowledge

2.3.1 How to import Python modules

You are used to make scripts in a single file. In web developing that approach is not possible. A
minimum geoportal is a very big program. You will need to divide the code in files, according a logic.
The first step is to be able to create python modules and packages and know how to load them, sou
that you can divide the code in small parts.

It is very important you understand the Python import system. In the following, the current folder is
the folder that contains the current file, and the current file is the file that is currently being executed,
imported or edited:

A Python module is a python file, that is a file with the .py extension. A package is a folder with
several python modules, and a special empty file called __init__.py. Without the file __init__.py,
any module could be imported. A folder with modules, but without the file __init__.py is a
normal folder not a package, so python will not be able to find anything.

When you type import a Python searches for the module a in the current folder, if it is not, searches
for the a package, also in the current folder, if it is not searches for the a.py in the sys.path folders
list, if it is not, searches for the a package in the sys.path folders list.

__file__ is a global variable, always available in all the files. It is the file name. For example for
the module a.py, the value is a.py. To get the absolute path of the file name you have to use the
function os.path.abspath(__file__). For example the function could return /home/vagrant/apps/-
desweb/a.py

The function os.path.dirname() returns the folder containing the file or folder. For example. If you
are editing the file /home/vagrant/apps/desweb/a.py

import os
print(os.path.abspath(__file__)) #print /home/vagrant/apps/

desweb/a.py
fileName=os.path.abspath(__file__)
print(os.path.dirname(fileName)) #print /home/vagrant/apps/

desweb
print(os.path.dirname(os.path.dirname(fileName))) #print /home/

vagrant/apps
print(os.path.dirname(os.path.dirname(os.path.dirname(fileName))

)) #print /home/vagrant

If you want to import the module m1.py inside the package p1, which is inside the current folder
you can do it easily:

from p1 import m1

7

2.3 Python necessary previous knowledge

But if you want to import the module padre in /home/vagrant/apps/p1/padre.py, and the current
file is /home/vagrant/apps/desweb/p2/master.py, you must to add /home/vagrant/apps/desweb to
the sys.path list before to try the import. Of curse you could use absolute paths:

import sys
sys.path.append("/home/vagrant/apps/desweb")
from p1 import padre

The above code will work, but it is a very beginner mistake. You could not move your project,
because the absolute path will change.

You always must use relative paths to the location of the current file, stored in the variable __file__.
You must upload one level in the folder that contains the current file and add that folder to the
sys.path list.

import os, sys
print(sys.path)
print(__file__)
BASE_DIR= os.path.dirname(os.path.dirname(os.path.abspath(

__file__)))
sys.path.append(BASE_DIR)
print(sys.path)
from p1 import padre
print("padre imported")

The above script has the following result:

["/home/vagrant/apps/desweb/conf", "/home/vagrant/apps/desweb",
"/home/vagrant/apps/env/lib/python3.6", "/home/vagrant/apps/
env/lib/python3.6/lib-dynload", "/usr/lib/python3.6", "/home
/vagrant/apps/env/lib/python3.6/site-packages", "/home/
vagrant/apps/env/lib/python36.zip"]

/home/vagrant/apps/desweb/conf/m2.py
["/home/vagrant/apps/desweb/conf", "/home/vagrant/apps/desweb",

"/home/vagrant/apps/env/lib/python3.6", "/home/vagrant/apps/
env/lib/python3.6/lib-dynload", "/usr/lib/python3.6", "/home
/vagrant/apps/env/lib/python3.6/site-packages", "/home/
vagrant/apps/env/lib/python36.zip", "/home/vagrant/apps/
desweb"]

padre imported

In the above listing we added the folder /home/vagrant/apps/desweb to the list sys.path. If you
realize that folder was already in the list, at the second position. This is something that only occurs
when running programs with Eclipse. Eclipse adds the project folder to sys.path, but when you
run the program without Eclipse it will fail, if you manually do not add /home/vagrant/apps/desweb
to sys.path.

8

2.3 Python necessary previous knowledge

2.3.1.1. Practical example

Usually a Python project has many modules and packages, but the project has an unique point of
entry. This is the module that executes the project, usually called main.py (In our case we will call it
wsgi.py because we are going to use Django). The main module has a function, usually also called
main, that start the projects. The main module loads an other project modules and these modules other
project modules. In this section you will see the recommended way of doing that, in a real project. Follow
the following steps:

Start an Eclipse PyDev project called importingModules. Select the option File ->New ->Pydev
project

As Python interpreter you mus choose the interpreter of the virtual environment located in /ho-
me/vagrant/apps/env (figure 2.3, figure 2.4), otherwise you will not have all the libraries available.

Create a Python package called p1 (right button over the project name).

Create a Python package called p2.

Create the module p2/main.py

Create the modules inside the package p1 called padre, hijo and nieto (figure 2.2).

Our goal is from main module to load the padre which loads the hijo wich loads the nieto modules.

Figura 2.2: Importing modules project

In the following listing you have the code of each module:

p2/main.py

from p1 import padre

print(__file__)
padre.printPadre()

p1/padre.py
from p1 import hijo

def printPadre():

9

2.3 Python necessary previous knowledge

print("Padre")
print(__file__)
print(__name__)

hijo.printHijo()
hijo.printNieto()

p1/hijo.py
from p1 import nieto

def printHijo():
print ("Hijo")
print (__file__)
print(__name__)

def printNieto():
nieto.printNieto()

p1/nieto.py
def printNieto():

print ("Nieto")
print (__file__)
print(__name__)

If you run the main.py module with Eclipse, the module loads the module p1.padre and executes the
function padre.printPadre. The module p1.padre loads p1.hijo and executes the function hijo.printHijo
and hijo.printNieto. The function printNieto is a function of the nieto module, so hijo imports also nieto.

If you realise all the imports have something in common: from p1 import something. The question is,
how Python is able to find the package p1. The answer is because by default Eclipse add to the Python
path the project folder name (/home/vagrant/apps/importingModules), and inside is the package p1.

So the trick is to import always from the project folder, despite the modules be at the same
package. That is, if m1.py and m2.py are at se same place, for example projectFolder/p1/p2/p3, instead
of import m2 from m1 like this:

import m2

the right way is to specify the complete path from the PyDev project folder:

from p1.p2.p3 import m2

But if you try to execute the module main.py your self from the command line:

python3 main.py

you will get an import error:

Traceback (most recent call last):
File "main.py", line 6, in <module>
from p1 import padre

ModuleNotFoundError: No module named ’p1’

This is because you are who is executing the module and not Eclipse, and is Eclipse who adds the
project path to the Python path variable, so the project path is not in the Python path and the package
p1 is not found. All you have to do is to add the project path to the Python path yourself. This is only
necessary once, and must be done in the project entry point, that is the module main.py. We will have
to do the same in the file wsgi.py of our Django projects. So the module main.py code must be the
following:

10

2.3 Python necessary previous knowledge

import os, sys
PROJEC_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__)

))
sys.path.append(PROJEC_DIR)
print("PROJEC_DIR: " + PROJEC_DIR)

from p1 import padre

print(__file__)
padre.printPadre()

2.3.2 Proposal exercise

You must use the IDE Eclipse, with the PyDev extension. The workspace always must be /ho-
me/vagrant/apps. Create a PyDev project called prueba. As Python interpreter you must choose the
interpreter of the virtual environment located in /home/vagrant/apps/env (figure 2.3, figure 2.4), otherwi-
se you will not have all the libraries available. To practice with packages and modules you must create
a Python package, called pointOperations, and and create the module poinListOperations. Type the
following functions:

Figura 2.3: Virtualenv Python interpreter selection in Eclipse

Figura 2.4: Virtualenv Python interpreter selection in Eclipse

11

2.3 Python necessary previous knowledge

sumXY : Receives a list of 2d points [[X1,Y1], [X2,Y2],...] and calculates the sum of all the X and all
the Y. Returns a list [sumX, sumY].

geocenterXY : Receives a list of 2d points [[X1,Y1], [X2,Y2],...], and returns the a list with [averageX,
averageY]. You must use sumXY in this function.

maxXY : Receives a list of 2d points [[X1,Y1], [X2,Y2],...] and returns a list with [maxX,maxY].

minXY : Receives a list of 2d points [[X1,Y1], [X2,Y2],...] and returns a list with [minX,minY].

traslationXY : Receives a list of 2d points [[X1,Y1], [X2,Y2],...] , and other list with two numbers [dX,
dY]. The function returns a list of points moved dx and dy: [[X1+dX, Y1+dY], [X2+dX,Y2+dY],...].

Create an other module, called mainPointListOperations, in the root project folder and execute all
the pointListOperations.py functions.

Create another project in /home/vagrant/apps, called p2, create a module called m2 with the follo-
wing content.

MESSAGE = "Hello from m2 module of p2 project. It is not easy to
import me"

Import the module m2 from mainPointListOperations and print the variable MESSAGE of the mo-
dule m2. You mus not use absolute path to import.

Python challenge:
For those students who the previous exercise is easy, I propose a challenge: to do the same using

OOP (Oriented Object Programming). Consist in to convert all the previous functions in methods without
parameters in a Python class. All the methods must use the coordList property, set in the constructor
class method. This is the way to code than probably you will be requested to use in a company. xfgdsfg

2.3.3 Solution with Object Oriented Programing (OOP)

OOP knowledge is quite important if you want to be developer, even a not professional develo-
per, as all libraries are created using this approach. The knowledge in OOP will help you not only to
arrange better your code, but also you will understand better how to use software libraries as: Django,
OpenLeyers, Vue or Angular.

Algorithms are the same in lineal coding than in OOP, the difference is the organization of the code.
You have to learn some more concepts, and think in a different way, but it is not that different.

The minimum concepts you have to learn are:

How create classes.

What is and how to use a constructor (__init__).

What is self, that in other languages is called this.

How create class variables, and the difference between public and private class variables.

How create methods, and the difference between public and private methods.

How to initialize the class variables from the constructor.

How to access to the class variables from any class method.

Difference between class variables and local variables.

12

2.3 Python necessary previous knowledge

How inherit from other class and what this means.

What is a father class, or super class, and what is a child class.

How to initialize the constructor of the father class from the constructor of the child class.

How to overwrite a father class method from the child class.

The main different is classes are ways fo organize data, but classes can perform much other ope-
rations: check the data before to be stored in the class and transform the data in different ways when
we want to retrieve it. Therefore the class variables are accessible from all methods, so you also avoid
passing parameters to the methods.

In the following example, Point3D, perform the following actions:

About checking the input data:

• Converts string into numbers.

• Checks for negative values.

About checking the output of the data:

• Returns the data in several list formats.

• Prints the coordinates in the screen.

Each 3d point can make the above operations simply with the instruction Point3d(10,20,30). A list
of data is created in a similar way [10,20,30], but it can not perform the same operations. A list in fact is
also an object and can perform other operations as append, sort, ..., but as we can get a Poin3d as list
we can do also what a list do with a Point3d.

class Point2d():
"""
Variables de clase, accesibles desde todos los métodos con self.

variable

Las variables de clase también se pueden hacer privadas si se
les pone el

_ delante del nombre. Ej: _suma. Eso indicará que la variable
_suma

no tiene interés fuera de esta clase. Estas variables se conocen
como variables privadas.
"""
point_number: int = None
x: float = None
y: float = None
def __init__(self,x:float, y:float, n:int=-1):

"""
Todos los métodos de la clases reciben un primer argumento

llamado self.
Este argumento es obligatorio, pero es automático. No

tenemos que pasarlo.

El método __init__ se se llama constructor. Se le pasan los
valores necesarios

para inicializar las variables de clase. Ej: pt1=Point2d
(10,20,1)

13

2.3 Python necessary previous knowledge

Además se aceptan valores tipo string Ej: pt1=Point2d
(’10’,’20’,1)

"""

#inicialización de las variables de clase
self.point_number=n
#comprobación de valores negativos
self._checkValue(x)
self._checkValue(y)
#si todo va bien se inicializan estas variables
self.x=float(x)
self.y=float(y)

def _checkValue(self,value:float):
"""
Comprueba que el valor no es menor que cero. Si eso pasa

genera un error
y termina el programa.
Se pone un guión bajo en el nombre para indicar que no tiene

utilidad
fuera de esta clase. Se conocen como métodos privados.
"""
if float(value) < 0:

mess="Coordinate values must be bigger than 0. Point
number: {n}".format(n=self.point_number)

raise Exception(mess)

def getXYAsList(self) -> list:
return [self.x,self.y]

def getXYNAsList(self) -> list:
l=self.getXYAsList()
l.append(self.point_number)
return l

def getAsDict(self) --> dict:
return {’x’:self.x, ’y’:self.y, ’point_number’: self.

point_number}
def printAsList(self):

print(self.getXYNAsList())

class Point3d(Point2d):
"""
Esta clase se conoce como clase hija. Su clase padre es Point2d.
Ha heredado todas las propiedades y métodos de la clase padre, y

añade más cosas.
"""
z:float=None
def __init__(self,x:float,y:float,z:float=0,n:int=-1):

"""
Constructor
Se aceptan valores tipo string Ej: pt1=Point2d

(’10’,’20’,’30’,1)
"""
Point2d.__init__(self,x, y, n)

14

2.3 Python necessary previous knowledge

self._checkValue(z)
self.z=float(z)

def getXYZAsList(self) -> list:
return [self.x,self.y,self.z]

def getXYZNAsList(self) -> list:
l=self.getXYZAsList()
l.append(self.point_number)
return l

def printAsList(self):
"""
Este método está también en la clase padre. Al tener un

método con el mismo
nombre en la clase hija (esta clase) estamos

sobreescribiendo (overrides)
el método de la clase padre.
Esto significa que si ejecuto printAsList() en un punto 2d,

saldrá el resultado
de la implementación de printAsList en Punto2d, y si ejecuto

printAsList en
un punto 3d saldrá el resultado
de la implementación de printAsList en Punto3d
"""
print(self.getXYZNAsList())

def getAsDict(self) --> dict:
"""
También está en la clase padre (overrides)
"""
return {’x’:self.x, ’y’:self.y, ’z’, self.z, ’point_number’:

self.point_number}

class PointOperations():
#variable de clase
l:[Point3d]=None
def __init__(self,l:list):

#constructor
self.l=l

def sumXYZ(self)-> Point3d:
#método
sumX=0
sumY=0
sumZ=0
for i in range(len(self.l)):

sumX=sumX+self.l[i].x
sumY=sumY+self.l[i].y
sumZ=sumZ+self.l[i].z

return Point3d(sumX,sumY,sumZ)

def geocenterXY(self) -> Point3d:
#método
sum:Point3D=self.sumXYZ()
n=len(self.l)
return Point3d(sum.x/n,sum.y/n,sum.z/n)

15

2.3 Python necessary previous knowledge

if __name__=="__main__":

print("Punto 2d")
p=Point2d(10,10,1000)
print(p.getXYAsList())
print(p.getXYNAsList())
p.printAsList()

print("Punto 3d")
p=Point3d(’20’,’20’,’20’,2000)
print(p.getXYZAsList())
print(p.getXYZNAsList())
p.printAsList()

l=[Point3d(10,10,10),Point3d(20,20,20), Point3d(30,30,30)]
po=PointOperations(l)
pt1:Point3d=po.sumXYZ()
print("Suma")
pt1.printAsList()
pt2:Point3d=po.geocenterXY()
print("Geocentro")
pt2.printAsList()
print("Terminado")

El resultado es el siguiente:

Punto 2d
[10.0, 10.0]
[10.0, 10.0, 1000]
[10.0, 10.0, 1000]
Punto 3d
[20.0, 20.0, 20.0]
[20.0, 20.0, 20.0, 2000]
[20.0, 20.0, 20.0, 2000]
Suma
[60.0, 60.0, 60.0, -1]
Geocentro
[20.0, 20.0, 20.0, -1]
Terminado

2.3.3.1. OOP proposal exercise

Create a class called CentesimalAzimut, with the public class property centesimalAzimut. The cons-
tructor receives a float , the azimut, in centesimal mode. The constructor makes the following angle
checks:

If the centesimalAzimut is bigger than 800 the program could calculate wrong values so you
should raise an error, with a proper message.

If the centesimalAzimut is less than 0, sums 400 to the angle.

If the centesimalAzimut is bigger than 400 then centesimalAzimut=centesimalAzimut-400.

In none of the previous cases occur, the centesimalAzimut values is correct and must remain
unchanged.

16

2.3 Python necessary previous knowledge

All those checks can be in the constructor, or in a public method that sets the proper value of
the azimut in the class variable. Better call a public method called setCentesimalAzimut, that recei-
ves the angle passed to the constructor make the prevous checks, and sets proper azimut value in
the class variable centesimalAzimut. I recommend make the setCentesimalAzimut method public be-
cause, in that way can be used to change the azimut of the object, at any moment. That is, if I have
ca=CentesimalAzimut(560), latter I can change its azimut: ca.setCentesimalAzimut(230), and the new
azimut for the ca object will be also checked.

Create the following public class methods: getAsSexagesimal, getAsRadians and getAsCentesimal,
to return the azimut in several formats:

The method getAsCentesimal simply returns the class property centesimalAzimut.

The method getAsSexagesimal gets the centesimalAzimut property multiplies by 360 and divides
by 400, and returns the result.

The method getAsRadians gets the centesimalAzimut property multiplies by math.PI and divides
by 200, and returns the result.

I have to remark that the centesimalAzimut property must remain unchanged after the initializa-
tion, and the public methods simply transform the value internally and return the value that the user
requested. You must aware that, if you change the centesimalAzimut value from any of the methods,
the second time you use any of the methods will return a wrong value.

Create the class Observation2d, that inherits from CentesimalAzimut, and adds the public property
distance2d. The constructor receives the azimut, and the distance, both supposedly observed from a
base point to a measured point with a total station. The idea is to have the CentesimalAzimut functiona-
lities to check the observed azimuth, and add some more checks to the distance, all in the same class.
The idea of inheritance is to be enlarging functionality in inherited classes.

The child class Observation2d initializes the father class, CentesimalAzimut, with the azimut recei-
ved by the constructor of Observation2d. Observation2d also receives a distance in its constructor. You
must perform also some checks: if the distance is bigger than 0, is correct, and initializes the distance.
In case the distance be less than 0 you should raise an error. Again you can implement this distance
checks directly in the constructor, or outside in a private method. This time that is up to you.

Create a public method called getDistance, which returns the distance property.
Create a public method called getDistanceWithOffset, that receives an offset, and returns the dis-

tance plus the offset. If there is a systematical error in the distance, positive or negative, with the offset
you can get the proper distance value. I have to recognize that this is a very strange case, but it is useful
to you to know that class methods can receive extra values, to make the class method work.

Why do not put the offset variable in the Observation2d constructor, and store it as a class property
or variable?. Good question. It is normal at the beginning not to know where is the best place to put the
things. It is a matter of practice. To create a class variable, instead of require a class method parameter,
you must the following two criteria:

The property must be required for all class methods. That is, it is a common required data for all
methods.

The property must be frequently used.

In this case the class Observation2d has three inherited methods and his own two ones, getDistan-
ce, and getDistanceWithOffset. So one out of five require the offset. First condition is not accomplished.

17

2.3 Python necessary previous knowledge

But also the offset is going to be rarely used. So make sense not use it as property, and use it as para-
meter to get the corrected distance value with the getDistanceWithOffset method, if required.

Therefore, if you do not add the offset as class property, the initialization of the class will receive
two parameters. e.g: o = Observation2d(distance=200, azimut=150).

But if you add the offset as class property, the initialization of the class will need three parameters:
o = Observation2d(distance=200, azimut=150, offset=0 (or 0.05, or 0.025, whatever value)), although
you can set the offset as optional value.

Create the class Radia2d. That class do not inherits anything from the other classes, because it is
not going to extend their functionality, but is going to use objects of previous classes, in fact is going
to use a Point2d object, and an Observation2d object. Define three public class variables outside of
the constructor, above, and set them to None: base: Point2d, obs: Observation2d and radiatedPt2d:
Point2d.

Define the constructor that receives two parameters base: Point2d, obs: Observation2d. The cons-
tructor immediately initializes the class variables base and obs. To initialize the radiatedPt2d yo must
calculate the x, and y coordinates and create a Point2d object, and set the radiatedPt2d to that object.
I recommend you to do that in a private method, outside the constructor, e.g: _setRadiatedPt2d.

Note: Methods that gets property values are usually named getPropertyName. Methods that sets
property values are commonly named setPropertyName. They are also named as getters and setters
methods.

Define the following methods to get the results: getAsPoint2d (returns the radiated point), getAsList
(returns the coordinates of the radiated point as list [x, y]), getAsDict(returns the resulting point as dict),
printPoint (prints the radiated point in list form).

2.3.3.2. OOP proposal exercise solution

Here is the solution:

import math
from pointOperationsObj import Point2d

PI = math.pi#global variable

class CentesimalAzimut():
centesimalAzimut: float = None#class variable
def __init__(self,centesimalAzimut:float):#constructor

self.setCentesimalAzimut(centesimalAzimut)#setter de la
propiedad centesimalAzimut

def setCentesimalAzimut(self,value:float):
"""
Setter de centesimalAzimut. Establece el valor correcto de

la propiedad
"""
if value > 800:

raise Exception("Angulo mayor de 800")
if float(value) < 0:

self.centesimalAzimut = value+400
else:

if float(value) > 400:
self.centesimalAzimut = value-400

else:
self.centesimalAzimut = value

#getters

18

2.3 Python necessary previous knowledge

def getAsSexagesimal(self):
return (self.centesimalAzimut*180)/200

def getAsRadians(self):
return (self.centesimalAzimut*PI)/200

def getAsCentesimal(self):
return self.centesimalAzimut

class Observation2d(CentesimalAzimut):
distance2d : float = None

def __init__(self,centesimalAzimut:float,distance:float):
CentesimalAzimut.__init__(self, centesimalAzimut)
self._checkPositiveDistance(distance)
self.distance2d = float(distance)

def _checkPositiveDistance(self,value:float):
if float(value) <= 0:

mess="Distance must be bigger than 0"
raise Exception(mess)

def getDistance(self):
return self.distance2d

def getDistanceWithOffset(self,offset:float = 0):
return self.distance2d+float(offset)

class Radia2d():
base:Point2d=None
obs:Observation2d=None
radiatedPt2d:Point2d=None

def __init__(self,base:Point2d,obs:Observation2d):
self.base = base
self.obs = obs
self.setRadiatedPt2d()

def setRadiatedPt2d(self):
x=self.base.x + self.obs.distance2d*math.sin(self.obs.

getAsRadians())
y=self.base.y + self.obs.distance2d*math.cos(self.obs.

getAsRadians())
self.radiatedPt2d=Point2d(x,y)

def getAsPoint2d(self):
return self.radiatedPt2d

def getAsList(self):
return self.radiatedPt2d.getXYAsList()

def getAsDict(self):
return self.radiatedPt2d.getAsDict()

def printPoint(self):
self.radiatedPt2d.printAsList()

19

2.3 Python necessary previous knowledge

#demostración de uso
if __name__=="__main__":

#Comprobación de Observation2d
obs = Observation2d(centesimalAzimut=500, distance=200)
print("Angulo en centesimal: {0}".format(obs.getAsCentesimal()))
print("Distancia: {0}".format(obs.getDistance()))
print("Distancia con -0.025 de offset: {0}".format(obs.

getDistanceWithOffset(offset=-0.025)))

#Radiación de un punto
ptBase=Point2d(100,100)
rd=Radia2d(base=ptBase, obs=obs)
print("Radiación primer punto:")
rd.printPoint()

ptBase2=Point2d(800,800)
obs2=Observation2d(centesimalAzimut=300, distance=450)
rd2=Radia2d(base=ptBase2, obs=obs2)
print("Radiación segundo punto:")
rd2.printPoint()

The result of the before program is:

Angulo en centesimal: 100
Distancia: 200.0
Distancia con -0.025 de offset: 199.975
Radiación primer punto:
[300.0, 100.00000000000001, -1]
Radiación segundo punto:
[350.0, 799.9999999999999, -1]

2.3.4 Python string formatting

In this section you are going to learn an utility that you are going to use on making sql sentences
dynamically. It is a way to substitute variable values inside a string. Very useful to introduce table names
and field names into the sql sentences. Python give as two ways to to this:

2.3.4.1. Formatting a string using the order of the variables

In this way you put numbers between curly brackets into the string, an later you specify the variable
values in order:

query1 = "select {0} from {1}".format("gid, description,st_area(geom
)", "d.buildings")

print(query1) #print --> select gid, description,st_area(geom) from
d.buildings

20

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

2.3.4.2. Formatting a string using names in the formatted string

In this way you put names between curly brackets into the string, an later you specify the variable
names and values:

query2 = "select {fieldNames} from {tableName}".format(fieldNames="
gid, description,st_area(geom)", tableName="d.buildings")

print(query2) #print --> select gid, description,st_area(geom) from
d.buildings

2.3.4.3. Proposal exercise

Create a python function that receives tho strings and returns one. Receives the a table name
and the geometry field name of a table and returns the following string: update tableName set area =
st_area(geomFieldName), where tableName and geomFieldName are substituted by the real variable
values received by the function.

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

In this section you will learn how to connect with a database and how to perform any sql query. To
make queries or changes in a PostgreSQL database with Python, we are going to use the psycopg2
library,http://initd.org/psycopg/.

Fist step is to create a database, add the postgis extension and create an schema and a table. You
can do this also with Python but you will do in this occasion with the console. You can use the user the
linux user vagrant without password to create databases and to connect to databases because is also
a superuser of postgres, with password vagrant. Open an console and type the following:

vagrant@linux:~$ createdb desweb
vagrant@linux:~$ psql -d desweb
psql (11.5 (Ubuntu 11.5-3.pgdg18.04+1))
Digite «help» para obtener ayuda.

desweb=# create extension postgis;
CREATE EXTENSION
desweb=# create schema d;
CREATE SCHEMA
desweb=# create table d.buildings(gid serial primary key,

descripcion text, area double precision, geom geometry("POLYGON",
25830));

CREATE TABLE
desweb=#

You can see the result in the figure 2.5.
Now you can insert, delete, select or update buildings with Python and Psycopg2 (http://initd.org/psycopg/).

The workspace must be /home/vagrant/apps. Launch Eclipse and create a PyDev project called des-
web. As interpreter you must choose the interpreter of the virtual environment located in /home/vagran-
t/apps/env.

The first you have to do is to configure the psycopg2 library, because our databases are in UTF8
coding. Create a module called buildingsInsert.py and write the following:

import psycopg2
import psycopg2.extensions
psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

21

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

Figura 2.5: PgAdmin 4 showing the buildings database

Now you can connect with the desweb database:

database="desweb"
user="postgres"
password="postgres"
host="localhost"
port=5432

#conexion
conn=psycopg2.connect(database=database, user=user, password=

password, host=host, port=port)
cursor=conn.cursor()

The constructor of the object connect created a object, which has been denominated conn. This
object has a property, called cursor, which is an other object which allow to send SQL queries to the
database.

cursor=conn.cursor()

With the cursor, it is already able to send SQL sentences to the database. The sentences can have
parameters or not. If the sentence does not have parameters then is a normal string.

VERY, VERY, VERY IMPORTANT:
AFTER TO HAVE FINISHED WITH THE CURSOR AND CONNECTION, IT IS TOTALLY FUNDA-

MENTAL TO CLOSE THEM:

cursor.close()
conn.close()

IF YOU DO NOT CLOSE THE CONNECTION, THE CONNECTIONS CONTINUE OPENED, AND
THERE ARE A DEFAULT NUMBER OF CONNECTION OF 100. IN FEW MINUTES YOU WILL DO
POSTGRES UNUSABLE FOR ANY OTHER USER OR PROJECT. ANY MORE WILL BE ABLE TO
CONNECT TO THE DATABASE, UNTIL THE POSTGRES SERVICE BE RESTARTED.

If the cursor, or the connection is closed, you can not send any sql query.

22

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

2.4.1 Insert rows with geometry

In the following listing, a form of to insert geometries in tables with a field geometry is presented.
The trick consists in to use the PostGIS function st_geometryfromtext, and transform the geometry, in
a WKT format, to a valid column geometry type. The previous function also needs the SRC, specified
in the EPSG code. Lets insert some buildings:

query_ins="insert into d.buildings (descripcion, geom) values (%s,
st_geometryfromtext(%s,25830))"

values1=["edificio 1", "POLYGON((727844 4373183,727896
4373187,727893 4373028,727873 4373018,727858 4372987,727796
4372988,727782 4373008,727844 4373183, 727844 4373183))"]

values2=["edificio 2", "POLYGON((727988 4373188,728054
4373192,728051 4373093,727983 4373093,727988 4373188))"]

cursor.execute(query_ins, values1)
cursor.execute(query_ins, values2)

cursor.commit()

cursor.close()
conn.close()

We are going to use WKT format because OpenLayers is able to give its geometries in this format.
The WKT representation of a polygon geometry is:

"POLYGON((727844 4373183,727896 4373187,727893 4373028,727873
4373018,727858 4372987,727796 4372988,727782 4373008,727844
4373183, 727844 4373183))"

As you can see, the same query is executed twice with different parameter values. The parameter
values are the included in the lists values1 and values2. The executed method changes each%s by
each parameter value. The first%s is replaced in the query for the first parameter value in the list, the
second%s is replaced in the query for the second parameter value in the list, and so on.

The cursor.commit function perform the changes into the database. Without the commit any change
will be done into the database, despite the code be correct.

The last thing is to close the cursor and the connection, in that order. To execute the program, right
button over de code and select Run as –>Python Run (figure 2.6). Execute the program and see the
polygons in PgAdmin (figure 2.7), and in Qgis (figure 2.8).

To connect to Postgis with Qgis you need to define a connection the figure 2.9 shows the proper
parameters in this case.

Now the student already know how to insert data into a database using Psycopg2. The same
process is for any other sql (update, delete, select, ...) query. The only difficult here is to know what
sql sentence to use. You only have to create the sql sentence in a string, putting%s instead of the real
values, and use the execute method giving that string and the real values in a list.

23

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

Figura 2.6: Execute a Python program in Eclipse

2.4.1.1. Proposed exercise: insert

Create a database called training and add the postgis extension. Create a table, inside the training
database, called streets. Put the table in the schema d. Add three fields to the table: gid, name, length
and geom. The field gid must be serial primary key, name a varchar and geom linestring, in the EPSG
25830. The length field mus by of double precision.

Create a Eclipse PyDev project called training, and select the interpreter located in the virtualenv.
Create a module called streetsInsert.py an introduce the code necessary to insert a couple of streets,
in EPSG 25830 coordinates. The streets coordinates mus be digitized from the cadastre, in an area
near the Universitat Politècnica de València.

To get the street coordinates in 25830 you mus set the SRC of the project in Qgis (settings–
>Options–>SRC). Set the EPSG 25830 by default restart Qgis and create a new project. Later you must
add the Spanish WMS service (http://ovc.catastro.meh.es/Cartografia/WMS/ServidorWMS.aspx?). Crea-
te a linestring shp layer (Layer –>Create layer –>New shp layer). Locate the university. Start the edition
of the layer and draw 4 streets.

To get the WKT formtat of the digitized streets you must select a street and press the button WKT
(figure 2.10).

2.4.2 Update rows

In the Elipse project desweb create a new module called buildingUpdate.py, and paste the following
code:

@author: vagrant
"""
import psycopg2
import psycopg2.extensions
psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

database="desweb"
user="postgres"
password="postgres"
selecthost="localhost"

24

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

Figura 2.7: The two buildings inserted seen in PgAdmin

port=5432

#conexion
conn=psycopg2.connect(database=database, user=user, password=

password, host=host, port=port)
cursor=conn.cursor()
query_update="update d.buildings set (descripcion, area, geom) = row

(%s, st_area(geom), st_geometryfromtext(%s,25830)) where
descripcion = %s"

values=["Edificio 2",
"POLYGON((727988 4373188, 728054 4373192,

728095.84297791088465601 4373142.83781164418905973,
728051 4373093, 727983 4373093, 727988 4373188))",

"edificio 2"
]

cursor.execute(query_update, values)

n = cursor.rowcount

conn.commit()

cursor.close()
conn.close()

print("Polygons updated: {0}".format(n))

As you can see, the update query has three%s, so the values list has to have also three values, the
last of which is taken for the where condition. Only the building who descripcion is edificio 2 is going to
be update.

The number of rows affected is stored in the cursor.rowcount property.

25

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

Figura 2.8: Inserted buildings in in Qgis

Figura 2.9: Postgis connection definition in Qgis

2.4.2.1. Proposed exercise: update

Create a module to update one street of the cities database. Update also the length field.

2.4.3 Code optimization

We have two modules and we already have repeated a lot of code. For example, the database
name, user, etc are already in two files. If we continue like that with the two next operations, delete and
update, we will have the same 4 times. What will happen if we change the user password?. We will
have to change the password in 4 files. NEVER REPEAT CODE. IT IS A ILLNESS OF YOUR APP.

Not to repeat code allows you to change things in one point in your code, but has a price. You have
to extract the common code to an other module, and import it whatever is needed. You have to know
how the imports work in Python.

In the current project I will extract the database credentials to an external module, called mySet-
tings.py. I also will create two functions to connect and disconnect from the database, and put it into
other module called pgUtils.py.

26

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

Figura 2.10: Get the WKT coordinates with Qgis

This is the content for the module mySettings.py :

DATABASE="desweb"
USER="postgres"
PASSWORD="postgres"
HOST="localhost"
PORT=5432

It is used to use upper letters to name the global variables
This is the code for the module pgUtils.py. Pay attention to the comments, the most important think

here is that from pgUtils.py the module mySettings.py is imported, and they are in different packages.
To be able to import one module from the other it is necessary to add the project root path to the
sys.path list. The sys.path list contains the list of paths to search packages or modules.

import os, sys

import psycopg2
import psycopg2.extensions
psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

import mySettigns #this works because mySetting and all the modules
#in this project are at the same folder, the

project root folder

def pgConnect():
"""
Connects with the database with the library psycopg2
"""
#conexion
conn=psycopg2.connect(database=mySettigns.DATABASE, user=

mySettigns.USER,
password=mySettigns.PASSWORD, host=

mySettigns.HOST,
port=mySettigns.PORT)

return conn

def pgDisconnect(conn):
cursor=conn.cursor()
cursor.close()
conn.close()

27

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

2.4.4 Delete rows

In the Elipse project desweb create a new module called building_delete.py, and paste the following
code:

import pgUtils #this works because pgUtils and all the modules
#in this project are at the same folder, the

project root folder
conn = pgUtils.pgConnect()
cursor=conn.cursor()
query_delete=’delete from d.buildings where descripcion = %s’

values=[’Edificio 2’]

cursor.execute(query_delete, values)

n = cursor.rowcount

conn.commit()
pgUtils.pgDisconnect(conn)

As you can see, you do not repeat code unnecessarily.

2.4.4.1. Proposed exercise: optimize the modules building_insert.py and building_update.py

Now that you have the module pgUtils.py, you can use it in the modules building_insert.py and
building_update.py, so that you do not repeat code. Make the necessary changes and test the new
versions.

2.4.5 Select rows

To select rows is a little bit more tricky because we want to get the rows in json format. This because
we are going to transfer the data from the database to a web page, in the client side, in json strings,
and the same on de reverse. So we have to learn to deal with json and json strings.

Lets start adding a couple of more buildings to the table. Open Qgis and add the WMS service of the
Spanish cadaster, connect to the database desweb, and add the table d.building to the canvas. Press
the edit button and the add feature button. Digitize a couple of blocks figure 2.11. Save the changes
and press the edit button again to stop the editing.

2.4.5.1. Select rows

The following selects the fields gid, descripcion and geom of all rows of the table. The geom field
can not be selected directly because its stored in binary format. To get the geometry you can use
the postgis function st_astext, or st_asgeojson. These functions returns the geometry in an adequate
readable format:

st_astext : This is the format we are going to use in the HTML forms to send geometries to the server.
So we can use this format also to send the geometries to the HTML form and edit the coordinates
in the form.

st_asgeojson : This format is useful because OpenLayers is able to draw geometries in the map
with this format. This has the advantage of avoid to use GeoServer and to be able to edit the
geometries graphically in the map, using the mouse. The inconvenient is that the symbology
available in OpenLayers is much more limited than in GeoServer, and, if there are millions of
geometries, the performance will be slow, so many system limit the geometries transfer to 1000.

28

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

Figura 2.11: Add some more buildings, digitizing blocks from the Spanish cadastre

import pgUtils
conn = pgUtils.pgConnect()
cursor=conn.cursor()
query_select="select gid, descripcion, st_astext(geom) from d.

buildings"
cursor.execute(query_select)
listOfRows=cursor.fetchall()
print(listOfRows)
pgUtils.pgDisconnect(conn)

The execute function with a select query does not have any result. The results are put into the
cursor object. The cursor selects the rows and puts them into the cursor. To extract them you can use
the function fetchall. The function fetchall removes the rows from the cursor, so they are not in the
cursor object any more.

The above listing has the following result:

[(7, "building1", "POLYGON((727988 4373188,728054
4373192,728053.399856473 4373143.69857413,728052.488432421
4373093.57025125,727983 4373093,727988 4373188))"),

(11, "building2", "POLYGON((728077.487492143
4373196.17055886,728123.319101633
4373195.64974511,728119.152591679
4373109.71547732,728073.320982189
4373108.15303608,728077.487492143 4373196.17055886))"),

(12, "building3", "POLYGON((728069.67528598
4373044.61375929,728071.237727212
4373092.00781002,728120.715032912
4373094.09106499,728119.152591679
4373040.44724934,728069.67528598 4373044.61375929))")]

As you can see in the above listing, the result is a list of tuples, each of which represents a row.
Each row has the field values, by order specified in the select query.

The access to the values is like in Python normal lists. For example, to print only the descripcion
field you can the for sentence and access to the second position in each row (index 1):

29

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

for row in listOfRows:
print(row[1])

#result:
building1
building2
building3

If you want to filter the rows you have to use the where sql clause and use%s to mark the position of
the variable value, exactly equal than you updated a row. The following listing selects only the building
who descripcion is building2.

query_select="select gid, descripcion, st_astext(geom) from d.
buildings where descripcion = %s"

cursor.execute(query_select,["building2"])

2.4.5.2. Select rows getting a dictionary for each row

In this section we are going to get a dictionary fieldName : fieldValue for each row. Also we are
going to use st_asgeojson to get the geometry values. This is the way that you have to use in web
developing:

#Select all the rows. Get a dictionary for each row, and use
st_asgeoson

query_select="SELECT array_to_json(array_agg(registros)) FROM (
select gid, descripcion, st_asgeojson(geom), st_astext(geom) from
d.buildings as t) as registros"

cursor.execute(query_select)
listOfRows=cursor.fetchall()
print(listOfRows)

The result is the following:

[

([

{’gid’: 7, ’descripcion’: ’building1’, ’st_asgeojson’: ’{"type":"
Polygon","coordinates
":[[[727988,4373188],[728054,4373192],[728053.399856473,4373143.69857413],[728052.488432421,4373093.57025125],[727983,4373093],[727988,4373188]]]}’,
’st_astext’:"POLYGON(X Y, X Y, ...)"},

{’gid’: 11, ’descripcion’: ’building2’, ’st_asgeojson’: ’{"type":"
Polygon","coordinates
":[[[728077.487492143,4373196.17055886],[728123.319101633,4373195.64974511],[728119.152591679,4373109.71547732],[728073.320982189,4373108.15303608],[728077.487492143,4373196.17055886]]]}’,
’st_astext’:"POLYGON(X Y, X Y, ...)"},

{’gid’: 12, ’descripcion’: ’building3’, ’st_asgeojson’: ’{"type":"
Polygon","coordinates
":[[[728069.67528598,4373044.61375929],[728071.237727212,4373092.00781002],[728120.715032912,4373094.09106499],[728119.152591679,4373040.44724934],[728069.67528598,4373044.61375929]]]}’,
’st_astext’:"POLYGON(X Y, X Y, ...)"}

],)

]

As you can see, the rows are inside a list, inside a tuple, inside a list. To extract the list of rows we
have to get the element index 0, of the element of index 0 of the result. You have simply to add [0][0]
after the fetchall():

30

2.4 Database connection with Pyhton 3.6. Use of the psycopg2 library

#Select all the rows. Get a dictionary for each row, and use
st_asgeoson

query_select="SELECT array_to_json(array_agg(registros)) FROM (
select gid, descripcion, st_asgeojson(geom) from d.buildings as t
) as registros"

cursor.execute(query_select)
listOfRows=cursor.fetchall()[0][0]
print(listOfRows)

The result is the following:

[

{’gid’: 7, ’descripcion’: ’building1’, ’st_asgeojson’: ’{"type":"
Polygon","coordinates
":[[[727988,4373188],[728054,4373192],[728053.399856473,4373143.69857413],[728052.488432421,4373093.57025125],[727983,4373093],[727988,4373188]]]}’,
’st_astext’:"POLYGON(X Y, X Y, ...)"},

{’gid’: 11, ’descripcion’: ’building2’, ’st_asgeojson’: ’{"type":"
Polygon","coordinates
":[[[728077.487492143,4373196.17055886],[728123.319101633,4373195.64974511],[728119.152591679,4373109.71547732],[728073.320982189,4373108.15303608],[728077.487492143,4373196.17055886]]]}’,
’st_astext’:"POLYGON(X Y, X Y, ...)"},

{’gid’: 12, ’descripcion’: ’building3’, ’st_asgeojson’: ’{"type":"
Polygon","coordinates
":[[[728069.67528598,4373044.61375929],[728071.237727212,4373092.00781002],[728120.715032912,4373094.09106499],[728119.152591679,4373040.44724934],[728069.67528598,4373044.61375929]]]}’,
’st_astext’:"POLYGON(X Y, X Y, ...)"}

]

As in this case each row is a Python dictionary, to access to the description field of each row:

for row in listOfRows:
print(row["descripcion"])

If you want to use the where clause to filter the result, in the following example you have an example
where you only retrieve one row:

#Select one row. Get a dictionary for each row, and use st_asgeoson
query_select="SELECT array_to_json(array_agg(registros)) FROM (

select gid, descripcion, st_asgeojson(geom) from d.buildings as t
where descripcion = %s) as registros"

cursor.execute(query_select, ["building2"])
listOfRows=cursor.fetchall()[0][0]
print(listOfRows)

The result is the following:

[
{’gid’: 11, ’descripcion’: ’building2’, ’st_asgeojson’: ’{"type":"

Polygon","coordinates
":[[[728077.487492143,4373196.17055886],[728123.319101633,4373195.64974511],[728119.152591679,4373109.71547732],[728073.320982189,4373108.15303608],[728077.487492143,4373196.17055886]]]}’}

]

31

2.5 Managing JSON strings

2.4.5.3. Proposed exercise

Open the training project and add a new module called streetsSelect. Type a function to select one
street using his name. Get all the table fields, and get the geometry field in geojson format, and in WKT
format. The row selected must be a Python dictionary.

2.5 Managing JSON strings

2.5.1 Communication client - server

A server only receives and send strings. It is widely used JSON strings to send data from the server
to the user, and from the user to the server. Usually the server sends to the user json strings containing
table rows and the user sends json strings containing form user data.

COMMUNICATION CLIENT --> SERVER

CLIENT: html form --> javascript --> json --> send to the server
||Internet|| SERVER: python WSGI --> json decode --> python

dictionary --> send to the database

COMMUNICATION SERVER --> CLIENT
DATABASE --> PYTHON WSGI --> Python dictionary --> json --> send to

the client
||Internet|| CLIENT: json --> js object --> html form

A json string is a string that contains fields names and values. It looks like a Python dictionary but
wrapped by simple quotes. Json strings can easily be transformed into Python dictionaries and vice
versa. In the following listing you can see a json string example. Pay attention in the external quotes
and the internal quotes format.

’{"gid":"10","descripcion":"Hola","id_trabajo":"1","z_tapa":"10","
profundidad":"10","diametro":"10","type":"Point",

"coordinates":"727763.05556,4372987.48466"}’

2.5.2 Creating JSON strings with Python

In the following listing you can find an example of how create a json string with Pyhton.

-*- coding: utf-8 -*-

#imports the json librari to code and decode json strings
import json

#creates the dictionary d
d = {}

#introduces three keys and values
d["campo1"]="valor1"
d["campo2"]="valor2"
d["campo3"]="valor3"

#converts the dictionary to a json string
d_json = json.dumps(d)
print("First json: {0}".format(d_json))

#creates other dictionary

32

2.5 Managing JSON strings

d2={}
#introduces some keys and values
d2["ok"]=True
d2["menssage"]="diccionariy 2"
#introduces the other json string as a value in this dictionary
d2["data"]=d
d2_json = json.dumps(d2)

print("Second json: {0}".format(d2_json))

The result is the following

First json: ’{"campo1": "valor1", "campo2": "valor2", "campo3": "
valor3"}’

Second json: ’{"message": "diccionariy 2", "ok": true, "data": {"
campo1": "valor1", "campo2": "valor2", "campo3": "valor3"}}’

As you can see in the in the second json of the above listing, you can put a dictionary into a
dictionary an generate a json. This is what usually is done. In the second json there is a message, a
variable to know if the request was ok, and a field called data. The data field contains, in this case, a
row, but can contain several rows.

2.5.3 Decode a JSON string to obtain a Python dictionary

In the following listing you can find an example of how decode a json string with Pyhton.

-*- coding: utf-8 -*-

#imports the json librari to code and decode json strings
import json

#the json string to decode
strJson = ’{"message": "diccionariy 2", "ok": true, "data": {"campo1

": "valor1", "campo2": "valor2", "campo3": "valor3"}}’
#decodes the json string and creates a dictionary
d=json.loads(strJson)

#prints the keys of the dictionary
print(d.keys())
#print the values of the dictionary
print(d.values())

The result is the following. Pay attention in that the value for the data key is an other dictionary. That
means that you can put several dictionaries inside other dictionaries, obtain a json string, and decoding
the json string only once, you can retrieve all the dictionaries.

dict_keys([’message’, ’ok’, ’data’])
dict_values([’diccionariy 2’, True, {’campo1’: ’valor1’, ’campo2’: ’

valor2’, ’campo3’: ’valor3’}])

33

2.6 Create functions to easily insert, delete update and select buildings

2.5.4 Decode a JSON string to obtain a JavaScript object

If a json string is received in the client, with JavaScript it is possible to convert it into an object. In
the following code, a example is showed:

Listado 2.1: Convert json string to object in JavaScritp

function functionWichReceivesTheServerAnswer(resp_json){
//resp_json is:
// ’{"message": "diccionariy 2", "ok": true, "data": {"campo1":

"valor1", "campo2": "valor2", "campo3": "valor3"}}’
var obj_resp_json=$.parseJSON(resp_json);//$ mins JQUERY. It is

necessary to load JQUERY library before
alert(obj_resp_json.ok);//shows true
alert(obj_resp_json.message);//shows the message "diccionariy 2"
alert(obj_resp_json.data);//shows the json data, which will be a

new json to decode again:
"{"campo1": "valor1", "campo2": "

valor2", "campo3": "valor3"}"
}

2.6 Create functions to easily insert, delete update and select buildings

You know how to insert, delete, update and select rows using Pyhton and Psycopg2. You also know
that we are going to send and receive json strings from the server to the client and vice versa.

To be able to communicate in that way, we need useful functions that receive a dictionaries string,
decode the string and get a Python dictionary, perform the requested action (insert, delete, update or
select), encode a json with the result and return this json. Django is in charged to decode the json string
of the request and encode to json string the answer.

In this section you are going to get module, called buildings with four functions: insert, select, delete
and update. All these functions will receive a dictionary, perform the operation and return a dictionary
with the result. You will have to to the same with each of your database tables, at least three of them,
to pass the evaluable exercise 1. So the buildings module can be taken as a model for your table
operations.

Create a new module in the Eclipse desweb project called buildings.

2.6.1 Function to insert a building from a Python dictionary

It is necessary to have a function that receives a dictionary with the fields descripcion and geomWkt
and the function inserts the building. The WKT representation of a geometry is a format that OpenLayers
can generate. We will use this to send the geometries drawn in the map to the database. In the following
listing you have a WKT representation of a polygon geometry:

POLYGON((726151.9523572231 4374499.933133851,724021.1074695279
4373503.494877015,724802.9282556607
4371571.9376406865,726627.1767566373
4372874.972284242,726151.9523572231 4374499.933133851))

In the next listing is the code:

import json
from libs import pgUtils
#example of jsonString
#jsonString= ’{
"descrition": "edificio 1",

34

2.6 Create functions to easily insert, delete update and select buildings

"geomWkt":"POLYGON((726151.9523572231
4374499.933133851,724021.1074695279
4373503.494877015,724802.9282556607
4371571.9376406865,726627.1767566373
4372874.972284242,726151.9523572231 4374499.933133851))"

}’
def insert(d):

conn = pgUtils.pgConnect()
cursor=conn.cursor()

#returning gid stores into the cursor the new gid automatically
created by the database as gid is serial

queryIns=’insert into d.buildings (descripcion, geom) values (%s
,st_geometryfromtext(%s,25830)) returning gid’

values=[d[’descripcion’], d[’geomWkt’]]

cursor.execute(queryIns, values)
gid=cursor.fetchall()[0][0] #the new gid is stored in the first

field of the firs column

#for the data field we follow the same criteria than psycopg2:
firts field of first row

answer={"ok":"true", "message": "Building inserted", "data": [{"
gid":gid}] }

conn.commit()
pgUtils.pgDisconnect(conn)
return answer

In the next listing you will find an example of use:

import buildings
jsonString= ’{"descripcion": "edificio 3", "geomWkt":"POLYGON

((728018.22892680263612419 4373075.40479189157485962,
727992.44081938592717052 4373037.91898626554757357,
727986.85782705864403397 4373058.38995813205838203,
728018.22892680263612419 4373075.40479189157485962"))}’

d=json.loads(jsonString) #from json to dictionary
resp = buildings.insert(d)
print(resp)

And the result is:

{"ok": "true", "message": "Building inserted", "data": [{"gid":
15}]}

We always will return a json with the same fields: ok, message and data. The ok field is to indicate
whether or not the things went well. The message field is to send the message that the user will see
in the web page. The data field is to send the data requested, usually a list of Python dictionaries,
representing each dictionary a row. All these fields are putted inside of a dictionary anf Django will be
in charge of tranformin it into a json string, and to sending it to the client.

35

2.6 Create functions to easily insert, delete update and select buildings

2.6.2 Function to update a building from a Python dictionary

In the following listing you have a function to update a building

def update(d):
"""
Update the row which gid is the gid in the jsonString with the

new field values in the jsonString
"""
conn = pgUtils.pgConnect()
cursor=conn.cursor()

#returning gid stores into the cursor the new gid automatically
created by the database as gid is serial

queryUpdate=’update d.buildings set (descripcion, area, geom) =
row(%s, st_area(geom), st_geometryfromtext(%s,25830)) where
gid = %s’

values=[d[’descripcion’], d[’geomWkt’], d["gid"]]

cursor.execute(queryUpdate, values)
n = cursor.rowcount

#for the data field we are going to return always a list of
dictionaries

answer={"ok":"true", "message": "Building updated", "data": [{"
rowcount":n}] }

conn.commit()
pgUtils.pgDisconnect(conn)
return answer

To execute the function:

import buildings
jsonString= ’{"gid":"15","descripcion": "edificio 32", "geomWkt":"

POLYGON((728040.22892680263612419 4373075.40479189157485962,
727992.44081938592717052 4373037.91898626554757357,
727986.85782705864403397 4373058.38995813205838203,
728040.22892680263612419 4373075.40479189157485962))"}’

d=json.loads(jsonString) #from json to dictionary
resp = buildings.update(d)
print(resp)

And the answer is the following:

{"ok": "true", "message": "Building updated", "data": [{"rowcount":
1}]}

36

2.6 Create functions to easily insert, delete update and select buildings

2.6.3 Function to delete a building from gid

In the following listing you have a function to delete a building given a gid

def delete(gid):
conn = pgUtils.pgConnect()
cursor=conn.cursor()
queryDelete=’delete from d.buildings where gid = %s’
values=[gid]

cursor.execute(queryDelete, values)
n = cursor.rowcount

#for the data field we are going to return always a list of
dictionaries

answer={"ok":"true", "message": "Building deleted", "data": [{"
rowcount":n}] }

conn.commit()
pgUtils.pgDisconnect(conn)
return answer

To execute the function:

import buildings
resp=buildings.delete(gid=15)
print(resp)

And the answer is the following:

{"ok": "true", "message": "Building deleted", "data": [{"rowcount":
1}]}

2.6.4 Function to select a building from gid

In the following listing you have a function to select building given a gid

def select(gid):
conn = pgUtils.pgConnect()
cursor=conn.cursor()
query_select="SELECT array_to_json(array_agg(registros)) FROM (

select gid, descripcion, st_asgeojson(geom) from d.buildings
as t where gid = %s) as registros"

cursor.execute(query_select, [gid])
listOfRows=cursor.fetchall()[0][0]

answer={"ok":"true", "message": "Building retrieved sucessfully
", "data": listOfRows }

pgUtils.pgDisconnect(conn)
return answer

To execute the function:

import buildings
resp=buildings.select(gid=7)
print(resp)

And the answer is the following:

37

2.7 Exercise 1.

{"ok": "true", "message": "Building retrieved sucessfully", "data":
[{"gid": 7, "descripcion": "building1", "st_asgeojson": "{\"type
\":\"Polygon\",\"coordinates
\":[[[727988,4373188],[728054,4373192],[728053.399856473,4373143.69857413],[728052.488432421,4373093.57025125],[727983,4373093],[727988,4373188]]]}"}]}

2.7 Exercise 1.

2.7.1 Part 1. Test. Value 2 points

In this exercise you can be asked about the following:

How to import packages and modules

How to manipulate Python lists, dictionaries and json strings

Create functions to insert, delete, update or select in a given table in PostGIS with Python

Any theorical concept explained in this document, in class or any subject video.

2.7.2 Part 2. Project. Value 1 point. Create functions to modify your own Postgis data-
base with JSON strings.

The goal of this exercise is to create functions to insert, delete, update and select data from your
project tables. You have to think in which PostGIS tables are you going to manage in your own project
and create them in a new database. If you are doing the Spatial Information Distribution subject, you
must use a database created there, about one of the INSPIRE themes, to connect both subjects.

You can use any code from your teacher or other sources, but you have to understand it.
Create functions to insert, delete, update and select rows in each table of your database. You have

to create at least four functions to manage the rows of each table. At least you have to manage three
tables, and, at least, two of them have to have a geometry column, of different type of geometry.

All the functions to manage the data of each table have to be in a unique Python file, and put the
file in a Pyhton package. To create a package, you only have to create a folder, put all the python files
inside, and create an empty file called __init__.py. Then you will have a package for manage all your
tables, and a python file for each table, with four functions to insert, delete, update and select to operate
with each table.

The function to insert or update must receive the row data in a dictionary. You will receive the form
data json format and will transform it to a dictionary in a real web application, so this functions will be
useful for you in the future.

You have to create one example of use of each of your functions in other module, from which you
load the others modules, where your functions are. You will show this examples of use to the teacher.

In the following listing you have an example to manage the buildings table. This table has the fields:
gid, descripcion, area and geom.

def buildingInsert(d):#insert a row with a dictionary
def buildingDelete(gid):#deletes the row than matches with the gid
def buildingUpdate(d)#inside the dictionary you have the gid of the

row to update, and the new row data
def buildingSelect(gid)#returns a list with the row that coincide

with the given gid. If gid is null returns a list with all the
rows. Each row has to be a dictionary.

All the functions have to return a dictionary with the following fields:

38

2.8 Connect Python functions to Internet with Django 2.2

ok : true or false

message : With a text message

data : The list of dictionaries returned. If you do not want to return anything, then is an empty list. If
the operation was select, return a list of dictionaries, each dictionary represents a table row. I
the operation was an insert. You must return a dictionary with a row. That row has only one field
called gid, and the value is the gid of the row just inserted. In case of an update, or delete, you
must return the same, a list with one dictionary, but the field must be ’numOfRowsAffected’ and
the value must be the number of rows affected by the operation.

You can create a dictionary answer with the following:

#creating a dictionary answer
answer={"ok":True, "data":list_of_dictionaries, "message":"

Building inserted"}

Delivery:

Upload the complete Eclipse project, compressed as exercise1.zip, to the subject shared space
in Poliformat.

Upload a file called groupMembers.txt, where you specify name and surname of all the members
of the group.

All the members have to upload the same two files: groupMembers.txt and exercise1.zip.

You will show the project to the teacher. You have to have prepared a demonstration to execute
all the functions, that is function calls with all the parameters ready. Of course all the functions
have to work.

You will have to answer correctly the teacher questions about the code to obtain the whole note
of the exercise.

2.8 Connect Python functions to Internet with Django 2.2

At this moment you are able to modify a PostGIS database using your functions, but you need to
be able to execute these functions through Internet. This is done using the HTTP protocol and HTTP
requests. To manage HTTP requests you need a web server. This web server listen HTTP requests
from internet, on the 80 port by default, and is able to execute scripts. The most used HTTP servers at
this moment are Apache2 and Nginx. We are going to use Apache2, but not at this stage.

You need a program who be able to receive HTTP requests and execute one function or an other.
Django does that and much more. We are going to use Django to execute one function or other, depen-
ding of the url.

In a real case you will have a server linked to a domain, with the Apache2 HTTP server installed.
The domain will bring the request to your server by typing http://myDomain/. In your server you probably
have several apps and web pages, each of one has an Apache alias. By typing the Apache alias after
the domain Apache will execute the appropriate script. For example myDjangoAppAlias will execute a
Python Django app. But the Django app also needs to know which function to execute, so it is necessary
to write something more, for example building_insert could execute the insert function in the buildings
module. See some more examples:

http://myDomain/myDjangoAppAlias/building_insert/ –>Will execute the function buildings.insert

39

2.8 Connect Python functions to Internet with Django 2.2

http://myDomain/myDjangoAppAlias/building_select/125/ –>Will execute the function buildings.select
selecting the building 125

http://myDomain/myDjangoAppAlias/building_delete/ –>Will execute the function buildings.delete

http://myDomain/myDjangoAppAlias/building_update/ –>Will execute the function buildings.update

You will configure a real server in the subject Content Managers and Smart Cities, but this is the
last step on the developing process. To develop you will use a local Apache2, in second place, and
the Django server in first place. The local Apache is used to check the app prior to deploy it in the
real server, and the Django server is used to develop. The url to execute the Django app with the local
Apache are like the following:

http://localhost/myDjangoAppAlias/building_insert/ –>Will execute the function buildings.insert

http://localhost/myDjangoAppAlias/building_select/125/ –>Will execute the function buildings.select
selecting the building 125

http://localhost/myDjangoAppAlias/building_delete/ –>Will execute the function buildings.delete

http://localhost/myDjangoAppAlias/building_update/ –>Will execute the function buildings.update

To execute the Django app with the Django server (only for developing purposes) the url are like the
following:

http://localhost:8000/building_insert/ –>Will execute the function buildings.insert

http://localhost:8000/building_select/125/ –>Will execute the function buildings.select selecting
the building 125

http://localhost:8000/building_delete/ –>Will execute the function buildings.delete

http://localhost:8000/building_update/ –>Will execute the function buildings.update

The Django server serves and listen by the port 8000. You do not use myDjangoAppAlias in the url
because that is only for Apache.

The usual flow is to use first the Django server, latter the local Apache server and at the end the
Apache server in the real server.

2.8.1 Create an Django project and app

Django is installed not in the global Python, but in a Python virtualenv. A virtuaenv is an isolated
Python installation. The virtualenvs are used to be able to have different Python libraries in the same
computer. For example, you can not have Django 2.2 and Django 2.1 at the same Pyhton installation,
but you do if they are in different Python virtualenvs, as they are different isolated Python installations.

A virtualenv is a folder with all the Python files. To use a vierualenv Python you must to activate it.
Once the virtualenv is activated you can execute the Python interpreter by typing python, or install new
libraries in it with pip.

The virtualenv where all libraries are installed is in /home/vagrant/apps/env. To activate the vir-
tualenv open a console and go to /home/vagrant/apps folder. To activate the virtualenv execute the
following commands:

40

2.8 Connect Python functions to Internet with Django 2.2

vagrant@linux:~/apps$ dir
desweb env prueba pyupvp3 RemoteSystemsTempFiles vueapp
vagrant@linux:~/apps$ source env/bin/activate /* comando to

activate the virtualenv */
(env) vagrant@linux:~/apps$ /* the (env) promt indicates that the

virtualenv is activated */

Now we can text if Django is installed trying importing it:

(env) vagrant@linux:~/apps$ python /* get into Python interpreter
*/

Python 3.6.8 (default, Oct 7 2019, 12:59:55)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more

information.
>>> import django
>>> /* no error, so success */
>>> exit() /* exit from Python interpreter */
(env) vagrant@linux:~/apps$

Now, with the virtualenv activated we are ready to start a Django project and an Django app. A
Django project can contain several apps. An app is a web page.

To create a Django project in the /home/vagrant/apps folder, with the virtualenv activated, type the
following:

(env) vagrant@linux:~/apps$ django-admin startproject djdesweb
(env) vagrant@linux:~/apps$

The command creates a folder named djdesweb with the files showed in the figure 2.12(1).

Figura 2.12: File structure created by the command django-admin startproject djdes-
web

Now we can create an app:

(env) vagrant@linux:~/apps$ cd djdesweb/
(env) vagrant@linux:~/apps/djdesweb$ python manage.py startapp

appdesweb

The command creates the folder appdesweb with the files of the figure 2.13.

(1)Source https://docs.djangoproject.com/es/2.2/intro/tutorial01/

41

2.8 Connect Python functions to Internet with Django 2.2

Figura 2.13: File structure created by the command python manage.py startapp app-
desweb

2.8.2 Configuring the Django project

We have to modify the files created automatically by Django. To do this we are going to create a
Eclipse project with the same name than the Django project. As the Django project is in the Elicpse
workspace, Eclipse is going to add all the files to the project.

Open Eclipse and start new Pydev project, named djdesweb. Select the interpreter inthe env folder.

Figura 2.14: Django project edited with Eclipse

Once the project and the app is created you need to configure the project. All the configurations are
made in the module djdesweb/settings.py. This file configures the entire project. You have to change
the following:

Change

42

2.8 Connect Python functions to Internet with Django 2.2

ALLOWED_HOSTS = []

by the following, to allow other ip addresses to use the app:

ALLOWED_HOSTS = [’*’]

Add to the INSTALLED_APPS list the app appdesweb. You have to add a string in the way: appna-
me.apps.AppnameConfig.

INSTALLED_APPS = [
’django.contrib.admin’,
’django.contrib.auth’,
’django.contrib.contenttypes’,
’django.contrib.sessions’,
’django.contrib.messages’,
’django.contrib.staticfiles’,
’appdesweb.apps.AppdeswebConfig’

]

Comment the following lines

#DATABASES = {
’default’: {
’ENGINE’: ’django.db.backends.sqlite3’,
’NAME’: os.path.join(BASE_DIR, ’db.sqlite3’),
}
#}

And add the bellow of the before lines the following, to configure the database credentials.

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.postgresql_psycopg2’,
’NAME’: ’desweb’,
’USER’: ’vagrant’,
’PASSWORD’: ’vagrant’,
’HOST’: ’localhost’,
’PORT’: ’5432’,

}
}

Now that the postgis database and credentials are set, you can create all the internal Django tables
into desweb database, to allow Django to manage users and sessions. Type the following:

(env) vagrant@linux:~/apps/djdesweb$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK

43

2.8 Connect Python functions to Internet with Django 2.2

Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying sessions.0001_initial... OK

You can see the tables added to the desweb database, in the schema public, figure 2.15. Note that
thanks to we created a schema called d, our tables are not mixed with the Django tables.

Figura 2.15: File structure created by the command python manage.py startapp app-
desweb

Now we can create the superuser to manage the Django admin site. Please note that we are
using the default passwords in all the settins. This is potentially dangerous in a real deploy. In
that case you mus change all the passwords. This step is not necessary if you are not going to use
the Django admin site.

(env) vagrant@linux:~/apps/djdesweb$ python manage.py
createsuperuser

Username (leave blank to use ’vagrant’): admin
Email address: admin@admin.com
Password:
Password (again):
The password is too similar to the username.
This password is too short. It must contain at least 8 characters.
This password is too common.
Bypass password validation and create user anyway? [y/N]: y
Superuser created successfully.

You can run the Django server:

(env) vagrant@linux:~/apps/djdesweb$ python manage.py runserver
Watching for file changes with StatReloader

44

2.8 Connect Python functions to Internet with Django 2.2

Performing system checks...

System check identified no issues (0 silenced).
October 23, 2019 - 08:51:16
Django version 2.2, using settings ’djdesweb.settings’
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

You can visit the default page in http://localhost:8000. You can visit the Django admin page in
http://localhost:8000/admin (user admin, psw admin).

Now you are ready to configure the urls and views of your app, in order to be able to execute them.

2.8.3 Initial configuration of the app urls and views

To execute a function from a url, you need tree files:

urls.py. This file links the url with a function in the file views.py. You have to load views.py from
urls.py to use its functions.

views.py. A view is a function who has an object called request which contains all the data that
the user sent to this url. Form views.py you will load the modules where you have your functions
to access to the database, in order to use them. We are going to put these modules in a new
package called pyCode inside appdesweb package.

On typing a url on the web browser Django search for a coincidence in the file urls.py and executes
the adequate view in views.py, who uses the database access functions, stored unto the modules of the
pyCode package.

Create the module appdesweb/urls.py, and write the following in it:

from django.urls import path
from appdesweb import views

urlpatterns = [
path("hello_world/", views.HelloWord.as_view(),name="hello_world

")
]

When Django read hello_world will execute the method as_view() from the class HelloWorld of the
views module. The HelloWorld class does not exist yet. Do not worry if you do not understand this
syntax it is normal. You only have to repeat the same structure. Open the appdesweb/views.py file and
write the following:

import json

#Django imports
from django.http import JsonResponse, HttpResponse
from django.views import View
from django.contrib.auth import logout
from django.contrib.auth.mixins import PermissionRequiredMixin,

LoginRequiredMixin
from django.views.decorators.csrf import csrf_exempt
from django.utils.decorators import method_decorator

class HelloWord(View):
def get(self, request):

45

2.8 Connect Python functions to Internet with Django 2.2

return JsonResponse({"ok":"true","message": "Hello world", "
data":""})

We have not used all the imports yet, but we will do.
Do not matters id you do not understand what is happening, you only have to know how to repeat this

structure in order to manage to execute your functions. I am going to try to explain what is happening.
This has to do with Oriented Object Programming.

The class HelloWorld inherits of the class View, imported above. This is called a view class. The
class HelloWorld is a children of the View class. All the children of the class View has to define the
method get, for get requests, or the method post, for post requests, or both. In this case it is only
defined the get method. All the methods of a Python class receive as first argument the parameter
self. In the case of the View class also receive a second argument called request, which contains the
information of the user who called the HelloWorld view.

You will do the same for each operation in your database:

1. To add a new url in the file urls.py to link a url with a view class in the file views.py

2. Add a new view class to the file views.py to manage the post or get request

3. From the view class, use the functions in the modules of the pyCode package, that you already
have done.

Now you have to see to Django that load the appdesweb/urls.py file. This is something that only
have to be done once. Open the file djdesweb/urls.py and write the following:

from django.contrib import admin
from django.urls import path
from django.urls import include

urlpatterns = [
path(’’, include(’appdesweb.urls’)),
path(’admin/’, admin.site.urls),

]

Run the Django server, if it have stopped and visit the url http://localhost:8000/hello_world/. The
Django server recompiles the project on saving a change. If there is a fatal error the server can not
continue and it stops. In this case you have to restart it: python manage.py runserver. Remember to be
in the /home/vagrant/apps/djdesweb folder and to have the virtualenv activated.

Figura 2.16: Django HelloWorld view answer

46

2.8 Connect Python functions to Internet with Django 2.2

2.8.4 Creating the app urls and views to access to the database

For request that only gets information from the server, without modify the server data, it is used get
requests. Post requests are used to modify the database. So for select operations you can use get.
Files and form data must always be sent by post method.

In this section you are going to configure the following urls:

http://localhost:8000/building_insert/ –>Will execute the function buildings.insert, sending a json
to the server and receiving a json from the server. Its a post request.

http://localhost:8000/building_select/125/ –>Will execute the function buildings.select selecting
the building 125. We will send the building gid in the same url. Its a get request.

http://localhost:8000/building_delete/ –>Will execute the function buildings.delete. Its a post re-
quest.

http://localhost:8000/building_update/ –>Will execute the function buildings.update. Its a post re-
quest.

The server exposed operations, building_inser t, building_select, building_delete, building_update
form the server HTTP Application Server Interface (API). An API is a set of operations that someone
did, and the user only have to know what each operation needs to work and what is going to be the
result.

The first step is to create a new package in appdesweb, called pyCode, and copy inside the bui-
dings.py module. As buidings.py imports pgUtils.py and this imports mySettings.py, we have to copy
these modules too. In the figure 2.17 you can see the project files.

Remember, you always must import the modules starting the path from the project folder. For exam-
ple, if you have a module in appdesweb/pyCode and you want to import the module appdesweb/pyCo-
de/mySettings, instead of

import mySettings

You must use

from appdesweb.pyCode import mySettings

2.8.4.1. Select a building by gid

1. Import the module buildings from appdesweb/views.py, and add the BuildingSelect class to the
appdesweb/views.py:

from appdesweb.pyCode import buildings /* The imports must
appear in the beginning of the module */

class BuildingSelect(View):
def get(self, request, gid):

r= buildings.select(gid)
return JsonResponse(r)

2. Add a url to the appdesweb/urls.py

from django.urls import path
from appdesweb import views

urlpatterns = [

47

2.8 Connect Python functions to Internet with Django 2.2

Figura 2.17: Current project files

path("hello_world/", views.HelloWord.as_view(),name="
hello_world"),

path(’building_select/<gid>/’, views.BuildingSelect.as_view
(), name=’building_select’)

]

The above listing defines a variable, called gid, that must be passed in the url. E.g: http://localhost:8000/building_select/25/
will search for the building which gid = 25.

3. Restart the Django server, if it is stopped, and check the new url http://localhost:8000/building_select/7/,
figure 2.18

Figura 2.18: Building select result

48

2.8 Connect Python functions to Internet with Django 2.2

2.8.4.2. Insert a building

Insert implies to modify the database so that you need to use the post request. You have to imagine
a web form than the user fulfils and then press the Send button, then a JavaScript routine generates a
json with the form values and sends, by post, a json with all the form data. In the server, you have to
get the form data, transform it into a Python dictionary, and send it to your buildings.insert function. The
JavaScrit code will send something like that to the server:

’{"descripcion": "edificio 5","geomWkt":"POLYGON
((728155.94273754325695336 4373095.60990698169916868,
728217.62150992138776928 4373098.00261797849088907,
728200.6066761618712917 4373038.98241337575018406,
728154.34759687830228359 4373040.84341081790626049,
728155.94273754325695336 4373095.60990698169916868))"}’

Perform the following steps:

1. Create the BuildingInsert class in the module appdesweb/views.py

@method_decorator(csrf_exempt, name=’dispatch’)
class BuildingInsert(View):

def post(self, request):
d=general.getPostFormData(request)
r= buildings.insert(d)
return JsonResponse(r)

Here you have some new things. The method_decorator is necessary always in all the views than
are going to manage a post request. The information sent by the user is stored in the request
object. The request object contains the POST object, which is similar to a Python dictionary.

In the previous listing the function getPostFormData from the module general is used to get the
POST data. The function returns a Pyhton dictionary with the form data. Create a new module
called general in deswebapp/pyCode and paste the following function definition:

import json
def getPostFormData(request):

"""
Depending of who sends the post data is in request.POST or

request.body.
If it is in request bosy it is also y binary and you have to

decode
The function searches for the key formData, and if exists

returns a dictionary
If formData does not exist return also a ditionary. In this

way you can use the same
function if you are sending the data with Postman, Ajax or

Angular
"""
js=request.POST.get("formData","")
if js != "":

d=json.loads(js)
else:

js=request.body.decode(’utf-8’)
d=json.loads(js)
d2=d.get("formData","")
if d2 != "":

49

2.8 Connect Python functions to Internet with Django 2.2

d=d2
return d

To use the previous function you have to import it:

from appdesweb.pyCode import general

It is not necessary to modify the function buildings.insert but as is Django who is going to execute
it we can avoid to use our psycopg2 connection and use the Django connection, which is exactly
equal. To do this has some advantages. Django opens and close the connections according its
needs. Its automatic, so we do not have to worry about to open or close them. The new code for
the function buildings.insert is:

from django.db import connection as conn

def insert(d):
cursor=conn.cursor()
#returning gid stores into the cursor the new gid

automatically created by the database as gid is serial
queryIns=’insert into d.buildings (descripcion, geom) values

(%s,st_geometryfromtext(%s,25830)) returning gid’
values=[d[’descripcion’], d[’geomWkt’]]

cursor.execute(queryIns, values)
gid=cursor.fetchall()[0][0] #the new gid is stored in the

first field of the firs column

#for the data field we are going to return always a list of
dictionaries

answer={"ok":"true", "message": "Building inserted", "data":
[{"gid":gid}] }

conn.commit()
return answer

As you can see in the previous listing, we import the connection from Django and do not close it
at the end of the function. The rest is all equal. You must use the Django connection in your code.

2. Add a url to the appdesweb/urls.py

urlpatterns = [
path("hello_world/", views.HelloWord.as_view(),name="

hello_world"),
path(’building_select/<gid>/’, views.BuildingSelect.as_view

(), name=’building_select’),
path(’building_insert/’, views.BuildingInsert.as_view(),

name=’building_insert’)
]

3. Restart the Django server, if it is stopped, and check the new url http://localhost:8000/building_insert/,
figure 2.18. It will not work, figure 2.19.

In the future you will perform post request with JavaScript, but now we need a software to do it,
Postman. Run postman by double clicking in its icon. You will find it in the /home/vagrant/desktopApp-
s/Postman folder

Once Postman is opened, select New–>Collection figure 2.20, which is a request collection.

50

2.8 Connect Python functions to Internet with Django 2.2

Figura 2.19: You can not send a post request with the web browser

Figura 2.20: Create a collection with Postman

Set the name appdesweb Django server, figure 2.21 to indicate that is a set of requests to be sent
do the appdesweb application and to the Django server.

Select New–>Request. Type the name building_insert and be sure that it is going to be added to
the appdesweb Django server collection,figure 2.22.

Change the default GET request to POST, figure 2.23.
Select the body tab and in the KEY column create a variable called formData, and in the same row,

and in the VALUE column type the following, figure 2.24:

{"descripcion": "edificio 5","geomWkt":"POLYGON
((728155.94273754325695336 4373095.60990698169916868,
728217.62150992138776928 4373098.00261797849088907,
728200.6066761618712917 4373038.98241337575018406,
728154.34759687830228359 4373040.84341081790626049,
728155.94273754325695336 4373095.60990698169916868))"}

Pay attention that it is a Python dictionary, not a json, but it is sent as json.
Press Save and Send. Next time you open Postman the collection and the request will be available

to try again. The answer must be the showed in the figure 2.25.

51

2.8 Connect Python functions to Internet with Django 2.2

Figura 2.21: Set the collection name with Postman

Figura 2.22: Add a request to a collection with Postman

2.8.4.3. Update a building

You have a function that receives a json with a row, extracts the gid and updates the database row
which match with that gid with the rest of data in the json row. So the data to send to the server is very
similar than the for the url building_insert. As you are going to change the database, you must use the
post method.

Perform the following steps:

1. Create the BuildingUpdate class in the module appdesweb/views.py

@method_decorator(csrf_exempt, name=’dispatch’)
class BuildingUpdate(View):

def post(self, request):
d=general.getPostFormData(request)
r= buildings.update(d)
return JsonResponse(r)

52

2.8 Connect Python functions to Internet with Django 2.2

Figura 2.23: Set the request type with Postman

Figura 2.24: Set the formData variable with Postman

Nothing new to explain.

2. Add a url to the appdesweb/urls.py

urlpatterns = [
path("hello_world/", views.HelloWord.as_view(),name="

hello_world"),
path(’building_select/<gid>/’, views.BuildingSelect.as_view

(), name=’building_select’),
path(’building_insert/’, views.BuildingInsert.as_view(),

name=’building_insert’),
path(’building_update/’, views.BuildingUpdate.as_view(),

name=’building_update’)
]

3. Restart the Django server, if it is stopped.

As it building_update expects a post request you have to use Postman. Postman allow you to copy
collections or requests. Right button on the building_insert request and select Duplicate. Set the name
to building_update, change the url to building_update, change the building description, and add the gid
field specifying the gid of the building to update.

53

2.8 Connect Python functions to Internet with Django 2.2

Figura 2.25: Set the formData variable with Postman

{"gid":"13","descripcion": "edificio 5","geomWkt":"POLYGON
((728155.94273754325695336 4373095.60990698169916868,
728217.62150992138776928 4373098.00261797849088907,
728200.6066761618712917 4373038.98241337575018406,
728154.34759687830228359 4373040.84341081790626049,
728155.94273754325695336 4373095.60990698169916868))"}

Press Save and Submit. The result is sowed in the next listing.

{
"ok": "true",
"message": "Building updated",
"data": [

{
"rowcount": 1

}
]

}

2.8.4.4. Delete a building

You have a function that receives gid and deletes the building who gid matches with it. As it is a
operation that change the database, it must be sent by post http request. To follow the same criteria
you are going to send from Postman a dictionary like the following:

{"gid":"13"}

but the server will receive a json like:

’{"gid":"13"}’

Perform the following steps:

1. Create the BuildingDelete class in the module appdesweb/views.py

@method_decorator(csrf_exempt, name=’dispatch’)
class BuildingDelete(View):

def post(self, request):
d=general.getPostFormData(request)

54

2.9 Sending data to the views: POST or GET

r= buildings.delete(gid=d["gid"])
return JsonResponse(r)

Nothing new to explain.

2. Add a url to the appdesweb/urls.py

urlpatterns = [
path("hello_world/", views.HelloWord.as_view(),name="

hello_world"),
path(’building_select/<gid>/’, views.BuildingSelect.as_view

(), name=’building_select’),
path(’building_insert/’, views.BuildingInsert.as_view(),

name=’building_insert’),
path(’building_update/’, views.BuildingUpdate.as_view(),

name=’building_update’),
path(’building_delete/’, views.BuildingDelete.as_view(),

name=’building_delete’)
]

3. Restart the Django server, if it is stopped.

Add a new request to the appdesweb Postman collection called building_delete. You have to send
the following data in the variable formData:

{"gid":"13"}

Press Save and Submit. The result is sowed in the next listing.

{
"ok": "true",
"message": "Building deleted",
"data": [

{
"rowcount": 1

}
]

}

2.9 Sending data to the views: POST or GET

2.9.1 Postman

Postman program allow you to store the requests in a collection to use them again and again, until
you be sure the back-end works properly. You can check you API without to have the front-end finished.

In the virtual machine you can execute Postman by double clicking into the file /home/vagrant/desk-
topApps/Postman/Postman.

55

2.10 Django file and functions structure

2.9.2 Python requests

You can also use Python requests to send post and get data. Here an example to send the userna-
me and password to intis a session, and latter how to perform an insert.

import requests

def initSession(username, password):
s = requests.Session()
URL_BASE = ’http://localhost:8000/’
d={"username":username, "password":password}
r = s.post(url=URL_BASE + ’app_login/’, json = d)
print(r.text)
return s

URL_BASE = "http://localhost:8000/"
d={"descripcion":"edificio 1", "geomWkt":"POLYGON((727844

4373183,727896 4373187,727893 4373028,727873 4373018,727858
4372987,727796 4372988,727782 4373008,727844 4373183, 727844
4373183))"}

s=initSession(username="editor", password="2023master")

r = s.post(url=URL_BASE + "buildings_insert/", json = d)
print(r.text)

2.10 Django file and functions structure

Una aplicación Djando debe tener una estructura como esta figure 2.26:

Figura 2.26: Django file structure

56

2.11 Users management and authentication

2.11 Users management and authentication

In a real project you only will allow authenticated users to perform some API operations. In our
Buildings project, for example, the usual way would be to allow all users to select buildings, but only
authenticated users to insert, delete or update buildings, that is to modify the database.

Django provides very useful tools to manage and authenticate users. Usually you will have three
types of user: administrators, editors and users:

administrators: they can get into the administration site and manage other users.

editors: they can modify data in the database.

users: they can see the data.

2.11.1 Create users and groups with the Django admin site

You can create and manage users and groups with Python and with the Django administration site.
This is a pre-installed application in all the Django projects. You can access to the admin site by typing
http://your-server/admin. In the case of the development server http://localhost:8000/admin figure 2.27.
You can authenticate with the user admin, password admin. You created this user in a previous step
with the command python manage.py createsuperuser.

To use Django users framework, you should have:

Migrated the database first, executing python manage.py migrate, only once. See the section
2.8.2.

In the INSTALLED_APPS variable, in teh module settigns.py, the following apps django.contrib.auth,
and django.contrib.admin. These apps are installed by default.

In the urls.py of the project folders have imported admin from django.contrib, and to add path(’admin/’,
admin.site.urls) to the urlpatterns list. This is also done by default.

Figura 2.27: Django admin site. Login

57

2.11 Users management and authentication

Figura 2.28: Django admin site. Add group

Select the Groups link and crate the groups needed, by clicking in the button Add ... +, figure 2.28.
Return to the main page and select the link Users. In the new window add a user by clicking in

the button Add ... +. Add all the necessary user details, figure 2.29. In the example, the username is
desweb@desweb.com and the password is adminadmin.

Figura 2.29: Django admin site. Add user

To add a user to a group, go back to the main page and select the user, select the group on the left
list and pass it to the right list, figure 2.30.

A user can belong to several groups.

58

2.11 Users management and authentication

Figura 2.30: Django admin site. Add user to a group

2.11.2 Create super-user from command

You can create a super-user by typing:

python manage.py createsuperuser

2.11.3 Create normal users from command

You can not add a normal user by executing any shell command. To create normal users, you have
to use the Django Admin Site, see the section 2.11.1, or with Python, see the section 2.11.11.

2.11.4 Change users password from command

You can change user password swith the following command:

python manage.py changepassword <user_name>

2.11.5 Protect some views from unauthenticated users

Now you have some users you can check if the user is authenticated or not, before to use any view.
To forbid not authenticated users to access to a view you have to import the class LoginRequired-

Mixin from django.contrib.auth.mixins, and make your views to inherit from it. Lets change the code of
the module buildings.py to forbid non authenticated users to the views BuildingInsert, BuildingDelete
and BuildingUpdate. See the next listing:

#appdesweb.views.py

#standard imports
import json

59

2.11 Users management and authentication

#Django imports
from django.http import JsonResponse, HttpResponse
from django.views import View
from django.contrib.auth import logout
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.decorators.csrf import csrf_exempt
from django.utils.decorators import method_decorator

from appdesweb.pyCode import buildings

class HelloWord(View):
def get(self, request):

return JsonResponse({"ok":"true","message": "Hello world", "
data":""})

class BuildingSelect(View):
def get(self, request, gid):

r= buildings.select(gid)
return JsonResponse(r)

@method_decorator(csrf_exempt, name=’dispatch’)
class BuildingInsert(LoginRequiredMixin, View):

def post(self, request):
formData=request.POST.get("formData", "")
if formData=="":

return JsonResponse({"ok":"false", "message": "Error it
is necessary to set the formData variable", "data":
[] })

r= buildings.insert(jsonString=formData)
return JsonResponse(r)

@method_decorator(csrf_exempt, name=’dispatch’)
class BuildingUpdate(LoginRequiredMixin, View):

def post(self, request):
formData=request.POST.get("formData", "")
if formData=="":

return JsonResponse({"ok":"false", "message": "Error it
is necessary to set the formData variable", "data":
[] })

r= buildings.update(jsonString=formData)
return JsonResponse(r)

@method_decorator(csrf_exempt, name=’dispatch’)
class BuildingDelete(LoginRequiredMixin, View):

def post(self, request):
formData=request.POST.get("formData", "")
if formData=="":

return JsonResponse({"ok":"false", "message": "Error it
is necessary to set the formData variable", "data":
[] })

d=json.loads(formData)
r= buildings.delete(gid=d["gid"])
return JsonResponse(r)

60

2.11 Users management and authentication

In the previous listing the class based views BuildingInsert, BuildingDelete and BuildingUpdate
inherit from the LoginRequiredMixin class first and the View class latter. The order is important. Only
with this any unauthenticated user are able to use these views. Lets try to insert a building with PostMan.
You will get the following answer:

Page not found (404)
Request Method: GET
Request URL: http://localhost:8000/accounts/login/?next=/

building_insert/
Using the URLconf defined in djdesweb.urls, Django tried these URL

patterns, in this order:

hello_world/ [name=’hello_world’]
building_select/<gid>/ [name=’building_select’]
building_insert/ [name=’building_insert’]
building_update/ [name=’building_update’]
building_delete/ [name=’building_delete’]
admin/
The current path, accounts/login/, didn’t match any of these.

Django forbids the access but do not know what to answer if the user is not authenticated. To solve
this you have to create a function view that will be called automatically each time a non authenticated
user tries to use a protected view. The view will return a json. This is made in three steps:

1. Add the following function view to the file appdesweb.viewsUser.py module. You have to create
it. This module will manage all the views that have something to do with users management:

#appdesweb.viewsUsers.py
from django.http import JsonResponse, HttpResponse

def notLoggedIn(request):
return JsonResponse({"ok":"false","message": "You are not

logged in", "data":""})

2. Add a url to the file appdesweb.urls.py to execute the notLoggedIn view function:

#appdesweb.urls.py

from django.urls import path
from . import views, viewsUser

urlpatterns = [
path(’not_logged_in/’, viewsUsers.notLoggedIn, name=’

not_logged_in’),
path("hello_world/", views.HelloWord.as_view(),name="

hello_world"),
path(’building_select/<gid>/’, views.BuildingSelect.as_view

(), name=’building_select’),
path(’building_insert/’, views.BuildingInsert.as_view(),

name=’building_insert’),
path(’building_update/’, views.BuildingUpdate.as_view(),

name=’building_update’),
path(’building_delete/’, views.BuildingDelete.as_view(),

name=’building_delete’)
]

61

2.11 Users management and authentication

3. Set the variable LOGIN_URL to ’/not_logged_in/’ in the desweb.settings.py file. This is the url
to change when a user tries to do something that requires to be logged in, and he is not. That
variable is not set, you have to write it. You can add the following at the end of the file des-
web.settings.py :

LOGIN_URL = ’/not_logged_in/’ #url to the view to use when a
user tries to do something that requires to be logged in,
and he is not logged in

With these configuration if you try to use any of the protected views you will get the following
message:

{
"ok": "false",
"message": "You are not logged in",
"data": ""

}

Try it with Postman.

2.11.6 Authenticate users

To authenticate users you have to have a function view. This view will receive a the a json with the
content:

’{"formData": {"username": "the_username", password: "the_password
"}}’

This is exactly the same format that the views to insert and update buildings receive the data. To
authenticate a user you must create a new module dedicated to manage users: appdesweb.pyCode.users.py,
and paste the following code (see the comments to understand the code. More detailed information
about authentication in the official Django site).

First you have to create the following two functions in the module appdesweb.pyCode.libs.general.py

#appdesweb.pyCode.libs.general.py

import json

from django.contrib.auth.models import User

def getPostFormData(request):
#...
#already existing function

def getUserGroups(user: User):
"""
Gets a lists with the user groups that the user belongs. The

user is an object of the
django.contrib.auth.models.User class

"""
l = user.groups.values_list(’name’,flat = True) # QuerySet

Object
return list(l)

def getUserGroups_fromUsername(username):

62

2.11 Users management and authentication

"""
Gets a lists with the user groups that the user belongs. The

username is the username,
usually an email
"""
user=User.objects.get(username=username)
return getUserGroups(user)

Now you can create the following function in the module appdesweb.pyCode.users.py :

#appdesweb.pyCode.users.py

import random, time

from django.contrib.auth.models import User
from django.contrib.auth import authenticate, login
from django.views.decorators.csrf import csrf_exempt
from django.utils.decorators import method_decorator

from appdesweb.pyCode.libs import pgUtils, general

def appLogin(request):
#django puts im every request the object ’user’,
#which is of the class from django.contrib.auth.models.User
#this object is used to get the user data
if request.user.is_authenticated:

return {"ok":"true","message": "You where already
authenticated", "data":[{"username": request.user.
username}]}

#to make thinks difficult to hackers, you make a random delay,
between 0 and 1 second

seconds=random.uniform(0, 1)
time.sleep(seconds)

#get the form data
d=general.getPostFormData(request)
username=d.get("username","")
password=d.get("password","")

#If user is not None, the credentials where correct
user = authenticate(username=username, password=password)
if user:

login(request,user)#introduce into the request the user data
#in order, in the the followoing requests, know the user

is authenticated
return {"ok":"true","message": "User {0} logged in".format(

username), "data":[{"userame": username, ’userGroups’:
general.getUserGroups(user=request.user)}]}

else:
return {"ok":"false","message": "Wrong user or password", "

data":[]}

Now you need a view to be able to execute the above function. Create a new module called app-
desweb.viewsUsers.py, and paste the following code:

#appdesweb.viewsUsers.py

63

2.11 Users management and authentication

from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from django.utils.decorators import method_decorator
from django.views import View
from django.contrib.auth import logout

from appdesweb.pyCode import users

def notLoggedIn(request):
return JsonResponse({"ok":"false","message": "You are not logged

in", "data":""})

@method_decorator(csrf_exempt, name=’dispatch’)
class AppLogin(View):

def post(self, request):
r= users.appLogin(request)
return JsonResponse(r)

Now you need an url in the file appdesweb.urls.py to be able to execute the above view:

#appdesweb.urls
from django.urls import path
from appdesweb import views, viewsUsers

urlpatterns = [
path(’not_logged_in/’, viewsUsers.notLoggedIn, name=’

not_logged_in’),
path(’app_login/’, viewsUsers.AppLogin.as_view(), name=’

app_login’),
path("hello_world/", views.HelloWord.as_view(),name="hello_world

"),
path(’building_select/<gid>/’, views.BuildingSelect.as_view(),

name=’building_select’),
path(’building_insert/’, views.BuildingInsert.as_view(), name=’

building_insert’),
]

Use the PostMan application to execute the app_login view figure 2.31.

Figura 2.31: Login with PostMan

.

64

2.11 Users management and authentication

If you try to login again you will receive the message:

{"ok": "true", "message": "You where already authenticated", "data":
[{"username": "desweb@desweb.com"}]}

This means the system remembers that you where already logged in. But, how?. Internet is an
stateless system. This means that once the server sends the answer forgets everything about the user.
If we where not using Django, next request of the authenticated user will be rejected, as the server
forgets that the user where already authenticated. What Django does to remember the user?. When
you call the function login(request,user), the login function creates a random session ID and it is stored
in the database, together the encrypted session data (field session_data). But this is not enough, the
login function also stores the session ID in the request, in a part called headers, in something called
cookie (figure 2.32). Wen the server answer is received by the client, usually a web browser, but in this
case PostMan, the cookie is stored in the client. The cookies are automatically sent to the server in
every request, so Django gets the session ID, search for it in the database and, if it exists, retrieves
from the database the information. These information is encrypted, but Django is able to decrypt it. In
this way, only with the session ID Django can retrieve the username, if he where logged in, etc.

Figura 2.32: Session ID stored in a cookie, in the headers of the request, and in the
database, in the django_session table

Try to insert a building, in order to check that now, as you are logged in, you are able to insert.

65

2.11 Users management and authentication

2.11.7 Session expiration time

Although the user close the client (the web browser, or PostMan), the session ID is stored, and each
time the user visits our page, the cookie is sent to the server, so Django is able to retrieve the user data:
if he is authenticated or not, the username, etc. You can test this by closing PostMan, restarting it again,
and sending an insert request. You will be able to do it because the cookie is sent in the header of the
request, and the session expire date is not expired, see the field expire_date in the figure 2.32.

By default the session expire date is set 14 days latter of the session initialization. You can change
this. For example you can force session expiration on closing the client (the web browser, with PostMan
it does not work). To do that you have to set the variable SESSION_EXPIRE_AT_BROWSER_CLOSE
to True, in the settings.py module.

2.11.8 Logout a user

To logout a user you need an other view linked to an url. You have to use the django.contrib.auth.logout
function. Lets create the view:

#appdesweb.viewsUsers

...

from django.views import View
from django.contrib.auth import logout

...

class AppLogout(View):
def get(self, request):

if request.user.is_authenticated:
username=request.user.username
logout(request) #removes from the header of the request

the user data, stored in a cookie
return JsonResponse({"ok":"true","message": "The user

{0} is now logged out".format(username), "data":[]})
else:

return JsonResponse({"ok":"false","message": "You where
not logged in", "data":[]})

Now you need to create an url in appdesweb.urls:

#appdesweb.urls

from django.urls import path
from appdesweb import views, viewsUsers

urlpatterns = [
path(’not_logged_in/’, viewsUsers.notLoggedIn, name=’

not_logged_in’),
path(’app_login/’, viewsUsers.AppLogin.as_view(), name=’

app_login’),
path(’app_logout/’, viewsUsers.AppLogout.as_view(), name=’

app_logout’),
path("hello_world/", views.HelloWord.as_view(),name="hello_world

"),
path(’building_select/<gid>/’, views.BuildingSelect.as_view(),

name=’building_select’),

66

2.11 Users management and authentication

path(’building_insert/’, views.BuildingInsert.as_view(), name=’
building_insert’),

]

Test the logout operation with Postman and check if after two consecutive logouts you receive
different messages. Check, if after to be logout, you can insert a building, you must not be able to do it.

2.11.9 Limit the access to views to users that belongs to some groups

In most cases it is not enough that a user be authenticated to allow him to use a view. For example
users, and editors should not be able to perform some operations that only administrators must perform,
despite to be authenticated. So it is not enough to be authenticated to be able to use some views, also
it is necessary, in most cases, to check the group that the user belongs.

This is easy to check as you have the function appdesweb.pyCode.libs.general.getUserGroups_fromUsername,
that receives the username which is always stored in the request, in request.user.username. This fun-
ction returns a list with the name of the groups that the user belongs. To check if a group name is in that
list is very easy. For example, in the following listing is checked if the logged in user is administrator:

l=general.getUserGroups(’user@user.com’)
if not ’administrator’ in l:

#is not able to continue
return {"ok": "false", "message": "You have to be administrator

to use this view", "data": []}

#the user is administrator
#the logic of the view continues
...

2.11.10 Users management with Python. Official documentation

See the official documentation at https://docs.djangoproject.com/en/3.2/topics/auth/default/.

2.11.11 Create users with Python

You probably will need to create new users from a view, without using the Django administration
site. You can create a new user by using the Django User model

from django.contrib.auth.models import User

...
#checks whether or not the user exists
if User.objects.filter(username=d[’username’]).exists():

return {"ok":"false","message": "The user {0} already exists
".format(d["username"]), "data":[]}

#creates the user and returns a User object to manipulate the
user

user = User.objects.create_user(email=d["username"], username=d
["username"], password=d["password"])

...

67

2.11 Users management and authentication

2.11.12 Add a user to a group with Python

You usually will create the users groups manually with the Django administration site, but, if you
create users from Internet, you probably will need to classify them in the already created Django groups.
In the next listing you have an example of how to do it:

from django.contrib.auth.models import Group
from django.contrib.auth.models import User

...
#user = request.user
#or
#user = User.objects.create_user(email=d["username"], username=d

["username"], password=d["password"])
#or
#user = User.objects.get(username=’the_username’)

normal_users = Group.objects.get(name=’normal_users’)
normal_users.user_set.add(user)
...

2.11.13 Active - deactive users with Python

If you want temporally disable the login for a user, the best way is to de-active him. By default all
new users are active, see the selected check in the figure 2.30, in the Active field. By unselecting this
check, the user is inactive. This means that the user, and all his data, exists but he is unable to login.
The user will be able to login again at the moment an administrator actives the user.

You can active-deactive users also with Python. In the next listing you have an example of how to
deactive an user:

from django.contrib.auth.models import User

...
#user = request.user
#or
#user = User.objects.create_user(email=d["username"], username=d

["username"], password=d["password"])
#or
#user = User.objects.get(username=’the_username’)

user.is_active=False
user.save()
...

2.11.14 Change users password with Python

You can change the user password like in the following example:

from django.contrib.auth.models import User
u = User.objects.get(username=’the_username’)
u.set_password(’new password’)
u.save()

68

2.12 Publish a Django app with Apache2. WSGI application

2.12 Publish a Django app with Apache2. WSGI application

Until now, we have used the Django server, to check our back-end operations, but this is only for
develop mode. To manage that a Django application answers real HTTP requests in a production envi-
ronment, we have to connect the Django application with Apache HTTP server. Apache HTTP server
can execute special Python applications called wsgi applications. To run wsgi applications you have
to have installed the Apache wsgi module. This is already installed in the virtual machine. To connect
Apache with your Django app, you have to link an Apache alias with the wsgi.py file in your configuration
Django project. In the case of the djdesweb project, this file is in /home/vagrant/apps/djdesweb/djdes-
web. You have to perform two steps:

1. Give permission to Apache to be able to read the wsgi file

2. Change the Apache configuration

3. Open the /home/vagrant/apps/djdesweb/djdesweb/wsgi.py module and change

import os

by

import os, sys

PROJEC_DIR=os.path.dirname(os.path.dirname(__file__)) # is /home
/vagrant/apps/djdesweb

sys.path.append(PROJEC_DIR)

so that the following line in the same file

os.environ.setdefault(’DJANGO_SETTINGS_MODULE’, ’djdesweb.
settings’)

could work, because the previous line looks for djdesweb.settings, and, if the folder /home/va-
grant/apps/djdesweb is not in the Python path, it is not going to be found.

2.12.1 Give permission to Apache to be able to read the wsgi file

Apache belongs to the group of users www-data. To give Apache all all permissions over the file
/home/vagrant/apps/djdesweb/djdesweb/wsgi.py. You only have to type:

chmod 775 /home/vagrant/apps/djdesweb/djdesweb/wsgi.py
sudo sudochgrp www-data /home/vagrant/apps/djdesweb/djdesweb/wsgi.py

The first line gives read/write/execute permission to the grup who owns the file. The second line
changes the owner group of the file to www-data. A good explanation about what is happening is given
here(2):

Summary: 775 changes the permissions mode of a file or directory so that the owner and
group has full read/write/(execute or search) access and all others have read and execu-
te/search access. The concept of owner/group/everyone else is fundamental to unix-based
files and permissions are part of this approach to basic file security.

Each number refers to the total bits of the separate parts of owner/group/other that you can
have, from 0 to 7.

(2)Source: https://www.quora.com/What-does-chmod-775-mean

69

2.12 Publish a Django app with Apache2. WSGI application

0 is no read/write/execute or search access

1 is execute/search

2 is write

3 is write/execute or search

4 is read

5 is read/execute or search

6 is read/write

7 is read/write/execute or search

So putting that all together you can see that with the 3 numbers the owner has a full 7, so
does the group, and everyone else gets 5.

Being able to execute or search means different things depending on whether its a file or
a directory. A directory almost always has 7, giving full access to the owner. The execute
permission on a directory does not means you can execute anything but you can get into it
to list its files. You can always change that if you’re the owner but its very rare. A full 7 for
a file usually means the owner wants to use that file to execute a process, which could be
a compiled file or a script file. Execute/search access for groups and anyone else for files
and directories is usually granted according to the owner’s wishes.

Most directories you create yourself are 755 giving you full access and everyone else read
and search access but not write access. Most ordinary files you create are 644 giving you
read/write access and everyone else read access. Most executable files are also 755.

On modern Linux systems the group usually defaults to the user’s own group, but this isn’t
always the case. Groups are used to share or restrict access so their permissions on a file
or directory are important. Having the group the same as your owner’s name protects you
by default from others being able to change files in your directories.

For example, in this situation if its a directory, and the group is different to your group, you
can still read and access the directory. If the permission was just one bit different, say 765,
you couldn’t access or read the directory or even edit a file in it that you owned. If the
directory was 755 you could edit a file that you owned but you couldn’t delete it!

On the other hand, if you took all the group privileges away and gave outsiders all privileges,
so the directory was 707, you could do whatever you wanted with the files you had access
to in that directory!

File and directory permissions aren’t the perfect answer to system security, but they can be
subtle and surprising if you don’t understand their interactions with users and groups.

2.12.2 Change the Apache configuration

Apache has, by default, two configuration files: 000-default.conf and default-ssl.conf. The former
file is for normal http requests through the port 80. The latter file is for secure connection with https,
trough the port 443. You are going to work with http connections, so you have to modify the former file.
Both files are located in the folder /etc/apache2/sites-available. You need sudo permission to be able
to edit the file. In a console type sudo gedit /etc/apache2/sites-available/000-default.conf and add the
following:

Header always set Access-Control-Allow-Origin "*"

70

2.12 Publish a Django app with Apache2. WSGI application

####DJDESWEB####

#create a Python process with the appropriated Python interpreter
WSGIDaemonProcess desweb python-home=/home/vagrant/apps/env python-

path=/home/vagrant/apps/desweb/djdesweb:/home/vagrant/apps/env/
lib/python3.6/site-packages

#sets the alias who will executes the django wsgi application
WSGIScriptAlias /djdesweb/ /home/vagrant/apps/djdesweb/djdesweb/wsgi

.py/ process-group=desweb

#gives permission to apache to read the file wsgi.py in the folder /
home/vagrant/apps/djdesweb/djdesweb

<directory /home/vagrant/apps/djdesweb/djdesweb>
Options Indexes FollowSymLinks
AllowOverride None
Require all granted

<Files wsgi.py>
Require all granted

</Files>
</Directory>

</VirtualHost>

Unlike the Django server, every time you change the Python code, or the Apache configuration, you
must restart the Apache service, otherwise you will not see the changes.

sudo service apache2 restart

Open the web browser and check if the building_select operation works, figure 2.33. Pay attention
we have changed the :8000 port by the Apache alias used in the WSGIScriptAlias directive (djdesweb)
used in the Apache 000-default.con file.

Figura 2.33: Django app running under an WSGI application, so accessible by Apache

2.12.3 Enable the Django admin site with Apache

If you try to show the Django admin site visiting the page without the Django developing server, you
will get the web page but without not styles figure 2.34.

To get the admin styles you need to perform three steps:

1. Gather the static files of the site. To to this you have to perform two steps:

a) Set the folder where to put the static files. This is done with the variable STATIC_ROOT in
the settings.py module:

71

2.12 Publish a Django app with Apache2. WSGI application

Figura 2.34: Django admin site without styles

STATIC_ROOT = os.path.join(BASE_DIR, ’djdesweb_static’)

BASE_DIR is the project folder, so you need to create the folder djdesweb_static in /home/-
vagrant/apps/djdesweb.

b) Stop the developing server and execute the command python manage.py collectstatic. Djan-
go collects all the files and puts them in the subfolder admin figure 2.35.

Figura 2.35: Django admin site collect static files

2. Put the static files where Apache2 can read them. This must be outside of the Django project fol-
der, in order any user could read the raw Python code. Lets create the folder /home/vagrant/www,
and paste there the folder djdesweb_static.

3. Change the Apache configuration file. You have to:

a) Create an alias (djdesweb_static) that redirects to /home/vagrant/www/djdesweb_static.

b) Give read permission to Apache to read the /home/vagrant/www folder.

In the next listing you have the Apache configuration (file /etc/apache2/sites-available/000-default.conf).

#configuration to get the django admin static files
alias /djdesweb_static/ /home/vagrant/www/djdesweb_static/
<directory /home/vagrant/www>

Options Indexes FollowSymLinks
AllowOverride None
Require all granted

</Directory>

4. Set the url in the settings.py module to get the static files, in the variable STATIC_URL. To get it
with the local installation of Apache:

72

2.13 Debugging Python WSGI applications

STATIC_URL = ’http://localhost/djdesweb_static/’

Visit the admin page again and check the result, figure 2.36.

Figura 2.36: Django admin site published with Apache2 and been able to get the static
files

2.13 Debugging Python WSGI applications

2.13.1 Debugging Python code. Apache file error.log

You must to test your Django application very well before to upload and publish in the real server. To
do that you must use the Django development server by executing python manage.py runserver com-
mand. Nevertheless probably you will overlook some error in the developer server. If you are running a
WSGI application with Apache, if the navigator shows 500 server error, means that there is a error in the
Python server code (figure 2.37). In this cases it is necessary to see the file /var/log/apache2/error.log,
where, in the last lines, the error description is written.

Figura 2.37: Internal server error showed when the DEBUG setting is set to False

For example, if you type in the web browser the url http://localhost/djdesweb/building_select/1gg/,
you will get the error Internal server error. This is because you set in the settings.py of the Django
project the parameter DEBUG to false. If you set in the settings.py of the Django project the parameter
DEBUG to true you will get in the web browser the complete error description, which is a several security
fail, as any user will be able to see your server configuration. If DEBUG is set to false, the correct way,
you will get in the web browser the message Internal server error, and you will not have any clue of
what happened. In this case yo have to watch the file /var/log/apache2/error.log, where you will have
the complete error description.

73

2.13 Debugging Python WSGI applications

[Tue Apr 13 14:44:15.020725 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] return handler(request, *
args, **kwargs)

[Tue Apr 13 14:44:15.020730 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] File "/home/vagrant/apps/
djdesweb/appdesweb/views.py", line 20, in get

[Tue Apr 13 14:44:15.020734 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] r= buildings.select(gid)

[Tue Apr 13 14:44:15.020739 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] File "/home/vagrant/apps/
djdesweb/appdesweb/pyCode/buildings.py", line 76, in select

[Tue Apr 13 14:44:15.020742 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] cursor.execute(
query_select, [gid])

[Tue Apr 13 14:44:15.020758 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] psycopg2.errors.
InvalidTextRepresentation: invalid input syntax for integer: "1gg
"

[Tue Apr 13 14:44:15.020762 2021] [wsgi:error] [pid 3948:tid
140322179979008] [remote ::1:54764] LINE 1: ...asgeojson(geom)
from d.buildings as t where gid = ’1gg’) as ...

It is also possible to configure Django to send to the administrator the error description. This is good
practice as you will realise of the error at the moment they have happened, and you avoid to visit the
file /var/log/apache2/error.log.

EMAIL_BACKEND = ’django.core.mail.backends.smtp.EmailBackend’
EMAIL_HOST = ’smtp.gmail.com’
EMAIL_USE_TLS = True
EMAIL_PORT = 587
EMAIL_HOST_USER = ’your_account@gmail.com’
EMAIL_HOST_PASSWORD = ’your account?s password’
ADMINS=[(’Gaspar Mora’, ’admin@upv.es’)]

To use the Google smtp server you must enable the access to insecure applications in your Google
account (figure 2.38).

Figura 2.38: Enabling insecure access to the email Google account

74

2.14 In case of error 1

2.13.2 Remote debugging with PyDev

In the developing proceess, you will use the Django developing server. In this case you will receive
detailed error description when something is going wrong, in the web browser and in the terminal
window, where the Django server is being executed. Despite that, in some cases you will not know what
is going wrong, despite the error messages, probably because an algorithm is very complicated. In this
cases you will need to execute the code step by step, an check the variable values as the execution is
progressing. This is the remote debugging.

To remote debug with PyDev:

Add, where you want stop the execution, the instructions of the following listing:

#import sys;sys.path.append(r"/opt/liclipse/plugins/org.
python.pydev_4.5.5.201603221237/pysrc")

#import pydevd;pydevd.settrace()

Simply writing pydevd, Liclipse writes the rest of the sentences.

In the Debug perspective, run the PyDev server.

Execute the page with a web browser.

With the before steps, the execution is stopped in the line under pydevd.settrace() sentence, and it
is possible to advance line by line in the code, seeing the variable values, (figure 2.39).

Figura 2.39: Remote debugging with Pydev

2.14 In case of error 1

You must try to solve your own problems before call anyone. This is an important part of your
learning process. If you are in a company you can not call your superiors at every step. Problems are
normal and you have to try to learn to solve them. At the beginning you maybe will not understand the
error messages, or will not know what is happening, but it is better for you to investigate first. Errors are
always the same and, when it will had happened a couple of times, you will know how to solve them. In
this section you will find what to do in the case of a Python error.

75

2.14 In case of error 1

2.14.1 How to make a question

Asking questions properly takes effort. If you do not make this effort, the person who you are asking
the question will not do the effort to answer.

When you ask, the person who are you asking expects:

Ask politely

You already have investigated and tried some things. No one is going to spend their time on
something that you have not spent time on yet.

You must give all the necessary details to be able to be answered. What is happening, what you
have already tried, the code necessary to be able to study the problem, and the complete error
description.

In all the list of users you will be told off if you do not follow these steps.

2.14.2 How to know where the Python error is

When you are using the Django developing server, Django reports all is happening on the console.
If you get an error, you will find the error description, the file and the line where the error was raised.
See the next listing:

Quit the server with CONTROL-C.
Internal Server Error: /building_insert/
Traceback (most recent call last):

File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/
core/handlers/exception.py", line 34, in inner

response = get_response(request)
File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/

core/handlers/base.py", line 115, in _get_response
response = self.process_exception_by_middleware(e, request)

File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/
core/handlers/base.py", line 113, in _get_response

response = wrapped_callback(request, *callback_args, **
callback_kwargs)

File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/
views/generic/base.py", line 71, in view

return self.dispatch(request, *args, **kwargs)
File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/

utils/decorators.py", line 45, in _wrapper
return bound_method(*args, **kwargs)

File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/
views/decorators/csrf.py", line 54, in wrapped_view

return view_func(*args, **kwargs)
File "/home/vagrant/apps/env/lib/python3.6/site-packages/django/

views/generic/base.py", line 97, in dispatch
return handler(request, *args, **kwargs)

File "/home/vagrant/apps/djdesweb/appdesweb/views.py", line 28, in
post

r= buildings.insert(d)
File "/home/vagrant/apps/djdesweb/appdesweb/pyCode/buildings.py",

line 12, in insert
values=[d[’descripcion’], d[’geomWktt’]]

KeyError: ’geomWktt’
[16/Dec/2019 17:18:35] "POST /building_insert/ HTTP/1.1" 500 92566

76

2.15 Geometry checks (optional)

Try to solve it studying the lines above of the error line. Most of times will be enough to know what
happened. For example, in the previous listing, you can see that the error was raised in the /buil-
ding_insert/ view, in the file /home/vagrant/apps/djdesweb/appdesweb/pyCode/buildings.py, line 28.
The error is KeyError: geomWktt. That means that the key geomWktt, does not exist in the dictionary d.
The error will be solved if you write a proper key for the dictionary d.

If you are unable to know what is happening, try to stop the execution in the line that caused the
error an execute the call to the view again, as it is explained in the section 2.13.2, 75. In the example of
the above listing, may be you do not know which are the keys of the dictionary d. So you can write the
magic lines:

#import sys;sys.path.append(r"/opt/liclipse/plugins/org.python.
pydev_4.5.5.201603221237/pysrc")

#import pydevd;pydevd.settrace()

Start the Pydev debug server, in the Debug perspective, and recall the view with the same data.
You can see the d content in the figure 2.40. The error is you have to change geomWktt by geomWkt,
because is the real key name in the dictionari d.

Figura 2.40: Remote debugging with Pydev 2

2.15 Geometry checks (optional)

Before to insert, or update a geometry it is very common to have to check some geometry condi-
tions: if intersects with an other existing geometry, if it is nearer of other geometry than x distance, etc.
You can check geometry conditions by selecting the geometries that accomplish that conditions with
the PostGIS functions. If this selections has any result, you know before to insert or update that the
geometry does not accomplish the criteria needed, there fore you can reject the geometry. In this sec-
tion you will see an example of how to reject geometries than are nearer of x distance of the geometry
of other layer.

77

2.15 Geometry checks (optional)

2.15.0.1. Function to select the gid of the geometries nearer of a geometry

Usually you will need several geometry checks, so you should create a new module to store the-
se functions together. In this case has been created the module appdesweb/pyCode/libs/geometry-
Checks.py

from appdesweb.pyCode.libs.pgUtils import djConnect

def checkMinimumDistance(minimumDistance, layerName, geomWkt, epsg):
"""
Selects the gid of the geometries of a layer (layerName) nearer

than minimumDistance from the geometry geomWkt
Executes the query:
select gid from {layerName} where st_distance(geom,

st_geometryFromText(...)) < minimumDistance
@param minimumDistance: the required distance
@param layerName: the layer which geometries are going to be

checked
@param geomWkt: the geometry un wkt format
@param epsg: the epsg code of the src of the geometry and the

layer. They must use the same epsg.
Returns:

- A list with a tuples with the gid of the geometries nearer
[(10,), (25,), ...)].

- If not geometries nearer returns an empty list []
"""
q="""select gid

from {layerName}
where

st_distance(geom,st_geometryFromText(%s,%s)) < {
minimumDistance}""".format(
layerName=layerName, minimumDistance=minimumDistance

)

djConn=djConnect()
cursor=djConn.cursor()

cursor.execute(q,[geomWkt,epsg])
r=cursor.fetchall()
print(r)
return r

The first line (from appdesweb.pyCode.libs.pgUtils import djConnect) is a new function in the module
appdesweb.pyCode.libs.pgUtils.py

from django.db import connection as djConn
def djConnect():

#Returns the Django connection
#The advantadje is that we don have to worry about close the

connection
#Use this function instead of pgConnect, and do not use

pgDisconnect any more
return djConn

78

2.15 Geometry checks (optional)

2.15.0.2. Use the geometry check function before insert or update

In the appdesweb.pyCode.buildings.py module, in the insert function, you can use the checkMini-
mumDistance function before to insert:

from appdesweb.pyCode.libs import pgUtils
from appdesweb.pyCode.libs import geometryChecks

def insert(d):
conn = pgUtils.djConnect()
cursor=conn.cursor()

rows=geometryChecks.checkMinimumDistance(minimumDistance=20,
layerName=’d.buildings’, geomWkt=d[’geomWkt’], epsg=25830)

#rows can be [] or [(10,),(20,),...)]
if len(rows)>0:

gids=[]
message="The new building is nearer than 20 meters from some

other buildings: "
for row in rows:

message = message + str(row[0]) + ’, ’
gids.append(row[0])

message = message[:-2]
answer={"ok":"false", "message": message, "data": [{"nearer

":gids}] }
print(answer)
return answer

#returning gid stores into the cursor the new gid automatically
#created by the database as gid is serial
queryIns="""insert into d.buildings (descripcion, geom) values (

%s
,st_geometryfromtext(%s,25830)) returning gid"""
values=[d[’descripcion’], d[’geomWkt’]]
cursor.execute(queryIns, values)
gid=cursor.fetchall()[0][0] #the new gid is stored in the first
#for the data field we follow the same criteria than psycopg2:
#firts field of first row
answer={"ok":"true", "message": "Building inserted", "data": [{"

gid":gid}] }
conn.commit()
#pgUtils.pgDisconnect(conn) <--You do not need to disconnect if

you are usin the Django connection
return answer

If you try to insert a building that is nearer of 20 meters to other building, the function geometry-
Checks.checkMinimumDistance will return something like this:

[(215,), (216,), (219,), (220,), (225,), (227,), (228,)]

And the function insert will return something like this:

{’ok’: ’false’, ’message’: ’The new building is nearer than 20
meters from some other buildings: 215, 216, 219, 220, 225, 227,
228’, ’data’: [{’nearer’: [215, 216, 219, 220, 225, 227, 228]}]}

79

2.15 Geometry checks (optional)

2.15.1 Intersection check considerations

This is the most difficult concept to understand about PostGIS. You have to know:

If you check if two geometries intersects or not with the function st_intersects, if the geometries
are adjacent, thy share a part or their perimeter, and the intersection function returns true, when
you probably expect false (no intersection)

If instead of using the function st_intersects you use the function st_relate, to check if the interior
of the geometries intersects or not:

st_relate (geom1, geom2, ’T********’);

You are doing it well, this is the way to check it, but you probably will get a wrong result. Why?.
Because the decimal places of the coordinates may be do not match in every decimal.

For example PostGIS the X coordinate 100.00000000000 of he geometry A is different from the X
coordinate 100.00000000001 of the geometry B. There is a distance between them, if this distance is in
once side, there will be a separation, and if the distance is to the other side there will be an intersection.

Of course 0.00000000001 does not make sense, Xa and Xb should be consider the same. The
solution is to round all the coordinates to the same number of decimals. You should round to 1/100
times your coordinates accuracy. If you coordinates have 0.001 m of accuracy, you should round to
0.00001 m all the coordinates.

To round the coordinates PostGIS has the funtion st_snapToGrid: https://postgis.net/docs/ST_SnapToGrid.html
Before insert anything in your database you should apply this function to all the geometries the

following will return the geometry but all the coordinates rounded to 0.00001 decimals:

st_snapToGrid(geom, 0.00001)

The complete

insert into
tablename (field1, field2, geom)

values
(value1, value2, st_snapToGrid(st_geometryfromtext(geomWkt,epsg)

, 0.00001));

If you already have geometries you can round them with:

update tablename set geom = st_snapToGrid(geom, 0.00001);

80

CAPÍTULO 3
Database update through Internet. Ajax

3.1 Goals in this chapter

3.1 Goals in this chapter

In this chapter the goal is that you learn how to send web form data to the server, in order to insert,
delete, update or select a building, and how to manage the server answer to change the page content.
Here you will learn how to:

Create a minimal web page

Create a form

Link javascript code to the page

Start the javascript code on finishing the page loading

Connect click events on buttons to execute javascript functions, usually to send the form data

Get the form data

Use Ajax to send the form data to the server and wait for its response

Change the page content to show to the user the server answer

The front-end development is the most complicated part of a geoportal. You must to type a lot
of code in a lot of files. The result is a very big projects difficult to manage. As a consequence
professional developers use web frameworks to develop front-ends. The most famous are Reactjs
(https://es.reactjs.org/), Vuejs (https://vuejs.org/) and Angular (https://angular.io/). If you like web de-
velop you must use one of these frameworks after you understand web developing philosophy, which is
explained in this subject.

3.2 Create a minimal web page

A web page has two main sections:

HEAD: Where you put the title, key words, description and link Javascript and CSS file.

BODY: Where there is the page content. You divide the page content in sections (SECTION) or
divisions (DIV)

To edit HTML JavaScript and CSS, you are going to use an other editor called Microsoft Visual
Studio Code, already installed in the virtual machine.

You must use the Apache DocumentRoot folder in /home/vagrant/www/html to store the main page
(index.html). Create the subfolders css, externalLibs, js, e img inside. Create a new HTML file, and call
it index.html (figure 3.1). Paste the following code to the index.html file:

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8">
<meta name="description" content="Buildings management" />
<meta name="author" content="Gaspar Mora-Navarro" />
<meta name="keywords" content="Web develop, geoportal, postgis"

/>
<title>Buildings management</title>

82

3.2 Create a minimal web page

Figura 3.1: Project structure for the front-end project

<!-- External JS -->
<!-- <script type="text/javascript" src="externalLibs/jquery/

jquery-2.1.3.min.js"></script> -->

<!-- MY STYLES -->
<!-- <link rel="stylesheet" href="css/styles.css"> -->

<!-- MY JS -->
<!-- <script type="text/javascript" src="js/main.js"></script>

-->

</head>
<body>
<h3>Authentication</h3>
<div id="div-form-login">
</div>
<div id="div-login-message">

<p id="p-login-message"></p>
</div>

<h3>Buildings management form</h3>
<div id="div-form-buildings">
</div>
<div id="div-message">

<p id="p-message"></p>
</div>
</body>
</html>

83

3.3 Visit the web page

In the above listing you have the head, with some lines commented, and the body with a title and
two empty div. This divs are identified by the keys div-form-login and div-form-buildings.

3.3 Visit the web page

Visit the page http://localhost/, figure 3.2.

Figura 3.2: Page previsualization 1

3.4 Create form to get the user data in order to login

Now introduce the code for the form to get the user credentials. You must put the following code in
the div-form-login div:

<form id="form-login" onsubmit="event.preventDefault();">
<!-- Prevent default avoids the form be sent on pressing a

form button
This is necessary because we want on click a button
-->

<label for="username">Username:</label>
<input type="text" id="username" name="username" required

minlength="4" maxlength="50" size="50">

<label for="password">Password:</label>
<input type="password" id="password" name="password"

required minlength="4" maxlength="50" size="50">

<button id="button-login">Login</button>
<button id="button-logout">Logout</button>

</form>

In the above listing you created a form with couple of text inputs, and two buttons. The BR tags
introduce a new blank line figure 3.3.

84

3.5 Styling with Bootstrap

Figura 3.3: Form login preview

3.5 Styling with Bootstrap

Bootstrap (https://getbootstrap.com/docs/5.0/getting-started/introduction/) is a library to facilitate
styling. One of the hardest task in web developing.

You have to study the Bootstrap grid first: https://getbootstrap.com/docs/5.0/layout/grid/
An the column alignment: https://getbootstrap.com/docs/4.0/layout/grid/#horizontal-alignment (des-

pite the example is of the version 4, it works with the version 5).
In the following example you will see how it works (figure 3.4:

Figura 3.4: Form styling with bootstrap

<!doctype html>
<html lang="en">

<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale

=1">

<!-- Bootstrap CSS -->
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0/dist/

css/bootstrap.min.css" rel="stylesheet" integrity="sha384-
wEmeIV1mKuiNpC+
IOBjI7aAzPcEZeedi5yW5f2yOq55WWLwNGmvvx4Um1vskeMj0"
crossorigin="anonymous">

85

3.5 Styling with Bootstrap

<title>Styling with Bootstrap</title>
</head>
<body>

<div class="container-fluid">
<!-- class = container has some padding left and right

class = container-fluid uses all the width of the
screen

-->

<div class="row text-center">
<!--class = text-center to center text inside the row-->
<h2>User data</h2>

</div>
<div class="row justify-content-center">

<!--Every col must be inside a row
justify-content-center centers the colums on the

screen
-->
<div class="col-sm-12 col-md-8 col-lg-6 col-xl-4">

<!--12 cols are the complete width screen-->
<!-- The class = col-sm-12 col-md-8 col-lg-6 col-xl

-4 means:
col-sm-12: if the sreen is small use 12 columns

(complete screen)
col-md-8: if the screen is medium sice use 8

columns out of 12
col-lg-6: if the screen is large use 6 columns
col-xl-4: if the screen is extra large use 4

columns.

So the with of the form is variable, in function
of the screen sice

-->
<form form id="form-login" onsubmit="event.

preventDefault();">
<div class="mb-3">

<label for="username" class="form-label">User
name</label>

<input type="email" class="form-control" id="
username" aria-describedby="Email">

<div id="usernameHelp" class="form-text">
usename (email)</div>

</div>
<div class="mb-3">

<label for="password" class="form-label">
Password</label>

<input type="password" class="form-control" id
="password">

</div>

86

3.6 Create form to insert a building

<div class="text-center">
<!--Center the content of the div-->
<button type="submit" class="btn btn-primary

">Submit</button>
</div>

</form>
</div>

</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0/dist/

js/bootstrap.bundle.min.js" integrity="sha384-
p34f1UUtsS3wqzfto5wAAmdvj+osOnFyQFpp4Ua3gs/
ZVWx6oOypYoCJhGGScy+8" crossorigin="anonymous"></script>

</body>
</html>

3.6 Create form to insert a building

Now introduce the code for the form to insert a building. You must put the following code in the
div-form-building div:

<form id="form-buildings" onsubmit="event.preventDefault();">
<!-- Prevent default avoids the form be sent on pressing a

form button
This is necessary because we want on click a button
-->
Description

<textarea rows="5" cols="100" id="descripcion" name="

descripcion"></textarea>

Geometry WKT

<textarea rows="5" cols="100" id="geomWkt" name="geomWkt"></
textarea>

<button id="building-insert">Insert</button>
<button id="building-start-drawing">Start drawing</button>
<button id="building-stop-drawing">Stop drawing</button>

</form>

In the above listing you created a form with couple of text area inputs, and a button. See the result
(figure 3.5).

3.7 Add a paragraph and a div for the future map

In the future we will need a paragraph to show the server answers and a div to show the OpenLayers
map. Add the following before the end of the body of the page.

<div id="div-message">
<p id="p-message"></p>

</div>
<div id="map" class="map"></div>

87

3.8 Link javascript code to the page

Figura 3.5: Page with the Login and Buildings forms

3.8 Link javascript code to the page

If you press the login or insert button nothing happens. We need to link the click event of the button
to a function. This is made in the following steps:

3.8.1 Link a Javascript file to the web page

The Javascript code must be in a separate files. All you js files must be organized in the js folder of
the project. To link the js/main.js file to the web page you must use the following line in the HEAD page,
you only have to uncomment it:

<script type="text/javascript" src="js/main.js"></script>

As you can see, you must reference the file location in its relative position to the html file location.

3.8.2 First JS code. Window on load event

Create the file js/main.js and put the following code in it:

/**
* This file starts all the Javascript functionality
*/

function mainInit(){
alert("I am loaded and ready to work");

}

window.onload = function() {
mainInit();
};

Save the file and reload the page figure 3.6.
The explanation is the following. The navigator gets the page and starts rendering its components

(paragraphs, divs, sections, ...). Also ask for the js, css, and img files. The sentence window.onload

88

3.8 Link javascript code to the page

Figura 3.6: Message when the page is completely loaded

= function() {mainInit();} ensures that any Javascript code is going to be executed until the page is
completely loaded. This prevent the Javascript code tries to change something that is not still in the
page. You always must do this in all your projects, if do not, you will get an error and the page will stop
loading.

So that line, when the page is completely loaded, and all the page elements are currently created,
executes a function called mainInit, who shows a message window.

3.8.3 Link button click events to a function

You need to execute a function to send the form data only when the user clicks the building-insert
button. The id and name properties set in the html page, are useful to identify the elements with Javas-
cript or CSS. The id and name properties must be unique in all the web page.

To link the click event on the button building-insert to a function you must wait until the page be
totally loaded. The best pace to put the sentence is in the mainInit function as it is not going to be
executed until the page be loaded.

Change the js/main.js code to the following:

function login(){

}
function logout(){

}
function buildingInsert(){

console.log("I promess. I will send the form data");
}

function mainInit(){
console.log("I am loaded and ready to work");
document.getElementById("button-login").addEventListener("click

", login);
document.getElementById("button-logout").addEventListener("click

", logout);
document.getElementById("building-insert").addEventListener("

click", insertBuilding);
}

window.onload = function() {
main_init();
};

89

3.8 Link javascript code to the page

Reload the page and click the insert button tree times. Nothing seems to happen but if extract the
Google Chrome Developer Tools (figure 3.7), you will see that the message I am ready to work has
been showed once, and the message I promess. I will send the form data, has been showed three
times (figure 3.8).

Figura 3.7: Show Google Chrome Developer Tools

Figura 3.8: Message in the console tag of the web developer tools

This demonstrates that the function mainInit is executed only once, and when the page is loaded,
and the function buildingInsert each time the user press the button building-insert.

90

3.9 What to do in case of error 2

3.9 What to do in case of error 2

You will find more help in the section 3.15, 106. In this section you will find only help for your current
knowledge.

3.9.1 See the console messages

First step do not panic. You are not blind. The web browser, or Django, will tell you what is exactly
happening. Open the developer tools, and go to the Console tab. You will see the error and the line
where it happened (figure 3.9).

Figura 3.9: Console with the error message and the lines where the error was triggered

If you click over the first line number indication you will see the js code and the first line that triggered
the error, figure 3.10.

Figura 3.10: First line where the error was triggered

In this case the error Cannot read property addEventListener of null is a very common mistake.
This means that the object before addEventListener is null. Like null objects do not have the method
addEventListener the execution can not continue. In other words document.getElementById(building-
insert-ppp) is null, what means there is not any html object with the id building-insert-ppp. The 80% of
the times that you call the teacher is because this error. Fix the error typing the id of an existing element
in your page.

91

3.9 What to do in case of error 2

3.9.2 Stop the JavaScript execution

You can also stop the execution whatever you want, execute the code line by line and see the local
variable values. In the next listing we are going to make some calculations to show you how to stop the
code and see the local variable values. Change the buildingInsert function code for the following:

function buildingInsert(){
var a=5;
var b=10;
var c;
c=a+b; //this will trigger an error
console.log("The result is" + d)
console.log("I promess. I will send the form data");

}

If you reload the page you will see that the message I am loaded and ready to work appears in
the console. So the page is properly loaded. But on click on the insert button, you will see the following
error on the console window figure 3.11.

Figura 3.11: Reference error

The error is telling you that d is not defined. That means that there is not any d=something before
the line 9 in the main.js file. Lets stop the execution a little bit before to see the local variables and run
the code step by step. Click on the error line number (figure 3.12).

Figura 3.12: Reference error

Click on the left side of the code window some lines before the error line, but inside the the function
who made the error, in the figure the fifth line.

92

3.9 What to do in case of error 2

Figura 3.13: Stop the code execution in a line

Now you can click on the insert button to trigger the function again an to see how the execution is
stopped. Yon can advance the execution by pressing one of the buttons in the control bar figure 3.14.
To execute line by line press the curved arrow.

Figura 3.14: Buttons to advance the execution

After three clicks on the curved arrow you can see the local variable values in the Local section
figure 3.15.

Once solved the problem, remove the stop you must click on the same line number where you
clicked to stop the execution.

3.9.3 Check if all the files are being loaded

It is very common to make a mistake in the path or name of a js file in the head of the web page.
To check if all the files are being properly loaded, on the web browser, seen the page, press the keys
control and, keeping the control pressed, pressu. You will see the html code of the page. click one by
one in all the files linked to the page in the head section. If in any one of them you receive the message
Not found means that the path of the file name have a mistake.

93

3.9 What to do in case of error 2

Figura 3.15: Local vars values

3.9.4 Check the order of the JavaScript files

An other common mistake working with js code is that you have to import the js file in order. That is
that you have to import first the definition of the things that you use latter. If you try to use a function that
is imported in a file which is behind, so is imported later, you will get the error not defined. For example
if you have a file called js/mySettings.js, where you define the global variable MAP, you must import it,
in the head of the html file, before any function use it. If you use OpenLayers class (ol) in a js file, you
have to import the OpenLayers library before, etc. In the next listing the order of import is not casual.
First the external libraries are imported, later the global variables, latter the files with function definition,
and to finish, the js files that currently use the libraries and functions imported before. Usually who start
all the work is a function inside the js/main.js file, so this file is imported the last.

<!-- EXTERNAL JS -->
<script type="text/javascript" src="externalLibs/jquery3.4.1/jquery.

min.js"></script>
<script type="text/javascript" src="externalLibs/ol/v6.1.1-dist/ol.

js"></script>
<script type="text/javascript" src="externalLibs/ol/v6.1.1-dist/ol-

layerswitcher.js"></script>
<script type="text/javascript" src="externalLibs/bootstrap4.3.1/

bootstrap.min.js"></script>

<!-- MY JS -->
<script type="text/javascript" src="js/mySettings.js"></script>
<script type="text/javascript" src="js/map/mapDraw.js"></script>
<script type="text/javascript" src="js/map/mapMain.js"></script>
<script type="text/javascript" src="js/main.js"></script>

94

3.10 Create an interactive navigation menu with Bootstrap and JavaScript

3.10 Create an interactive navigation menu with Bootstrap and JavaS-
cript

In this section you are going to create the following menu figure 3.16:

Figura 3.16: Navigation menu with Bootstrap

The menu has some JavaScript code that allow show-hide divs in the web page. Check it in the url:
https://gisserver.car.upv.es/desweb/. The code is too long to be copied here so I am going to explain
the main ideas. You can download the code in Poliformat. Download the file bootstrap_menu.zip.

The navigation bar base code has been copied from the first example of https://getbootstrap.com/docs/5.0/components/navbar/.
The idea of showing and hiding divs in the web page is the following:

1. Create the navigation bar and assign am id to each link you want.

2. Create a div wich will contain the group of divs that you want show-hide. Assign ids to every one.

<div id="div-main" class="container-fluid">
<div id="div-home">

<div class="row text-center">
<h1>Home</h1>

</div>
</div>

<div id="div-users">
<div class="row text-center">

<h1>Users</h1>
</div>

</div>

<div id="div-help">
<div class="row text-center">

<h1>Help</h1>
</div>

</div>
...

</div>

3. Link the clicks on the menu options by using the ids to the functions that are going to show only
the corresponding div:

function showDivHome(){
libs_general_hideAllDivsInDivExceptOne("div-main", "div-home

")

95

3.10 Create an interactive navigation menu with Bootstrap and JavaScript

}
function showDivMap(){

libs_general_hideAllDivsInDivExceptOne("div-main", "div-map
")

}
function showDivUsers(){

libs_general_hideAllDivsInDivExceptOne("div-main", "div-
users")

}
function showDivHelp(){

libs_general_hideAllDivsInDivExceptOne("div-main", "div-help
")

}
function showDivLogin(){

libs_general_hideAllDivsInDivExceptOne("div-main", "div-
login")

}
function showDivLogout(){

libs_general_hideAllDivsInDivExceptOne("div-main", "div-
logout")

}

function linkMenuEvents(){
document.getElementById("menu-home").addEventListener("click

", showDivHome);
document.getElementById("menu-map").addEventListener("click

", showDivMap);
document.getElementById("menu-users").addEventListener("

click", showDivUsers);
document.getElementById("menu-help").addEventListener("click

", showDivHelp);
document.getElementById("menu-login").addEventListener("

click", showDivLogin);
document.getElementById("menu-logout").addEventListener("

click", showDivLogout);
}

function linkButtonEvents(){
/*
document.getElementById("button-login").addEventListener("

click", login);
document.getElementById("button-logout").addEventListener("

click", logout);
document.getElementById("building-insert").addEventListener

("click", insertBuilding);
*/

}

function mainInit(){
//alert("I am loaded and ready to work");
linkMenuEvents();
linkButtonEvents();
showDivHome();//on init shows only the div-home div

}

96

3.10 Create an interactive navigation menu with Bootstrap and JavaScript

window.onload = function () {
mainInit();

};

4. You need now the function libs_general_hideAllDivsInDivExceptOne does the work of hiding all
the divs contained in a div except one. Here is the function:

/**
* Hides all the firts children divs in a div. Does not modify de

internal divs of the children.
* @method function libs_general_hideAllDivsInDiv
* @param {str} divName - string with the id of the div that

contains all the divs to hide
* @return none
*/
function libs_general_hideAllDivsInDiv(divName) {

var selector="#" + divName + ">div"//select all divs wich
the parent is divname (only the first level)

var divs= document.querySelectorAll(selector);
var div;
var n=divs.length;
var i;
for (i = 0; i < n; i++) {

div=divs[i];
div.style.display = ’none’;//hide the div

}
}

/**
* Hides all the divs in a div, except one
* @method libs_general_hideAllDivsInDivExceptOne
* @param {str} divParentName - string with the id of the div

that contains all the divs to hide and the div to show
* @param {str} divName - string with the id of the div in the

divParentName to show
* @return none
*/
function libs_general_hideAllDivsInDivExceptOne(divParentName,

divName) {
libs_general_hideAllDivsInDiv(divParentName);
var selector="#" + divName;
var div= document.querySelector(selector);//selects only one
div.style.display = ’block’;

}

5. You can put these function anywhere. I recommend you to put it in js/libs/general.js, and load that
file in the head of the page index.html:

...
<link href="js/externalLibs/bootstrap5/bootstrap.min.css"

rel="stylesheet">
<script type="text/javascript" src="js/libs/general.js"></

script>
<script type="text/javascript" src="js/main.js"></script>

97

3.11 Get the form data

...

3.11 Get the form data

To send the form data you have first to get the form data. The server is waiting for something like
this for the url app_login:

’{{"formData":{"username":"the_username", "password":"the_password
"}}’

or

’{"username":"the_username", "password":"the_password"}’

And for the url ’building_insert :

’{"formData": {"descripcion": "edificio 5","geomWkt":"POLYGON
((728155.94273754325695336 4373095.60990698169916868,
728217.62150992138776928 4373098.00261797849088907,
728200.6066761618712917 4373038.98241337575018406,
728154.34759687830228359 4373040.84341081790626049,
728155.94273754325695336 4373095.60990698169916868))"}}’

or

’{"descripcion": "edificio 5","geomWkt":"POLYGON
((728155.94273754325695336 4373095.60990698169916868,
728217.62150992138776928 4373098.00261797849088907,
728200.6066761618712917 4373038.98241337575018406,
728154.34759687830228359 4373040.84341081790626049,
728155.94273754325695336 4373095.60990698169916868))"}’

In the above listings you can see that you can send the form data in a json directly, or a json that
contains a dictionary that contains the key formData, which value is the form data. In both cases, the
function appdesweb.pyCode.libs.general.getPostFormData will return a dictionary with the form data.

3.11.1 Get a form control value

You can get the value of a form control in this way:

var form = document.getElementById("form-buildings");
var description= form.elements["descripcion"].value;

The above listing gets first the form object. You can have many forms so document.getElementById
gets the form who id property its form-buildings. There are other ways to select from the page, called
DOM (Document Object Model):

var x = document.getElementsByClassName("example"); //gets all
elements from class="example"

var x = document.getElementsByName("fname"); //gets the element
which name="fname"

var x = document.getElementsByTagName("LI"); //gets all elements LI

With the form object in a variable, the above listing gets the descripcion control value from the
elements collection controls.

98

3.12 Use Ajax to send the form data to the server and wait for its response

3.11.2 Set a form control value

You can set the value of a form control in this way:

var form = document.getElementById("form-buildings");
form.elements["descripcion"].value = "new value";

The above listing gets first the form object. You can have many forms so document.getElementById
gets the form who id property its form-buildings. Latter form.elements["descripcion"] gets the form con-
trol called description. Setting the value property you can set the text that the control shows.

3.11.3 Get all form control values at once

You can get a json strig with all the form data with the following code:

var f = document.getElementById("form-buildings");// extract the
form

var formData = new FormData(f) //generates an object from
FormData class

var data =Object.fromEntries(formData); //generate a kind of
dictionary

var js= JSON.stringify(data); //returns the dictionary
transformed into a json string

The variable js contains exactly what the building_insert view is expecting. Something like:

’{"formData":{"descripcion": "edificio 5","geomWkt":"POLYGON
((728155.94273754325695336 4373095.60990698169916868,
728217.62150992138776928 4373098.00261797849088907,
728200.6066761618712917 4373038.98241337575018406,
728154.34759687830228359 4373040.84341081790626049,
728155.94273754325695336 4373095.60990698169916868))"}}’

You can put this code in a function:

function getFormData(formId){
var f = document.getElementById(formId);// extract the form
var formData = new FormData(f) //generates an object from

FormData class
var data =Object.fromEntries(formData); //generate a kind of

dictionary
var js= JSON.stringify(data); //returns the dictionary

transformed into a json string
return js;

}

3.12 Use Ajax to send the form data to the server and wait for its respon-
se

3.12.1 Login the user

The goal here is to send the building form data to the Django view building_insert because is what
this view is expecting, but this view expects the user to be authenticated. So first step is to sent the user
credentials to the view app_login in order to login the user.

The JavaScript library JQuery (https://jquery.com/) has a method, called ajax, to send data to am
url by POST or GET. This method also receives a function to receive the server answer. This function

99

3.12 Use Ajax to send the form data to the server and wait for its response

is called callback. The delivery of the data and the server answer may take from some seconds to
minutes. The callback function remains waiting for the answer, and the user is able to continuing using
the page. In the next listing you have how to recover the data from the form form-login, send it to the
server, wait for the server response and show the server response to the user in a paragraph. Put this
function in the file js/main.js

Using Ajax to send data to the server to login the user

function login(){
var f = document.getElementById("form-login");
var formData = new FormData(f)
var data =Object.fromEntries(formData);
var js= JSON.stringify(data);

$.ajax({
url: URL_DJANGO_API + ’app_login/’, //url where the data is

sent
type: "POST", //send method POST or GET
dataType: ’json’, // type of data to send
data: js, //the data to send
contentType: ’application/json;charset=UTF-8’, // content

type
success: function (data){ //callback function. It will wait

for the server answer
console.log(data); //logs the server answer in the

console

//Shows the server message and the gid of the new
building on the paragraph p-message

document.getElementById("p-login-message").innerHTML =
data.message;

},
error: function (err){

console.log(err); //in case of error logs the error in
the console

}
});

}

The symbol $ means the JQuery library, so you first have to load that library, before to be used. This
means, that the load of the JQuery library must be done before the load of the js/main.js file. Simply
uncomment the following lines from the head section of the index.html file:

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8">
<meta name="description" content="Buildings management" />
<meta name="author" content="Gaspar Mora-Navarro" />
<meta name="keywords" content="Web develop, geoportal, postgis"

/>
<title>Buildings management</title>

<!-- External JS -->
<script type="text/javascript" src="externalLibs/jquery/jquery

-2.1.3.min.js"></script>

100

3.13 Solve the CORS error of Google Chrome

<!-- MY STYLES -->
<!-- <link rel="stylesheet" href="css/styles.css"> -->

<!-- MY JS -->
<script type="text/javascript" src="js/main.js"></script>

</head>

Reload the page by presing the keys ctrl + f5, fill the login form and press the Login button. You will
get a CORS error.

In the above listing, the variable URL_DJANGO_API is a global variable. We will talk about JS
global variables latter, in the section 3.14. For now you only have to know that its value for this case is
http://localhost:8000, which is the url for the Django development server.

3.13 Solve the CORS error of Google Chrome

The CORS error is a security measure of Google Chrome. Chrome try to avoid you page get
content from other origins different than the page that you are visiting. In this case, you are visiting
http://localhost/djdesweb_static/djdeswebfrontend/index.html, and you sent data to http://localhost:8000.
They are different origins so Chrome blocks it figure 3.17.

Figura 3.17: Chrome CORS error

To solve this problem while you are developing, you need to create a folder in your home directory,
for example chrome. Close Chrome and open a new terminal. Launch Chrome whith this command:

google-chrome --disable-web-security --user-data-dir="[/home/vagrant
/chrome]"

In Windows is similar. Please check Chrome location.

"C:\Program Files\Google\Chrome\Application\chrome.exe" --disable-
web-security --disable-gpu --user-data-dir=%LOCALAPPDATA%\Google\
chromeTemp

You will see an error message but you can continue using Chrome. Visit the page http://localhost/djdesweb_static/djdeswebfrontend/index.html
again, and try to send the login form again. Any CORS message error is given, as it is disabled. If all
your code is correct, in the developer tools, in the Network tab, you will see the Status 200. This means
all was ok (figure 3.18).

Of course this is only for development. In a real application you will serve the Django application
with Apache. Writing in the Apache configuration file (/etc/apache2/sites-available/000-defailt.conf), at
the beginning, the following line, your page will be able to get information from different origins with out
to disable the Chrome security.

101

3.14 Use a Javascript settings file to configure the Javascript application. mySettings.js

Figura 3.18: Chrome CORS security disabled for development

Header always set Access-Control-Allow-Origin "*"

The complete Apache configuration file is:

<VirtualHost *:80>
ServerAdmin webmaster@localhost
DocumentRoot /var/www/html
ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

Header always set Access-Control-Allow-Origin "*"

####DJDESWEB####
WSGIDaemonProcess desweb python-home=/home/vagrant/apps/env python-

path=/home/vagrant/apps/desweb/djdesweb:/home/vagrant/apps/env/
lib/python2.7/site-packages

WSGIScriptAlias /djdesweb/ /home/vagrant/apps/djdesweb/djdesweb/wsgi
.py/ process-group=desweb

<directory /home/vagrant/apps/djdesweb/djdesweb>
Options Indexes FollowSymLinks
AllowOverride None
Require all granted

</Directory>

</VirtualHost>

You can send the Ajax request to Apache instead of to the Django development server if by changing
the value of the global variable URL_DJANGO_API to http://localhost/djdesweb/

3.14 Use a Javascript settings file to configure the Javascript applica-
tion. mySettings.js

In a real application you will perform a lot of http requests with Ajax. This means that if you change
the url where to send the requests, if you do not take care of this, you will have to modify this url in every
Ajax request. To avoid this I recommend you to use a global variable. In this way you can change the
url o the server at one point. To develop a real aplication you will use probably this urls to access to the
Django application:

http://localhost:8000: to access to the Django development server

102

3.14 Use a Javascript settings file to configure the Javascript application. mySettings.js

http://localhost/djdesweb/ to access to the Django API with Apache in local

https://realserverDomain/djdesweb/ to access to the Django API with Apache in a real server

The same will happen with the Geoserver location:

http://localhost:8080/geoserver: to access to Geoserver in local

http://localhost/geoserver to access to Geoserver in local thought an Apache proxy

https://realserverDomain/geoserver/ to access to Geoserver in a real server thought an Apache
proxy

So at least this urls will change depending on the stage of your development. The most intelligent
way of change the urls at once is to have three modes of use of the application:

Mode 1: to use Django developing server and Geoserver in localhost

Mode 2: to use Apache server and Geoserver in localhost

Mode 3: to deploy your geoportal in a real server.

I use the file js/mySettings.js file to set the mode. In the following listing you have the possible js
content:

var mode=1

switch(mode) {
case 1:

//Local develop mode
var URL_DJANGO_API=’http://localhost:8000/’;
var URL_GEOSERVER=’http://localhost:8080/geoserver/’;
break;

case 2:
//local develop mode with apache
var URL_DJANGO_API=’http://localhost/djdesweb/’;
var URL_GEOSERVER=’http://localhost:8080/geoserver/’;
break;

case 3:
//production mode
var URL_DJANGO_API=’https://upvusig.car.upv.es/desweb_g1/’;
var URL_GEOSERVER=’https://upvusig.car.upv.es/desweb/geoserver

/’;
break;

}

//### SETTIGNS FOR OPENLAYERS THAT WE WILL USE IN THE FUTURE ###
var MAP; //openlayers map
var MAP_DRAW_POLYGON; // Draw interaction. Global so we can remove

it later
var SOURCE_DRAW = new ol.source.Vector({wrapX: false}); //needed for

draw
var VECTOR_DRAW = new ol.layer.Vector({source: SOURCE_DRAW});//The

layer were we will draw

Lo load the file js/mySetting.js put the following file in the head section of the index.html file:

<script type="text/javascript" src="js/mySettings.js"></script>

103

3.14 Use a Javascript settings file to configure the Javascript application. mySettings.js

3.14.1 Login

Reload the page. Now all the pieces are in place you will be able to login: you have done the
following:

1. You have an API rest view in the http://localhost:8000/app_login url.

2. The view http://localhost:8000/app_login is waiting for a POST request and a json with user a
password keys.

3. Your Apache2 installation has access to the index.html file, which, on load, loads also the files
jquery.js, mySettings.js and main.js, in this order.

4. On load the file main.js, on finishing the load of all the page elements, the function mainInit is
automatically executed, which connects the click button events to the corresponding functions.

5. On click in the Login button an Ajax request is sent by POST to the view http://localhost:8000/app_login.

6. The server receives the request, sends it to the app_login view who checks the user and pass-
word. If it matches, stores the session ID in the database and sends a json dictionary to the client
in the answer. The answer includes also a cookie whit the session ID. Thanks to that, the user,
in every request will send the session ID in a cookie. This is done automatically. Django, also
automatically, in every request gets this session ID and searches it in the database, in order to
know if he was already authenticated.

7. The success parameter of the Ajax function is executed automatically on receiving the server
answer. This function is called callback function. This function receives the data parameter, which
contains the server answer. The data variable is an object variable. This object has the same
property names than the dictionary that sent the server. Because that data.message in JavaScript
is the answer[’message’] in Python.

8. The content of a paragraph in the page is changed from the callback function.

You can see the result of the login operation in the figure 3.19

Figura 3.19: Login answer,and session ID cookie

104

3.14 Use a Javascript settings file to configure the Javascript application. mySettings.js

3.14.2 Logout

In the following listing you have the code to logout. Pay attention that you send a GET request.

Using Ajax to send data to the server to insert a building

function logout(){
$.ajax({

url: URL_DJANGO_API + ’app_logout/’, //url where the data
is sent

type: "GET", //send method POST or GET
dataType: ’json’, // type of data to send
data: ’’, //the data to send
contentType: ’application/json;charset=UTF-8’, // content

type
success: function (data){ //callback function. It will wait

for the server answer
console.log(data); //logs the server answer in the

console

//Shows the server message and the gid of the new
building on the paragraph p-message

document.getElementById("p-login-message").innerHTML =
data.message;

},
error: function (err){

console.log(err); //in case of error logs the error in
the console

}
});

}

3.14.3 Insert a building

In the following listing you have the code to be able to insert a building, once you are logged in:

Using Ajax to send data to the server to insert a building

function buildingInsert(){
var f = document.getElementById("form-buildings");
var formData = new FormData(f)
var data =Object.fromEntries(formData);
var js= JSON.stringify(data);

$.ajax({
url: URL_DJANGO_API + ’building_insert/’, //url where the

data is sent
type: "POST", //send method POST or GET
dataType: ’json’, // type of data to send
data: js, //the data to send
contentType: ’application/json;charset=UTF-8’, // content

type
success: function (data){ //callback function. It will wait

for the server answer

105

3.15 What to do in case of error 3

console.log(data); //logs the server answer in the
console

//Shows the server message and the gid of the new
building on the paragraph p-message

document.getElementById("p-message").innerHTML = data.
message + ". gid " + data.data[0].gid;

f = document.getElementById("form-buildings").reset();
//clean the form

},
error: function (err){

console.log(err); //in case of error logs the error in
the console

}
})

}

3.15 What to do in case of error 3

Now you are sending data to the server, you need to know how to check where are you sending the
data, what are you sending and what is the server responding. All the answer to these questions are in
the Web developer tools of Chrome.

If the page does not work as you expect, you must extract the Web developer tools of Chrome an to
see the messages in the Console tab, as was explained in the section 3.9, 91. Apart of that you must
check:

3.15.1 Where I am sending the data

To know that you must open the tab Network, figure 3.20. In the figure you can see three requests.
The second request is in red. That means that there was an error.

Figura 3.20: How to see the requests that my web does

To know where I sent the request click over the request and go to the Headers tab. In the above part
you will see the Request url. In the figure 3.21, http://localhost:8000/building_insert/. There is where you
are sending the data. You also can see the method, in this case POST.

106

3.15 What to do in case of error 3

Figura 3.21: How to see the where I am sending the data

3.15.2 What I am sending to the server

Many times you will get an error because you are sending to the server something that the server is
not expecting. You first have to know at which view of your API are you sending the data. After that what
is your view is expecting, and later to check what are you sending. This last step is done, in Chrome
developer tools, click into the Network tab, click into the request you want to check, and later into the
Headers tab. At the bottom of that tab you have the Request Payload field, figure 3.22. There you can
see what are you sending. In the figure a json with two fields: descripcion and geomWkt.

Figura 3.22: How to see what I am sending to the server

107

3.15 What to do in case of error 3

3.15.3 What is the server responding

As your js code uses the server responses, in case of error, you must check if the server is answering
what are you expecting.

In Chrome developer tools, click into the Network tab, click into the request you want to check, and
later into the Preview or the Response tab.

Figura 3.23: How to see the server response

In this case, the problem is that, for whatever reason the server is not running. You have to run
python manage.py runserver again. Remember, to run your Django application you have first to activate
the Pyhton virtual environment.

3.15.4 My JavaScript code does not refresh

Some times you will note that the web browser is not loading the last version of the css, or js, files.
This is because the web browser saves in its memory, the files already loaded, in order not to ask them
again and again. This is called cache. You need the last version of all files as you are developing and
you want to see the changes in the page. You have to disable the cache. To do this, check the Disable
Cache option in the web developer tools, figure 3.24.

Figura 3.24: Disable Chrome cache to use the last version of the js code

108

3.16 Whether to use Django developing server or Apache server

3.16 Whether to use Django developing server or Apache server

You must use the Django developing server with the project settings DEBUG variable set to True
while you are developing. This is the mode 1 in your mySettings.js file. This mode will give you in the
console, and in the web browser, al the message error details.

Once you web is finished you have to test it with Apache in local mode. The DEBUG variable must
be still True in your Django settings module, and mode 2 in your js/mySettigns.js file.

When you deploy your application in a real server you must set DEBUG to False, in your Django
settings module and, the mode 3 in your js/mySettings.js file.

3.17 Change the page content to show to the user the server answer

This task is done by the callback function of the listing 3.14.3. That function is executed in case of
the request was answered as success (code 200). The callback function receives one, and only one,
argument: the server answer transformed in an Javascript object. The server sends a dictionary, and
this dictionary is automatically converted into a Javascript object. Each dictionary key is now a property
of the object.

3.18 Create an Apache alias for the web page

To be able to serve a static page in your home folder with Apache, you have to do something similar
to what you did to serve the Django wsgi file. First you have to change the Apache configuration in
/etc/apache2/sites-available/000-default.conf. Add the following in the virtual environment:

###DJDESWEBFRONTEND###
Alias /djdeswebfrontend/ /home/vagrant/www/djdesweb_static/

djdeswebfrontend/

Restart the Apache service, to reload the new configuration:

sudo service apache restart

Now you have to change the mode of use in js/mySettigns.js to 2. You can open Chrome as usually,
without avoid csrf protection. Visit the page at http://localhost/djdeswebfrontend/. You can visit the page
and send requests to the API because:

The index page that you are visiting and the Django API are at the same location http://localhost

Apache sets the header Access-Control-Allow-Origin *, due to the following configuration in the
file /etc/apache2/sites-available/000-default.conf.

Header always set Access-Control-Allow-Origin "*"

3.19 Hide the JavaScript code

There is not way to hidden the javascript code. You never have to write in it sensible information:
user names, passwords, etc.

The most used method is to obfuscate the code with special programs: this introduces special cha-
racters, removes tabs, enters and comments. You can use for example: http://www.javascriptobfuscator.com/Javascript-
Obfuscator.aspx.

An other thing is to use the following
Instead of

109

3.20 Exercise 2.

<html lang="es">

You can use

<html lang="es" oncontextmenu="return false;" onkeydown="return
false">

This prevent that text in the page could be copied and the keys ctrl + u show the page code

3.20 Exercise 2.

3.20.1 Part 1. Test. Value 2 points

In this test you can be asked about Apache configurations, to type js functions, or HTML code:

How to connect a WSGI program with Apache.

About Django: urls, views, users managements and authentication.

Send Ajax requests, getting the values to send from a form

To link click events on buttons with functions

To change the value of form controls

To read the value of form controls

To change paragraphs content

Create a html form

For example you can be asked for create a web page, that load several js files. The page must have
a form and, in the js code you will have to calculate something, getting the information from the form
and putting the result in a paragraph or an other control.

Also you can be asked about:

What is useful window.onload = function() for

About Apache aliases or ports

About Linux permissions to grant Apache permission to read or execute something

What is happening, giving an error case

What is window.selectElementByid

What is a callback function

3.20.2 Part 2. Project. Value 1 point. Create a web page to update the tables of your
database.

The goal of this exercise is to create a web page to insert rows in the tables of your database, with
Ajax and using your Django API. You have to manage at least three tables, and at least two of them
must have a geometry field, and not of the same type of geometry. The mandatory operation is to insert
in at least three tables. Delete, update and select operations are optional in the web. If you are doing
the Spatial Information Distribution subject, you must use at least three tables of the database created
there, about one of the INSPIRE themes, to connect both subjects. Perform the following steps:

110

3.20 Exercise 2.

Create a web page in a new Static Web Project of Eclipse.

Add to the web at least three forms to insert in at least three tables. With a minimum of 4 fields
each form.

Use Ajax to authenticate users.

Use Ajax to insert the data put into the forms in the corresponding tables. Do not allow unauthen-
ticated users to modify the database, only select.

You must give a message, changing a paragraph content, to alert the user that all was ok or not.
If all was ok you must to show the gid of the new row inserted.

If the insert was ok, clear the form

You have to visit your page with Apache, and this page has to use the Django API in production
mode, that is, you must not use the Django developing server. This force you to configure Apache
to publish both your Django API and your web. You must also set the adequate permissions to
Apache over the files.

Delivery:

Upload the complete Eclipse projects, compressed as exercise2.zip, to the subject shared space
in Poliformat.

Upload a file called groupMembers.txt, where you specify name and surname of all the members
of the group.

All the members have to upload the same two files: groupMembers.txt and exercise2.zip.

You will show the project to the teacher. You have to have prepared a demonstration.

You will have to answer correctly the teacher questions about the code to obtain the whole note
of the exercise.

111

CAPÍTULO 4
Create a map with OpenLayers 6.1.1

4.1 Goals

4.1 Goals

In this chapter our goal is to build a map with two base layers (PNOA, and Cadastre) and the layer
Buildings. All these layers will be added to the map from WMS service. We will have a button to draw a
new building in the map, and on draw-end, get the WKT definition of the building and put it automatically
into the form. After the building be drown, the building is only in OpenLayers, but if the user press the
button Insert, the form will be sent to the server, the building will be inserted into the database, so will
appear in the WMS buidings layer service.

4.2 Download and install the libraries

To use OpenLayers you need the OpenLayers js and css file. You can add them to the page from
its original CDN like this:

<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/openlayers/
openlayers.github.io@master/en/v6.1.1/css/ol.css" type="text/css
">

<script src="https://cdn.jsdelivr.net/gh/openlayers/openlayers.
github.io@master/en/v6.1.1/build/ol.js"></script>

But the recommendable way is to download the files, save them to the server, and load them from
your own server. Download and install the following libraries:

<!-- EXTERNAL STYLES -->
<link rel="stylesheet" href="externalLibs/ol/v6.1.1-dist/ol.css

">
<link rel="stylesheet" href="externalLibs/ol/v6.1.1-dist/ol-

layerswitcher.css">
<link rel="stylesheet" href="externalLibs/bootstrap4.3.1/

bootstrap.min.css">

<!-- EXTERNAL JS -->
<script type="text/javascript" src="externalLibs/jquery3.4.1/

jquery.min.js"></script>
<script type="text/javascript" src="externalLibs/ol/v6.1.1-dist/

ol.js"></script>
<script type="text/javascript" src="externalLibs/ol/v6.1.1-dist/

ol-layerswitcher.js"></script>
<script type="text/javascript" src="externalLibs/bootstrap4.3.1/

bootstrap.min.js"></script>

JQuery (https://jquery.com/) is a common requirement for other libraries, and Bootstrap
(https://getbootstrap.com/docs/4.0/getting-started/introduction/) is a library to avoid to use CSS. I re-
commend you to use Bootstrap, instead of CSS when possible. Bootstrap allow you to create forms,
menus, sidenavs, etc, easily and with a standard style (https://www.w3schools.com/bootstrap4/). We
are not going to cover this in this course.

The LayerSwithcher is a button to allow the user to switch on-off the layers.

113

4.3 Create the WMS service of the layer buildings

4.3 Create the WMS service of the layer buildings

To create a WMS service form a PostGis layer with Geoserver there are a lot of tutorials, for example
https://geoserver.geo-solutions.it/edu/en/adding_data/postgis_lay.html. It is not going to be explained
here.

In the next section you have to know that the WMS service for the layer buildings is available in
the address http://localhost:8080/geoserver/wms?, in the workspace desweb2019, and with the name
buildings.

As you are going to publish your geopotal in a real server, you will have also to publish a WMS
service of your layers. You will have to repeat your configurations in Geoserver in a real server located
in https://geoshape.upvusig.car.upv.es/geoserver/. In this server you will be forced to publish your layers
in the workspace called desweb2019, so it is a good idea to use this workspace name now in your virtual
machine. In this way you will not have to change your js code to access to the WMS layer, except for
the server name.

4.4 Create a map with the Spanish Cadastre and The Spanish ortophoto
(PNOA)

The map is going to be placed in a div tag. You need the following in your code:

<div id="map" class="map"></div>

Next you need to set the size of the map. Create the file css/styles.css and put inside the following
code:

@charset "UTF-8";

.map {
width: 100%;
height:600px;
background: #f8f4f0;

}

The above listing selects all the objects of the class map and sets the with, the height and the
background color.

Now load the css file from the page

<!-- MY STYLES -->
<link rel="stylesheet" href="css/styles.css">

We want to create a map after the page had been loaded, so we are going to call a function to create
the map in the function js/main:mainInit (that is a new notation to indicate where are the functions. That
indicates that the mainInit function is in the js/main.js file).

//file js/main.js
function mainInit(){

console.log("I am loaded and ready to work");
document.getElementById("building-insert").addEventListener("

click", buildingInsert);
mapMain(); //initializes the map in the div id="map"

}

Now create the function mapMain in a new file; js/map/mapMain.js. This will execute mapMain()
every time the web page be loaded or reloaded. Copy the following code. The code is explained as
comments in the code. The result can be seen in the figure 4.1.

114

4.4 Create a map with the Spanish Cadastre and The Spanish ortophoto (PNOA)

//file js/map/mapMain.js
/**
* Here is where the map is started., with the function mapInit()
* The function inimap is called from the mainInit function in js/

main.js
*/

function mapMain(){
//Map projection
epsg25830 = new ol.proj.Projection({

code: ’EPSG:25830’,
// The extent is used to determine zoom level 0.

Recommended values for a
// projection’s validity extent can be found at http://

epsg.io/.
extent: [716682.702,4365814.329,732380.437,4376383.664],
units: ’m’

});
ol.proj.addProjection(epsg25830);

//style for the vector layer used to draw
//OL3 allow points, lines and polygons at the same layer,
//so the style specifies an style for each type of geometry
// fill: fill color for polygons
// stroke: type of line for lines
// image: for points. Allow different symbols and images
var vector_draw_style = new ol.style.Style({

fill: new ol.style.Fill({
color: ’#D7DF01’

}),
stroke: new ol.style.Stroke({

color: ’#DF013A’,
width: 3,
lineJoin: ’round’

}),
image: new ol.style.Circle({

radius: 4,
fill: new ol.style.Fill({

color: ’#DF013A’
})

})
});

//VECTOR_DRAW is a global variable, defined in js/mySettings.js
//The layer were we will draw
VECTOR_DRAW.setStyle(vector_draw_style);
VECTOR_DRAW.setOpacity(0.5);

//Layer PNOA. Orthophoto aerea. To add other layers you only
have to copy this

//layer definition and change the url of the WMS service, and
the layer names to load

var lyr_pnoa = new ol.layer.Tile({
source: new ol.source.TileWMS(({

115

4.4 Create a map with the Spanish Cadastre and The Spanish ortophoto (PNOA)

url: ’http://www.ign.es/wms-inspire/pnoa-ma’,
params: {"LAYERS": "OI.OrthoimageCoverage", ’VERSION’:

"1.3.0", "TILED": "true"},
})),

title: "PNOA-MA"
});

WMS_BUILDINGS_LAYER = new ol.layer.Tile({
source: new ol.source.TileWMS(({

url: URL_GEOSERVER + ’wms?’,
params: {"LAYERS": "desweb:buildings", ’VERSION’: "1.3.0",

"TILED": "true"},
})),
title: "Buildings"

});

//Adds the mouse coordinate position to the map
var mousePositionControl = new ol.control.MousePosition({

coordinateFormat: ol.coordinate.createStringXY(4),
projection: ’EPSG:25830’,
// comment the following two lines to have the mouse position
// be placed within the map.
//className: ’custom-mouse-position’,
//target: document.getElementById(’mouse-position’),
undefinedHTML: ’ ’

});

//Map definition. The variable MAP is a global var. All the
global variables

//are named in upperletters and placed in js/mySettings.py
MAP = new ol.Map({

controls: ol.control.defaults({
attributionOptions: /** @type {olx.control.

AttributionOptions} */ ({
collapsible: false

})
}).extend([mousePositionControl]),

target: ’map’, //the map will be placed in the div id=map
renderer: ’canvas’,
layers: [lyr_pnoa, WMS_BUILDINGS_LAYER, VECTOR_DRAW],//the

layers are added here
view: new ol.View({

projection:epsg25830, //the projection of the map is set
here

maxZoom: 28, minZoom: 1,
center: [724950.649,4371212.645], //the initial center of

the map
zoom: 2 //the initial zoom

})
});

//Layer swicher definition
var layerSwitcher=new ol.control.LayerSwitcher({

116

4.4 Create a map with the Spanish Cadastre and The Spanish ortophoto (PNOA)

tipLabel:’Leyenda’
});
//adds the layer swicher to the map
MAP.addControl(layerSwitcher);

}

Now you have to load the file js/map/mapMain.js before the file js/main.js

<script type="text/javascript" src="js/map/mapMain.js"></script>

Please note that the map projection is EPSG:25830, and the extent is [716682.702, 4365814.329,
732380.437, 4376383.664]. This extent is fitted to Valencia. If you have data in other place, you will
need to change the projection and the extent. OpenLayers does not show anything outside the extent.

//CHANGE THE MAP PROJECTION
epsg25830 = new ol.proj.Projection({

code: ’EPSG:25830’,
// The extent is used to determine zoom level 0.

Recommended values for a
// projection’s validity extent can be found at http://

epsg.io/.
//CHANGE THE EXTENT
extent: [716682.702,4365814.329,732380.437,4376383.664],
units: ’m’

});

Figura 4.1: OpenLayers map

117

4.5 How to use the OpenLayers examples

4.5 How to use the OpenLayers examples

Important note. In the OpenLayers examples, they import OpenLayers classes. For example:

import Map from ’ol/Map’;
import View from ’ol/View’;
import TileLayer from ’ol/layer/Tile’;
import OSM from ’ol/source/OSM’;
import TileWMS from ’ol/source/TileWMS’;

And later they create objects directly from the classes. For example:

var map = new Map(...)
var view = new View(...)
var tileLayer = new TileLayer(...)
var osm = new OSM(...)
var tileWms = new TileWMS(...)

To import classes like in the previous listing you have to do some other tutorials, and use nodejs
(https://nodejs.org/es/). For simplicity, in this course we do not import anything, in order avoid to use
nodejs. All the classes al available in the file (ol.js) loaded in the head of the web page. To access to
the same classes that in the examples, you have to use the following system, changing in the above
listing the slashes by points:

var map = new ol.Map(...)
var view = new ol.View(...)
var tileLayer = new ol.layer.Tile(...)
var osm = new ol.source.OSM(...)
var tileWms = new ol.source.TileWMS(...)

4.6 Draw polygons in the map

4.6.1 Add the draw interaction to the map

To draw things into the map, you have to add an interaction to the map. You are going to draw
polygons in the layer. Remember that we defined the following variables in the file js/mySettings.js:

var MAP; //openlayers map

var MAP_DRAW_POLYGON; // Draw interaction. Global so we can remove
it later

var SOURCE_DRAW = new ol.source.Vector({wrapX: false}); //needed for
draw

var VECTOR_DRAW = new ol.layer.Vector({source: SOURCE_DRAW});//The
layer were we will draw

var WMS_BUILDINGS_LAYER; //Our WMS layer

As they are global, because they are not defined inside any function, they are accessible from any
function. If you need to access to a variable from many functions, a common way of achieve it is to
create a global variable. You must use the minimum global variables possible.

In the previous listing you can see the variable VECTOR_DRAW which is a layer, and the variable
SOURCE_DRAW, which is the object who contains the geometries of the layer. This object is of the
class source. To add geometries to a layer, you have to add them to its source object. In the following
listing you have how to add a draw interaction to the map, linked to the SOURCE_DRAW variable.

118

4.6 Draw polygons in the map

//file js/map/mapDraw.js

function addDrawPolygonInteraction() {
/*Possible values for tipo_geom:
* "Point","LineString","Polygon"
* MAP_DRAW_POLYGON, SOURCE_DRAW and MAP are global variables,

defined in
* mySettings.js, so thet are accesible from any function
* */

MAP_DRAW_POLYGON = new ol.interaction.Draw({
source: SOURCE_DRAW, //source of the layer where the

poligons will be drawn
type: /** @type {ol.geom.GeometryType} */ (’Polygon’) //

geometry type
});

//adds the interaction to the map. This must be done only once
MAP.addInteraction(MAP_DRAW_POLYGON);

}

Put the previous listing in the file js/map/mapDraw.js.

4.6.2 Enable or disable the draw interaction

Calling the function of the previous listing you will add the draw interaction to the map to draw
polygons. The interaction must be added only once. You can latter enable or disable de draw interaction
with the following functions. Add them to the file js/map/mapDraw.js.

//file js/map/mapDraw.js

//Enables the polygons draw
function enableDrawPolygons(){

MAP_DRAW_POLYGON.setActive(true);
}

//Disables the polygons draw
function disableDrawPolygons(){

MAP_DRAW_POLYGON.setActive(false);
}

4.6.3 Clear the content of the vector layer

Wen you draw elements, they remain in the OpenLayers memory, in the layer VECTOR_DRAW.
The elements of the VECTOR_DRAW layer are in the VECTOR_SOURCE component of the VEC-
TOR_DRAW. To clear the vector layer you have to call to the method clear() of the VECTOR_SOURCE
object. Add them to the file js/map/mapDraw.js.

//file js/map/mapDraw.js

//Clear the vector layer
function clearVectorLayer(){

SOURCE_DRAW.clear();
}

119

4.6 Draw polygons in the map

4.6.4 Reload a WMS Layer

Once a geometry has been added to the postgis layer, in the database, you have to reload the wms
layer, in order to show the new object.

//file js/map/mapDraw.js
//Reload Buildings WMS Layer
function reloadBuildingsWmsLayer(){

WMS_BUILDINGS_LAYER.getSource().updateParams({"time": Date.now()
})

}

You can access to the WMS_BUILDINGS_LAYER variable because it is defined in the mySettings.js
file as global variable.

You should call clearVectorLayer and reloadBuildingsWmsLayer after having inserted a geometry,
in the Ajax callback function, in the success property.

Remove vector layer content and reload the wms layer

function buildingInsert(){
var f = document.getElementById("form-buildings");
var formData = new FormData(f)
var data =Object.fromEntries(formData);
var js= JSON.stringify(data);

$.ajax({
url: URL_DJANGO_API + ’building_insert/’, //url where the

data is sent
type: "POST", //send method POST or GET
dataType: ’json’, // type of data to send
data: js, //the data to send
contentType: ’application/json;charset=UTF-8’, // content

type
success: function (data){ //callback function. It will wait

for the server answer
console.log(data); //logs the server answer in the

console

//Shows the server message and the gid of the new
building on the paragraph p-message

document.getElementById("p-message").innerHTML = data.
message + ". gid " + data.data[0].gid;

f = document.getElementById("form-buildings").reset();
//clean the form

clearVectorLayer();
reloadBuildingsWmsLayer();

},
error: function (err){

console.log(err); //in case of error logs the error in
the console

}
})

}

120

4.6 Draw polygons in the map

4.6.5 Call the addDrawPolygonInteraction function

To add the draw interaction to the map you have to call the function addDrawPolygonInteraction,
but it is in a js file which is not still loaded. Load the file js/map/mapDraw.js in the page, before the
js/map/mapMain.js file:

<script type="text/javascript" src="js/map/mapDraw.js"></script>

Now, in the file js/map/mapMain.js, after having created the MAP object in the function mapMain,
you can call the function addDrawPolygonInteraction, and disable the interaction, so the user can not
draw still anything.

You must call the function addDrawPolygonInteraction after having created the MAP object because
that function uses it.

function mapMain(){
...
...
addDrawPolygonInteraction();
disableDrawPolygons();

}

4.6.6 Add buttons to enable and disable the draw interaction

In the file index.html add two new buttons, next the button building-insert :

<button id="building-insert">Insert</button>
<button id="building-start-drawing">Start drawing</button>
<button id="building-stop-drawing">Stop drawing</button>

Connect the click event over the new buttons with the respective functions, to enable-disable the
map draw interaction.

//file js/main.js

function mainInit(){
console.log("I am loaded and ready to work");
document.getElementById("building-insert").addEventListener("

click", buildingInsert);
document.getElementById("building-start-drawing").

addEventListener("click", enableDrawPolygons);
document.getElementById("building-stop-drawing").

addEventListener("click", disableDrawPolygons);

mapMain(); //initializes the map in the div id="map"
}

Refresh the page and draw some polygons figure 4.2
After having drawn some polygons, if you reload the page, you will realise that the new polygons

have disappeared. This is because the polygons are only in the OpenLayers memory, and when you
reload the page, the map is created again, and the source of the layer which contains the drawn poly-
gons is created again too. This means that the layer is empty. To keep the drawn polygons you need to
send the geometry to the database in the server which is permanent.

121

4.7 Send the drawn polygons in the web page to the database

Figura 4.2: Draw polygons with OpenLayers

4.7 Send the drawn polygons in the web page to the database

4.7.1 Link the draw end event of the geometry with a callback function

Modify the function addDrawPolygonInteraction in the file js/map/mapDraw.js. The MAP_DRAW_POLYGON.on(drawend,
manageDrawEnd); line means that, when a polygon is drawn, the callback function manageDrawEnd
will be executed. The system pass to the function a parameter e, which is an object with a lot of proper-
ties, one of which is the geometry of the geometry just drawn.

This must be done only once.

\\file js/map/mapDraw.js

function addDrawPolygonInteraction() {
/*Possible values for tipo_geom:
* "Point","LineString","Polygon"
* MAP_DRAW_POLYGON, SOURCE_DRAW and MAP are global variables,

defined in
* mySettings.js, so thet are accesible from any function
* */

MAP_DRAW_POLYGON = new ol.interaction.Draw({
source: SOURCE_DRAW, //source of the layer where the

poligons will be drawn
type: (’Polygon’) //geometry type

});

//When a polygon is drawn the callback function manageDrawEnd
will be executed.

//The system pass to the function a parameter e, which is an
objects with

//a lot of properties, one of which is the geometry of the
geometry just drawn

//This must be done only once
MAP_DRAW_POLYGON.on(’drawend’, manageDrawEnd);

//adds the interaction to the map. This must be done only once

122

4.8 Add draw interaction of different geometry types to the map

MAP.addInteraction(MAP_DRAW_POLYGON);
}

4.7.2 The callback function gets the geometry coordinates and puts them into the form

Now you have to get the coordinates of the geometry just drawn, from the function manageDrawEnd.
This function will be called each time the user finishes drawing a geometry. The functio manageDra-
wEnd will receive an object e which contains the geometry coordinates. The function gets the geometry
coordinates in WKT format and puts them in the form. To insert the geometry into the database, the
user only has to click the on the button Insert.

\\file js/map/mapDraw.js

/**
* Function which is executed each time that a polygon is finished

of draw
* Inside the e object is the geometry drawed
* */

function manageDrawEnd (e) {
var feature = e.feature;//this is the feature that fired the

event
var wktFormat = new ol.format.WKT();//an object to get the WKT

format of the geometry
var wktRepresenation = wktFormat.writeGeometry(feature.

getGeometry());//geomertry in wkt
console.log(wktRepresenation);//logs a message
var form = document.getElementById("form-buildings");//get the

buildings form html object
form.elements["geomWkt"].value=wktRepresenation;//set the

geometry in wkt format to the geomWkt input
}

You could ask for the rest of attributes of the geometries before and send the form data automatically
on finishing the draw of the geometry.

4.8 Add draw interaction of different geometry types to the map

In the previows section you have created a function to add, enable and disable the enableDraw-
Points interaction.

The function addDrawPolygonInteraction() shoud be called only once after the map have been
created.

In the same way you can add other interactions to draw other kind of geometries addDrawPointIn-
teraction, catching the drawend event with other function (pointDrawEnd, for example).

The key here is that the interaction can be added to the map once, but once added, they can
be activated and deactivated. So when you want draw a point, you should first to deactivate the
MAP_DRAW_POLYGON interaction, with the function disableDrawPolygons(), and the other draw in-
teractions you could have. Latter enable the adequate interaction eg. MAP_DRAW_POINT with the
function enableDrawPoints.

You should copy those functions, create the addecuante gloval variables, change the geometry type
of the draw interactions, and have a function to deactivate all the interactions (deactivateAllDrawInte-
ractions()). Before activate one interaction call to the deactivateAllDrawInteractions function.

All the time is the same. The difficult is the organization.

123

4.9 Exercise 3.

4.9 Exercise 3.

4.9.1 Part 1. Test. Value 2 points

In this text you can be asked about anything explained in this course. Also you can be asked to
develop some small function.

4.9.2 Geoportal project requirements and evaluation.

1 points for the following functionalities:

It has to work in production mode. The Django API must be served by Apache, not by the
development server.

A map, done with OpenLayers with the following elements:

• At least one WMS layer. The layers have to be created by the student with PostGIS and be
published by the GeoServer installed in the developing virtual machine.

• Base layers like ortophotos, OSM, etc.

• Cursor coodinates indicator and a layer control.

• A layer switcher control

1 points for the following functionalities

To be able to modify the database you must be logged in.

You have to be able to draw new elements and to add them to the database, sending the co-
rresponding form. You have to have a button to start the drawing interaction, to draw a geometry,
and on finishing the draw of the geometry, to catch the geometry coordinates in WKT and put
them into the form. Complete the form data and send the form to the server in order to insert the
complete record: geometry and the rest of the field values.

Web developing implies self learning. To get the remaining 2 points of the subject and avoid to take
the exam you can:

Currently all the forms and the map are seen together. You can make a simple menu to see only
one think at the same time. For example, if you have a map with two layers, two forms to insert
geometries into the layers (f1 and f2), and one extra form to insert in a table without geometries
(f3). You should (0.5 pts):

• Show a menu whit the following options: Map, f3, Help, About and Login.

• The Map option shows the map and two buttons, to draw in the layers. On clicking in the
button to draw in the layer 1, you should activate the OpenLayers draw interaction, and show
the form associated with that layer (f1). The same with the second button. To create a menu
and show-hide parts of the web see the section 3.10, 95.

• The f3 option and Login option, only shows the forms f3 and login respectively.

• The help option shows an invented dummy content. I will valorize the inclusion of images,
centred and with tooltip.

• Once the user is logged in try to show in the menu bar the name of the user.

124

4.9 Exercise 3.

Implement the operations select, update and delete of the elements of at least one layer in the
geoportal (0.5 pts). The select operation must put the field values obtained from the database in
the html form. Optionally you can get the cursor coordinates, send them to the backend, get the
element that intersects, or is inside or nearer of that coordinates, and send its data to the front
end, who will put the field values into the html form.

Symbolize at least one WMS layer with GeoServer and SLD. You have to label the elements and
change its color. You will find examples in
https://docs.geoserver.org/stable/en/user/styling/sld/cookbook/. (0.25 pts)

Your Django API must reject geometries that are too near, too far, inside, outside or intersects
with the geometries of the editing layer, or the ones of the other layers. You will find an example
in the section 2.15, page 77. (0.25 points)

125

Bibliografía
[1] Jose Carlos Martínez Llario, PostGIS 2. Análisis Espacial Avanzado, 2012.

[2] Adrian Holovaty, Jakob Kaplan-Moss, La guía definitiva de Django, 2009.

[3] Joseph W. Lowerly, Mark Fletcher, HTML 5 para desarrolladores, 2011.

[4] Juan Diego Gauchat, El gran libro de HTML5, CSS y JavaScript, 2012

Páginas web.

[5] Página de referencia HTML5: http://www.w3schools.com/html

[6] Página de referencia de CSS3: http://www.w3schools.com/css/default.asp

[7] Tutorial: http://www.tutosytips.com/aprende-html5-desde-0

[8] Referencia HTML 5 para desarrolladores. http://www.html-5.com

[9] Compatibilidad de HTML 5 con dispositivos móviles: http://mobilehtml5.org

[10] Tipos de controles input: http://www.w3schools.com/html/html_form_input_types.asp

[11] Control canvas http://www.html5canvastutorials.com/advanced/html5-canvas-mouse-coordinates/

[12] Open Geospatial Consortium, OGC. www.opengeospatial.org

[13] PostgreSQL. http://www.postgresql.org

[14] PostGis. http://postgis.refractions.net. Extensión que da soporte de datos espaciales a la base de
datos

[15] Descripción del lenguaje SQL http://www.postgresql.org/docs/9.1/static/
tutorialsql.html

[16] Descripción del lenguaje PL/SQL http://www.postgresql.org/docs/9.1/
static/plpgsql.html

[17] Quantum Gis, Qgis. http://www.qgis.org

[18] Python. http://www.python.org

[19] PyQt4. http://www.riverbankcomputing.co.uk/software/pyqt/intro

[20] PIL. http://www.pythonware.com/products/pil. Biblioteca Python el trabajo con imágenes

[21] psycopg2. http://pypi.python.org/pypi/psycopg2. Biblioteca Python para la conexión con Post-
greSQL

[22] Eclipse. http://www.eclipse.org. Entorno de desarrollo (IDE)

[23] PyDev http://pydev.org. Plugin para Eclipse para el desarrollo en el lenguaje Python

126

	Evaluation
	Evaluation

	Dynamic sites with Python and WSGI
	Introduction
	Backend software and libraries
	Python necessary previous knowledge
	How to import Python modules
	Practical example

	Proposal exercise
	Solution with Object Oriented Programing (OOP)
	OOP proposal exercise
	OOP proposal exercise solution

	Python string formatting
	Formatting a string using the order of the variables
	Formatting a string using names in the formatted string
	Proposal exercise

	Database connection with Pyhton 3.6. Use of the psycopg2 library
	Insert rows with geometry
	Proposed exercise: insert

	Update rows
	Proposed exercise: update

	Code optimization
	Delete rows
	Proposed exercise: optimize the modules building_insert.py and building_update.py

	Select rows
	Select rows
	Select rows getting a dictionary for each row
	Proposed exercise

	Managing JSON strings
	Communication client - server
	Creating JSON strings with Python
	Decode a JSON string to obtain a Python dictionary
	Decode a JSON string to obtain a JavaScript object

	Create functions to easily insert, delete update and select buildings
	Function to insert a building from a Python dictionary
	Function to update a building from a Python dictionary
	Function to delete a building from gid
	Function to select a building from gid

	Exercise 1.
	Part 1. Test. Value 2 points
	Part 2. Project. Value 1 point. Create functions to modify your own Postgis database with JSON strings.

	Connect Python functions to Internet with Django 2.2
	Create an Django project and app
	Configuring the Django project
	Initial configuration of the app urls and views
	Creating the app urls and views to access to the database
	Select a building by gid
	Insert a building
	Update a building
	Delete a building

	Sending data to the views: POST or GET
	Postman
	Python requests

	Django file and functions structure
	Users management and authentication
	Create users and groups with the Django admin site
	Create super-user from command
	Create normal users from command
	Change users password from command
	Protect some views from unauthenticated users
	Authenticate users
	Session expiration time
	Logout a user
	Limit the access to views to users that belongs to some groups
	Users management with Python. Official documentation
	Create users with Python
	Add a user to a group with Python
	Active - deactive users with Python
	Change users password with Python

	Publish a Django app with Apache2. WSGI application
	Give permission to Apache to be able to read the wsgi file
	Change the Apache configuration
	Enable the Django admin site with Apache

	Debugging Python WSGI applications
	Debugging Python code. Apache file error.log
	Remote debugging with PyDev

	In case of error 1
	How to make a question
	How to know where the Python error is

	Geometry checks (optional)
	Function to select the gid of the geometries nearer of a geometry
	Use the geometry check function before insert or update

	Intersection check considerations

	Database update through Internet. Ajax
	Goals in this chapter
	Create a minimal web page
	Visit the web page
	Create form to get the user data in order to login
	Styling with Bootstrap
	Create form to insert a building
	Add a paragraph and a div for the future map
	Link javascript code to the page
	Link a Javascript file to the web page
	First JS code. Window on load event
	Link button click events to a function

	What to do in case of error 2
	See the console messages
	Stop the JavaScript execution
	Check if all the files are being loaded
	Check the order of the JavaScript files

	Create an interactive navigation menu with Bootstrap and JavaScript
	Get the form data
	Get a form control value
	Set a form control value
	Get all form control values at once

	Use Ajax to send the form data to the server and wait for its response
	Login the user

	Solve the CORS error of Google Chrome
	Use a Javascript settings file to configure the Javascript application. mySettings.js
	Login
	Logout
	Insert a building

	What to do in case of error 3
	Where I am sending the data
	What I am sending to the server
	What is the server responding
	My JavaScript code does not refresh

	Whether to use Django developing server or Apache server
	Change the page content to show to the user the server answer
	Create an Apache alias for the web page
	Hide the JavaScript code
	Exercise 2.
	Part 1. Test. Value 2 points
	Part 2. Project. Value 1 point. Create a web page to update the tables of your database.

	Create a map with OpenLayers 6.1.1
	Goals
	Download and install the libraries
	Create the WMS service of the layer buildings
	Create a map with the Spanish Cadastre and The Spanish ortophoto (PNOA)
	How to use the OpenLayers examples
	Draw polygons in the map
	Add the draw interaction to the map
	Enable or disable the draw interaction
	Clear the content of the vector layer
	Reload a WMS Layer
	Call the addDrawPolygonInteraction function
	Add buttons to enable and disable the draw interaction

	Send the drawn polygons in the web page to the database
	Link the draw end event of the geometry with a callback function
	The callback function gets the geometry coordinates and puts them into the form

	Add draw interaction of different geometry types to the map
	Exercise 3.
	Part 1. Test. Value 2 points
	Geoportal project requirements and evaluation.

