Abbr	eviations	1
Abstr	act	5
Intro	duction	8
1.	The flowering process	8
2.	Genetic control of flowering	12
3.	Hormonal control of flowering	15
4.	Nutritional control of flowering	17
5.	Convergence of hormonal, genetic and epigenetic inhibitory signals in	18
	citrus flowering	
Hy	pothesis and objectives	20
Mate	rial and Method	21
1.	Plant material	21
2.	Treatments	22
3.	Sampling	23
4.	Phenotypic evaluation	23
	4.1. Sprouting and flowering evaluation	23
	4.2. Photosynthesis	24
5.	Laboratory methods	24
	5.1. RNA extraction	24
	5.2. Gene expression analysis by RT-qPCR	24
	5.3. Sequence analysis and phylogenetic trees	27
	5.4. Metabolomic analysis (Carbohydrates & Aminoacids)	27
	5.5. In situ Hibridization	28
	5.6. RNA-seq. Whole Transcriptome Sequencing	29
	5.7. Hormone isolation, purification, and quantification	30
	5.8. Chromatin immunoprecipitation	31
6.	Experimental design	31
	6.1. Experiments from Chapter I & II. Gibberellins	31
	6.2. Experiments from Chapter III. Auxins	36
	6.3. Experiments from Chapter IV. Girdling	39
7.	Statistical analysis	44

Resu	Results					
1. C	1. Chapter I. Gibberellic acid and fruit do not operate the same mechanism in 45					
Ci	itrus flowering inhibition. Effect in the leaf					
1.1.	Effect of Gibberellic Acid (GA $_3$) and Paclobutrazol (PBZ) treatments on Citrus	45				
	flowering. The fruit interference					
1.2.	Spatial control of flowering inhibition by GA₃	48				
1.3.	Correlation between GA synthesis and concentration in the leaves and CiFT3	49				
	gene expression					
1.4.	Effect of GA₃ in flowering-time genes expression	54				
2. C	hapter II. The role of GAs in Citrus flowering inhibition. Effect in the bud	58				
2.1.	The temporal evolution of gibberellin metabolism in the phloem and buds of ON,	58				
	OFF, and thinned trees					
2.2.	Endogenous Control of Gibberellin Biosynthesis at the Time of Floral	64				
	Differentiation: ON vs. OFF					
2.3.	Anatomical Localization of CENTRORADIALIS (CEN) Expression in the Bud	71				
3. C	hapter III. The role of Auxin in Citrus flowering	73				
3.1.	Exogenous control of flowering with 2,4-D	73				
3.2.	Effect of 2,4-D treatments on the expression of flowering genes	76				
3.3.	The effect of fruit in auxin synthesis, transport and concentration	80				
	benter IV lealating avillary budg from fruit inhibitory offects Cirdling and	0.4				
4. 0	4. Chapter IV. isolating axillary buas from fruit inhibitory effect: Giraling and 8					
D	ouble Giraling					
4.1.	The effect of girdling on flowering depends on the place where it is carried out	84				
4.2.	KNA Sequencing: common pathways which are activated/repressed in Double	92				
	Girdling, Small fruit, and OFF-trees to promote flowering					
4	2.2.1. What happens in natural conditions? Differentially expressed genes (DEGs)	92				
	in ON vs OFF trees					

	4.2.2.	What do the flowering phenotypes have in common? ON vs OFF,	107
		AB-G & SF	
4.3	. Effe	ct of double-girdling (AB-G) on the expression of flowering time and floral	123
	ideı	ntity genes	
4.4	. Effe	ct of doble-girdling (AB-G) on hormonal regulation	129
4.5	. Effe	ct of double girdling (AB-G) on carbohydrates metabolism	134
Discussion			142
1.	Which	endogenous signals are the most likely candidates to regulate Flower	142
	Inductio	on?	
2.	Neither	GA nor auxin activate CcMADS19 in the leaf	143
3.	Both GA and auxin regulate flower bud differentiation		
4.	Double	girdling but no single girdling promotes FI	151
Со	Conclusions		
Re	References		