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Abstract
The work focuses on the Yambo software, an open source program that implements first-principles Green’s
function-based methods to describe the properties of excited states in realistic materials. Among these
methods is the Bethe-Salpeter equation, which is the main focus of this work. In this equation appear
the eigenvalues (energies) and eigenvectors (eigenstates) of a given Hamiltonian matrix. In Yambo, this
eigenvalue problem can be solved by different methods. In one of them the complete diagonalization of
the matrix is performed, either sequentially (LAPACK) or in parallel (ScaLAPACK). Another option is
to calculate a small percentage of the eigenvalues using SLEPc. In this case, one can either create the
Hamiltonian matrix explicitly, which in this application is dense, or alternatively operate with an implicit
matrix. Our work is aimed at improving the performance, both computational and memory usage, of the
different methods mentioned, exploiting parallelism at the level of both distributed memory (MPI) and
graphics processors (GPUs).

Keywords Parallel Computing; Eigenvalue Computation; SLEPc; Yambo; Bethe-Salpeter.

Resum
El treball se centra en el programari Yambo, un programa de codi obert que implementa mètodes de
primers principis basats en la funció de Green per a descriure les propietats d’estats excitats en mate-
rials realistes. Entre aquests mètodes està l’equació Bethe-Salpeter, que és el focus principal d’aquest
treball. En aquesta equació apareixen els autovalors (energies) i autovectors (autoestats) d’una deter-
minada matriu Hamiltoniana. En Yambo, aquest problema d’autovalors es pot resoldre amb diferents
mètodes. En un d’ells es realitza la diagonalització completa de la matriu, en seqüencial (LAPACK) o
en paral.lel (ScaLAPACK). Una altra opció és calcular un percentatge xicotet dels autovalors mitjançant
SLEPc. En aquest cas, es pot crear la matriu Hamiltoniana explícitament, que en aquesta aplicació és
densa, o alternativament operar amb una matriu implícita. El nostre treball està encaminat a millorar
el rendiment, tant computacional com d’ús de memòria, dels diferents mètodes esmentats, explotant el
paral.lelisme tant a nivell de memòria distribuïda (MPI) com de processadors gràfics (GPU).

Paraules clau Computació paral.lela; Càlcul d’autovalors; SLEPc; Yambo; Bethe-Salpeter.

Resumen
El trabajo se centra en el software Yambo, un programa de código abierto que implementa métodos de
primeros principios basados en la función de Green para describir las propiedades de estados excitados en
materiales realistas. Entre estos está la ecuación Bethe-Salpeter, que es el foco principal de este trabajo.
En esta ecuación aparecen los autovalores (energías) y autovectores (autoestados) de una determinada
matriz Hamiltoniana. En Yambo, este problema de autovalores se puede resolver con diferentes métodos.
En uno de ellos se realiza la diagonalización completa de la matriz, en secuencial (LAPACK) o en paralelo
(ScaLAPACK). Otra opción es calcular un porcentaje pequeño de los autovalores mediante SLEPc. En
este caso, se puede crear la matriz Hamiltoniana explícitamente, que en esta aplicación es densa, o alter-
nativamente operar con una matriz implícita. Nuestro trabajo está encaminado a mejorar el rendimiento,
tanto computacional como de uso de memoria, de los diferentes métodos mencionados, explotando el
paralelismo tanto a nivel de memoria distribuida (MPI) como de procesadores gráficos (GPU).

Palabras clave Computación paralela; Cálculo de autovalores; SLEPc; Yambo; Bethe-Salpeter.



Contents

1 Introduction 6

2 Context 7
2.1 Yambo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Optimization and parallel support . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Linear algebra problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 The linear eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Direct methods for the eigenvalue problem: full diagonalization . . . . . . . . . . . 12
2.2.3 Iterative methods for the eigenvalue problem: the Krylov-Schur method . . . . . . 13

2.3 Numerical software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 SLEPc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 LAPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 ScaLAPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 ELPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 MAGMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Initial analysis 21
3.1 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Generation of the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Modifying the size of the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Running the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 Differences between the two test cases . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Analysis of the matrices associated to the problem . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Current implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Current parallelization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 SLEPc solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Conclusions of the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Implementations 31
4.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Optimizations to the Hermitian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Diagonalization in CPU with ScaLAPACK and ELPA . . . . . . . . . . . . . . . . 33

3



4.2.2 Diagonalization in GPU with MAGMA . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Krylov-Schur in GPU with SLEPc . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Optimizations to the non-Hermitian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Nested storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Results 39
5.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Tirant v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 gpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Hermitian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Diagonalization in CPU with ScaLAPACK and ELPA . . . . . . . . . . . . . . . . 41
5.2.2 Diagonalization in GPU with MAGMA . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Krylov-Schur in GPU with SLEPc . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Non-Hermitian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Nested storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions and discussion 48

4



List of Figures

2.1 Absorption spectra for bulk silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Shift of the optical spectra of monolayer GaN . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Solvers and methods available in PETSc and SLEPc . . . . . . . . . . . . . . . . . . . . . 16
2.4 PETSc distribution of the matrix among the processes. . . . . . . . . . . . . . . . . . . . . 17
2.5 ScaLAPACK block-cyclic distribution of the matrix among the processes. . . . . . . . . . 19

3.1 Generation of the test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Absorption spectra from one of the test cases. . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Positions of the kernel blocks with the elements of the Hermitian matrix. . . . . . . . . . 26
3.4 Comparison of SLEPc and Lanczos-Haydock . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Topology of the machine gpu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Performance of ELPA and ScaLAPACK diagonalization solvers . . . . . . . . . . . . . . . 42
5.3 Comparison of time performance of the Krylov-Schur SLEPc solver with one and two

processes on CPU and GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Comparison of time performance of the Krylov-Schur SLEPc solver with one and two GPUs 44
5.5 Time comparison of the Krylov-Schur SLEPc solver using the different storage formats . . 45
5.6 Comparison of the time for creating the matrix using the different formats on the Krylov-

Schur SLEPc solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



Chapter 1

Introduction

The main objective of this Master’s thesis is to optimize the computation of the eigenvalues and eigen-
vectors for the Bethe-Salpeter equation in the software Yambo.

Yambo is a code developed as part of the MaX European Centre of Excellence (MAterials design at the
eXascale). MaX is a joint effort of several leading European partners in materials science, physics and
High Performance Computing (HPC) to advance the research into new materials, in preparation for a
near future where exascale supercomputing will be available. In particular, Yambo is a first-principles
code that predicts fundamental properties such as band gaps in semiconductors or optical properties.

The Bethe-Salpeter equation plays a role in Yambo in the prediction of the optical properties. In Yambo
this equation is implemented in the matrix form, and requires to solve an eigenvalue problem. Yambo
implements several solvers to obtain the eigenvalues, with varying levels of parallelism. One of them
uses the SLEPc library to compute a few eigenvalues. Another one uses routines from the LAPACK and
ScaLAPACK libraries to compute the full spectrum via diagonalization. None of the implementations of
these solvers currently takes advantage of the GPU parallelism, which is otherwise available in other steps
in Yambo.

We worked with two test cases, provided to us by Alejandro Molina Sánchez. One of them uses an
approximation that simplifies the equation and its matrix. The other one is an example of the general
case and generates a matrix with four times the elements of the first one. The methodology used was to
analyze the latest available version of the code at the time this master thesis was presented (September
2023), and improve the performance using these test cases as a benchmark. In the process, we used HPC
methods and linear algebra libraries, for both distributed memory and GPU parallelism.

The proposed problem is interesting as the matrices are complex, dense and use single precision arithmetic.
The problems that Yambo solves also generate quite large matrices, and some machines run out of memory
before the computation is finished. The matrices associated with the test cases also have interesting
characteristics. The first one is Hermitian. The second one presents an internal structure that can be
exploited to reduce the memory required for storage.

With these ideas in mind, the following chapters will sequentially describe the context of this work, the
analysis of the current implementation, the proposed implementations, the results obtained, and finally
some conclusions.
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Chapter 2

Context

2.1 Yambo
Yambo defines itself as a ”plane-waves first-principles code for calculating excited-state properties – such
as quasiparticle energies and optical spectra – of solid-state systems within the framework of many-body
perturbation theory (MBPT) and time-dependent density functional theory (TDDFT)” [1].

The methods discussed in this project lie within the scope of the simulation of the optical properties
of materials, like the optical absorption spectra. Concretely, they have to do with the solution of the
Bethe-Salpeter equation.

The optical absorption spectra is a measure of how materials react to the incidence of photons of different
energies. It is related to the macroscopic dielectric function εM . This function can be obtained with
different approaches. One of them involves solving the Bethe-Salpeter equation. This approach yields
good results, especially in semiconductors and insulators [2].

To illustrate these concepts, we will use as an example the optical spectra of SiO2, also known as Silica.
Figure 2.1 shows a typical graph plotting the energy of the photons against the absorption. The red
dots correspond to the experimental results. The dotted line shows the simulated results using an RPA
(Random Phase Approximation). The black line shows also simulated results, but with the Bethe-Salpeter
approach.

Knowing the optical properties of materials is greatly relevant in fields like material science, electronics
or even biotechnology. Yambo is widely used by scientists to study the structure and behaviour of
materials, as it provides a tool for running computer simulations that complement the results of practical
experiments.

One of the applications of Yambo is to research new materials with interesting properties for the devel-
opment of electronic components like sensors, diodes or transistors.

For example, in [5] the authors study how applying processes like surface modification via hydrogenation
or fluorination, can change the optical properties of monolayer GaN, shifting its spectra to the ultra-violet
region, as shown in Figure 2.2. The results open the possibility to develop optoelectronic devices based on
GaN which operate in those light frequencies. The simulations were run using Yambo with the GW-BSE
approach.
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Figure 2.1: Absorption spectra for bulk silicon, taken from [1].This comparison plot was made by the
authors using the experimental results of [3] and the calculations of [4].

Figure 2.2: Shift of the optical spectra of monolayer GaN due to surface modification. Taken from [5].

Another example is [6], a study on the optical properties of single layer hexagonal boron nitride (hBN),
an ultrathin two-dimensional material. Like graphene, it is a very promising material for the development
of next-generation optoelectronic devices.

In practice, Yambo is a set of tools centered around the main executable Yambo, a complex software that
can prepare and run different simulations given the properties of the material (which can be a molecule,
surface, nanostructure, etc) and the methods and parameters desired for the task. These parameters must
be tuned progressively, till achieving convergence, for accurate and significant results. Yambo also comes
with utilities for performing conversion of formats from other DFT software packages for the input, like
p2y (Quantum Espresso to Yambo) or a2y (Abinit to Yambo). Additionally it includes tools like ypp for
postprocessing and visualization of the results.

The source code is mainly written in Fortran and C, while some tools like Yambopy [7], for the automation
of convergence tests, are Python scripts. For this project, we tested some modifications in some of
the Fortran functions inside the bse and linear-algebra modules related to the computation of the
eigenvalues for the Bethe-Salpeter equation.
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2.1.1 The Bethe-Salpeter equation
As mentioned above, one method to evaluate the optical properties in Yambo is to solve the Bethe-Salpeter
equation [1].

The Bethe-Salpeter equation describes the bound state of two particles, in this case, an electron and a
hole, bounded in a state called an exciton.

In some cases, photons can excite electrons and make them jump to the conduction band. When this
happens, they leave a hole behind. The interaction between the electron and the hole creates a new ”quasi-
particle”, the electron-hole. The electron and the hole, affected by their attraction and the external forces
of the surrounding electrons, can bound as an exciton. Excitons have an impact on the optical properties
of the material [8].

The Bethe-Salpeter equation in Yambo is solved in the matrix form by constructing a Hamiltonian-like
matrix H and solving an eigenvalue problem.

In section 2.2 we will discuss this problem and two methods which are currently used in Yambo to solve
it.

The original publication of the equation by Salpeter and Bethe [9] already hints that the extension of the
equation to more complex conditions should be straightforward, but prohibiting in terms of computational
cost.

Indeed, the dimension of the problem (and its computational cost) grows with the size and complexity of
the system described. In addition, as we mentioned, sometimes it is necessary to run a series of simulations
to achieve valid results. If the size of the problem is large, it can take hours or even days to get such
results.

Therefore, it is important to optimize and implement parallel versions of the solvers for this equation, in
order to reduce the time needed to run the simulations, and to take full advantage of the resources of the
machines where the code is run.

2.1.2 Optimization and parallel support
Yambo uses several libraries that provide optimized and/or parallel methods for linear algebra and dis-
tributed files such as:

• LAPACK: A standard library for linear algebra. It requires a BLAS implementation.

• BLAS: Basic linear algebra subprograms, optimized for each architecture.

• ScaLAPACK: Built on top of LAPACK and BLAS, it provides a similar interface and methods, but
for distributed memory.

• FFTW: Optimized library for computing the discrete Fourier transform.

• NetCDF and HDF: Multidimensional scientific data formats, with support for parallel I/O.

• PETSc: Scalable parallel toolkit for scientific computation.

• SLEPc: Scalable parallel eigensolvers for large scale problems.

Yambo can also be configured to work with OpenMP [10], MPI [11] and CUDA [12]. There is cur-
rently an effort to extend the GPU support [13]. It is also possible to use Yambo in large clusters and
supercomputers, as Yambo has been tested and optimized for HPC architectures.
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A further analysis of the role of these tools in the currently implemented Bethe-Salpeter solvers can be
found in chapter 3. More detailed descriptions of some of these libraries will be given in section 2.3.

2.2 Linear algebra problems
2.2.1 The linear eigenvalue problem
The eigenvalue problem seeks the computation of the eigenvalues, a set of scalars associated to a system
of equations, commonly written in matrix form. We will focus on the linear eigenvalue problem, in which
the equations of the system are all linear. This problem frequently appears in many areas of science and
engineering, for example in applications where it is desired to find the conditions for the stability of a
system.

The linear eigenvalue problem [14] is formulated as

Ax = λx, x ̸= 0, (2.1)

where A is the matrix, λ represents the eigenvalues, and x the eigenvectors. The eigenvalue problem can
also be formulated as the generalized eigenvalue problem

Ax = λBx, x ̸= 0. (2.2)

Left eigenvectors

In equations (2.1) and (2.2) x appears on the right and is therefore called the right eigenvector. Sometimes
left eigenvectors are considered as well. Then

yTA = λyT , y ̸= 0 (2.3)

or, in the complex case:
y∗A = λy∗, y ̸= 0. (2.4)

Computing the left eigenvectors of a matrix A is the same problem as computing the right eigenvectors
of matrix AT . If the matrix is symmetric,

A = AT , (2.5)

and the left and the right eigenvectors are the same.

Analogously, if the matrix is complex, computing the left eigenvectors of A is the same problem as
computing the right eigenvectors of matrix A∗. If the matrix is Hermitian,

A = A∗, (2.6)

and the left and right eigenvectors are the same.

Here the superscript T denotes the transpose of a matrix or a vector, and the superscript ∗ denotes the
conjugate transpose.

Properties of matrices and eigenvalues

The eigenvalues of a diagonal or triangular matrix are the values on the diagonal. The eigenvalues of a
matrix can be obtained by reducing the matrix to this forms by applying transformations.
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Equation (2.7) shows an example of the eigenvalues of a diagonal matrix.

λ1 0 0
0 λ2 0
0 0 λ3

 (2.7)

Equation (2.8) shows an example of the eigenvalues of an upper triangular matrix.

λ1 a12 a13
0 λ2 a23
0 0 λ3

 (2.8)

Other matrices are useful as intermediate forms. Matrices are commonly transformed to Hessenberg or
tridiagonal forms as a step towards the computation of the eigenvalues.

A matrix is a Hessenberg matrix if all elements below the first sub-diagonal or above the first super-
diagonal are zeros. Equation (2.9) shows an example of an upper Hessenberg matrix.

a11 a12 a13
a21 a22 a23
0 a32 a33

 (2.9)

A matrix is tridiagonal if all its elements except the diagonal, the first sub-diagonal and the first super-
diagonal are zeros. Equation (2.10) shows an example of a tridiagonal matrix.

a11 a12 0
a21 a22 a23
0 a32 a33

 (2.10)

Transformations of matrices to simpler forms are usually made using orthogonal and unitary matrices,
because that guarantees the numerical stability of the resulting algorithms.

A matrix is orthogonal if, when multiplied by its transpose on any side, it equals the identity matrix.

AAT = ATA = I (2.11)

Analogously, for complex matrices, a matrix is unitary if it proves that multiplication by its Hermitian
transpose equals the identity matrix.

AA∗ = A∗A = I (2.12)

Not all matrices can be diagonalized. An example class of diagonalizable matrices are normal matrices.
A normal matrix satisfies

A∗A = AA∗. (2.13)

Uniqueness and realness

Eigenvalues are not necessarily unique. Eigenvalues can be computed as the roots of the characteristic
polynomial

det(A− λI) = 0, (2.14)
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which can be obtained transforming the initial equation of the eigenvalue problem (2.1) to

(A− λI)x = 0. (2.15)

If the matrix A− λI is singular, it will have a non-zero solution x, and the eigenvalues of A are the roots
of the polynomial. The characteristic polynomial has degree n, where n is the dimension of matrix A.
Therefore, matrix A will have n eigenvalues, but not all of them need to be unique.

Algebraic multiplicity expresses how many times a root is repeated in the characteristic polynomial, in
other words, how many ”copies” of the eigenvalue will appear when the eigenvalues are computed. If
the algebraic multiplicity of an eigenvalue is one, it is called a simple eigenvalue. In physics literature,
multiple eigenvalues are usually called degenerate.

Geometric multiplicity expresses the number of linearly independent vectors corresponding to an eigen-
value. Geometric multiplicity can be more than one if the eigenvalue is not simple; if it is simple, only one
eigenvector corresponds to that eigenvalue. An eigenvalue with corresponding linearly dependent vectors
is called defective. A matrix is also called defective if it has linearly dependent eigenvectors.

If all the eigenvectors x1, . . . , xn are linearly independent, and X = [x1, . . . , xn], X is non-singular and
can be inverted. Then if D = diag(λ1, λ2, . . . , λn),

AX = XD (2.16)

can be transformed into
X−1AX = D. (2.17)

Consequently, if all the eigenvectors are linearly independent, the matrix is diagonalizable.

A matrix with all distinct eigenvalues is diagonalizable, as all the eigenvectors must necessarily be linearly
independent [14, p.5].

Because the roots of polynomials can be real or complex, eigenvalues can also be real or complex, even if
the matrix is real.

Real symmetric and Hermitian matrices have real eigenvalues only [14, p.25].

2.2.2 Direct methods for the eigenvalue problem: full diagonalization
Direct methods seek to obtain the eigenvalues via factorization and transformations of the matrix. These
methods give exact solutions in a finite number of steps. To be more precise, on computers, they give
answers with an error inherent to computer calculations and float point arithmetic, caused among other
factors by rounding errors.

Diagonalization methods for obtaining the eigenvalues of a matrix usually follow a 2-step scheme [15].

The algorithm starts with a matrix A, which is real symmetric or complex Hermitian. First, the matrix
is reduced to tridiagonal form. Then, the eigenvalues are computed by further reducing the matrix to
diagonal form.

Reduction to tridiagonal form

The matrix A is reduced to real tridiagonal form T using a unitary similarity transformation.
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If the matrix is real symmetric, the transformation has the form

A = QTQT . (2.18)

If the matrix is Hermitian, it has the form

A = QTQ∗. (2.19)

In both cases T is real.

Computing the eigenvalues

Next, the eigenvalues are computed from the tridiagonal matrix by reducing it to diagonal form, with
transformation

T = PDPT , (2.20)

where D is a diagonal matrix storing the eigenvalues, and P is orthogonal and contains in its columns the
eigenvectors of T . The eigenvectors of the original matrix A are the columns of the matrix QP , so a final
matrix-matrix product is required to obtain the eigenvectors.

The factorization can be done in different ways, depending if we are interested only in the eigenvalues or
in both the eigenvalues and the eigenvectors. Some available methods are:

• The QR algorithm, based on performing QR factorizations.

• Standard inverse iteration, or its successor, MRRR [16] (multiple relatively robust representations)

• Divide and Conquer: The Divide and Conquer algorithm by Cuppen [17] uses recursion. It is
commonly used in parallel implementations [18]. When the recursion process reaches small-sized
matrices, it may use the QR algorithm.

Non-Hermitian matrices

The method described above has a limitation. It does not work with a non-Hermitian matrix, as it is
not always possible to diagonalize a non-Hermitian matrix. However, based on the property that all
matrices can be transformed to triangular form [19, p. 171], a method exists to compute the eigenvalues
of a non-Hermitian matrix via a transformation of the matrix into the Schur form [15]. The Schur form
is a triangular matrix in the complex realm; or the real Schur form, a quasi-triangular matrix with 1x1
or 2x2 blocks on the diagonal.

Computational cost

The diagonalization method allows to compute all the eigenvalues of a matrix. However, as the process
describes, a reduction to tridiagonal form (with cubic cost) and a subsequent transformation to diagonal
(the cost is variable) is required, as well as a matrix-matrix product (again with cubic cost). Therefore,
this method can be computationally expensive and slow. When the size of the problem increases, the cost
of the operations involved grows accordingly. For large matrices, it can be prohibitive.

2.2.3 Iterative methods for the eigenvalue problem: the Krylov-Schur method
Iterative methods start with an initial solution, and make successive approximations, till convergence is
achieved (convergence is not always assured to happen).
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The Krylov-Schur method [20][21] is an iterative method which combines the projection of the matrix
onto a Krylov subspace, with the Krylov-Schur restart.

Projection methods

Projection methods compute a partial number of the eigenvalues of a matrix, by projecting the matrix
onto a smaller subspace V and solving the eigenvalue problem in it.

H = V TAV (2.21)

• A is the original matrix, of dimension n.

• H is a smaller matrix, of dimension m.

• V is a n×m matrix whose columns vi constitute an orthogonal basis of subspace V.

First the matrix H is computed, and then the eigenvalue problem

Hzi = θizi (2.22)

is solved.

Some of the computed eigenvalues θi can be good approximations of the eigenvalues of the initial matrix.
The eigenvectors xi of the original matrix can be approximated as V zi.

Krylov subspaces

Certain subspaces are better than others for projecting the matrix. The Krylov subspaces constitute a
good basis for effective algorithms.

H = KTAK (2.23)

K is a basis that generates the Krylov subspace K. They are generated from an initial vector x1 in the
following way:

Km(A, x1) ≡ span{x1, Ax1, A
2x1, ..., A

m−1x1} (2.24)

where K = [x1, Ax1, A
2x1, ..., A

m−1x1].

The basis K for the Krylov subspace is not used in practical applications because of its poor conditioning.
Instead, a basis V with orthogonal columns is computed using the Arnoldi or Lanczos algorithm (for the
symmetric case) to generate the same subspace.

Algorithm 1: Arnoldi
Data: A, x1

Result: Vm

v1 = normalize(x1);
for j = 1, 2, . . . ,m do

w = Avj ;
w = orthogonalize(w, Vj);
vj+1 = normalize(w);

end

Although omitted in this simplified version of the Arnoldi algorithm, the projected matrix H is computed
at the same time than V .
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In an iterative algorithm, in each iteration a new vector of the subspace is computed, as well as a new
column of both H and V .

Krylov-Schur restart

As explained above, the matrices grow with each iteration, requiring more memory and computing time.
If many iterations are required, the advantages of using a projection algorithm are negated. This indicates
that the vector x1 that generates the subspace K is not rich in the direction of the eigenvalues we are
looking for. One solution is to restart the process after reaching the maximum number of iterations m,
with a new vector x1, for example computed from the approximate eigenvectors. This is called an explicit
restart.

Instead of explicitly computing a new vector x1, we can perform an implicit restart with better numerical
stability. It also preserves the information about the wanted approximate eigenvectors contained in K.
The implicit restart performs an Arnoldi decomposition of order m and then compacts it to p, p < m
using the implicitly shifted QR algorithm. The process of expanding and contracting the decomposition
is repeated until the desired eigenvalues converge.

The Krylov-Schur restart achieves the same effect, but is more simple to implement. Instead of starting
with an Arnoldi decomposition,

AVm = VmHm + βvm+1e
∗
m, (2.25)

where the last term carries information about how close K is to an invariant subspace, we perform its
generalization, the Krylov decomposition

AVm = VmBm + vm+1b
∗
m+1. (2.26)

The Krylov decomposition can be also written in matrix form as

AVm =
[
Vm vm+1

] [ Bm

b∗m+1

]
. (2.27)

As in the implicit restart, in a second step the dimension of the decomposition is reduced to p, p < m. For
the reduction, it is first transformed, using orthogonal transformations, into a Krylov-Schur decomposition,
a Krylov decomposition where Bm is in the real Schur form. Then there is a reordering and a truncation
to p. The process of expanding and contracting is repeated until all desired eigenvalues converge or a
maximum number of iterations is reached.

After all the desired eigenvalues have converged, it is possible that more than these have converged. For
example, we may want to compute ten eigenvalues, but in the course of the computation we obtain twelve
converged eigenvalues. A tolerance can also be set for deciding when the eigenvalues have converged.
Usually a tolerance of the order of 10−8 is sufficient.

Computational cost

The matrix-vector product Avj is the most computationally expensive part of the Arnoldi algorithm if
the matrix is dense. The cost of this operation increases quadratically with the dimension of the matrix.
Therefore, optimizing this single operation for the specific architecture could also improve the performance
of the algorithm.

Another way to reduce the cost is to reduce the number of iterations by finding the ideal balance between
the m and p parameters, which depends on each problem and is not known a priori.
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2.3 Numerical software
2.3.1 SLEPc
SLEPc (the Scalable Library for Eigenvalue Problem Computations) [22] implements solvers for several
kinds of eigenvalue problems. It is optimized for large and sparse problems in parallel architectures.
SLEPc parallelism is based on the distributed memory programming model and MPI message exchange.
Additionally it also provides GPU parallelism for some of the implemented methods.

The purpose of the library is to hide from the programmer the complexity of working with parallel
structures and managing the communications between the processes.

SLEPc works with both real and complex arithmetic. It can also be configured to work in single or double
precision. It is written in C, and has interfaces for C++ and Fortran.

SLEPc is built on top of PETSc [23][24][25] (Portable, Extensible Toolkit for Scientific Computation),
and it follows the same programming paradigm and standards.

Both PETSc and SLEPc follow an object-oriented approach. Data structures like matrices and vectors
are encapsulated in objects, which hide its internal structure, and define what operations can be applied
to them. Solvers and auxiliary classes are also objects.

Figure 2.3: Solvers and methods available in PETSc and SLEPc, taken from the SLEPc user manual.

Some other practical aspects about the relationship between SLEPc and PETSc are:

• SLEPc installation requires a previous installation of PETSc in the system.

• Initializing SLEPc initializes also PETSc.
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• The creation of matrix and vector objects is done through PETSc methods, as it uses the same
structures and schema for parallelization. The matrices are distributed by rows among the processes,
as in Figure 2.4.

• SLEPc internally uses PETSc’s linear solvers and methods.

• SLEPc follows PETSc’s conventions for logging and debugging, using PetscViewer objects and
command line options to change the properties of objects and solvers at run-time .

SLEPc has modules for solving both the linear eigenvalue problem (EPS), and non-linear eigenvalue
problems (NEP), from which the polynomial eigenvalue problem (PEP) is a particular case. SLEPc can
also solve the singular value decomposition (SVD).

Most of SLEPc solvers are iterative solvers that use projections of the matrix onto certain subspaces.
These are specially useful for large and sparse problems, or to extract only a few eigenvalues, instead of
the whole spectrum, significantly reducing the computing time.

SLEPc can also apply spectral transformations, preconditioners, and extractions. These are aimed to im-
prove the conditioning of the problem or to transform the spectrum, for example for computing eigenvalues
from different regions, like internal eigenvalues.

An overview of the solvers and methods available in PETSc and SLEPc can be seen in Figure 2.3. SLEPc
also interfaces to other libraries, like ARPACK, ScaLAPACK, ELPA or BLOPEX.

P0

P1

P2

P3

P4

Figure 2.4: PETSc distribution of the matrix among the processes.

2.3.2 LAPACK
LAPACK [15] (Linear Algebra PACKage) is the successor of two linear algebra libraries: LINPACK [26],
for solving systems of linear equations, and EISPACK [27], for solving eigenvalue problems. These li-
braries implement column-oriented algorithms to preserve the storage and memory addressing format of
FORTRAN, making them more efficient. However, these libraries were not efficient enough for parallel
computers using shared-memory.

LAPACK optimized linear algebra operations for shared-memory by using the block version of the same
algorithms. This approach takes into account hierarchical memory, avoids moving data and makes ad-
dressing more efficient.

The block operations need to be very efficient, and it can only be achieved if they are optimized for the
specific architecture where they will be run (cache levels, memory access, etc). The solution was to make
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LAPACK a high level library whose routines call a BLAS code (Basic Linear Algebra Subprograms) for the
basic block matrix operations, like the matrix-vector product. The BLAS code is specific and optimized
for the architecture of the machine. This approach was also used by its predecessors, LINPACK and
EISPACK.

BLAS is in nature a set of specifications for providing vector and matrix operations and it is organized in
three levels:

• Level 1 BLAS: Scalar, vector and vector-vector operations (used in LINPACK and EISPACK)

• Level 2 BLAS: Matrix-vector operations

• Level 3 BLAS: Matrix-matrix operations (used in LAPACK)

The use of level 3 BLAS in LAPACK is one of the keys for its efficiency in shared-memory architectures.

LAPACK provides routines for matrix operations, matrix factorization, linear algebra solvers, least
squares, eigenvalue solvers and many others.

The convention for naming the routines also comes from LINPACK and EISPACK. The names can be
divided in three parts.

• The first letter indicates the type of arithmetic: S for single precision, D for double precision, C for
complex numbers in single precision and Z for complex numbers in double precision.

• The next two letters indicate the type of matrix: HE for Hermitian matrices, TR for triangular
matrices, etc.

• The following letters describe the operation: MM for the matrix-matrix product, MV for the matrix-
vector product, etc.

For example, DGEMM is the routine for matrix-matrix multiplication of two general matrices in real
double precision arithmetic.

The Hermitian diagonalization is called xHEEV in LAPACK, where x its replaced by the type of arith-
metic. For complex arithmetic and single precision, the routine is CHEEV. Internally, the tridiagonaliza-
tion step is performed by the routine CHETRD (for dense Hermitian matrices).

Computing the eigenvalues from the tridiagonal matrix can be done in several ways. If the eigenvectors are
not computed, it uses an algorithm called square-root free QR (routine CSTERF). If the eigenvectors are
computed, it uses the QR algorithm (routine CSTEQR). If instead of calling CHEEV, we call CHEEVD,
the eigenvalues will be computed using Cuppen’s divide and conquer algorithm.

LAPACK and BLAS implementations

LAPACK is provided by the universities of Tennessee, California Berkeley and Colorado Denver. Currently
it has a modified BSD licence, and it is sponsored by MathWorks and Intel. LAPACK is also included in
commercial software, as it is allowed by its licence.

The BLAS specification has different implementations. OpenBLAS is a open-sourced, BSD licensed
implementation with optimizations for different processors.

Intel implements its own BLAS in the Intel MKL (Math Kernel Library). MKL also implements LAPACK
routines.
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NVIDIA also has its own version of BLAS for GPU, cuBLAS. The analogous for LAPACK is cuSOLVER,
which provides matrix factorization, dense and sparse linear algebra solvers and an eigenvalue solver.
Both are included in the NVIDIA Math Libraries.

LAPACK has also influenced many linear algebra libraries that came after it. Two other libraries based on
LAPACK are MAGMA (subsection 2.3.5), for GPU, and ScaLAPACK (subsection 2.3.3), for distributed
memory.

2.3.3 ScaLAPACK
ScaLAPACK [28] (Scalable LAPACK), is the distributed memory version of LAPACK, created by the
same universities than built LAPACK. There is a publicly available distribution on netlibi, and vendor-
specific versions which are optimized for a specific architecture.

The interface of ScaLAPACK imitates LAPACK’s, making it easy for the user to port a code with
LAPACK routines to ScaLAPACK.

Internally, it uses PBLAS (a parallel, distributed memory version of BLAS), LAPACK and BLACS (Basic
Linear Algebra Communication Subprograms). BLACS is a linear algebra oriented interface for message
passing, and its responsible for the communications of data between processes.

ScaLAPACK uses a two-dimensional block cyclic distribution of the dense matrices among the different
processes, as shown in Figure 2.5. In the image, process with id 0 would store blocks marked with ”0”. If
the matrix is banded, a block distribution is used instead.
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Figure 2.5: ScaLAPACK block-cyclic distribution of the matrix among the processes.

The analogous to LAPACK complex Hermitian diagonalization routines are PCHEEV, and PCHEEVD
to compute the eigenvalues using the divide and conquer algorithm.

2.3.4 ELPA
ELPA [29] (Eigenvalue soLver for Petaflop Applications) is a library designed for solving eigenvalue
problems in petaflop HPC systems. It is developed by the Max Planck Society, the university of Wuppertal,
and the Technical University of Munich.

iwww.netlib.org
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Because it is designed with that purpose in mind, it scales very well for large clusters and supercomputers.
It relies on the ScaLAPACK library, and uses the same block distribution, but replaces its internal parallel
routines with its own.

ELPA optimizes the most time-critical part of the diagonalization, the reduction of the matrix to tridi-
agonal form. It offers two methods, one which performs it in one step, and a two-step method, which has
shown very good results in scalability and performance. Diagonalization from the tridiagonal matrix is
implemented in ELPA with the divide and conquer algorithm [30].

ELPA can solve the symmetric and Hermitian eigenvalue problem with real and complex matrices. It also
supports all major architectures, including GPU.

2.3.5 MAGMA
MAGMA [31] (Matrix Algebra on GPU and Multi-core Architectures) is a collection of libraries developed
by the University of Tennessee, in collaboration with universities of Berkeley and Colorado-Denver. It is
also supported by Intel, AMD, NVIDIA, and MathWorks.

The objective of this libraries is to offer LAPACK based routines for heterogeneous systems with multi-
core CPUs and GPUs. The interface is similar to the one in LAPACK, but internally it implements hybrid
algorithms that use both CPU and GPU parallelism.

MAGMA splits algorithms in a set of tasks and schedules them on the most appropriate available hardware
components. For example, it will assign critical non parallel tasks to CPU and level 3 BLAS tasks to
GPU. MAGMA’s GPU parallelism gives especially good results for dense linear algebra.

As part of the MAGMA collection we can also find MAGMA SPARSE, with solvers that support sparse
matrices.

MAGMA BATCH is a library for factorization (LU, QR and Cholesky) of many small matrices in parallel.

There are two alternative methods for diagonalization in MAGMA, one implementing the QR algorithm
(magma_cheevdx) and one implementing divide and conquer (magma_cheevd).

Routines also have three versions, one where the matrix is initially stored in the CPU memory, one where
it is stored in GPU and one for multiple GPUs. Most routines have also an interface for Fortran.
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Chapter 3

Initial analysis

The initial approach to the project was to study the characteristics of the problem and the strategies and
performance of the existing code. The goal was to understand what functions have the most impact on
the performance in order to later optimize them.

This analysis was made based on two test cases that were provided to us. The first one solves the Bethe-
Salpeter equation with all terms. The second one makes an approximation. As a result, in each of them
the matrix has different size and characteristics.

3.1 Test cases
The test cases are simulations of the optical properties of BiI3 that generate large matrices. A test case
consists of a folder with all the databasesi and files required for the test, and the scripts to run it.

The tests are described in a specification file, with a Yambo specific format, in which all the parameters
for the test are defined. From now on, we will refer to this file as the Yambo specification file. The
Yambo specification file also controls what methods will be run. For example, in our case optics, and
bss (Bethe-Salpeter Solver), among others.

A Yambo run consists of a series of steps. The results from each step are stored in databases, and used
in the next step of the calculations. If a parameter is changed and it affects the calculations for a step,
that step and all the following ones must be rerun. However, databases from non-affected previous steps
will be reused, saving some time.

Although we are interested in running only the Bethe-Salpeter Solver, first we must run one time all the
previous steps. This process takes quite a long timeii, but all subsequent runs are much faster.

3.1.1 Generation of the test
The process for generating the test (Figure 3.1), involves previously running an external DFT code to
generate the input databases for Yambo. A variety of options of DFT codes are available, for example,
Quantum Espresso or the software Abinit. Since sometimes a conversion of the format of the data is

iA database in Yambo is a set of files in the non-readable for humans netCDF format
iiGenerating the the largest test took two full days in Tirant.
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needed, Yambo provides tools like p2y, or a2y. In our case, the input was generated with Quantum
Espresso and converted with p2y. This generates a SAVE folder.

Figure 3.1: Generation of the test.

Once the input is prepared, we must run Yambo without options on the parent directory to the SAVE
folder to prepare the databases for a later use. This set-up step runs a series of sampling and correction
techniques.

At this point, we are prepared to run Yambo with the Yambo specification file. In our case, this concludes
with creating the Bethe-Salpeter kernel and running the Bethe-Salpeter solver. Creating the kernel is the
slowest part of the process, but once it is created, we can run the Bethe-Salpeter solver without doing it
again.

Yambo also allows to use a folder, referred to as the job folder, to store intermediate computations and
databases. Different folders can be used to keep the computations for different simulations.

3.1.2 Modifying the size of the test
As part of the process, we also generated the tests in smaller sizes, to be able to quickly test the correctness
of the implementations made.

To change the sizes of the matrices in the test, we changed two parameters in the specification of the
test. The first one was the size of the grid in the Quantum Espresso specification. We also changed
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the parameter BSEBands in the Yambo specification file. Additionally, computing a larger number of
eigenvalues does not change the size of the matrix, but it increases the time needed to run the test if we
are using an iterative solver.

Changing the size of the grid requires to run all the computations again, including generating the input
on Quantum Espresso. Changing the BSEBands only requires to run again Yambo, but the kernel is
generated again.

3.1.3 Running the tests
Test cases are run by invoking the program in the command line with yambo and optionally specifying
the following options:

• -I: Path to the folder containing the input databases with the characteristics of the material.

• -F: Path to the file containing the specifications for the run. This file can also be created invoking
Yambo with specific options for it.

• -C: Path to the folder to save the output readable for humans.

• -J: Path to the job folder. A new job folder can also be created by giving it a name with this option.

Once the test is completed, we might want to examine the results or, in our case, we are interested in the
correctness and performance of the solvers. In the output folder we will have the following useful files:

• Reports: Files starting with ”r-”. These files contain a report of all the steps in the Yambo run,
including the time each step took to be completed. We are particularly interested in this information.
Reports also show the parameters used in the Bethe-Salpeter solvers and the convergence results of
the SLEPc solver.

• Logs: Files starting with ”l-”. We can keep track of the content of this file while Yambo is running
to see the progress and issues. When we run Yambo in parallel with more than one process, we will
have a LOG folder instead, with one file for each process.

• Output: Files starting with ”o-”. These files contain the results of the test, in a column format.
The first column contains the energies of the photon. The rest of the columns contain the optical
properties, and we can use them to plot the optical spectra. For example, we can plot the ab-
sorption spectra with the energies from the first column, and the second column, which represents
the imaginary part of the macroscopic dielectric function. An example of this plot can be seen in
Figure 3.2.

Among other methods, we used the plots made from the output to test the correctness of the modifications,
and compare if the results are still the same after the modifications to the code. Although the eigenvalues
can be slightly different when they are computed with different methods and software, if the difference
between the eigenvalues is inside some tolerance, we consider the result to be acceptable.

3.1.4 Differences between the two test cases
The Bethe-Salpeter equation, in its general matrix form with all terms involved, has the following form
for this problem [32]:

[
R C

−C∗ −RT

] [
x1

x2

]
= λ

[
x1

x2

]
(3.1)
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Figure 3.2: Absorption spectra from one of the test cases.

The block R is a Hamiltonian corresponding to the resonant transitions, that happen from valence states to
conduction states. The mirroring block −RT corresponds to the anti-resonant transitions, from conduction
states to valence states.

Blocks C and −C∗ are coupling terms between the transition blocks.

When the coupling terms are much smaller than the resonant and anti-resonant terms, they can be
discarded, resulting in the matrix having only one block, R.

We worked with two cases, one discarding the coupling, and one keeping it.

Test case with Tam-Dancoff Aproximation

In this case, the Bethe-Salpeter equation is truncated and the coupling between the resonant and anti-
resonant transitions is discarded. Only the electron transitions from the valence states to the conduction
states are considered. This is called the Tam-Dancoff approximation (TDA) [33], and in some cases it
does not describe the system accurately [34].

The evident result of using this approximation is that the dimensions of the matrix are smaller. The time
needed to solve this test case is consequently greatly reduced.

To generate this case in Yambo we indicate mode='resonant' in the Yambo specification file.

The dimension of the matrix in the provided test is 30276, with a total of 916636176 elements, which
accounts for 3.4GB of space in memory.

We will refer to this test case as the resonant case going forward.

Test case with coupling introduced

In this test the coupling terms are present. It gives a more accurate representation but it also generates
a matrix with two times the dimension (four times the number of elements).
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To generate a case with coupling we indicate mode='coupling' in the Yambo specification file.

The dimension of the matrix in this case is 60552, with a total of 36665447048943415 elements, and
13.7GB of space in memory.

We will refer to this test case as the coupling case.

3.2 Analysis of the matrices associated to the problem
3.2.1 Structure
The size of the matrix is not the only factor affected by the mode. Depending on the problem, two types
of matrices appear, a Hermitian matrix in the resonant case, and a non-Hermitian matrix in the coupling
case. Both matrices are square matrices.

The matrices are constructed in both modes by assembling a series of rectangular blocks, previously
generated by Yambo in the step of computing the kernel for the solver. This kernel blocks are labeled
by their mode, 'r' for resonant blocks and 'c' for coupling blocks. The code outside the Bethe-Salpeter
solver is also parallelized by distributing these kernel blocks between the processes, and the number of
them depends on the number of processes also. However, the parallelization inside the solvers does not
follow the same approach. The parallelization strategies for the solvers will be explained in section 3.4.

Hermitian case

A Hermitian matrix appears in the resonant mode. The eigenvalues of a Hermitian matrix are real and
the eigenvectors are orthogonal. The eigenvalues and eigenvectors can be solved through diagonalization.

The kernel blocks that form this matrix are all resonant, 'r'. Because the matrix is Hermitian, it is
necessary to compute (and store) only half of the elements when constructing it. When a kernel block is
written to the matrix, its values are copied transposed also. In Figure 3.3 these kernel blocks are shown.

Non-Hermitian case

In the coupling mode the matrix is non-Hermitian. This property limits which algorithms can be used to
solve the eigenvalue problem, as some methods like diagonalization require the matrix to be Hermitian.

The matrix is formed by four blocksiii.

H =

[
R C

−C∗ −RT

]
. (3.2)

To construct the matrix, two types of kernel blocks appear: resonant blocks 'r' and coupling blocks 'c'.
Resonant kernel blocks are used to construct the elements of the matrix from the top left block and the
bottom right block. Coupling kernel blocks are used to construct the top right block and the bottom left
block.

The resulting matrix is four times the size of the Hermitian matrix in the resonant mode. It has the
following characteristics:

iiiNotice that this blocks are not the same as the previously referred to in this section as ”kernel blocks”. We have given
that name to the structures used in Yambo for storing the computations made in the kernel step that are later written to
the matrix, to avoid confusion. The ”blocks” described here, and in the sequel, refer to the characteristic structure of the
matrix for the Bethe-Salpeter equation.
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Figure 3.3: Positions of the kernel blocks with the elements of the Hermitian matrix.

• The top left block R is Hermitian.

• The top right block C is symmetric.

• The bottom left block is the Hermitian transpose of C scaled by -1.

• The bottom right block is R transposed and scaled by -1.
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Consequently, although the non-Hermitian matrix is larger, it can be constructed from just a quarter of
its elements.

3.2.2 Format
The matrix associated to the problem is in both cases a dense matrix. In practice, the memory require-
ments can be a limitation when the problem is of a large dimension.

The format of the matrix depends on the solver used.

The diagonalization solver constructs the full matrix from the kernel blocks and distributes a copy of it to
all the processes. When the matrix is large and the processes are running on the same node, the memory
of the node will not be enough to hold all of the copies. This has been confirmed in our tests, where
trying to run the code with more processes in the same node resulted in Yambo being killed because of a
lack of memory. A better approach would be to distribute the matrix between the processes.

The SLEPc solver, on the current implementation, offers to select between two types of matrix to prioritize
speed for smaller problems and memory management for larger problems.

• Explicit matrix: Constructs the matrix explicitly from the kernel blocks, requiring more space in
memory.

• Shell matrix: A special type of matrix available in PETSc. The matrix is not stored explicitly,
instead, its operations are defined, which requires less space in memory. In this case, it is required
to provide a function that performs the matrix-vector product to use it in the solver.

3.3 Current implementation
Yambo offers three methods for computing the eigenvalues:

• Diagonalization: The diagonalization solver computes all eigenvalues and eigenvectors of the matrix.
This is the best approximation to obtain an accurate optical spectra. However, for large problems
it requires significantly longer time than the other solvers. Internally, it uses the LAPACK library
to compute the eigenvalues. This solver also has a parallel version in which LAPACK is replaced
with ScaLAPACK.

• Lanczos-Haydock: Computes a subset of the eigenvalues till a threshold accuracy is reached. The
limitation of Lanczos-Haydock is that it does not compute the eigenvectors. The optical absorp-
tion spectra can be computed with just the eigenvalues, but the eigenvectors are needed for later
calculations, so it is interesting to compute them also.

• SLEPc: Computes a subset of the eigenvalues and their eigenvectors (for example the smallest
ones). It is faster but the number of eigenvalues must be specified beforehand which results in a less
accurate approximation if fewer than necessary are requested.

In the documentation, Yambo advices to use the Lanczos-Haydock method to obtain the eigenvalues and
then use SLEPc to obtain the eigenvectors of the dominant features. A comparison of the results of both
approaches is shown in Figure 3.4.

As we have mentioned it is possible to select some parameters for the solvers. The options are available
through the Yambo specification file.

• BSSmod: Selects the solver among the different available options.
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Figure 3.4: Comparison of SLEPc and Lanczos Haydock. The image, taken from [35] shows the optical
absorption spectra of mono-layer hBN, obtained with Yambo. The blue shaded region shows the spectra
obtained by computing only two eigenvalues with SLEPc. The red line corresponds to the results of the
Lanczos-Haydock solver. In this case, two eigenvalues can describe the most prominent features.

– ’s’: SLEPc

– ’d’: diagonalization

– ’h’: Lanczos-Haydock

The following options are specific to the SLEPc solver:

• BSSNEig: The number of eigenvalues to compute.

• BSSEnTarget: The energy target for the solver.

– If there is no target and a preconditioner is used, it computes the eigenvalues closest to 0.

– If there is no target and no preconditioner is used, it calculates the smallest eigenvalues.

– If there is a target, the eigenvalues are ordered by distance to it.

• BSSSlepcShell: Use a shell matrix, this is the default option.

• BSSSlepcMatrix: Use a explicit matrix.

• BSSSlepcNCV: The dimension of the subspace.

• BSSSlepcApproach: The solver to be used inside SLEPc, there are three options available right now.
SLEPc offers more solvers, but only these three are offered by Yambo for this problem. By default
the Krylov-Schur solver is used.

– ’Krylov-Schur’

– ’Generalized-Davidson’

– ’Jacob-Davidson’
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• BSSSlepcPrecondition: The preconditioner to use. It must be selected among the following op-
tions. The default option is ’preonly+jacobi’

– ’none’

– ’preonly+jacobi’

– ’bcgs+jacobi’

• BSSSlepcExtraction: If it is defined, it will aply an extraction. The available options are:

– ’ritz’

– ’harmonic’

3.4 Current parallelization strategy
Currently the code for the solvers is parallelized with a distributed memory strategy using MPI and the
SLEPc and ScaLAPACK libraries.

3.4.1 Diagonalization
The serial version of the code uses the LAPACK library. In the parallel version the routines are exchanged
with the corresponding ones in ScaLAPACK.

The code for the diagonalization of the matrix is only parallel for the Hermitian case as ScaLAPACK
does not support yet the diagonalization of non-Hermitian matrices.

In the Hermitian case, the parallel version of the code is run if Yambo has been configured with ScaLA-
PACK and more than four CPUs are used. This apparently arbitrary number is due to the size of the
smallest ScaLAPACK grid defined in Yambo, which is 2 rows by 2 columns.

Although Yambo has GPU support for other steps of the computations, there is currently no implemen-
tation using GPU parallelism for any of the solvers.

3.4.2 SLEPc solver
Currently, Yambo can be configured to link to an existing installation of SLEPc. SLEPc is used inside
Yambo to compute a small range of eigenvalues of the Bethe-Salpeter equation, instead of the whole range.

In the case of the SLEPc solver, the distribution of the memory and the communications between the
processes are handled by the library using MPI. The strategy for distributing the matrix and the vectors
between the processes is implemented differently in Yambo than in SLEPc.

SLEPc and PETSc distribute by the matrix by rows. At the moment of the creation of a matrix, the
number of local rows that each process will have can be either specified, or left for PETSc to decide by
passing PETSC_DECIDE as the parameter. An MPI communicator can also be passed to the function to
specify among which processes the matrix will be distributed.

In Yambo, before the matrix for SLEPc is constructed, its elements are distributed among the processes
in the kernel blocks. The number and distribution of the blocks depends on the number of processes.

To convert between both distributions, there is a communication of the data structures to all the processes
before and after calling the SLEPc solver. This process adds an overhead in time and memory.
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The parallelization described above only refers to the case of using an explicit matrix. When a shell
matrix is used, the matrix is not constructed explicitly in SLEPc.

Although SLEPc supports the use of GPU, currently Yambo does not offer this possibility to the users.

3.5 Conclusions of the analysis
From our analysis we noticed that there is no GPU implementation for any of the Bethe-Salpeter solvers
in Yambo. SLEPc offers GPU support and we can use it to our advantage. We can also introduce GPU
parallelism on the diagonalization solver.

Diagonalization is the slowest method for solving the Bethe-Salpeter equation in Yambo. We will try to
improve the performance in distributed memory also, by using state-of-the-art libraries designed for large
problems.

Lastly, we found that memory is a limiting factor. The structure of the non-Hermitian matrix allows us to
use nested storage, and we will explore this approach to reduce the memory required to store the matrix
in SLEPc.
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Chapter 4

Implementations

In this chapter we will describe the methods used and the adaptations made to the code to optimize the
performance of the Bethe-Salpeter solver. The changes were made inside a fork of the Yambo repository.
We tested the changes on different machines by recompiling the Yambo source code with our modifications,
and the required configuration. For version control, we used git, a tool that becomes fundamental when
working with large codes, and aided us to maintain control of the different versions.

As part of the process we configured and compiled Yambo with libraries which are not supported in the
current Yambo configuration. These implementations were tests and if they were to be implemented, they
would require changes in both the configuration and the flow and dependencies of the code.

From our analysis in chapter 3, we needed to adapt to the following limitations, arising from the charac-
teristics of the problem:

• Single precision: Although a double precision version is available, Yambo is mostly used in single
precision. We made the choice to work on that version and limit the libraries and methods used
to those who work in single precision, to avoid architectural issues or the need to convert between
formats.

• Complex numbers: Similarly, we are limited to use libraries that solve the eigenvalue problem for
complex matrices, as the matrix associated to the problem is complex.

• Dense matrix: The methods which apply to sparse matrices to reduce memory and optimize perfor-
mance are not useful in this case.

• Large problems: A special care must be paid to the use of memory, as we have experienced it to be
a limiting factor when running the simulations.

In the following sections we will describe the implementations that yielded significant results, with an
initial remark on what changes to the code were needed to measure the performance.

4.1 Profiling
To measure the performance we used Yambo reports and SLEPc logs.

Yambo reports contained information about the time taken to run the solver. For the SLEPc solver, we
separated this time in two, the time taken to create the matrix, and the time to run the solver. These two
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processes are made by two different functions in the code. The goal was to find out whether creating the
matrix to adapt to the specifications of SLEPc impacted the time significantly. In general, we found that,
on large problems, the time to run the solver had a bigger impact, so we focused our efforts on improving
that part of the code.

In SLEPc and PETSc there is a mechanism for allowing the user to set options at run-time via command
options. These options can also be specified in the code.

Currently the code for the SLEPc solver in Yambo does not allow the user to input PETSc options.
Instead the users must select the solvers, preconditoneres, etc from a limited set of options in the Yambo
specification file. This approach is safer for the user and allows them to use the solvers without requiring
any knowledge in the use of the SLEPc library. For the purpose of this project, we made changes to
the code to be able to access the full possibilities of PETSc and SLEPc, extract logs and important
information from SLEPc, and change the solver’s characteristics in run-time, without changing the code.

Some of these options are evaluated at PetscFinalize or SlepcFinalize. Other options apply to the
matrices or solvers and can even change the format of the data or the method used in the solver. To set
up a solver with the command line options from the user we must call EPSSetFromOptions from the code.
To set up the properties of the matrix with the user input we must call MatSetFromOptions.

The order in which we call EPSSetFromOptions is important. All options which are set in the code after
the call will overwrite the ones from the user input.

We used the following PETSc options:

• -log_view: Prints a log with information about memory and time profiling, objects created, etc.

• -log_view_gpu: Prints additional information about GPU usage to the log.

• -log_view_memory: Prints additional information about memory allocation to the log.

• -mat_view: Prints information about a matrix.

• -device_enable_cuda eager: Initializes the GPU on PetscInitialize even if it is later not used.
We used this option to get accurate times for GPU.

• -mat_type: Selects the matrix type, for example the sparse format. In this case the matrix is dense
and it was set to MPIDENSE.

Additionally, we used the following SLEPc options:

• -eps_view: Prints information about the eigenvalue solver and the parameters used for the compu-
tation.

• -eps_view_mat0: Prints information about the matrix A in the eigenvalue problem. It can also
write the matrix in a file.

• -eps_type: Selects the method for the linear eigenvalue solver.

• -eps_error_relative: Shows the computed eigenvalues and the error.

Additionally you can specify the format of the output, and the name of a file to save it by adding the
optional parameters <format>:<filename>:<options>:.

In PETSc it is possible to tag a matrix with a command line option to later view its properties in run
time. This is done in the code with function MatViewFromOptions.
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We used this feature to extract the matrices and analyze them using Matlab, in order to check that the
format of the matrix matched the expected structure and properties.

4.2 Optimizations to the Hermitian case
The focus on the Hermitian case was to improve the speed. We explored different solutions for distributed
memory and GPU parallelism.

4.2.1 Diagonalization in CPU with ScaLAPACK and ELPA
The implementation of diagonalization in CPU currently uses LAPACK for the serial version. A parallel
version is available only for the Hermitian case in ScaLAPACK.

Our first approach to improve the performance was to exchange the ScaLAPACK library with ELPA, as
it has shown very good results and scalability for large matrices. An additional advantage of using ELPA
would be the possibility to implement a parallel version also for the non-Hermitian case, as ELPA covers
this case in its routines.

SLEPc offers an interface to both ScaLAPACK and ELPA. This allowed us to compare both libraries
with no implementation required. Using the SLEPc interface instead of directly calling the functions in
the libraries will add a small overhead, but the comparison will be fair as both of them will have the same
overhead.

We used the command line option -eps_type to change the solver from the Krylov-Schur solver to the
ScaLAPACK one with -eps_type scalapack or to the ELPA interface with -eps_type elpa.

4.2.2 Diagonalization in GPU with MAGMA
The diagonalization method in Yambo also doesn’t have a GPU implementation yet. We modified the
code for the serial version of the diagonalization using LAPACK, and ported it to MAGMA to run the
diagonalization on the NVIDIA GPU. Additionally, we made a second version to run it on multiple GPUs,
in our case, in two.

We used the interface of MAGMA for Fortran, so the functions start with magmaf_ instead of magma_ and
all the parameters are passed by reference. We need to pass also an additional parameter for the error
code, which is not needed in C, where this role is fulfilled by the return value of the function.

Firstly we initialize the library, with magmaf_init. This step also detects the GPUs available, and their
characteristics, for example their architecture, capability, etc. When we are done using the library we
must call magmaf_finalize.

Next, we substituted the LAPACK functions for the MAGMA ones. The interfaces are very similar, but
some aspects change. The naming conventions are also maintained. We exchanged the LAPACK routine
CHEEVD for the equivalent one in MAGMA, magmaf_cheevd.

The routine in MAGMA had the following parameters:

• jobz: A character indicating whether to compute also the eigenvectors.

• uplo: A character indicating which triangle of A to store, the upper or lower one.

• n: The order of the matrix.

• A: The matrix.
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• lda: The leading dimension of the matrix.

• w: The vector where the eigenvalues will be written.

• work: The complex work space.

• lwork: The dimension of the complex workspace.

• rwork: The real work space.

• lrwork: The dimension of the real workspace.

• iwork: The integer workspace.

• liwork: The dimension of the integer workspace.

• info: Provides information about the result of the routine.

The interface of the function requires references to several workspaces and their dimensions. To know the
dimension of the workspaces we called the function two times. In the first one, we passed -1 as an argument
to the parameters for the dimension of the workspaces. Doing so prompts the routine to make a workspace
query and return in the first element of the workspace, the required dimension of the workspace. The
second time, we call the function passing the proper workspace dimension and the workspaces allocated
in memory.

Finally, we made an implementation with MAGMA for multiple GPU devices, changing the routines
to their multi-GPU version, magmaf_chveed_m. An additional parameter must be passed indicating the
number of GPUs.

4.2.3 Krylov-Schur in GPU with SLEPc
The Krylov-Schur method is also not implemented in Yambo for GPU yet.

In SLEPc it is possible to exploit the GPU parallelism by changing the type of the matrix to DENSECUDA.
This is one of the matrix types available in PETSc using NVIDIA GPU acceleration, along with AIJCUSPARSE,
for sparse matrices. If the algorithm has an implementation for the matrix type, it will run in GPU.

While this change can also be made in the code, for our purposes, we modified the matrix type in run-time
indicating the option -mat_type densecuda when Yambo was launched.

The GPU methods in PETSc follow a lazy mirror model. Data structures are copied from main memory
to GPU memory. If an operation is available on the GPU and the data structures were previously modified
in main memory, the data structures in GPU memory are updated and then the operation is performed. If
the operation is to be performed on the CPU and the data structures in the GPU have been modified, the
data structures in main memory are modified before the operation is performed. However, if a sequence
of operations is performed only in the GPU (or CPU) one after the other, no updates are made between
the memories [36].

4.3 Optimizations to the non-Hermitian case
The matrix is non-Hermitian when coupling is introduced. In this case, the matrix is also four times the
size. Therefore, the memory is a limiting factor in this case. The time to compute the eigenvalues also
increases significantly.
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For the non-Hermitian case we focused on reducing the memory requirements for the SLEPc solver, taking
into account the performance also.

The currently implemented solution to the memory limitations is to use a shell matrix to reduce the
memory. A shell matrix is a PETSc object that represents the matrix, but does not store it explicitly.
Instead, the programmer defines how to perform the algebraic operations which are required for the
solver. For the Krylov-Schur solver, the shell matrix must provide a method to compute the matrix-
vector product.

The downside for this implementation in Yambo is that it reduces the speed, because the access to memory
in this operation without the explicit matrix is not optimal.

Our solution uses nested storage, taking advantage of the internal structure of the matrix described in
section 3.2.1 to store only part of the matrix. In [37] structure-preserving algorithms for this particular
matrix are discussed. We will adapt this approach to our case and to use PETSc’s nest matrix object.

The goal is to reduce the memory required for the storage of the matrix, without excessively harming the
performance of the solver. We will also test if this approach can compare in performance to storing the
whole matrix.

4.3.1 Nested storage
As we have previously determined, the matrix has the structure shown in equation 4.1. We used a nest
matrix to store only R and C explicitly.

H =

[
R C

−C∗ −RT

]
(4.1)

Nest matrix

A nest matrix is a special matrix type MATNEST available in PETSc to represent that a matrix is formed
of several nested submatrices.

The object is created through the routine MatCreateNest, indicating the following parameters:

• The MPI communicator for the matrix.

• The number of submatrices in a row

• An index set with the positions of the submatrices in the rows. We indicated NULL to make them
contiguous.

• The number of submatrices in a column

• An index set with the positions of the submatrices in the columns. We indicated NULL to make
them contiguous.

• An array of matrix objects with all the submatrices that will compose the nest matrix, ordered by
row and then column. The submatrices can be explicit or shell matrices. The array can also contain
NULL elements, to represent empty submatrices.

We used a nest matrix were blocks R and C are stored explicitly and blocks −C∗ and −RT are shell
submatrices that use the already stored explicit blocks in their operations.
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Shell submatrices

PETSc provides a special type of shell matrices, representing the transpose and Hermitian transpose
of a matrix, through routines MatCreateTranspose and MatCreateHermitianTranspose. Although we
considered these structures as an option, they could not be scaled, so they could not represent a negative
matrix as needed. So instead, we created two shell submatrices ourselves.

To create them we used the PETSc routine MatCreateShell. Its interface requires to provide the dimen-
sions of the matrix and the local dimensions, even when the matrix will not be stored.

The Krylov-Schur solver in SLEPc for non-Hermitian matrices uses the matrix-vector product, both of
the matrix and its transpose. To perform this operation on the nest matrix, we must provide a routine
to compute both products, of each of the shell submatrices. These operations will internally use the data
from the blocks explicitly stored.

To assign the operations to the shell submatrices we call MatShellSetOperation, passing as parameters
the matrix, the operation, and a reference to the implemented routine that computes it.

The interfaces of the routines are defined by the type of operation and they must follow their specification.
The interface allows to pass a context object to the routine, which is commonly used to pass the data
needed for the product. In Fortran we needed to use a module to store the explicit blocks.

Matrix-vector product

The matrix-vector product, defined as
y = Hx, (4.2)

can be expanded to [
y1
y2

]
=

[
R C

−C∗ −RT

] [
x1

x2

]
, (4.3)

resulting in equations
y1 = Rx1 + Cx2 (4.4)

and
y2 = −C∗x1 −RTx2. (4.5)

Products Rx1 and Cx2 using the explicit submatrices will be handled by PETSc, and we must define how
to compute the products −C∗x1 and −RTx2 for the shell submatrices. For that purpose, we define two
functions with the interface required by the operation, whose parameters are a matrix, a vector and a
parameter where the resulting vector will be written.

Product −C∗x1 is performed in the first function by calling MatMultHermitianTranspose with explicit
submatrix C and then scaling the resulting vector by -1 with VecScale.

Product −RTx2 is performed in the second function by calling MatMultTranspose with the explicit
submatrix R and then scaling the resulting vector by -1.

Matrix-vector product of the transposed

The Krylov-Schur method in SLEPc requires also to define a function for the product of the transpose.
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The transposed matrix is constructed as

HT =

[
RT (−C∗)T

CT (−RT )T

]
=

[
RT −C
CT −R

]
, (4.6)

where it is important to notice that the coupling blocks have been exchanged, in addition to being
transposed. i

The matrix-vector product of the transposed matrix follows[
y1
y2

]
=

[
RT −C
CT −R

] [
x1

x2

]
(4.8)

and can be expanded to the equations
y1 = RTx1 − Cx2, (4.9)

y2 = CTx1 −Rx2. (4.10)

From these equations, the products RTx1 and CTx1 involve the explicit submatrices and are performed
by PETSc. We need to define the routines for the products −Cx2 and −Rx2.

The product of −Rx2 is performed using PETSc’s routine MatMult and then scaling the resulting vector
to -1.

The product of −Cx2 requires to conjugate a matrix.

The product of a conjugated matrix and a vector

f = −Az (4.11)

can be transformed to
f = −Az. (4.12)

This way, we avoid the need to conjugate a matrix, and perform the more economical conjugation of two
vectors.

We conjugate the vectors using the PETSc function VecConjugate(). The result is also scaled to -1. It
is important that the vector x remains unchanged outside of this routine, for the following products.

Nest matrix assembly process

The whole process of assembling the nest matrix can be summarized in the following steps:

1. Create the explicit submatrix and fill the values for block R.

2. Create the explicit submatrix and fill the values for block C.

3. Create the shell submatrix for block −RT .

4. Define operations MATOP_MULT and MATOP_MULT_TRANSPOSE for the shell submatrix of block −RT .
iSince C is symmetric and R is Hermitian, we could develop further this expression as

HT =

[
R −C
C −R

]
, (4.7)

However the matrix-vector products of R and C are handled by PETSc with the explicit matrices. A possibility would be
to define shell matrices for all the blocks to optimize those products.
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5. Create the shell submatrix for block −C∗.

6. Define operations MATOP_MULT and MATOP_MULT_TRANSPOSE for the shell submatrix of block −C∗.

7. Create an array containing the submatrices for blocks R, C, −C∗ and −RT , in this order.

8. Create the nested matrix from the array.
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Chapter 5

Results

For validation and performance testing of our solutions, we used the two test cases presented in section
3.1. The tests were run on two machines: tirant, and gpu.

5.1 Test environment
The characteristics of the two machines are listed in the Table 5.1. Some interesting aspects and motiva-
tions for using the selected machines are explained in the next subsections.

5.1.1 Tirant v3
Tirant v3 is a node of the Spanish supercomputing network (RES). Its current Linpack Rpeak performance
is 111,8 Teraflops.

One advantage of using Tirant is the ability to use multiple nodes, each with a process. This was essential
because running large Yambo tests in parallel, with multiple processes on the same node, resulted in the
node’s memory being strained and the system killing Yambo because it was unable to allocate the required
memory. The cause of this issue is that Yambo uses replication of data structures across processes to avoid
more complex communication between them during computation. Using a multi-node cluster allowed us
to run the coupling case, which involves the largest matrices, in parallel.

In general, communications between processes in different nodes are slower than between processes in
the same node. However, the inter-node communication speed depends on the type of network and its
specifications. In this case, the Tirant cluster is mounted with Mellanox InfiniBand FDR10, a high
performance network.

Tirant is a shared system which uses slurm as a queue manageri. The tests were submited as batch jobs
to Tirant via scripts with #SBATCH directives, indicating the number of nodes, processes, etc to schedule
for the job. To submit a job, it is also required to indicate a maximum time limit, that the user must
decide according to the estimated time that it will take for the job to run.

iIn tirant 50% of the compute hours are reserved for the RES. The rest is available for ”local” Tirant users. Users must
submit their jobs through slurm, although it is possible to run small tasks in the front-end nodes, as long as they take less
than 10 minutes.

Projects have different limitations to the resources depending on their requirements. The limitations for this project were
72 hours for each batch job and 64 nodes.
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Table 5.1: Characteristics of the machines

tirant v3 gpu

CPU model Intel® Xeon® E5-2670 (Sandy Bridge) Intel® Core™ i9-7960X
Number of nodes 336 1
Sockets per node 2 1

Physical cores per socket 8 16
Logical cores per socket 16 32
Physical cores per node 16 16
Logical cores per node 32 32

Memory per node 32 GB DDR2 64 GB
Operating system OpenSuSE Leap 42.3 Ubuntu 18.04.6 LTS (Bionic Beaver)
Number of GPUs - 2

GPU model - NVIDIA® Quadro RTX™ 5000
GPU architecture - Turing

GPU compute capability - 7.5
GPU cores - 3072

GPU memory - 16 GB GDDR6
GPU performance (S.P) - 11.2 TFLOPS

Network Mellanox InfiniBand FDR10 -

C compiler ICC 19.0.4 (Intel) NVC 23.5 (NVIDIA)
Fortran compiler IFORT 19.0.4 (Intel) NVFORTRAN 23.5 (NVIDIA)

MPI Intel MPI Library 2019.4 OpenMPI 3.1.5
CUDA version - 11.4

BLAS/LAPACK MKL 2019.4 (Intel) cuBLAS 11.4 (NVIDIA)
ScaLAPACK 2.2 2.2

SLEPc 3.19 3.19
ELPA 2022.11 -

MAGMA - 2.7.1
Yambo 5.1.0 5.1.0

We used #SBATCH --exclusive directive to reserve a full node, even when the number of processes
required was less than the number of cores of the node. That way it is possible to ensure that no other
jobs will be allocated in the nodes.

5.1.2 gpu
Gpu was used mainly to test the efficiency of the libraries and implementations for gpu and multi-GPU
parallelism, as it has two NVIDIA Quadro RTX GPU cards. This machine also has more more memory
per node than tirant, but the number of processes is limited by the number of cores of the node (16
physical and 32 logical). Additionally we also used gpu to run smaller test cases.
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Figure 5.1: Topology of the machine gpu.

5.2 Hermitian case
In this section we will describe the results of the implementations on the Hermitian case, which were
tested on the resonant test case.

5.2.1 Diagonalization in CPU with ScaLAPACK and ELPA
Figure 5.2 presents the results of the tests comparing the performance of the ELPA and ScaLAPACK
libraries on the diagonalization solver, which computes all the eigenvalues of the matrix. The tests were
run on tirant, using one process per node due to the memory limitations explained above.

Although ELPA was expected to have a better performance than its counterpart due to its optimization
of the computation for clusters, in this case we observed no significant difference with the number of
processes tested, which was at maximum 24 nodes from tirant. Further tests with more processes could
show larger differences, as ELPA is developed for large clusters and supercomputing architectures. It is
also suggested that a possible approach to increasing the performance of ELPA is to configure the library
to use a more efficient CPU instruction set.

In addition, the diagonalization method was shown to scale well with the two libraries, with similar results
for both.

An unexpected result was that the version with ScaLAPACK interfaced from SLEPc was faster than the

41



current implementation using ScaLAPACK directly, even though the SLEPc interface adds an overhead
due to the extra layer. In some cases, the current implementation also ran out of memory when the
interfaced one didn’t. This indicates that the current implementation with ScaLAPACK can be further
improved.
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Figure 5.2: Results of performance using the ELPA and the ScaLAPACK diagonalization solvers, inter-
faced from SLEPc.

5.2.2 Diagonalization in GPU with MAGMA
An interesting result of our work was the parallelization in GPU of the diagonalization method in Yambo
using the MAGMA library. In the current version of Yambo, the diagonalization method can only run
sequentially or in parallel using distributed memory. In addition, the use of GPU showed good results on
the test architecture, being able to reduce the time to compute all the eigenvalues from five hours and a
half to four minutes. The results are presented in seconds in Table 5.2.

Even better results were obtained in a second version using the two available GPUs in the machine, though
the difference in time in this size of the test is seconds. Nevertheless this result shows that it is possible
to scale the computation using several GPUs. The communication hardware between the GPUs would
also impact this time. We also observed that the time for the matrix creation remained the same, while
the time reduction happened when computing the eigenvalues.

Although the results are promising, we also need to consider the memory limitations of the GPUs, because
the matrix needs to be loaded in the memory of the GPUs. In this case, the memory available was enough
for this size of the problem, but it may not be the case with a larger matrix.
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Table 5.2: Performance comparison using LAPACK, and MAGMA with one and two GPU’s
LAPACK (Sequential) MAGMA 1 GPUs MAGMA 2 GPUs

Matrix creation 17.4s 17.7s 17.3s
Solver 20340.0s 235.6s 178.4s

5.2.3 Krylov-Schur in GPU with SLEPc
Figure 5.3 shows the results using the Krylov-Schur method on the GPU from SLEPc. As expected,
the GPU versions with one and two processes are more efficient than their CPU counterparts, and the
differences increase as the number of eigenvalues computed increases. This problem therefore has a very
good GPU parallelization capability.

Although in figure 5.3 the difference is not visible, in figure 5.4 we can observe in detail how the solver
performs when run on one, and two GPUs with distributed memory. The single GPU version is initially
faster for 100 eigenvalues, due to the overhead of using two GPUs that need to communicate data between
them. However, as more eigenvalues are computed and the computations become more extensive, using
two GPUs proves to be faster.

As with the diagonalization solver, the use of the SLEPc solver on the GPU is limited by the memory
characteristics of the GPUs used.
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Figure 5.3: Comparison of time performance of the Krylov-Schur SLEPc solver with one and two processes
on CPU and GPU.
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Figure 5.4: Comparison of time performance of the Krylov-Schur SLEPc solver with one and two GPUs

5.3 Non-Hermitian case
Next, we will describe the results of the implementation of the nested storage for the non-Hermitian case,
which was tested on the coupling test case.

5.3.1 Nested storage
The coupling test case, which generates a considerably larger matrix and requires more available memory,
could not be run when the matrix was explicitly stored. However, we were able to run the test case using
the shell matrix and our implementation of the nest matrix.

Having demonstrated the usefulness of these two implementations in reducing the memory required to
run large tests, we compared the time performance of the solver using the nest and shell matrix formats,
which we a priori expected to be better for the former.

We ran a sequential test on Tirant, computing five eigenvalues. As expected, the nest matrix format is
faster, taking five hours and eighteen minutes, while the shell matrix test took five hours and forty-four
minutes to complete the solver computations. These results are presented in Table 5.3.

We then ran parallel tests on Tirant with a different number of processes. In these tests we noticed
that with both matrix formats and only with some number of processes the solver reached the maximum
number of iterations and some of the eigenvalues didn’t converge. This behaviour would need to be
investigated further to understand the cause.

In order to be able to compare the times with the explicit matrix, we reduced the size of the test and thus
the matrix. In this case, the cases were run on the machine’s GPU to avoid waiting for the assignment
of nodes in Tirant. The number of eigenvalues calculated was also five. In figure 5.5 we can compare
the three approaches. Using the shell matrix format is the slowest method, and the nest and explicit
formats give comparable time results. Using more than fourteen processes caused the machine to run out
of memory when the explicit matrix was used.
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Table 5.3: Comparison of times for the Krylov-Schur SLEPc solver on Tirant with different types of
matrix format.

Shell matrix Nest matrix Explicit matrix

Matrix creation 0.840s 286.28s Out of memory
Solver 20940s (5h 45m) 19080s (5h 18m) Out of memory

In Figure 5.6 we can see the differences in the time taken to construct the matrix. The shell matrix takes
close to zero time to construct. This is because it is only a virtual structure. The nest matrix is created
in significantly less time than the explicit matrix because it only needs to write half the values into the
matrix.

Running the same test in parallel with a larger number of eigenvalues (e.g. 50) resulted in the same
behaviour as the first test in Tirant, where some of the eigenvalues didn’t converge. This behaviour
occurred with all matrix formats.

In summary, the nest matrix format could allow the user to significantly reduce the memory required for
the tests, while retaining the speed benefits of explicit matrix storage. While the shell matrix format
further reduces memory requirements, the nest matrix is faster and offers a different trade-off between
memory constraints and speed.
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Figure 5.5: Time comparison of the Krylov-Schur SLEPc solver using the different storage formats
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Figure 5.6: Comparison of the time for creating the matrix using the different formats on the Krylov-Schur
SLEPc solver.

5.4 Further work
Smoothing the differences in data distribution between SLEPc and yambo

The distribution of data between processes is very different in Yambo and in SLEPc. Yambo uses a
parallelization scheme to create the matrix, which distributes blocks of the matrix to the processes. In
SLEPc, the matrix is distributed by rows. When Yambo calls the SLEPc solver, it must first create and
distribute the matrix in the SLEPc scheme.

Communication of data between processes

Another factor that adds to the memory load is the copying of the entire data structures between all of
the processes. This approach can speed up the computations, but it also makes the code less scalable. An
example is the communication of the matrix to all of the processes. Limiting the communication of data
between processes could reduce the memory allocation of the processes.

BSEPack

A package which would be worth exploring is BSEPACK [38], developed by Meiyue Shao and Chao Yang.
It is a specific purpose solver targeting the Bethe-Salpeter eigenvalue problem, for distributed memory
HPC systems.

Refining the implementation of the nested storage

As we described in subsection 4.3.1, the matrix-vector product with the transposed matrix can be refined
taking into account the symmetry of the block C and that the block R is Hermitian. This is one idea that
could be tested to see if it would improve the performance .
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Finer tuning of ELPA and ELPA with GPU

The results obtained from comparing the performance of the ELPA library with ScaLAPACK didn’t match
our theoretical expectations. In our tests, we used a shared cluster and limited out tests to work with
24 nodes maximum, due to the time limitations and the waiting time for nodes growing with the number
of them requested. As it was mentioned, the results obtained using more processes could be different.
ELPA also has support for GPU, which would be interesting to test and compare with the performance
of MAGMA.

Parallel implementation of the diagonalization for non-Hermitian matrices

Currently there is no parallel implementation of the diagonalization method for non-Hermitian matrices.
In [39], a method is proposed to extend the ELPA diagonalization method for symmetric matrices to
skew-symmetric matrices. The matrix in the Bethe-Salpeter equation (the general case) is related to a
skew-symmetric matrix, and the motivation for their work. This method is available in the ELPA library
and could be used to provide a distributed memory version of the diagonalization method to the Yambo
users.
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Chapter 6

Conclusions and discussion

In summary, in this Master’s thesis we explored different optimizations of the solvers for the computation
of eigenvalues on the Bethe-Salpeter equation in the software Yambo. In practice, this problem deals with
large matrices that are dense, complex, and typically in single precision. The importance of optimizing
the code comes from the need to provide faster results and to be reliable and efficient on any architecture,
including clusters and supercomputers. This has an impact on the overall computational time in Yambo,
which in turn could accelerate the research of new materials.

The tests we ran and the execution of the code in general are subject to the limitations imposed by the
machine characteristics: bandwidth, memory, architecture... Among them, we found that memory was
the most limiting factor.

We propose a solution to reduce the size of the matrix in memory in the non-hermitian case problem,
taking advantage of the fact that the structure of the matrix allows us to use nested storage and physically
store only half of the values. The results we obtained with this approach show that it can also be compared
in terms of time with the use of the explicit matrix, thus there is no need to greatly compromise the time
performance in order to save memory. In our analysis, we also observed the possibility of additional
improvements related to memory management and cooperation between libraries.

Another result of this work was a first prototype and tests of GPU implementations for the eigenvalue
computation, which are not yet available in Yambo. First, we implemented and tested the diagonalization
in GPU using MAGMA. Second, we showed how to configure the SLEPc solver to run on GPU and
compared its performance to the CPU option. In both cases we obtained very good results in terms of
time improvement. We believe that it would be useful for users of Yambo to have this option to speed up
the computations if they have a GPU available.

In addition, a comparison between ELPA’s and ScaLAPACK’s diagonalization performance did not show
any major differences in the cases examined, although further tests with more processes or nodes may
provide additional insight.

Finally, we proposed some additional ideas for improving the solvers, which would enable future work on
this topic.
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