Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>XI</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>XIII</td>
</tr>
<tr>
<td>RESÚM</td>
<td>XV</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>XVII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XIX</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XXIII</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td>XXV</td>
</tr>
</tbody>
</table>

CHAPTER 1. STRUCTURE AND THESIS OBJECTIVES | 1

1.1. MOTIVATION | 1
1.2. THESIS OBJECTIVES | 2
1.2.1. Original contributions of this Thesis | 4

CHAPTER 2. FUNDAMENTALS OF MICROWAVE PHOTONICS | 5

2.1. INTRODUCTION | 5
2.1.1. Microwave Photonic Links and systems | 5
2.1.2. Figures of merit | 7
2.2. INTEGRATED MWP | 7
2.2.1. Photonics Technology Platforms | 7
2.3. PROGRAMMABLE PHOTONICS | 8
2.3.1. Scalability | 10
2.4. PRINCIPLES OF SEMICONDUCTOR OPTICAL AMPLIFIERS | 11
2.4.1. Operating principles | 11

CHAPTER 3. SCATTERING MATRIX GENERATOR OF COMPLEX PHOTONIC INTEGRATED CIRCUITS | 13

3.1. INTRODUCTION | 13
3.2. INDUCTIVE METHOD TO COMPUTE THE SCATTERING MATRIX OF ARBITRARY WAVEGUIDE MESH ARRANGEMENTS | 14
3.2.1. Analytical modelling | 14
3.2.2. Method timing analysis | 19
3.3. EXPERIMENTAL VERSUS SIMULATED MEASUREMENTS | 26
3.3.1. Finite Impulse Response (FIR) filters | 27
3.3.2. Infinite Impulse Response (IIR) filters | 29
3.3.3. Complex filters | 32
3.3.4. Simultaneity of structure synthesis | 37
3.4. CONCLUSIONS | 37

CHAPTER 4. END-TO-END ANALYTICAL MODEL OF AMPLIFIED LINKS | 39

4.1. INTRODUCCIÓN | 39
4.2. MODELLING AND ANALYSIS AMPLIFIED ARBITRARY FILTERED MICROWAVE PHOTONIC LINKS AND SYSTEMS | 40
4.2.1. Intensity modulation with direct detection derivation | 40
4.2.1.1. Discrete and integrated MWP links simulation with intensity modulation and direct detection | 49
4.2.2. I-Q Modulation with heterodyne coherent detection derivation | 57
4.2.2.1. MWP links simulation with I-Q modulation and heterodyne coherent detection | 63
4.3. EXPERIMENTAL VALIDATION | 65
4.3.1. MWP Links discrete measurements | 66
4.3.2. MWP Integrated links mask designs on-chip | 69
4.4. CONCLUSIONS | 73