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ABSTRACT

G-compactifications of continuous partial actions in the category of
limit spaces are considered. In particular, sufficient conditions are given
to ensure that (G, X, «) has a largest regular G-compactification.
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1. INTRODUCTION

The work presented here is a continuation of that given in [2]. Objects
of the form (G, X, a) are studied, where « is a continuous partial action of
the limit group G on the limit space X. If Y is a Hausdorff compactification
of X in the category LS of limit spaces, requirements are given to ensure
that (G,Y, ) is a Hausdorff G-compactification of (G, X,«). In particular,
if X possesses a largest regular (including Hausdorff) compactification in LS,
then (G, X, ) has a largest regular G-compactification whenever « is Cauchy
continuous. Finally, an additional assumption is needed in the proof of Lemma
5.1 [2]. This additional assumption should also be added to Theorem 5.2 [2]
and Theorem 5.4 [2].
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2. PRELIMINARIES

The reader is asked to refer to [2] for definitions and notations not listed
here. One variation is that Cauchy spaces are needed here and hence limit
spaces replace convergence spaces of [2]. Let F(X) denote the set of all filters
on X. If F,G € F(X) and FNG # @& for each F € F and G € G, then
{FNG | F € F,G € G} is a base for the smallest filter containing F and G,
denoted by FV G. We call D C F(X) a Cauchy structure on X if it satisfies:

(CS1) z*e€Dforall x € X,
(CS2) G > F € Dimplies G € D,
(CS3) F,G € D and F V G exists imples FNG € D.

The pair (X, D) is called a Cauchy space whenever D is a Cauchy structure.
A map f:(X,D) — (Y,E&) between two Cauchy spaces is Cauchy continuous
if f7F € £ whenever F € D. Let CHY denote the category of Cauchy spaces
and Cauchy continuous maps. Objects in CHY induce limit spaces. A pair
(X, q) is a limit space provided:

(LS1) z* % x for each z € X,
(LS2) G > F 4 z implies ¢ & z,
(LS3) F,G % z implies FNG L

Note that every limit space is a convergence space. Let LS denote the full
subcategory of the category CS of convergence spaces whose objects are all
the limit spaces. Every (X,D) € |CHY]| determines a limit space (X,q) by
defining F %  to mean F Nz* € D. Keller [3] characterized the limit spaces
that are induced by Cauchy spaces as follows: if x # y, either z and y have
no common convergent filters or F — z if and only if 7 — y. In particular,
Hausdorff limit spaces are induced by Cauchy spaces. The reader is referred
to Lowen-Colebunders [4] and Preuss [5] for more details concerning Cauchy
spaces.

Let C be the category whose objects are of the form (G, X, a), where G
is a limit group, X is a limit space, and a : ', — X is a continuous partial
action. Here, (g,7) € 'y if and only if z € X1 € X, oy : Xy-1 = Xy is a
homeomorphism, and a4(x) = a(g, ). Morphisms in C are of the form (&, f) :
(G, X,a) —» (H,Y,p), where k : G — H is a continuous homomorphism,
f: X — Y is a continuous map, and the following diagram commutes:

r, =4,

b

x 1.y
It is shown in [2] that if (G, X, a) € |C|, then there exists an enveloping ac-
tion a® : G x X¢ — X that is continuous and, moreover, (idg,j) : (G, X,a) —

(G, X¢, a°) is a morphism in C and j : X — X°¢ is a homeomorphism onto
J(X). Here, j(z) = ((1g,z)) and X¢ = {{(¢9,2)) | ¢ € G,z € X}, where
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(g,7) ~ (h,y) on G x X if and only if x € X,-1, and a,-14(x) = y. Moreover,
af: G x X¢ — X¢is defined by af(g, ((h,z))) = {(gh, x)).

Assume that (G, X, a) € |C| and (X, q) is Hausdorff but non-compact. Let
X* = X U{w} and define k : X — X* by k(z) = z. Then ((X*,¢*),k) is a
Hausdorff limit-space compactification of (X, q), where ¢* is defined by

’Hiﬂc(x) — H >k F for some F L x

'H,imu — H>k7FNw?® for some adhy F =<
Define:

Xy =k(Xg) U{wh g # 1a

X =X
ay(k(z)) = k(ay(r)),r € Xy
ay(w) =w

Then ((G, X*,a*), k) is called a one-point Hausdorff G-compactification of
(G, X,a) in C whenever (idg, k) : (G, X,a) — (G, X*, a*) is a morphism in
C.

Definition 2.1. Let (G, X, «) € |C|. Then X is said to be weakly adherence
restrictive if for each F € F(X) with adhj7F = @ and each G — g on G, if
(G x F) VT exists, then adha” (G x F)VI2) =@.

The definition above is called adherence restrictive as defined in [2] whenever
adhj7F = o is replaced by adh F = @. It follows that if X is adherence
restrictive, then it is weakly adherence restrictive.

3. ONE-POINT COMPACTIFICATION

It is incorrectly stated in Lemma 5.1 [2] that if (G, X,«a) € |C|, then X is
adherence restrictive. The error in the proof occurs near the end since « is
defined only on I',. This difficulty is overcome by passing to the enveloping
action . The related result is given below.

Lemma 3.1. If (G, X,«a) € |C|, then X is weakly adherence restrictive.

Proof. Assume that F € F(X) and G — g on G such that (G x F) VT2 exists.
It must be shown that adh j 7 F = @ implies that adha™((G x F) VI 2) = @.
Equivalently, using the contrapositive implication, adha™((G x F)VI2) # &
implies that adh j 7 (F) # @. Suppose that z € adha™((G x F) VI'3). Then
there exists an ultrafilter H — x such that H > a7 ((G x F)VI'?). Since j and
a® are continuous, a® (Gt x j7H) = a®(g7 1, j(z)) = a®(¢7 1, {(1g, 7)) =
{(g71,2)). It suffices to prove that ((¢~!,z)) € adhj = F.

Let us show that a7 (G~ x j7H) V j7F exists. Assume that A € G,
HeHand F e F. Since H > a7 ((GxF)VI?), there exists H; € H, HH C H
such that H; C a((A x F)NT,). Let hy € Hy. Then there exists g1 € A,
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x1 € F such that hy = a(g1,21) and (g1,71) € To. Hence af(g7t,j(h1)) =
o (g7, (g b)) = (975, b)) = (97 L g, 1)) = (L, 21)) since (g7, (g, 21)) ~
(1g,71). It follows that a®(A~1 x j(H)) N j(F) # @ and hence ¢~ (G~1 x
J7H) V7 F exists. Since a¢7 (Gt x j7H)ViTF — ((g7,z)) on X©,
{((g7Y,2)) € adh j = F. O

Theorem 3.2. Let (G,X,a) € |C| and assume that X is Hausdorff but not
compact. Then (G, X*,a*), k) is a one-point Hausdorff G-compactification of
(G, X, ) in C if and only if X is adherence restrictive.

Proof. Under the assumption that X is adherence restrictive, proof of the “if”
part follows that given in Theorem 5.2 [2]. Conversely, it must be shown that
X is adherence restrictive. Assume that F € F(X), adhF = @, G — ¢
on G and (G x F) VT2 exists. It follows that k7 F — w on X* and thus
(Gxk7?F)VI2 — (g,w) on G x X*. Since (idg, k) : (G, X,a) — (G, X*, ™),
is a morphism the diagram

idg xk
Fa G4> Fa*

N

X kx>

commutes. It follows that k7 (a™ (G x F)VI2) = o* 7 ((idg x k)~ ((G x F)V
) =a*"7(Gxk?F)VIL) = a*(g,w) = w on X*. Hence adha ™ ((G x
F)VIQ) =@ and X is adherence restrictive. O

An example is given of an object (G, X, ) € |C| for which X is not adherence
restrictive. First, the following result by Abadie [1] is needed.

Theorem 3.3. Assume that G is a topological group, Y is a topological space,
A: G XY =Y is a continuous action and X is an open subset of Y. Then
A induces a continuous partial action o of G on X in the topological sense as
Jollows: Xg = XNAy(X) and og : Xyg-1 — X is defined by og(x) = N\g(2), 2 €
Xg—l ,g€@.

Example 3.4. Let G = (R, +), Y = R, each equipped with the usual topology,
and let A : G xY — Y denote the continuous action A(g,y) = g + y of G on
Y. As mentioned in Theorem 3.3 above, (G,Y,\) induces a continuous partial
action on X = (0,1) as follows: for each g € G, Xy = (0,1) N A4(0,1) =
(0,1)N(g,14g) and oy : X_ 3 — X is defined by ay(x) = g+, g € G. Then
(G, X,a) € |C| and « is a continuous partial action of G on X. Observe that

(9, 1), 0<g<l
Xg=4(0,149g), -1<g<0, geqG
a, otherwise

Define G to be the neighborhood filter on G at g = i and let F denote the
restriction to X of the neighborhood filter on Y at y = 0. Then G — i on G
and adh F = @. Choose A = (0,3) € G and B = (0,1) € F. Observe that if
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0 < g < %, then from above, X_, = (0,1 — g) and thus B C X_,. It follows
that A x B C ', and thus (G x F) VI'$ exists. Hence o™ ((G x F)VI2) — 1
on X and this implies that X is not adherence restrictive.

4. G-COMPACTIFICATIONS

Given (G, X, a) € |C|, assume that G is a Hausdorff limit group and (Y, f)
is any Hausdorff compactification of X in LS. Unlike section 3, Y is not
restricted to be a one-point compactification. Since G, X and Y are Hausdorff
limit spaces, each is induced by a Cauchy structure. The following notations
are used:

A ={G € F(G) | G converges on G}

D ={F € F(X) | F converges on X }
E={F e F(X)| f7F converges on Y}
Fo={(g,2) [z € Xg-1}
I ={(g, f(2)) | (g,7) € Ta}
=T;uU{lg} xY)

Y={K e F(Y)|K converges on Y}

Note that (G, A), (X, D), (X,€&), and (Y, X) are Cauchy spaces.
The following lemma suggests that objects from CHY provide a natural
setting for the study of G-compactifications.

Lemma 4.1. Assume that (G, X, ) € |C|, G € |LS| is Hausdorff, and (Y, f)
is a Hausdorff compactification of X in LS. Define 8:T —Y by B(g, f(x)) =
fla(g,x)) when g # 1g and B(lg,y) =y, y € Y. Then the diagram below
commutes and 8 is Cauchy continuous whenever « is Cauchy continuous.

(Ta, A x &) ML 0 A x 3)

J» l

(X,6) —L— (V%)

Proof. Let H € A x ¥ and I" € H. Since G,Y are both complete, 1, 7H — ¢
and mo 7 H — y for some g € G,y €Y.

Case 1. Assume that T € H and let K = (idg x f)"H. Then (idg x f)"K =
Hand m 7K =m7H —g. Also, f7(me7K) =m7H — y and then
ma K €& Then K€ Ax & and Ty, € K. Since f: (X,€) = (V,X) is
Cauchy continuous, 37H = (Bo (idg x f))"K = (foa) K € .

Case 2. Suppose that {1g} x Y € H. Then f7H = m"H — y and thus
B7H e .

Case 3. Finally, assume that for each H € H, HN T}, and HN ({lg} x Y)
are each nonempty. Let K = (idg x f)~H and let £ denote the filter
on G x Y whose base is {H N ({lg} xY) | H € H}. Then Ty, € K,
FeH, m™K >m7H — 1lg and f7(m7K) > m~H — y. It
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follows that IC € A x €. Observe that 1% x 17K € A x £ and let
M= (14 xm K)NK. ThenT'y e M, "M =m7KN1& — lg,
m M € € and thus M € A x £ Since (foa) (18 x m~K) =
[ (m7K) — y, it follows that (foa) K — .

Therefore, S7H = 7 (idg x f)KNm H = (foa)  KNm~H — y and
thus S7H € . Hence 8 : (I, A x ¥) — (Y, X) is Cauchy continuous. O

Theorem 4.2. Assume that (G, X,a) € |C| and that (Y, f) is a Hausdorff
compactification of X in LS and G € |LS| is also Hausdorff. Following the
notation given in Lemma 4.1, ((G,Y, ), f) is a G-compactification of (G, X, «)
whenever a: (Lo, A X E) = (X, &) is Cauchy continuous.

Let (G, X,a) € |C| and let (X*, k) be the one-point Hausdorff compactifi-
cation of X in LS defined earlier. Define:

X=X
Xy =k(Xy),9# 1c (recall X = k(X,) U{w})
X, =X
ag(k(z)) = k(ag(z)), x € Xy
Gg(w) =w

Io={(9.k(x)) | (g,2) €Ta} (recall T}, = {(g,k(x)) | (9.7) €Ts})

Corollary 4.3. Suppose that (G, X,«a) € |C|, where G is a Hausdorff limit
group and (X, k) is the one-point Hausdor(f compactification of X in LS. Then
(i) If a : (T, A x E) = (X,&) is Cauchy continuous, ((G,X,&), k) is a
one-point Hausdorff G-compactification of (G, X, «).
(i) If (G, X, o) is adherence restrictive and o above is Cauchy continuous,
(G, X,4),k) > (G, X*,a*), k).

Proof. Part (i) follows from Theorem 4.2. For part (ii), since (G, X, ) is adher-
ence restrictive, (G, X, a), k) is a Hausdorff G-compactification of (G, X, ).
The ordering above follows from Theorem 5.4 [2]. Observe that X 1 —k(X) =
@ for each g # 1g and X, — k(X) = {w} and a1, ({w}) = {w} = X1, —
E(X). O

Recall that if (Y, f) and (Z, k) are any two Hausdorff compactifications of
X in LS, then (Y, f) > (Z, k) means that there exists a continuous function
h:Y — Z such that k = ho f.

Lemma 4.4. Suppose that (G, X,a) € |C| and let (G,Y, ) € |C| be as given
in Theorem 4.2, where o : (T, A x &) — (X, &) is Cauchy continuous. Further,
assume that ((G, Z,0),k) is a Hausdorff G-compactification of (G, X, a) in C
and (Y, f) > (Z,k) in LS. Then (G,Y,B) > (G, Z,9).
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Proof. Since (Y, f) > (Z,k) in LS, there exists a continuous map h: Y — Z
such that k = ho f. It remains to show that the following diagram commutes:

d h
Ty Mexh ps

oo

y ——~ 7z
Recall that I's =T U{(1g,y) | y € Y}, where I'}, = {(g, ( )| (g,z) € To}
Since ((G, Z,0), k) is a Hausdorff G- compactlﬁcatlo of (G, X, ), the diagram

idg xk
—=

T, T's

[ s

Xtz
commutes. Further, Cauchy continuity of « implies that ((G,Y,f), f) is a
Hausdorff G-compactification of (G, X, o). Assume that (g, f(z)) € I's. Then

(00 (idg x h))(g, f(x)) = 8(g, (h o f)(x))

5(g, k()
o (idg x k))(g,x)
a)(g, )
foa)(g,x)
(fea)(g,z))
= (B o (ide x f))(g, )
= (hoB) (g, f(2)).

Next, assume that (1g,y) € I's and y € Y. Then (§ o (idg x h))(1g,y) =
0(1g,h(y)) = h(y) = (ho B)(lg,y). In either case, § o (idg x h) = hof
and (idg,h) : (G,Y,B) — (G, Z,0) is a morphism in C and thus (G,Y, ) >
(G,Z,6). O

= (
= (ko
= (ho

k
h
h(

A Hausdorff space X € |LS]| is called regular if 1 F — z in X whenever
F — xin X. Further, X is said to be completely regular if it possesses a regular
compactification in LS. Completely regular objects in LS are characterized in
[6]. The next result follows from Theorem 4.2 and Lemma 4.4

Theorem 4.5. Assume that (G, X,a) € |C| and X is completely regular.
Let (rX, f) denote the largest regular compactification of X in LS. Using the
notation given in Lemma 4.1, assume that « : (T, A X E) = (X, E) is Cauchy
continuous. Then ((G,rX, ), f) is the largest reqular G-compactification of
(G, X,a) in C.

Lemma 4.6. Suppose (G, X,«) € |C|, (Y, f) is a Hausdorff compactification
of X in LS, anda: (T, AXE) — (X, E) is Cauchy continuous. The Hausdorff
G-compactification of (G, X, «) is denoted by ((G,Y,B), f). Let X¢ and Y¢ be
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the corresponding envelopes of X and Y. Define h: X¢ — Y by h({(g,2))) =
(9, f(x))), 9 € G,w € X. Then
(i) (g:%) ~ (g1,71) on G x X if and only if (g, f(x)) ~ (91, f(21)) on
GxY,
(ii) (9:y) ~ (g1, f(21)) on G XY implies y € f(X),
(iii) h is well-defined,
(iv) h is an injection.

Proof. We prove each part in turn.

(i) Assume that (g,z) ~ (g1,71) on G x X. Then z € X -1, and f(x) €
f(Xg-1g,). I 9 'q1 # 1g, then f(z) € Yy-14, and B(gflg,f(x)) =
flalgr'g,x)) = f(x1). Hence (g, f(2)) ~ (g1, f(z1)). If g~ "1 = 1,
then f(z) € f(X) CY =Yi,. Also, z = a(lg,z) = z; implies that
Ba, f(x)) = fla(lg,x)) = f(x1) and hence (g, f(x)) ~ (g1, f(21)).
Conversely, suppose that (g, f(z)) ~ (g1, f(z1)) on GXY. Then f(z) €
Yy1g, and f(z1) = B(gr "9, f(z)) = flalgy'g,z)). Since f is an
injection z1 = a(g; 'g,z). If g7lg1 # g, f(z) € Y1, = f(X,-1,,)
and thus z € X -1, . If g g1 = 1g, then z € X1, = X and thus in
either case (g,z) ~ (g1, 21).

(ii) Suppose that (g,y) ~ (g1, f(21)). then y € Yy-1y, and Bgy 'g,y) =
f(z1). If g7'g1 # 1g, then y € f(X -1, ). However, if g g1 = 1¢,
y = B(lg,y) = f(x1) and in either case y € f(X).

(iif) Assume that ((g,2)) = ((91,21)). Then by (i), (g, f(«))) = (g1, f(x1)))
and thus h is well-defined.

(iv) Finally, suppose that h(((g,x))) = h({(g1,#1))). Then (g, f(x)) ~
(g1, f(z1)) on G x Y. According to (i), (g,z) ~ (g1,x1) and hence h is
an injection.

O

Theorem 4.7. Under the assumptions listed in Lemma 4.6, h : X® - Y€ is a
homeomorphism onto h(X°¢).

Proof. According to Lemma 4.6 (iv), h is an injection. Observe that the dia-
gram below commutes:

Gx X 0%y xe

lidg x f lh

Gxy -2y ye

where 0x(g,2) = ((g,x)), (9,2) € G x X, is a quotient map in LS. It follows
that A is continuous if and only if h o 8x is continuous. However, h o 0x =
Oy o (idg x f) is continuous and thus h is a continuous injection. Next, suppose
that H € F(X®) such that h7H — h({(g,2))) = ((g, f(z))) on Y. It remains
to verify that H — {((g,x)) on X¢. There exists £ — (g1,y1) ~ (g, f(z)) on
G x Y such that 0y "L = h~H. Employing Lemma 4.6 (ii) and (i), y; =
f(z1) for some z; € X and (g1,71) ~ (g,2) on G x X. Since X¢ € H,
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there exists L € L such that 6y (L) C h(X€¢). It follows from Lemma 4.6
(i) that mo(L) C f(X) and thus f(X) € ma7 L. Hence G x f(X) € L and
K = (idg x )L — (g1,21) on G x X. Using the commutative diagram
above, h?H = 0y "L = (By o(idg x f)) K = (hofx)"K = h7(0xK).
Since h is an injection, H = 0x K — {(g1,71)) = ((g9,x)) on X¢. Hence h is
a homeomorphism onto h(X°€). O
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