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Directors: Prof. Juan Miguel Garćıa Gómez
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Es pertinente, por tanto, expresar mi sincero agradecimiento a mis directores de
tesis, el Dr. Juan Miguel Garćıa Gómez y el Dr. Carlos Sáez Silvestre. Vosotros habéis
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la Dra. Maŕıa del Mar Álvarez, Francisco Javier Gil-Terrón, Javier Salvador, Vı́ctor
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Abstract

Triage for out-of-hospital emergency incidents represents a tough challenge, pri-
marily due to time constraints—requiring rapid priority assessment within a narrow
time frame—and uncertainty—making decisions with limited available information.
Furthermore, errors in this process can have severe consequences for patients, po-
tentially leading to death. Therefore, any novel protocol, tool, or strategy that has
been demonstrated to enhance these processes can offer substantial value in terms of
patient care and overall management of out-of-hospital emergency medical incidents.

The fundamental hypothesis upon which this thesis is based is that Machine
Learning, specifically Deep Learning, can significantly improve these processes by
providing estimations of the severity of out-of-hospital emergency medical incidents,
taking into account the information available to the dispatcher at the moment of in-
cident prioritization during the emergency call. By analyzing millions of data derived
from emergency calls from the Valencian Region (Spain) spanning from 2009 to 2019,
we posited that Machine Learning models could extract patterns that may confer
predictive capability to this task.

Hence, this thesis delves into designing and developing various Machine Learn-
ing models, specifically Deep Multitask Learning models that leverage multimodal
out-of-hospital emergency medical data. Our primary objective was to predict three
labels indicative of incident severity, thereby influencing its prioritization. These
labels encompassed whether the incident posed a life-threatening situation, the ad-
missible response delay (ranging from non-delayable to minutes, hours, or days), and
whether it fell under the jurisdiction of the emergency system or primary care. Using
data available from 2009 to 2012, the results obtained were promising. We observed
substantial improvements in macro F1-scores, with gains of 12.5% for life-threatening
classification, 17.5% for response delay, and 5.1% for jurisdiction classification, com-
pared to the in-house triage protocol of the Valencian Region.

However, it is essential to note that systems, dispatch protocols, and oper-
ational practices naturally evolve over time. Models that exhibited excellent per-
formance with the initial dataset from 2009 to 2012 did not demonstrate the same
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efficacy when evaluated on data spanning from 2014 to 2019 (data from 2013 were
not available). This later dataset had undergone significant modifications compared
to the earlier one. These modifications led to dataset shifts, resulting in variations in
probability distributions, which we have meticulously characterized and investigated
in this thesis, focusing on their impact on model performance.

Continuing our research, we aimed to provide sustainable model performance
over time or, at the very least, to mitigate the adverse effects of the inevitable dis-
tribution variations as effectively as possible. To address this challenge, we placed
our focus on Deep Continual Learning. By incorporating the Continual Learning
paradigm into our designs and developments, we could substantially mitigate the ad-
verse performance effects and better understand how to manage model deployment
over time in an emergency medical dispatch center. The results of our research in-
dicate that when considering Deep Continual Learning, while it may not entirely
eliminate performance fluctuations over time, it effectively maintains them within a
manageable range. In particular, with respect to the F1-score, when distributional
variations fall within the light to moderate range, the performance remains stable,
not varying by more than 2.5%, as observed in our out-of-hospital medical incident
data. Therefore, under these conditions, our models’ performance is operationally
acceptable.

Furthermore, our thesis demonstrates the feasibility of building auxiliary tools
that enable dispatchers to interact with these complex deep models. Consequently,
without disrupting professionals’ workflow, it becomes possible to provide feedback
through probability predictions for each severity label class and take appropriate
actions based on these predictions.

Finally, the outcomes of this thesis hold direct implications for the manage-
ment of out-of-hospital emergency medical incidents in the Valencian Region. The
final model resulting from our research is slated for integration into the emergency
medical dispatch centers of the Valencian Region. This model will utilize data pro-
vided by dispatchers to automatically compute severity predictions, which will then
be compared with those generated by the in-house triage protocol. Any disparities
between these predictions will trigger the referral of the incident to a physician co-
ordinator, who will oversee its handling. Therefore, it is evident that our thesis, in
addition to making significant contributions to the field of Biomedical Machine Learn-
ing Research, also carries substantial implications for enhancing the management of
out-of-hospital emergencies in the context of the Valencian Region.
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Resumen

El triaje de los incidentes de urgencias y emergencias extrahospitalarias repre-
senta un reto dif́ıcil, principalmente debido a las limitaciones temporales—que exigen
una evaluación rápida de las prioridades en un estrecho margen de tiempo—y a la
incertidumbre—tomar decisiones con la información disponible. Además, los errores
en este proceso pueden tener graves consecuencias para los pacientes, con el consigu-
iente riesgo de muerte. Por lo tanto, cualquier protocolo, herramienta o estrategia
novedosa que haya demostrado mejorar estos procesos puede ofrecer un valor sustan-
cial en términos de atención al paciente y gestión global de los incidentes médicos de
urgencias y emergencias extrahospitalarias.

La hipótesis fundamental en la que se basa esta tesis es que el Aprendizaje Au-
tomático, concretamente el Aprendizaje Profundo, puede mejorar significativamente
estos procesos proporcionando estimaciones de la gravedad de los incidentes médicos
de urgencia y emergencia extrahospitalaria, teniendo en cuenta la información de la
que dispone el operador en el momento del triaje del incidente durante la llamada
de emergencia. Mediante el análisis de millones de datos derivados de llamadas de
emergencia de la Comunitat Valenciana (España) que abarcan desde 2009 hasta 2019,
planteamos que los modelos de Machine Learning podŕıan extraer patrones que pueden
conferir capacidad predictiva a esta tarea.

Por ello, esta tesis profundiza en el diseño y desarrollo de varios modelos
de Aprendizaje Automático, concretamente modelos de Aprendizaje Profundo Mul-
titarea que aprovechan los datos multimodales asociados a eventos de urgencias y
emergencias extrahospitalarias. Nuestro objetivo principal era predecir tres etique-
tas indicativas de la gravedad del incidente, influyendo aśı en su priorización. Estas
etiquetas englobaban si el incidente supońıa una situación de riesgo vital, la demora
admisible de la respuesta (desde no demorable hasta minutos, horas o d́ıas) y si era
competencia del sistema de emergencias o de atención primaria. Utilizando datos
disponibles entre 2009 y 2012, los resultados obtenidos fueron prometedores. Se ob-
servaron mejoras sustanciales en las métricas macro F1, con ganancias del 12.5% para
la clasificación de riesgo vital, del 17.5% para la demora en la respuesta y del 5.1%
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para la clasificación por jurisdicción, en comparación con el protocolo interno de triaje
de la Comunidad Valenciana.

Sin embargo, es esencial tener en cuenta que los sistemas, los protocolos de
triaje y las prácticas operativas evolucionan de forma natural con el tiempo. Los
modelos que mostraron un rendimiento excelente con el conjunto de datos inicial de
2009 a 2012 no demostraron la misma eficacia cuando se evaluaron con datos que
abarcaban de 2014 a 2019 (los datos de 2013 no estaban disponibles). Este último
conjunto de datos hab́ıa sufrido modificaciones significativas en comparación con el
anterior. Estas modificaciones provocaron cambios en el conjunto de datos, lo que
dio lugar a variaciones en las distribuciones de probabilidad, que hemos caracteri-
zado e investigado meticulosamente en esta tesis, centrándonos en su impacto en el
rendimiento del modelo.

Continuando con nuestra investigación, nuestro objetivo era proporcionar un
rendimiento sostenible del modelo a lo largo del tiempo o, como mı́nimo, mitigar los
efectos adversos de las inevitables variaciones en la distribución de los datos de la
forma más eficaz posible. Para hacer frente a este reto, nos centramos en el Apren-
dizaje Continuo Profundo. Al incorporar el paradigma del Aprendizaje Continuo a
nuestros diseños y desarrollos, pudimos mitigar sustancialmente los efectos adversos
sobre el rendimiento y comprender mejor cómo gestionar el despliegue de modelos a
lo largo del tiempo en un centro de atención a la llamada de urgencias y emergencias
médicas extrahospitalarias. Los resultados de nuestra investigación indican que, al
considerar el Aprendizaje Continuo Profundo, si bien no elimina por completo las
fluctuaciones de rendimiento a lo largo del tiempo, las mantiene efectivamente den-
tro de un rango manejable. En particular, con respecto a la métrica F1, cuando las
variaciones distribucionales son ligeras o moderadas, el comportamiento se mantiene
estable, sin variar más de un 2.5%, como se observa en nuestros datos de incidentes
médicos extrahospitalarios. Por lo tanto, bajo estas condiciones, el rendimiento de
nuestros modelos es operativamente aceptable.

Además, nuestra tesis demuestra la viabilidad de construir herramientas aux-
iliares que permitan a los operadores interactuar con estos complejos modelos. En
consecuencia, sin interrumpir el flujo de trabajo de los profesionales, se hace posi-
ble proporcionar retroalimentación mediante predicciones de probabilidad para cada
clase de etiqueta de gravedad y tomar las medidas adecuadas en función de estas
predicciones.

Por último, los resultados de esta tesis tienen implicaciones directas en la
gestión de las urgencias y emergencias extrahospitalarias en la Comunidad Valen-
ciana. El modelo final resultante de nuestra investigación está previsto que se integre
en los centros de atención de llamadas asociadas a urgencias y emergencias médicas de
la Comunidad Valenciana. Este modelo utilizará los datos proporcionados por los op-
eradores telefónicos para calcular automáticamente las predicciones de gravedad, que

x



luego se compararán con las generadas por el protocolo de triaje interno. Cualquier
disparidad entre estas predicciones desencadenará la derivación del incidente a un
coordinador médico, que supervisará su tratamiento. Por lo tanto, es evidente que
nuestra tesis, además de realizar importantes contribuciones al campo de la Inves-
tigación en Aprendizaje Automático Biomédico, también conlleva implicaciones sus-
tanciales para mejorar la gestión de las urgencias y emergencias extrahospitalarias en
el contexto de la Comunidad Valenciana.
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Resum

El triatge dels incidents d’urgències i emergències extrahospitalàries representa
un repte dif́ıcil, principalment a causa de les limitacions temporals, que exigeixen una
avaluació ràpida de les prioritats en un estret marge de temps, i de la incertesa, prendre
decisions amb la escassa informació disponible. A més, els errors en aquest procés
poden tindre greus conseqüències per als pacients, amb el consequent risc de mort.
Per tant, qualsevol protocol, eina o estratègia innovadora que haja demostrat millorar
aquests processos pot oferir un valor substancial en termes d’atenció al pacient i gestió
global dels incidents mèdics d’urgències i emergències extrahospitalàries.

La hipòtesi fonamental en què es basa aquesta tesi és que l’Aprenentatge Au-
tomàtic, concretament l’Aprenentatge Profund, pot millorar significativament aquests
processos proporcionant estimacions de la gravetat dels incidents mèdics d’urgència
i emergència extrahospitalària, tenint en compte la informació de la qual disposa
l’operador en el moment del triatge de l’incident durant la trucada d’emergència.
Mitjançant l’anàlisi de milions de dades derivades de trucades d’emergència de la Co-
munitat Valenciana (Espanya) que abasten des de 2009 fins a 2019, plantegem que
els models d’Aprenentatge Automàtic podrien extreure patrons que poden atorgar
capacitat predictiva a aquesta tasca.

Per això, aquesta tesi aprofundeix en el disseny i desenvolupament de diver-
sos models d’Aprenentatge Automàtic, concretament models d’Aprenentatge Profund
Multitasca que aprofiten dades multimodals provinents d’incidents mèdics d’urgències
i emergències extrahospitalàries. El nostre objectiu principal era predir tres etiquetes
indicatives de la gravetat de l’incident, influint aix́ı en la seva prioritat. Aquestes
etiquetes englobaven si l’incident suposava una situació de risc vital, la demora ad-
missible de la resposta (des de no demorable fins a minuts, hores o dies) i si era com-
petència del sistema d’emergències o d’atenció primària. Utilitzant dades disponibles
entre 2009 i 2012, els resultats obtinguts van ser prometedors. Es van observar millores
substancials en les mètriques macro F1, amb guanys del 12.5% per a la classificació
de risc vital, del 17.5% per a la demora en la resposta i del 5.1% per a la classifi-
cació per jurisdicció, en comparació amb el protocol intern de triatge de la Comunitat
Valenciana.
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Tanmateix, és essencial tindre en compte que els sistemes, els protocols de
triatge i les pràctiques operatives evolucionen de forma natural amb el temps. Els
models que van mostrar un rendiment excel·lent amb el conjunt de dades inicial de
2009 a 2012 no van demostrar la mateixa eficàcia quan es van avaluar amb dades
que abastaven de 2014 a 2019 (les dades de 2013 no estaven disponibles). Aquest
últim conjunt de dades havia sofert modificacions significatives en comparació amb
l’anterior. Aquestes modificacions van provocar canvis en el conjunt de dades, la qual
cosa va donar lloc a variacions en les distribucions de probabilitat, que hem caracter-
itzat i investigat minuciosament en aquesta tesi, centrant-nos en el seu impacte en el
rendiment del model.

Continuant amb la nostra investigació, el nostre objectiu era proporcionar un
rendiment sostenible del model al llarg del temps o, com a mı́nim, mitigar els efectes
adversos de les inevitables variacions de la distribució de les dades de la forma més
eficaç possible. Per fer front a aquest repte, ens vam centrar en l’Aprenentatge Continu
Profund. En incorporar el paradigma de l’Aprenentatge Continu als nostres dissenys
i desenvolupaments, vam poder mitigar substancialment els efectes adversos sobre el
rendiment i comprendre millor com gestionar el desplegament de models al llarg del
temps en un centre d’atenció a la trucada d’urgències i emergències mèdiques extra-
hospitalàries. Els resultats de la nostra investigació indiquen que, quan es considera
l’Aprenentatge Continu Profund, si bé no elimina completament les fluctuacions de
rendiment al llarg del temps, les manté efectivament dins d’un rang manejable. En
particular, respecte a la mètrica F1, quan les variacions distribucionals són lleugeres
o moderades, el comportament es manté estable, sense variar més d’un 2.5%, com
s’observa a les nostres dades d’incidents mèdics extrahospitalaris. Per tant, en aque-
stes circumstàncies, el rendiment dels nostres models és operativament acceptable.

A més, la nostra tesi demostra la viabilitat de construir eines auxiliars que
permeten als operadors interactuar amb aquests models complexos. En conseqüència,
sense interrompre el flux de treball dels professionals, es fa possible proporcionar
retroalimentació mitjançant prediccions de probabilitat per a cada classe d’etiqueta
de gravetat i prendre les mesures adequades en funció d’aquestes prediccions.

Finalment, els resultats d’aquesta tesi tenen implicacions directes en la gestió de
les urgències i emergències extrahospitalàries a la Comunitat Valenciana. El model fi-
nal resultant de la nostra investigació està previst que s’integre en els centres d’atenció
de telefonades associades a urgències i emergències mèdiques de la Comunitat Valen-
ciana. Aquest model utilitzarà les dades proporcionades pels operadors telefònics
per calcular automàticament les prediccions de gravetat, que després es compararan
amb les generades pel protocol de triatge intern. Qualsevol disparitat entre aque-
stes prediccions desencadenarà la derivació de l’incident a un coordinador mèdic, que
supervisarà el seu tractament. Per tant, és evident que la nostra tesi, a més de real-
itzar importants contribucions al camp de la Investigació en Aprenentatge Automàtic
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Biomèdic, també comporta implicacions substancials per a millorar la gestió de les
urgències i emergències extrahospitalàries en el context de la Comunitat Valenciana.
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Chapter 1

Introduction

1.1 Motivation

When dealing with Emergency Medical Call Incidents (EMCI), proper resource
allocation within the shortest time frame possible is critical, since patient’s life may be
at risk. To adequately determine the most suitable resource to distribute, the priority
of the incoming incidents needs to be assessed. Based on the severity determined by
this triage process, corresponding actions will be taken. Hence, accurately carrying
out emergency medical triage of these EMCIs is crucial for handling the incident
appropriately.

However, performing out-of-hospital emergency medical triage is a tough chal-
lenge in a real setting. Uncertainty is high since the incident is handled remotely, and
time constraints limit the data collection process. Hence, the information available
for decision-making is often partial and incomplete, comprising sparse data integrated
by different types of features.

During an emergency medical call, the dispatcher raises questions to the callers
based on the provided information, the guidelines established by the coordination
center, and the dispatcher’s own experience. The information exchanged among par-
ticipants is typically recorded digitally, yet, in most cases, it remains underutilized
beyond fundamental retrospective analysis and straightforward quality controls.

In the context of the Valencian Region in Spain, the process of emergency
medical triage adheres to an in-house clinical protocol. This protocol is manifested
as a decision tree comprising multiple questions designed to encompass the intricate
array of out-of-hospital emergencies in a structured manner while assigning priority
to each situation. However, reality often proves exceedingly complex, and frequently,
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additional information beyond this clinically structured data is acquired during the
call, typically in the form of free text dispatcher observations.

In particular, free text dispatcher observations remain outside the scope of
the in-house triage protocol, as they consist of unstructured data and are not in-
corporated into the decision tree. Similarly, additional contextual and demographic
information is recorded during the call but falls outside the purview of the triage pro-
tocol. Consequently, alternative tools are imperative for extracting valuable insights
from these intricate data sets, revealing potential latent informative data patterns—
specifically, mathematical models rooted in statistics and computer science, such as
Machine Learning models.

Furthermore, over time, the distributions of data about the information recorded
by dispatchers change, a phenomenon referred to as dataset shifts. These shifts in
data distribution can significantly impact the performance of any model. Hence,
detecting and characterizing these alterations in data distribution becomes crucial.
Subsequently, following a Continual Learning approach, a series of actions are essen-
tial to mitigate the adverse effects on model performance, primarily focusing on the
design and training of the models.

Hence, the primary objective of this doctoral thesis is to enhance emergency
medical dispatch procedures by providing decision-making support within the realm
of emergency medical triage. This support entails furnishing estimations of incident
severity based on available data. However, unlike the existing in-house triage pro-
tocol in the Valencian Region, our approach incorporates additional structured and
unstructured data beyond the standard clinical variables associated with the decision
tree. The central concept, therefore, revolves around extracting intricate mathemati-
cal relationships among this multifaceted data by utilizing Machine Learning models,
specifically Deep Learning models. Furthermore, within the scope of this thesis, we
aspire to deliver severity predictions in an environment where data distributions fluc-
tuate over time. Consequently, we introduce mechanisms to mitigate the adverse
effects of dataset shifts, striving to maintain performance stability to the greatest
extent possible within the constraints of distributional variation.

1.2 Research questions

The main research questions posed in this thesis are:

RQ1 Are there latent informative patterns within the EMCI data that the Valencian
Region’s in-house triage protocol does not currently consider?

RQ2 Is it feasible to reveal these latent patterns of information using Machine Learn-
ing?
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RQ3 Can traditional Machine Learning models enhance the performance of the ex-
isting in-house triage protocol of the Valencian Region when assessing incident
severity?

RQ4 Can novel Machine Learning models, specifically Deep Learning, offer value as
predictive models for assessing incident severity in out-of-hospital emergency
medical triage?

RQ5 Can we detect and characterize the temporal dataset shifts that occur over time
within the EMCI of the Valencian Region?

RQ6 How do these temporal dataset shifts impact the performance of a Deep Learning-
based model trained with data from a specific period?

RQ7 If these temporal dataset shifts harm model performance, is it possible to de-
sign and implement Continual Learning pipelines to alleviate the adverse per-
formance effects caused by distributional drifts over time?

RQ8 Is it possible to enable straightforward utilization of a Deep Learning model for
incident severity assessment by an emergency dispatcher?

1.3 Objectives

Based on the research questions posed in the previous section, the next objec-
tives are proposed:

O1 Review of the state-of-the-art in Machine Learning models designed to offer as-
sistance in out-of-hospital emergency medical triage.

O2 Develop and evaluate Machine Learning models, with a particular emphasis on
Deep Learning, for incident severity assessment in incoming EMCIs, comparing
their performance with the in-house triage protocol of the Valencian Region.

O3 Discover and characterize latent statistical patterns hidden within unstructured
data in the EMCI domain to shed light on new information predictive for EMCI
classification.

O4 Study the presence of dataset shifts over time in the EMCI data of the Valencian
Region, providing a comprehensive description and characterization of these
shifts.

O5 Design, implement, and evaluate Continual Learning pipelines to deal with these
dataset shifts, aiming to minimize model performance drops over time.
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O6 Integrate the model into an auxiliary tool to facilitate dispatcher interaction and
make it more user-friendly.

1.4 Thesis contributions

This section outlines the primary contributions of the thesis, encompassing
the most significant ones as well as complementary contributions. Additionally, it
presents the associated scientific publications and conferences related to the research.

1.4.1 Main contributions

C1 Development of DeepEMC2, a Deep Ensemble Multitask Classifier for
Emergency Medical Calls.

We carried out a comparative study of various Machine Learning approaches to
classify EMCI by their severity levels. Deep Learning emerged as the most
effective approach, yielding superior outcomes. Moreover, when comparing
DeepEMC2 with the in-house triage protocol of the Valencian Region, we ob-
served a significant performance enhancement, achieving a macro F1-score im-
provement of 12.5%, 17.5%, 5.1% in life-threatening, response delay and juris-
diction classification, respectively.

C2 Discovery of key topics in emergency medical dispatch from free text
dispatcher observations.

Using an unsupervised Bayesian Machine Learning approach based on Latent
Dirichlet Allocation (LDA), we identified the existence of 15 significant latent
topics within unstructured data (free text). The incorporation of these topics
into structured clinical protocols holds the potential to enhance the value of the
emergency medical triage process significantly.

C3 Study and characterization of dataset shifts over time affecting emer-
gency medical incidents data.

In this thesis, we have extensively examined and characterized the presence of
dataset shifts over time. Our investigation has focused on three distinct types of
shifts: prior probability shifts, covariate shifts, and concept shifts. Our research
findings provide compelling evidence for these shifts in our EMCI data spanning
from 2009 to 2019. Notably, we have detected all three types of shifts across
various feature modalities. Furthermore, we have quantified their impact on
model performance over time.
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C4 Development of Deep Continual Learning pipelines for emergency med-
ical incidents classification.

We have carefully designed, implemented, and assessed Deep Continual Learning
pipelines to mitigate the adverse consequences of dataset shifts. These pipelines
have primarily focused on the dynamic update of parameters over time, effec-
tively balancing knowledge retention and model adaptability, preserving perti-
nent information from the past while facilitating the integration of new informa-
tion. Furthermore, by introducing architectural modifications in our models, we
have addressed the challenge of dynamic feature domains, where some features
emerge while others disappear over time. Overall, although it is challenging to
eliminate the effects of dataset shifts entirely, our strategies have successfully
curbed negative performance deterioration. As a result, model performance
within our EMCI data has remained stable within a margin of approximately
2.5%, as long as the distributional shifts are not excessively severe.

C5 Development of a continual end-to-end version of DeepEMC2.

We have designed, implemented, and evaluated a novel version of DeepEMC2,
which integrates the previously mentioned Continual Learning pipelines. Ad-
ditionally, we have embraced a Multitask and Multimodal approach in an end-
to-end fashion. Consequently, this approach has resulted in reduced memory
requirements with respect to the previous version of DeepEMC2. Simultane-
ously, incorporating novel architectural enhancements and Continual Learning
strategies has proven beneficial in enhancing model performance concerning the
assessment of EMCI severity.

C6 Development of an auxiliary tool to allow direct interaction with
DeepECM2.

We have created a prototype tool to enable external users, even those without
expertise in Deep Learning, to interact with the model without effort. This
tool replicates the input features that a Valencian Region dispatcher would
typically input, invokes the model, and promptly retrieves a real-time response.
It provides probability estimates for each of the severity labels. Consequently,
the dispatcher, potentially the end user of the decision-support model, no longer
needs to comprehend the intricate computations underlying the final predictions.
Their workflow remains unchanged, as they can input and collect information
within the system in the same familiar manner.
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1.4.2 Complementary contributions

C7 In-depth study and development of techniques for extreme missing
data imputation in Electronic Health Records.

We have conducted an in-depth investigation into the most appropriate tech-
niques for data imputation, especially when dealing with a high rate of missing
values. Specifically, we implemented and assessed a total of 30 preprocessing,
imputation, and modeling pipelines. The imputation methods included missing
mask, translation and encoding, mean imputation, k-nearest neighbors’ impu-
tation, Bayesian ridge regression imputation and generative adversarial imputa-
tion networks. The classifiers included k-nearest neighbors, logistic regression,
random forest, gradient boosting and deep multilayer perceptron. Our findings
indicate that in cases of high incompleteness, translating features and subse-
quently encoding the missing values represent a prudent choice more robust to
noise than state-of-the-art standard imputation methods.

1.4.3 Main scientific publications

We proceed to present the main scientific publications associated with this
thesis:

P1 Pablo Ferri, Carlos Sáez, Antonio Félix-De Castro, Javier Juan-Albarraćın,
Vicent Blanes-Selva, Purificación Sánchez-Cuesta, Juan M Garćıa-Gómez. Deep
ensemble multitask classification of emergency medical call incidents combining
multimodal data improves emergency medical dispatch. Artificial Intelligence in
Medicine, 117, 102088. May 2021. (Ferri et al., 2021).

IF: 7.011 (JCR 2021): 21/98 Engineering, Biomedical (Q1); 32/145 Computer
Science, Artificial Intelligence (Q1); 8/31 Medical Informatics (Q2).

P2 Pablo Ferri, Carlos Sáez, Antonio Félix-De Castro, Ángel Sánchez-Garćıa, Pu-
rificación Sánchez-Cuesta, Juan M Garćıa-Gomez. An artificial intelligence tool
to classify emergency medical incidents in real-time improves emergency medical
dispatch. European Emergency Number Association (EENA) Conference and
Exhibition. Marseille, France. April 2022. (Ferri et al., 2022b).

P3 Pablo Ferri, Carlos Sáez, Antonio Félix-De Castro, Purificación Sánchez-Cuesta,
Juan M Garćıa-Gómez. Discovering key topics in emergency medical dispatch
from free text dispatcher observations. 32nd Medical Informatics Europe Con-
ference (MIE). Nice, France: IOS Press. Studies in Health Technology and
Informatics: 294. May 2022 (Ferri et al., 2022a).
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P4 Pablo Ferri, Vincenzo Lomonaco, Lucia C.Passaro, Antonio Félix-De Castro,
Purificación Sánchez-Cuesta, Carlos Sáez, Juan M Garćıa-Gómez. Deep con-
tinual learning for emergency medical call incidents text classification under the
presence of dataset shifts. Addressing reviewer’s comments at Computers in
Biology and Medicine.

P5 Carlos Sáez, Pablo Ferri, Juan M Garćıa-Gómez. Resilient artificial intelligence
in health: a synthesis and research agenda towards next-generation trustworthy
clinical decision support. Under review at Journal of Medical Internet Research.

P6 Pablo Ferri, Carlos Sáez, Antonio Félix-De Castro, Purificación Sánchez-Cuesta,
Juan M Garćıa-Gómez. Deep continual out-of-sample multitask classification of
emergency medical call incidents under dataset shifts affecting feature domain.
Submission in progress to npj Digital Medicine.

P7 Pablo Ferri, Carlos Sáez, Antonio Félix-De Castro, Purificación Sánchez-Cuesta,
Juan M Garćıa-Gómez. Deep continual multitask classification of emergency
medical call incidents over time combining multimodal data. Submission in
progress to Artificial Intelligence in Medicine.

1.4.4 Complementary scientific publications

Next, we present the complementary scientific publications:

P8 Pablo Ferri, Nekane Romero-Garcia, Rafael Badenes, David Lora-Pablos, Teresa
Garćıa Morales, Agust́ın Gómez de la Cámara, Juan M Garćıa-Gomez, Carlos
Sáez. Extremely missing numerical data in Electronic Health Records for ma-
chine learning can be managed through simple imputation methods considering
informative missingness: A comparative of solutions in a COVID-19 mortality
case study. Computer Methods and Programs in Biomedicine, 107803. Septem-
ber 2023. (Ferri et al., 2023).

IF: 6.1 (JCR 2022): 15/111 Computer Science, Theory & Methods (Q1); 7/31
Medical Informatics (Q1); 25/110 Computer Science, Interdisciplinary Applica-
tions (Q1); 22/96 Engineering, Biomedical (Q1).

1.5 Projects and partners

The projects mainly related to the development of this thesis are listed as
follows:

PJ1 Desarrollo de un sistema experto de clasificación de la demanda san-
itaria de urgencias, emergencias extrahospitalarias y demanda sani-
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taria 112. [Development of an expert system for classifying the health demand
of out-of-hospital medical emergencies 112].

Objectives: The objective of this project is to develop Machine Learning-based
solutions for the emergency medical triage process of the Valencian Region
(Spain), comparing their performance with the current one of the in-house
triage protocol.

Partners: Conselleria de Sanitat Universal I Salut Pública, Generalitat Valen-
ciana (Valencia, Spain), Intelligent Data Analysis Laboratory, Universitat
de València (Valencia, Spain) and Biomedical Data Science Lab, Universi-
tat Politècnica de València (Valencia, Spain).

Funder: Agencia Valenciana de Seguridad y Respuesta a Emergencias.

Duration: July 2018 - May 2019.

PJ2 Módulo integrable de apoyo a la llamada sanitaria de urgencias y
emergencias extrahospitalarias. [Integrable module to support out-of-hospital
emergency medical calls].

Objectives: The objective of this contract was to integrate the Deep Learn-
ing model developed in this thesis into the information system of the 112
services of the Valencian Region (Spain). We collaborated with the multi-
national company Omda, the developer of the CoordCom platform, which
is currently in use at the Valencian emergency dispatch center. The deep
model has to be embedded in this platform, with the collaboration of pro-
fessionals from the Conselleria de Sanitat.

Partners: Conselleria de Sanitat Universal I Salut Pública, Generalitat Va-
lenciana (Valencia, Spain), Omda (Gothenburg, Sweden) and Biomedical
Data Science Lab, Universitat Politècnica de València (Valencia, Spain).

Funder: Conselleria de Sanitat Universal I Salut Pública, Generalitat Valen-
ciana.

Duration: June 2023 - June 2025.

Next, the projects in which the author was actively involved in parallel to the
development of this thesis are presented:

PJ3 Severity Subgroup Discovery and Classification on COVID-19 Real
World Data through Machine Learning and Data Quality assessment
(SUBCOVERWD-19).

Objectives: The objective of this project is to uncover latent patterns present
in COVID-19 data registered at the Hospital 12 de Octubre and Hospital
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Cĺınic, disentangling patients according to their severity, in a context of
data with quality problems that hinder this discovery process.

Partners: Hospital 12 de Octubre (Madrid, Spain), Hospital Cĺınic i Uni-
versitari (Valencia, Spain) and Biomedical Data Science Lab, Universitat
Politècnica de València (Valencia, Spain).

Funder: CRUE - Santander Bank.

Duration: January 2021 - September 2021.

1.6 Grants

G1 Ayuda para contratos predoctorales para la formación de doctores den-
tro del programa propio de la Universitat Politècnica de València—
Subprograma 1 (PAID-0-18). [Aid for pre-doctoral contracts for the train-
ing of doctors within the Universitat Politècnica de València’s own program—
Subprogram 1 (PAID-0-18)].

Project: Diseño de un sistema de guiado adaptativo para la gestión de lla-
madas y óptima asignación de prioridades en los servicios de urgencias y
emergencias extrahospitalarias. [Design of an adaptive guidance system for
call management and optimal prioritisation in out-of-hospital emergency
services].

Funder: Universitat Politècnica de València.

Duration: March 2019 - September 2019.

G2 Ayuda predoctoral para la formación de profesorado universitario (FPU-
2018). [Pre-doctoral aid for university teacher training (FPU-2018).]

Project: Desarrollo de una herramienta de apoyo a la llamada sanitaria de ur-
gencias y emergencias extrahospitalarias.[Development of a tool to support
out-of-hospital emergency medical calls].

Funder: Ministerio de Ciencia, Innovación y Universidades.

Duration: September 2019 - July 2023.
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1.7 Research stays

RS1 Research stay at the Computational Intelligence and Machine Learn-
ing Group

Host institution: Computational Intelligence and Machine Learning Group
(CIMLG), Università di Pisa (UniPi).

Person in charge at host institution: Professor Vincenzo Lomonaco.

Objective: The purpose of the research stay was to acquire knowledge regard-
ing Continual Learning techniques and integrate them into the design of
pipelines to alleviate performance degradation over time in the model de-
veloped for classifying EMCI.

Duration: from 03/05/2022 to 01/08/2022.

1.8 Thesis outline

This thesis is structured as follows. Chapter 1 has defined the thesis moti-
vations, research questions, and main contributions. Chapter 2 describes the thesis
rationale, exposing the complexity of the emergency medical call incidents triage chal-
lenge and presenting the theoretical-methodological background. Chapter 3 describes
the development of DeepEMC2, a deep ensemble multitask classification model of
emergency medical call incidents able to combine multimodal data, highlighting its
provided added value respect to the in-house triage protocol of the Valencian Region.
Chapter 4 provides an unsupervised analysis of free text dispatcher observations, dis-
covering key topics latent in those fields but highly relevant for emergency medical
dispatch. Chapter 5 describes the study of dataset shifts over time in free text fields
and the development and evaluation of multiple deep Continual Learning pipelines
centered on handling the negative effects of these dataset shifts. Chapter 6 presents
an analysis of dataset shifts over time focused on the clinical variables and the devel-
opment and evaluation of different deep continual learning pipelines capable of facing
the dataset shift challenge and the dynamic feature domain challenge. Chapter 7
presents a robust and end-to-end version of DeepEMC2, aiming to deal with dataset
shifts and dynamic feature domains. Chapter 8 describes how this model could be
embedded in a tool usable by emergency medical dispatchers. Finally, Chapter 9
describes the main conclusions from this thesis.

Next, Figure 1.1 presents the outline of the thesis contributions showcasing the
relationships among the chapters, contributions, publications, projects, and research
stays.

10



1.8 Thesis outline

Figure 1.1: Thesis outline, including chapters, contributions, publications, projects, and
research stays.
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Chapter 2

Rationale

This chapter describes the Rationale of this thesis, including the technical
background required to understand the challenges faced along this thesis, as well as
the solutions provided. First, we introduce the basic concepts, objectives, and context
of out-of-hospital emergency medical triage, particularizing in the processes followed
at the Valencian Region (Spain). Next, we present the main technical foundations
of this thesis. The first one is Machine Learning, and the second is Deep Learning.
While Deep Learning is a subfield of Machine Learning, its significance in this thesis
warrants a dedicated section. Finally, we discuss the current literature oriented on
out-of-hospital medical emergency triage support based on Machine Learning-based
models.

2.1 Out-of-hospital emergency medical triage

2.1.1 Background and definitions

An out-of-hospital emergency medical incident is a situation where an individ-
ual (or a group of individuals) requires non-delayable medical attention—due to an
injury, illness, or other medical emergency—while occurring outside of a healthcare
facility. Examples of out-of-hospital emergency medical incidents are cardiac arrest,
severe trauma, stroke, respiratory distress, etc. At the same time, out-of-hospital
emergency medical triage is defined as the process of categorizing patients involved in
this type of event by their incoming severity and thus, according to their attendance
necessities.

Emergency medical triage of out-of-hospital events is required for two main rea-
sons. Firstly, patients involved in life-threatening situations, such as severe bleeding
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or cardiac arrest, require immediate attention and should be treated first. Secondly,
triage helps responders to ensure that all patients receive the appropriate level of care,
even if resources are limited, prioritizing them based on the patient’s needs.

However, out-of-hospital telephone emergency medical triage is a challenging
procedure due to a variety of reasons. One of the most remarkable ones is the high level
of uncertainty involved, which makes it difficult to assess the severity of the situation
precisely. In addition, the limited time available for the triage process means that
decisions must be made quickly, adding pressure on the dispatcher. Furthermore,
dispatchers may also have limited medical knowledge or experience, making it hard
to establish the appropriate level of care needed.

If that were not enough, errors in out-of-hospital emergency medical triage can
imply severe consequences. Assigning the wrong severity level to a patient results
in delays in treatment, which can worsen the patient’s condition or even lead to
death. On the other hand, over-triage, where a patient is assigned a higher level of
severity than necessary, can also have negative consequences, such as using up limited
resources or unnecessarily alarming the patient and their family. Hence, a proper
assessment of patient severity through triage is crucial to ensure the appropriate
emergency attention level is provided.

2.1.2 Emergency medical call incidents triage protocols

The origins of triage—word that comes from the French word trier, which
means to sort or separate—can be traced back to the battlefield. The French surgeon
Dominique Jean Larrey is credited with developing the first modern triage system
during the Napoleonic Wars in the early 19th century (Blagg, 2004). Larrey observed
that soldiers who received immediate medical attention had a higher chance of sur-
vival. Hence, given the large number of wounded soldiers and the limited number
of resources, he developed a system of categorizing soldiers based on the severity of
their injuries, with the most severely injured receiving immediate attention (Moskop
& Iserson, 2007). Specifically, this system was grounded on a triage scale which as-
signed colors to each severity level: red for those soldiers presenting the most serious
injuries, yellow for the one requiring an urgent response and green for the patients
with less severe injuries who could wait some time before being attended.

During World War I, the triage system was further developed and refined by
medical personnel on both sides of the conflict, becoming a fundamental component
of military medicine (Pollock, 2008). Afterward, triage was later adapted for use in
civilian emergency medicine, being applicable to wide spectrum of the population. In
1937, the first emergency call system, the 999, was launched in London, allowing a
centralized and remote management of EMCI (Moss, 2018). With the introduction of
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remote incident handling, the need of protocolized clinical guidelines aiming to deal
with EMCI properly became evident.

Since those times, several clinical protocols have been developed to help dis-
patchers assess the severity of a patient’s condition and allocate resources accordingly.
Some of the most known protocols are the Emergency Severity Index (Gilboy et al.,
2012), the Manchester System (Mackway-Jones et al., 2013), the Australasian Triage
Scale (Considine et al., 2004) or the Canadian triage and acuity scale (Murray et al.,
2004). However, despite presenting evident differences among them, they also have
aspects in common: they are built following a tree structure, where each node is re-
lated to a specific question that admits closed answers—such as yes/no, higher/medi-
um/lower, moderate pain/severe pain, etc.—and the final leaf node is associated to a
severity value according to a priority scale.

While triage protocols and scales can be useful tools for dispatchers, they have
limitations. One of the main challenges is that they may not capture the full com-
plexity of a patient’s condition, since the casuistry associated with the EMCI context
is huge (Farand et al., 1995). For example, patients with multiple comorbidities or
unusual symptoms may not fit neatly into the established categories, which can make
it challenging to assign a level of severity accurately.

Additionally, triage protocols and scales may be difficult to evaluate and bench-
mark. Evaluating the effectiveness of a triage protocol requires a large sample size of
patients, which can be difficult to obtain. Furthermore, the effectiveness of a triage
protocol may depend on the resources available in a particular emergency medical dis-
patch system, which can vary widely between regions (FitzGerald et al., 2010; Lidal
et al., 2013).

2.1.3 Emergency medical triage in the Valencian Region

Emergency Medical Call Incident Data

The Valencian Region accounts for 10% of the total population of Spain, with
more than 5 million people (de Estad́ıstica, 2022). Consequently, the volume of
daily emergency medical calls is substantial. Specifically, in 2022, there were 265 185
total calls registered, resulting in an average daily call volume of 727 emergency
medical calls, according to the Health Services Department of the Valencian region
(d’Emergències Sanitàries de la Comunitat Valenciana, 2022). This means that, on
average, an emergency medical call requiring attention by an emergency medical dis-
patcher occurs approximately every two minutes.

A significant portion of the recent EMCI data was made available to develop
this thesis. This data was generated within the context of two different information
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systems: the CORDEX system and the CoordCom system, which replaced the former.
Furthermore, there were variations in management policies and personnel during this
period. In the following table (Table 2.1), we present the number of EMCI cases
provided by the Health Services Department of the Valencian Region. This data is
valuable as it includes information about the subsequent real incident severity, which
is essential for the developments presented in this thesis.

Table 2.1: Number of Emergency Medical Incident data per year, suitable for training
Machine Learning models, provided by the Health Services Department of the Valencian
Region.

Year Number data

2009 182 536
2010 178 458
2011 180 739
2012 180 537
2014 172 905
2015 197 987
2016 208 439
2017 254 008
2018 246 163
2019 252 922

It is worth noting that not all the data was initially available. Initially, we had
access to data from 2009 to 2012 (inclusive), which was associated with the CORDEX
information system. In 2013, significant changes occurred as the information system
transitioned to a new one named CoordCom. These changes also led to variations in
policies, protocols, and personnel handling incidents. After several years of working
on this thesis, we were provided with the CoordCom data.

Additionally, it is important to mention that the use of this data was approved
by the Institutional Review Board of the Health Services Department of the Valencian
Region. No information revealing a patient’s identity was retained for any of the
analyses.

Design and deployment of the in-house emergency medical triage protocol

In the Valencian Region (Spain), out-of-hospital medical emergencies are han-
dled through a telephone triage system. The telephone triage is carried out by dis-
patchers who follow an in-house triage protocol. This protocol has been built from
the Manchester triage system and has evolved over the years to meet the needs of the
Valencian Region—for example, as many pyrotechnic accidents happen in the Valen-
cian Region during the Fallas traditional celebration, this casuistry is included in the
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protocol. Hence, this in-house triage protocol relies on the collection of structured
clinical variables in a sequential manner through questions raised to the caller during
the call. This information is subsequently utilized to assess the urgency of patient
care.

During the call, in addition to the recording of these structured clinical data
based on the protocol, it is registered other relevant information, also provided by the
caller. This additional information is usually entered as free text and hence, it can
be considered as unstructured data. Since the in-house protocol is based on following
a decision tree with a closed answer, it cannot automatically consider this unstruc-
tured data, which may provide crucial information to properly handling the incident,
in terms of fine-grained detail about the patient’s condition. Hence, this valuable
resource cannot be used automatically during the triage process at the Valencian
Region.

Evolution of out-of-hospital emergency medical triage over time

The in-house triage algorithm exposed in the previous section, dispatchers, ad-
ditional training programs, and coordination of emergencies have not remained static
over time at the Valencia Region. Quality control process and periodic revisions had
incorporated multiple updates to the triage process to enhance patient’s assistance as
well as to use resources more efficiently. Examples of these updates could be the in-
clusion of novel questions—and hence, clinical variables associated with them—in the
decision tree, specific dispatcher training programs—to properly identify uncommon
incidents—etc.

Among the most relevant variations that have taken place in recent years, it
stands out as the one that occurred in 2013. During this year, the information system
used to handle incidents—named CORDEX—was changed to a new one, identified
CoordCom. Furthermore, the institutions in charge of the out-of-hospital medical
emergencies coordination changed, along with the in-house protocol—which suffered
some modifications—and the dispatcher personnel.

2.2 Machine Learning

2.2.1 Background and definitions

Machine Learning can be defined as a discipline that focuses on empowering
computer systems to acquire knowledge through experience without explicitly pro-
gramming this knowledge by utilizing statistical-computational models (Jordan &
Mitchell, 2015). Consequently, it involves the development of algorithms and sta-
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tistical models that enable computers to learn from data and make predictions au-
tonomously, without the need for human intervention.

In order for a problem to be suitable for Machine Learning, it necessitates the
establishment of a well-defined problem with a quantitative measure indicating the
algorithm’s performance in the specific task at hand. Once this quantitative measure
is defined, an iterative updating approach must be established to determine how model
parameters should evolve across iterations, aiming to maximize performance.

Next, in Figure 2.1, we present the simplified general scheme of a Machine
Learning process, summarizing what we have exposed previously:

Figure 2.1: Machine Learning workflow.

Finally, it is important to remark on the differences between Machine Learning
and Artificial Intelligence, since sometimes these concepts are used interchangeably,
but they are not exactly the same. Artificial Intelligence is a broader field encompass-
ing Machine Learning, but also includes other disciplines such as rule-based systems,
expert systems, and heuristic search. The goal of Artificial Intelligence is to create
machines that can perform tasks that normally require human intelligence, such as
perception, reasoning, decision-making, and learning.

2.2.2 Tasks

There are four main tasks of interest in the field of Machine Learning: Su-
pervised Learning, Unsupervised Learning, Semi-supervised Learning, and Reinforce-
ment Learning (James et al., 2013; R. S. Sutton & Barto, 2018). In the next sections,
we present a brief description of those relevant to this thesis, i.e., Supervised and
Unsupervised Learning:
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Supervised Learning

Supervised Learning is a Machine Learning approach where the objective is to
build a model that can predict the output given a set of inputs. The model is trained
on a labeled dataset, where the input-output pairs are provided. In a Supervised
Learning setting, we have a dataset consisting of input-output pairs. Let X be the
input space and Y be the output space. Under this approach, we assume that there
is an unknown but underlying Joint Probability Distribution P (X,Y ) over X × Y .

We aim to learn a function f : X → Y that can accurately predict the output
Y given an input X. To achieve this, we define a hypothesis space F , which represents
the set of all possible functions we can choose from. In Machine Learning, F is often
called the function class or the hypothesis class.

To measure the performance of a particular function f , belonging to F , in
approximating the true relationship between X and Y , a loss function L : Y ×Y → R
is introduced, which quantifies the dissimilarity between predicted and true outputs.
The learning process in Machine Learning involves finding the best function f from
the hypothesis space F based on the available data. This is done by minimizing
the expected risk, which is the expected value of the loss function over the joint
distribution P (X,Y ):

R(f) = EXY [L(Y, f(X))] (2.1)

The expected risk represents the average loss incurred by using the function
f as the predictor. Our objective, thus, is to find a function f∗ that minimizes the
expected risk:

f∗ = argmin
f∈F

R(f) (2.2)

However, since the true distribution P (X,Y ) is unknown, we cannot directly
minimize the expected risk. Instead, we use the empirical risk minimization principle.
Given a training dataset D = {(xi, yi)}ni=1 consisting of n independent and identically
distributed samples from P (X,Y ), the empirical risk is defined as:

R̂n(f) =
1

n

n∑
i=1

L(yi, f(xi)) (2.3)

The empirical risk estimates the average loss over the training data. The em-
pirical risk minimization principle states that we should choose the function f that
minimizes this empirical risk:
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f∗ = argmin
f∈F

R̂n(f) (2.4)

This empirical risk minimization problem is the core optimization problem in
Supervised Machine Learning. The goal is to find the function f∗ that best fits the
training data.

Unsupervised Learning

Unsupervised Learning is a Machine Learning approach where the goal is to find
patterns or structure in the data, without any labeled output. It includes clustering,
dimensionality reduction, and density estimation.

Let X be the input space, representing the set of possible input values. In
Unsupervised Learning, we are given a training dataset D = {xi}ni=1, consisting
of n independent and identically distributed samples from an unknown probability
distribution P (X). Each sample xi represents an input observation.

Unsupervised learning aims to find a suitable representation or transformation
of the input data that captures relevant patterns or structures. This is typically done
by defining a function or model that maps the original input space X to a transformed
space Z.

The function or model that maps the original input space X to the transformed
space Z is often denoted as g : X → Z. The goal is to find an optimal function g that
captures the relevant patterns or structures in the data.

To measure the quality of the transformation, we typically define a measure of
discrepancy or dissimilarity between the observed input distribution and the induced
distribution in the transformed space. This discrepancy measure can vary depending
on the specific Unsupervised Learning task.

For example, if the Unsupervised Learning task is clustering, where the goal is
to partition the input data into groups or clusters based on their inherent similarities,
the objective is to find a function g∗ that minimizes the discrepancy between the ob-
served input distribution P (X) and the induced distribution P (Z) in the transformed
space Z. This can be formulated as an optimization problem involving a discrepancy
measure, such as:

g∗ = argmin
g

D(P (X), P (Z)) (2.5)
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where D is a measure of discrepancy, and P (Z) is the distribution induced by
the function g on the transformed input data.

Another common Unsupervised Learning task is dimensionality reduction, where
the goal is to find a lower-dimensional representation of the input data while preserv-
ing relevant information, in order to reduce the negative effects consequence of the
curse of dimensionality. In this case, the objective is to find a function g∗ that mini-
mizes the discrepancy between the observed input distribution P (X) and the induced
distribution P (Z) in the transformed space Z, while also satisfying certain constraints
on the dimensionality of Z. This can be formulated as an optimization problem similar
to clustering, with additional constraints on the dimensionality of Z.

2.2.3 Models

According to how the relation between the input features and the output of
a Machine Learning model (such as classification labels, or cluster membership) is
established, we can distinguish two main groups: discriminative models and generative
models (Bishop & Nasrabadi, 2006; James et al., 2013).

A discriminative model is a model used to predict the value of the output
given a set of input variables. In the context of a supervised classification problem,
the goal of a discriminative model is to learn the boundary—or decision surface—that
separates the different classes of the output variable in the input space. Examples
of discriminative models in such a context include logistic regression, support vector
machines, and neural networks. Mathematically, a classification discriminative model
learns the conditional probability distribution of the output variable given the input
variable, P (Y |X).

A generative model, on the other hand, is a model that is used to learn the
underlying probability distribution of the data. The goal of a generative model is to
learn the joint probability distribution of the input variables and the output. This
implies learning P (X,Y ) if we focus on a supervised classification domain or P (X,Z)
if we are centered in an unsupervised learning task, following the notation considered
in the previous section. After learning this joint distribution, we can use it to generate
new samples or to estimate the probability of a new input belonging to a certain class
or group. Examples of generative models include Gaussian mixture models, hidden
Markov models, and Generative Adversarial Networks.

Next, we include a brief presentation of the main generative and discriminative
models considered in this thesis:
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Generative

Näıve Bayes

A Naive Bayes model (Bayes & Price, 1763) is a probabilistic model based on
Bayes’ theorem and the assumption of independence among the features, which is
used for classification tasks in Machine Learning. The name Naive comes from the
assumption of independence among features, which is often unrealistic but simplifies
the computation and makes the model easy to implement and understand.

The basic idea behind Naive Bayes is to use Bayes’ theorem, which states that:

P (Y |X) =
P (Y )P (X|Y )

P (X)
(2.6)

Here, Y is the output variable (class) and X are the input variables (features).
P (Y |X) is the posterior probability of the class given the features, P (X|Y ) is the
likelihood of the features given the class, P (Y ) is the prior probability of the class,
and P (X) is the marginal likelihood of the features.

In a Naive Bayes model, the likelihood P (X|Y ) is assumed to be a product of
the individual likelihoods of the features given the class:

P (X|Y ) =
K∏

k=1

P (Xk|Y ) (2.7)

This assumption of independence among the features allows us to simplify the
computation and estimate the likelihood of each feature independently.

Finally, the classification is done by choosing the class that maximizes the
posterior probability P (Y |X), which can be computed by plugging the estimates of
the prior probability P (Y ) and the likelihood P (X|Y ) into Bayes’ theorem.

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model proposed
in (Blei et al., 2003) that is used for discovering the latent topics in a corpus of text.
It is based on the assumption that each document in a corpus is a mixture of latent
topics and that each topic defines a probability distribution over a fixed vocabulary
of words.
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The model is based on three main assumptions:

1. The words in a document are generated by a mixture of topics.

2. Each topic is a probability distribution over words.

3. The topics for each document are drawn from a Dirichlet distribution.

In mathematical terms, the generative process of LDA is defined as follows:

For each document d in a corpus of D documents:

� Draw a topic mixture from a Dirichlet prior, θd ∼ Dirichlet(α)

� For each word wn in document d:

– Draw a topic zn from the multinomial topic mixture,
zn ∼ Multinomial(θd)

– Draw a word wn from the topic-specific word distribution,
wn ∼ Multinomial(βzn)

Here α is the hyperparameter of the Dirichlet prior, θd is the topic mixture for
document d, and β is the matrix of the topic-specific word distributions.

The main goal of LDA is to estimate the latent topics and the topic-word
distributions from the observed word counts in a corpus of documents. The estima-
tion of the model parameters is typically done using a variation of the Expectation-
Maximization (EM) algorithm called collapsed Gibbs sampling (Geman & Geman,
1984), which is a Markov Chain Monte Carlo method that allows for efficient sam-
pling from the posterior distribution of the model parameters given the data.

Once the model parameters are estimated, LDA can be used for several tasks
such as topic modeling, document classification, and information retrieval. The in-
terpretation of the topics is a subjective task and it depends on the researcher’s
understanding of the corpus, but usually, the most common way to interpret the top-
ics is by looking at the top words for each topic. These top words provide a rough
idea of the main theme or concept that the topic represents. It is also possible to use
external information such as labels or metadata to help interpret the topics.

The number of topics, K, is an hyperparameter of the model, the selection
of the number of topics is a trade-off between interpretability and coherence of the
topics, one common method for selecting the number of topics is using coherence
measures such as the topic coherence (Röder et al., 2015) or the perplexity (Blei,
2012).
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Discriminative

Logistic Regression

Logistic Regression (Nelder & Wedderburn, 1972) is a type of Generalized
Linear Model that is used for binary and multinomial classification tasks. It is a
discriminative model that models the probability of the output variable (class) given
the input variables (features).

The basic idea behind Logistic Regression is to model the relationship between
the input variables and the output variable using a logistic function, also known as the
sigmoid function. The logistic function maps the input variable to a value between 0
and 1, which can be interpreted as the probability of the output variable being 1 (or
belonging to a certain class). The logistic function is defined as:

P (Y |X) =
1

1 + e−(W⊤X+b)
(2.8)

Here Y is the output variable, X is the input variable, W is the weight vector,
and b is the bias term.

The goal of Logistic Regression is to find the values of the model parameters
W and b that maximize the likelihood of the data. The likelihood is a function
of the model parameters and the data, and it measures how well the model fits the
data. The maximum likelihood estimates of the model parameters can be found using
optimization algorithms such as gradient descent, Newton’s method, or fisher scoring
algorithm.

Once the model parameters are estimated, Logistic Regression can be used for
prediction by computing the probability of the output variable given the input vari-
able, P (Y |X), and choosing the class with the highest probability. Logistic regression
can also be used for feature selection and interpretation. The magnitude and the sign
of the model parameters indicate the importance and the direction of the effect of
each feature on the output variable.

Decision Trees

A Decision Tree is a type of model used in Machine Learning for both classi-
fication and regression tasks (Breiman et al., 1984). It is a tree-like structure that
represents a series of decisions based on the values of the input features, with each
internal node of the tree representing a test of the feature value and each leaf node
representing a predicted output value or class.
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The basic idea behind decision trees is to recursively split the input space into
smaller and smaller regions, each associated with a specific output value or class, in
such a way that the samples within each region are as similar as possible with respect
to the output variable. The process of creating the tree is called tree induction, and
it starts by selecting the feature and the threshold that maximizes the reduction of
impurity of the samples within the region.

The most common impurity measures are Gini impurity and information gain,
which are used to quantify the homogeneity of the samples within a region. The Gini
impurity is defined as:

Gini(p) = 1−
C∑

c=1

p2c (2.9)

Here p is the vector of class probabilities.

On the other hand, information gain is defined as:

IG(D,A) = E(D)−
V∑

v=1

|Dv|
|D|

E(Dv) (2.10)

Here D is the set of samples, A is the feature, Dv is the subset of samples for
which A = v, and E is the entropy function, which acts as impurity measure.

Once the tree is created, it can be used for prediction by traversing the tree
from the root to a leaf node, following the decision path that corresponds to the input
feature values.

Decision trees are widely used in many applications such as image recognition,
natural language processing, and customer churn prediction. They are easy to in-
terpret and understand, and they can handle both numerical and categorical data.
They are also able to handle missing data and they are not sensitive to the scale of
the features.

Random Forest

A Random Forest is an ensemble learning method, proposed in (Ho, 1995), that
combines multiple decision trees to improve the performance and robustness of the
model. It is an extension of the Decision Tree algorithm—presented in the previous
subsection—that builds a collection of Decision Trees and averages their predictions
to improve the accuracy and reduce the variance of the model.
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The basic idea behind Random Forest is to generate multiple Decision Trees,
each trained on a different random subset of the training data, and to average their
predictions to improve the performance of the global model. This is done by randomly
selecting a subset of the features at each split of the tree, in a process called feature
bagging, which aids to decrease correlation among the trees and increases the diversity
of the ensemble.

The model hyperparameters of a Random Forest are the same as those of a
decision tree, but with the addition of a hyperparameter for the number of trees in
the forest. This number controls the trade-off between bias and variance of the model.

Random Forest is used in many applications because they are easy to interpret
and understand. Additionally, random forests are less prone to overfitting compared
to single decision trees, which makes them a more robust model.

Gradient Boosting

Gradient Boosting is a Machine Learning technique, presented in (Friedman,
2001), for regression and classification problems, which produces a prediction model in
the form of an ensemble of weak prediction models, typically Decision Trees. It builds
the model in a stage-wise fashion like other boosting methods do, and it generalizes
them by allowing optimization of an arbitrary differentiable loss function.

Formally, let L(y, f(x)) be a differentiable loss function, where y is the true label
and f(x) is the predicted label for a sample x. The basic idea of gradient boosting is
to iteratively add weak models, fi(x), to the ensemble, in order to improve the overall
prediction, F (x) = f0(x)+ f1(x)+ ...+ fn(x), where f0(x) is an initial approximation
of the solution and n is the number of iterations. At each iteration, the gradient of
the loss function with respect to the current ensemble prediction is computed, and a
new weak model is fit to the negative gradient, i.e., the direction of steepest decrease
of the loss.

Model parameters are estimated using a two-step process:

1. Initialize the ensemble with a single weak model, e.g., a decision tree with a
single split.

2. At each iteration, fit a new weak model to the negative gradient of the loss
function with respect to the current ensemble prediction.

Gradient Boosting is used in many fields, including web search ranking, ecology
and computer vision, due to its good performance and ability to handle diverse data
types. Likewise, interpretation of the model is done by analyzing the individual weak
models and their contributions to the final ensemble prediction.
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Artificial Neural Networks

An Artificial Neural Network (ANN) is a Machine Learning model inspired by
the structure and function of the human brain (Rosenblatt, 1958). It is a network of
interconnected nodes, called artificial neurons, that are organized into layers. Each
neuron receives input from other neurons, processes it through an activation function,
and produces an output that is passed on to other neurons in the next layer.

Formally, an artificial neuron is a mathematical function that maps a set of
input values X to an output value Y through a set of weights W and a bias term
b : Y = f(WX + b) where f is the activation function. The activation function is a
non-linear function that introduces non-linearity into the model, allowing it to learn
complex relationships between inputs and outputs.

The multiple layers of neurons in an ANN model allow learning hierarchical
representation, where lower layers—the initial layers, closer to the input data—learn
simple features and higher layers—the ones closer to the output layer—learn complex
features. This can be represented by a computation graph, where the input is passed
through multiple layers before producing the final output.

ANN are used in a wide range of applications, such as image recognition, nat-
ural language processing, and speech recognition. They are particularly useful for
tasks that involve large amounts of data and complex relationships between inputs
and outputs.

An ANN’s model parameters (weights and biases) are typically estimated using
stochastic gradient descent. It is an iterative algorithm that adjusts the parameters
of the model to minimize the error between the predicted output and the true output.

Interpretation of an ANN model can be challenging, as the internal workings
of the model are highly complex and non-linear. More information about this type of
model can be found in the next Section Deep Learning.

2.2.4 Multimodal Learning

Definition

In the context of Machine Learning, ”modality” refers to a specific type of data
presented to a model. Thus, each modality signifies a different channel or form of in-
put utilized by Machine Learning models. These modalities may encompass, among
others, standard structured data, sequential structured data, free text, audio, or im-
ages. Consequently, Multimodal Learning is described as the methodologies aimed at

27



Chapter 2. Rationale

developing Machine Learning models capable of processing these heterogeneous data
types cohesively (Baltrušaitis et al., 2018).

Approaches

Within the domain of Multimodal Learning, we can identify three primary
approaches (Ramachandram & Taylor, 2017):

� Early fusion: this approach integrates various data modalities, sometimes
highly disparate, into a single feature vector before using it as input for the
Machine Learning model. However, early fusion of multimodal data might not
completely leverage the complementary nature of the involved modalities and
could result in overly large input vectors with potential redundancies.

� Late fusion: this approach involves aggregating decisions from various Machine
Learning models, each trained on different modalities. A significant limitation
of late fusion is that it may fail to capture the interactions between modalities.

� Intermediate fusion: this strategy combines information from different modal-
ities at some point within the processing pipeline, rather than strictly at the
beginning or end. It allows modalities to interact at multiple levels of abstraction
prior to making a final prediction or decision. Intermediate fusion is especially
beneficial for tasks where the modalities’ relationship is complex and cannot be
fully understood by processing them separately or combining them solely at the
input or output stages, thus enabling a more profound integration of modalities.

2.2.5 Multitask Learning

Definition

According to the definition of (Caruana, 1997), Multitask Learning can be
defined as an approach to inductive transfer that improves generalization by using the
domain information contained in the training signals of related tasks as an inductive
bias. It does this by learning tasks in parallel while using a shared representation;
what is learned for each task can help other tasks be learned better. In other words,
Multitask Learning is a Machine Learning approach where a single model is trained
to perform multiple tasks—which are assumed to be related—simultaneously. In
traditional Machine Learning, different models are trained for each task separately.
However, in Multitask Learning, a shared representation is learned that captures
commonalities and differences between the tasks. By doing this, model performance
can be improved while recurring to an inferior number of parameters—hence being
more efficient—including regularization effects during training.
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Mathematically, Multitask Learning can be defined this way, following the def-
inition of (Ciliberto et al., 2015):

Let us assume to have T supervised scalar learning problems, each with a
training set of input-output observations St = {(xit, yit)}nt

i=1, with xit ∈ X input
space and yit ∈ Y output space. Given a loss function L : R×R → R+ that measures
the per-task prediction errors, we aim to solve the next joint regularized learning
problem:

min
f∈H

T∑
t=1

1

nt

nt∑
i=1

L(y
(t)
i , ft(x

(t)
i )) + λ∥f∥2H (2.11)

being H a Hilbert space of vector-valued functions f : X → Y T with scalar
components ft : X → Y , λ a scalar parameter controlling the regularization strength
and ∥f∥2H is the regularization term, the norm of the model f in the Hilbert space H.

Approaches

Even though there are many approaches to develop Multitask Machine Learning
models, we present next the two main ones (Ruder, 2017b), which are also related to
the models developed in this thesis:

Hard parameter sharing

In Multitask Learning, hard parameter sharing refers to the approach where
multiple tasks share the same set of parameters, i.e., weights, in a model. This means
that the model has a single set of weights that are used for all tasks, rather than
having separate sets of weights for each task. This can be useful when the tasks are
closely related and have similar feature representations, as it allows the model to learn
shared features that can be used to improve performance on all tasks.
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Figure 2.2: Schematic representation of the hard parameter sharing approach in Multitask
Learning.

Soft parameter sharing

Alternatively, soft parameter sharing refers to the approach where multiple
tasks have different sets of parameters, but the parameters are constrained to have
some degree of similarity. This can be achieved by adding a regularization term to
the overall objective function that encourages the parameters of different tasks to be
similar.

In comparison to other multitask approaches, soft parameter sharing is gen-
erally considered when the tasks are less closely related but still have some shared
features that can be used to improve performance. It is also useful when there is
limited data for each task and the model can leverage the shared information among
the tasks to improve generalization.

2.2.6 Meta-learning

Definition

Meta-learning is a subfield of Machine Learning that involves the development
of algorithms that can learn how to learn. Specifically, it refers to the process of
incorporating metadata from experiments to improve model performance in the next
round of experiments (Vilalta & Drissi, 2002).
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Figure 2.3: Schematic representation of the soft parameter sharing approach in Multitask
Learning.

In the context of hyperparameter tuning, Meta-learning can be used to learn
how to optimize hyperparameters more efficiently. Specifically, instead of performing
a grid search or random search (Bergstra & Bengio, 2012) over a large set of hyper-
parameters, we can use Meta-learning to learn a model that can quickly adapt and
suggest good hyperparameters.

Given that it has been used across all our studies involving model development,
we present next Bayesian Hyperparameter Optimization (BHO) (Brochu et al., 2010),
our Meta-learning approach chosen in this thesis.

Bayesian Hyperparameter Optimization

Bayesian Hyperparameter Optimization (BHO) is a Meta-learning method used
to find the best set of hyperparameters of a Machine Learning model. The main idea
behind this method is to model the Machine Learning model’s performance as a
function of its hyperparameters and use Bayesian statistics to infer the most likely
set of hyperparameters that will lead to good performance.

BHO defines a prior probability distribution over the space of possible hy-
perparameters. This prior captures our initial belief about the likely values of the
hyperparameters before any data is observed. As we gather more data, particularly
after subsequent experiments, we refine our beliefs concerning the hyperparameters
through the application of Bayes’ rule. This updating process involves adopting a
likelihood function that quantifies the likelihood of the observed data given a specific
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set of hyperparameters. The posterior distribution is then defined as the product of
this likelihood and the prior, normalized by the evidence.

Mathematically, the BHO can be defined as:

p(θ|D) =
p(θ)p(D|θ)

p(D)
(2.12)

where θ is the set of hyperparameters, D is the data, p(θ) is the prior, p(D|θ)
is the likelihood function, and p(D) is the evidence.

Once the posterior is obtained, it can be used to sample or optimize the hyper-
parameters. A common approach is to sample from the posterior considering Markov
Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings algorithm
(Chib & Greenberg, 1995).

Finally, once the optimal hyperparameters are obtained, the model is retrained
with these hyperparameters and the performance is tested to evaluate the model’s
performance.

2.2.7 Dataset shifts

Dataset shifts can be defined as changes in the data distribution between train-
ing and test data (Moreno-Torres et al., 2012; Quinonero-Candela et al., 2008). They
can be caused by many factors, such as selection bias—the training dataset is not
representative of the whole population—or variations in how the data is collected
over time, or when testing on a new setting (such as a new location)—some variables
disappear while new ones are created, for example.

Likewise, it must be considered that dataset shifts can appear suddenly, in the
form of an abrupt drift, or conversely, happen in a more gradual manner. Furthermore,
it is even possible that they manifest in following a recurrent pattern due to changes
that present a seasonal component (Gama et al., 2014; Sáez et al., 2015).

Temporal variations in healthcare processes or protocols are inherent to the field
of medicine. Such fluctuations can potentially give rise to dataset shifts, representing
a data quality challenge when repurposing Electronic Health Records for secondary
applications (Sáez et al., 2020).

Formally, in the context of a classification problem where we have some input
features x, and an output variable y, a dataset shift occurs when training and test
joint probability distributions differ:
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Ptrain(x, y) ̸= Ptest(x, y) (2.13)

This variation in the joint probability distribution can be related to multiple
sources of drift. Although depending on the authors it is possible to find different
definitions and nomenclature—notable contributions in this field are (Kull & Flach,
2014; Moreno-Torres et al., 2012; Quinonero-Candela et al., 2008; Storkey et al.,
2009)—in this rationale and for the rest of the thesis, we consider three main sources
of drift: prior probability shift, covariate shift and concept shifts. Next, we present a
brief description of each type of shift as we understand them in this thesis, including
the mathematical definition:

Prior probability shift

Prior probability shift happens when training and testing distributions of the
output variable differ. It can be described this way:

Ptrain(y) ̸= Ptest(y) (2.14)

Covariate shift

Covariate shift can be defined as the change in the input features distribution,
that is:

Ptrain(x) ̸= Ptest(x) (2.15)

Concept shift

Concept shift occurs when the conditional probability of the outcome with
respect to input features suffers a variation between sets:

Ptrain(y|x) ̸= Ptest(y|x) (2.16)
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2.2.8 Continual learning

Continual learning

Continual Learning, also known as lifelong learning, refers to the ability of a
Machine Learning model to learn new tasks or adapt to new data distributions with-
out forgetting relevant learned knowledge (Parisi et al., 2019). This is a challenging
problem, especially in the Deep Learning context, as ANN are known to suffer from
catastrophic forgetting (McCloskey & Cohen, 1989), where the performance on pre-
vious experiences (or tasks) degrades when the model is trained on new experiences
(or tasks) (Lomonaco, 2019).

We clarify here that, within the context of Continual Learning, an ”experience”
can be understood as a learning episode, constituted by a chunk of data. Within a
Continual Learning problem, the model encounters multiple of such learning episodes,
being the objective to retain knowledge from prior data chunks while acquiring knowl-
edge from new ones. Similarly, a ”task” refers to the specific learning objective asso-
ciated with an experience, such as the classification of a subset of predefined classes.

Domain incremental learning

There are multiple Continual Learning scenarios, but given the topic of this
thesis, we are going to focus on Domain Incremental Learning (Ven & Tolias, 2019):

DIL is a specific Continual Learning scenario where the model is trained to
adapt to new domains, or environments, while preserving the knowledge acquired
on previous ones. The main challenge of DIL is to learn representations that are
robust to changes in the domain, while preserving the knowledge acquired on previous
domains. This requires the model to learn domain-invariant features that are shared
across domains, and domain-specific features (Ven & Tolias, 2019).

Hence, the DIL problem does not consist of learning new task over time. In-
stead, it is about to learn information from new experiences, carrying out the same
task, preserving that information that is relevant.

A common approach to DIL is to use domain adaptation techniques, which aim
to adapt a model trained on one domain to a new domain. These techniques typically
involve adjusting the model’s parameters to align the distributions of the source—
environment where the model was designed and trained—and target domains—where
the model is intended to be applied or deployed.
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Strategies

There is a wide range of Continual Learning techniques to choose from. Next,
we present the ones that are the most relevant in this thesis:

� Fine-tuning: at a particular experience e, the starting point from training is
the model from the previous experience e − 1. The weights are updated using
data from the current experience, initialized with the values of the previous one.

� Cumulative: at a specific experience, the model is trained with data from all
the previous experiences. The usual starting point from training is the model
from the previous experience.

� Replay: at a particular experience, it trains the model with data from the
previous experiences, in a similar manner than the Cumulative approach. How-
ever, instead of considering all the data, it just takes a sample of it to increase
efficiency in terms of computation time and memory.

� Synaptic intelligence: it is a regularization technique that encourages a model
to retain relevant parameter values for previously learned experiences. It in-
volves computing an experience-specific importance measure for each weight.
Then, a regularization term is added to the loss function that penalizes changes
to important weights. Hence, it eases the updating of weights that are not
important for previous experiences—offering plasticity—while keeping weight
values that are relevant in previous experiences—showing resistance to catas-
trophic forgetting (Zenke et al., 2017). Formally, the loss function L to optimize
at experience e presents the following structure:

Le = He + c
K∑

k=1

Ωe
k(θ̃k − θk)

2 (2.17)

Here, He represents the standard loss to minimize at experience e, c is a global
dimensionless weighting parameter, Ωe

k is the per-parameter (applied individu-
ally to each parameter of the model) regularization strength for parameter k and

experience e, θ̃k denotes the value of parameter k at the previous experience,
and θk represents the value of parameter k at the current learning experience.
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2.2.9 Machine Learning framework summary

Next, Figure 2.4 provides a summarized overview of the Machine Learning
framework adopted in this thesis, building upon the topics discussed in previous
sections. This is intended to offer a clearer, more holistic view of the methodological
approach utilized. While each specific development in this work possesses unique
characteristics, a common structural theme is observed. It is important to note,
however, that despite these commonalities, each subproblem tackled in the different
chapters of this thesis employs a distinct methodological approach. Although they
share certain aspects with the framework outlined in Figure 2.4, in several instances,
the methodologies are not entirely identical.

Figure 2.4: Machine Learning framework summary.

Initially, we work with a Multimodal dataset derived from merging various
tables from the Valencian Region’s emergency medical call incidents database. As ev-
ident, proper data handling is pivotal in our framework. This data is segmented into
different learning experiences within the Continual Learning framework and further
divided into training, validation, and test sets. In the modeling phase, we employ a
Machine Learning model to predict incident severity, which, in our thesis, is struc-
tured on Deep Learning principles. Given the multidimensional aspect of severity, a
Multitask approach is also adopted. Furthermore, considering the complexity of the
models and strategies, Meta-learning algorithms are utilized, adhering to a Bayesian
approach. Here, auxiliary models iteratively learn the relationship between the mul-
titask loss function and the hyperparameters. These hyperparameters are relevant
not only in the modeling stage but also in the preprocessing phase and within the
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Continual Learning dimension. Finally, after thorough training and validation, the
predictive model is tested on independent test sets using multiple performance met-
rics.

2.3 Deep Learning

2.3.1 Background and definitions

Definition

Deep Learning can be defined as a Machine Learning subfield focused on build-
ing ANN with multiple layers, called deep neural networks. These networks are de-
signed to automatically learn representations of the input data, in an end-to-end
fashion, that is, without requiring previously hand-crafted feature extraction (LeCun
et al., 2015).

A Deep Learning model is typically composed of multiple layers of artificial
neurons each with a set of weights that are learned during training. The layers
closest to the network’s input interact directly with the input features, and they are
referred to as the input layers, whereas the layers near the network’s output generate
the model’s predictions, and these are known as the output layers. Layers situated
between them are referred to as hidden layers. The input to the model is passed
through the layers, and each neuron applies a non-linear transformation to the input,
based on its weights. The output of each neuron is then passed as input to the next
layer (Goodfellow et al., 2016).

Activation functions

In the context of Deep Learning, an activation function is a non-linear function
applied to the output of a neuron. Its purpose is to introduce non-linearity in the
model and to allow the neural network to learn more complex functions. In formal
terms, an activation function f takes an input z and produces an output a according
to the equation:

a = f(z) (2.18)

The choice of the activation function depends on the specific problem and the
nature of the input data. There are several important activation functions used in
Deep Learning. The most relevant ones with a notable presence in our developments
are the Rectified Linear Unit (ReLU), the Leaky Rectified Linear Unit (Leaky ReLU),
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the Gaussian Error Linear Unit (GELU), and the Softmax (Nwankpa et al., 2018),
which we present next in more detail.

Rectified Linear Unit (ReLU)

The ReLU activation function is computationally efficient and computation-
ally inexpensive to compute the derivative. It helps alleviate the vanishing gradient
problem by allowing gradients to flow through for positive inputs. In addition, it
introduces sparsity in the neural network, which can improve generalization.

Mathematically, it can be described as follows:

f(z) = max(0, z) (2.19)

Next, a graph representing the ReLU activation function is displayed in Fig-
ure 2.5.

Figure 2.5: Rectified Linear Unit (ReLU) activation function.

Leaky Rectified Linear Unit (Leaky ReLU)

Leaky ReLU addresses the dying ReLU problem by allowing a small gradient
for negative inputs, preventing neurons from becoming inactive. It maintains some
non-linearity while preventing vanishing gradients.

The mathematical expression for it is:

f(z) = max(0, z) + α ·min(0, z) (2.20)
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Here, α is a small positive scalar value controlling the angle of the negative
slope, i.e., the leakiness of the function.

Next, a graph illustrating the Leaky ReLU activation function is shown in
Figure 2.6.

Figure 2.6: Leaky Rectified Linear Unit (ReLU) activation function.

Gaussian Error Linear Unit (GELU)

GELU is an activation function designed to capture a more Gaussian-like non-
linearity, which can benefit certain types of data. It avoids the vanishing gradient
problem, is computationally efficient, and has been found to perform well in deep
neural networks.

Mathematically, it can be described as follows:

f(z) = z · Φ(z) (2.21)

where Φ(z) is the Cumulative Distribution Function for Gaussian Distribution.

A graph depicting the GELU activation function is shown in Figure 2.7.
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Softmax

The Softmax activation function is commonly used in the output layer of neural
networks for multiclass classification problems. It transforms a vector of arbitrary
values into a probability distribution over K classes, where K is the number of classes.
The exponential function amplifies the differences between input values, highlighting
the class with the highest score.

Figure 2.7: Gaussian Error Linear Unit (GELU) activation function.

The mathematical expression for it is:

f(zi) =
ezi∑K
j=1 e

zj
(2.22)

Loss functions

A loss function in Deep Learning is a function that measures the difference or
dissimilarity between the predicted output of a model ypred and the actual output
ytrue. The main purpose of a loss function is to measure how well the model is
performing in relation to the task it is trying to learn (Janocha & Czarnecki, 2017).

The mathematical foundation of a loss function is based on the idea of mini-
mizing the difference between the predicted output and the actual output. The loss
function is a scalar value that quantifies this difference. The value of the loss function
is used to update the parameters of the model during the training process, with the
goal of minimizing the loss function over time.
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Hence, a loss function is a mapping following this structure:

L(ytrue, ypred) → R (2.23)

To avoid overfitting issues, some penalty terms—also named regularization
terms—are usually added to the loss function. Although there is a huge variety
of them, the most relevant ones are the L1 and L2 regularization.

L1 regularization

L1 regularization adds a penalty term to the loss function that is proportional
to the absolute values of the model’s weights. It encourages the model to have sparse
weights by pushing some of them to be exactly zero. Mathematically, the L1 regular-
ization term is defined as:

LL1 = λ
n∑

i=1

|wi| (2.24)

Where λ is the regularization strength, wi represents the model’s weight pa-
rameters and n is the total number of model parameters.

L2 regularization

L2 regularization adds a penalty term to the loss function that is proportional
to the squared values of the model’s weights. It encourages the model’s weights to be
small but doesn’t force them to be exactly zero. Mathematically, the L2 regularization
term is defined as:

LL2 = λ
n∑

i=1

∥wi∥22 (2.25)

Where λ is the regularization strength, wi represents the model’s weight pa-
rameters and n is the total number of model parameters.
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Dropout

A dropout layer (Hinton et al., 2012) in Deep Learning is a specialized type of
layer that randomly deactivates, or sets to zero, a certain proportion of the input units
during the forward pass of the neural network. The primary objective of a dropout
layer is to counteract neuron co-adaptation, a phenomenon wherein neurons within
the network become overly reliant on one another during training. When neurons co-
adapt, they tend to depend on specific neighboring neurons to compensate for their
individual weaknesses or to make accurate predictions.

Dropout induces diversity among the neurons in the network, encouraging them
to learn a more robust and varied set of features. This, in turn, enhances the model’s
ability to generalize well during inference. Additionally, as noise is introduced into
the input units, dropout contributes to preventing overfitting.

Normalization layers

Normalization layers are frequently used in the context of Deep Learning to
reduce the internal covariate shift (Ioffe & Szegedy, 2015). Without normalization,
the distribution of the inputs to a layer can change as the parameters of the network
are updated, which can make training more difficult. By normalizing the inputs, the
distribution remains more stable, which allows the network to learn faster and with
better stability.

It’s worth noting that normalization layers can also be beneficial for the final
performance of the model, as it can make it more robust to different types of input
and hence, acting as a regularizer.

The most common types of normalization layers are batch normalization and
layer normalization. Batch normalization (Ioffe & Szegedy, 2015) normalizes the ac-
tivations of a layer by subtracting the batch mean and dividing by the batch standard
deviation, while layer normalization (Ba et al., 2016) normalizes the activations of a
layer by subtracting the layer mean and dividing by the layer standard deviation.

Embedding layers

In the Deep Learning context, an embedding layer is a type of layer that is used
to map discrete input data, such as words, characters, or categories, to a continuous
vector space (Bengio et al., 2000). The main purpose of an embedding layer is to
represent the input data in a way that can be easily computed by a neural network.

The mathematical foundation of an embedding layer is based on the idea of
a vector space representation. In this representation, each discrete input data is
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mapped to a unique vector, called an embedding vector. Embedding vectors are
typically learned during the training process of the neural network.

The embedding vectors are typically represented by a matrix, where each row
corresponds to an embedding vector for a specific input data. This matrix is often
called an embedding matrix or a weight matrix.

For example, suppose you have a text dataset, and you want to use it to train a
neural network for sentiment analysis. Asuming a simple tokenization step, each word
in your dataset could be represented as a unique index, where each index corresponds
to a word in your vocabulary. For example, in the sentence I am passionate about
Deep Learning, ”I” could be represented as 1, ”am” as 2, ”passionate” as 3, ”about”
as 4, ”Deep” as 5 and ”Learning” as 6.

In the embedding layer, you specify the size of the embedding vectors. For
example, you might decide to use 50-dimensional vectors. The embedding layer ini-
tializes these vectors randomly and then learns to adjust them during training. Hence,
each unique word index corresponds to a unique embedding vector: Index 1 (word ”I”)
might correspond to the embedding vector [0.32, -0.23, 0.54, ...] in 50-dimensional
space, index 2 (word ”am”) might correspond to the embedding vector [-0.47, 0.32,
-0.21, ...] and so forth.

2.3.2 Parameter tuning

In a deep neural network, parameters, i.e., weights, are tuned, i.e., updated,
following an iterative numerical algorithm based on gradient descent (Wright, 2006),
where the values of the gradients are calculated following the backpropagation algo-
rithm (Hecht-Nielsen, 1989). Next, we extend both concepts.

Gradient descent

Gradient descent is an optimization algorithm commonly used to train Machine
Learning models, especially deep neural networks. The goal of the algorithm is to
find the values of the model’s parameters that minimize a given loss function, which
measures the discrepancy between the model’s predictions and the true values.

The basic idea behind gradient descent is to iteratively adjust the parameters
in the direction of the negative gradient of the loss function with respect to the
parameters. The negative gradient points in the direction of the steepest descent of
the loss function, which is the direction that decreases the loss the most.
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The most common form of gradient descent is called batch gradient descent,
which uses the entire dataset to compute the gradient at each iteration. The update
rule for the parameters at iteration t is given by:

θt+1 = θt − α∇L(θt) (2.26)

where θt is the value of the parameters at iteration t, ∇L(θt) is the gradient of
the loss function with respect to the parameters at iteration t, and α is the learning
rate, which controls the step size of the update.

However, in practice, other variants of gradient descent are used, which consider
a group of samples or mini-batch in each iteration (Bertsekas, 1994). Next, we present
the most relevant numerical optimization procedures for Deep Learning, considered
in this thesis.

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variant of the gradient descent algo-
rithm that is particularly useful for large-scale Machine Learning problems, where
the dataset is too large to fit in memory or it takes too long to compute the gradient
using the entire dataset (Bottou, 1998).

The basic idea behind SGD is to estimate the gradient of the loss function
using a small, randomly selected subset of the data, called a batch or mini-batch, at
each iteration. The update rule for the parameters at iteration t is given by:

θt+1 = θt − α∇L(θt, xi) (2.27)

Here θt is the value of the parameters at iteration t, ∇L(θt, xi) is the gradient
of the loss function with respect to the parameters at iteration t, computed using a
random sample xi from the dataset, and α is the learning rate, which controls the
step size of the update.

One of the main advantages of SGD over batch gradient descent is that it can
start making updates to the parameters right away, without having to wait for the
entire dataset to be processed. This makes SGD well suited for online and streaming
learning scenarios.

Another advantage of SGD is that it often results in a more robust optimization
scheme, since the estimate of the gradient is less affected by specific samples in the
dataset.
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However, the main disadvantage is that the SGD updates are noisier since it
is using a small subset of the data to update the parameters, and this can cause
the algorithm to oscillate or converge to suboptimal solutions. To overcome this,
people usually reduce the learning rate over time, or use techniques like momentum
or adaptive learning rate optimization.

It is also worth noting that, in practice, the batches used in SGD are not truly
random. They are usually selected in a cyclic manner, so that the algorithm sees all
the examples multiple times. This is called epoch training where one epoch is one
pass over the full dataset.

Adaptive Moment Estimation (Adam)

Adam (Adaptive Moment Estimation) (Kingma & Ba, 2017) is an optimization
algorithm that is used to update the parameters of a neural network. It is a com-
bination of two optimization techniques, SGD and Root Mean Square Propagation
(RMSProp) (Sun et al., 2019).

The Adam algorithm updates the parameters using the following equations:

mt+1 = β1mt + (1− β1)∇L(θt, xB)

υt+1 = β2υt + (1− β2)∇L(θt, xB)
2

m̂t+1 =
mt+1

1− β
(t)
1

υ̂t+1 =
υt+1

1− β
(t)
2

θt+1 = θt − α
m̂t+1√
υ̂t+1 + ϵ

(2.28)

wheremt+1 and υt+1 are the first and second-moment estimates of the gradient,
respectively, β1 and β2 are hyperparameters that control the decay rate of the moment
estimates and ϵ is a small value added to the denominator to prevent division by zero.
m̂t+1 and υ̂t+1 are the unbiased estimates of the first and second moments. The
parameter update step is similar to that of the standard SGD, with the addition of
the scaling factor m̂t+1√

υ̂t+1+ϵ
which adapts the learning rate based on the historical

gradient information.
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Adam is generally considered to be a good optimization algorithm for many
Deep Learning tasks, as it has been shown to converge quickly and perform well in
practice (Sun et al., 2019).

Adaptive Moment Estimation with Weight Decay (AdamW)

AdamW (Loshchilov & Hutter, 2019) is an optimization algorithm for neural
networks that combines the Adam algorithm with weight decay regularization (Krogh
& Hertz, 1991). The AdamW algorithm introduces weight decay regularization to the
Adam algorithm by adding a term to the gradients that penalizes large weight values.
The regularization term is defined as the L2 norm of the weights multiplied by a
weight decay factor. Hence, the overall update rule for the AdamW algorithm can be
expressed this way:

θt+1 = θt − α
m̂t+1 + wθt√

υ̂t+1 + ϵ
(2.29)

where w is the weight decay factor.

The AdamW algorithm is similar to the Adam algorithm, but it is less prone
to overfitting, as it encourages the weights to take smaller values.

Backpropagation

In the previous subsection we have explained how weights are iteratively up-
dated with gradient descent-based numerical optimization algorithms. Here we briefly
expose the backpropagation algorithm (Hecht-Nielsen, 1989), used to calculate the
value of the gradients required to carry out the gradient descent updating step.

Backpropagation is an algorithm used to calculate gradients in neural networks.
The algorithm works by propagating the error back through the network, starting with
the output layer and working its way back to the input layer.

The mathematical notation for backpropagation can be quite complex, but the
basic idea is to calculate the gradient of the loss function with respect to each weight
in the network. This is done using the chain rule of calculus, which states that the
derivative of a composite function can be computed by taking the derivative of each
function in the composite and multiplying them together.

Assuming we have a loss function L that measures the discrepancy between
the predicted outputs of the network and the true labels, backpropagation allows us
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to compute the gradients of L with respect to the weights and biases of the network,
as expressed in the following equation:
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where w
[l]
ij denotes the weight that connects the neuron i from the previous

layer l − 1 with the neuron j from the current layer l, b
[l]
j is the bias associated with

neuron j from layer l, h
[l]
j is the value of the activation of neuron j of layer l, and z

[l]
j

is the input to the activation function of neuron j of layer l.

2.3.3 Feed-forward neural networks

Feed-forward neural networks, commonly found in the form of Multilayer Per-
ceptrons (MLP) (Rosenblatt, 1958), are a type of neural network that is widely used
in Deep Learning. They are called feed-forward because the information flows through
the network in one direction, from the input layer to the output layer, without any
feedback loops.

Mathematically, a feed-forward neural network can be represented as a func-
tion that maps an input vector x to an output vector y, using a series of nonlinear
transformations applied to the input. The input vector x is fed into the first layer of
the network, i.e., the input layer. This input layer consists of a set of neurons, each
of which corresponds to one element of the input vector.

Each neuron in the input layer is connected to one or more neurons in the next
layer, called the hidden layer. The hidden layer consists of a set of neurons that apply
a nonlinear transformation to the outputs of the neurons in the previous layer. The
outputs of the neurons in the hidden layer are then fed into the next layer, and so on,
until the output layer is reached.

We present next a more formal description of an MLP, the most common feed-
forward neural network:

Let us consider an MLP with L layers, including the input layer, hidden layers,
and the output layer. Each layer has a certain number of neurons. We denote the
number of neurons in layer l as N(l), where l ranges from 1 to L.
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The activation of neuron i in layer l is denoted as hi(l), and the weighted sum
of inputs to neuron i in layer l is denoted as zi(l). The weights connecting neuron i
in layer l− 1 to neuron j in layer l are denoted as wij(l), and the bias term of neuron
i in layer l is denoted as bi(l). Finally, the activation function used in each neuron is
denoted as σ.

The equations describing the forward propagation of MLP at a given layer l
are:

z
[l]
j =

N(l)∑
n=1

w
[l]
ijh

[l−1]
i + b

[l]
j

h
[l]
j = σ(z

[l]
j ) (2.31)

Next, in Figure 2.8, we provide a schematic illustration depicting the structure
of an ANN model.

Figure 2.8: Schematic representation of a feed-forward neural network.

2.3.4 Recurrent neural networks (RNN)

Definition

Recurrent Neural Networks (RNNs) are a type of neural network designed
to process sequential data, such as time series or natural language. They are called
recurrent because they perform the same computation for every element in a sequence,
with the output of one step being used as input for the next step.
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The main architectures of RNNs are the simple RNN (Amari, 1972), the Long
Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997), and the
Gated Recurrent Unit (GRU) network (Cho et al., 2014).

A simple RNN consists of a single layer of neurons that have a memory in the
form of a hidden state ht, which is passed from one step of the sequence to the next.
The hidden state is updated at each step using the current input xt and the previous
hidden state ht−1, according to the following equations:

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by) (2.32)

where ht is the hidden state at time step t, xt is the input at time step t, yt
is the output at time step t, σh is an activation function, σy is an output activation
function, Wh, Uh, Wy, bh, and by are the weights and biases of the network.

Next, a representation of the RNN model architecture is depicted in Figure 2.9:

Figure 2.9: Recurrent Neural Network architecture.

LSTM and GRU are more complex variants of RNNs that are designed to over-
come the problem of vanishing gradients (“Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies”, 2009), which is a common problem
in simple RNNs when processing long sequences. These architectures introduce ad-
ditional states and gates that control the flow of information through the network,
allowing it to retain or forget information from the past selectively. We emphasize
here that within the LSTM context, a state represents a continuous vector containing
specific information, whereas a gate serves as a mechanism for regulating the flow of
information through the network by modifying the aforementioned state vectors.

The main reason to use RNNs is that they are able to process sequential data,
which means that the input and output of the network are ordered. This allows RNNs
to learn patterns in the data that depend on the order of the elements.
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Long Short-Term Memory (LSTM) networks

Long Short-Term Memory (LSTM) networks are a type of RNN that are de-
signed to overcome the problem of vanishing gradients, which is a common problem in
simple RNNs when processing long sequences. Specifically, the problem of vanishing
gradients is a challenge that occurs during training, specifically when backpropagat-
ing gradients through time. It refers to the issue where gradients become extremely
small as they are propagated backward through the recurrent connections, making
it difficult for the network to learn long-range dependencies in sequential data. This
can result in the network struggling to capture and retain information from distant
time steps, which is a critical limitation in tasks requiring such context.

LSTM networks introduce additional gates and states that control the flow of
information through the network, allowing it to retain or forget information from the
past selectively. An LSTM network consists of a series of LSTM cells, each containing
three gates: an input gate, an output gate, and a forget gate. These gates are used
to control the flow of information into and out of the cell’s internal state, called the
memory cell. The following equations define the gates:

it = σg(Wixt + Uiht−1 + bi)

ft = σg(Wfxt + Ufht−1 + bf )

ot = σg(Woxt + Uoht−1 + bo) (2.33)

where it, ft and ot are the input gate, forget gate, and output gate respectively,
xt is the input at time step t, ht−1 is the hidden state at time step t− 1, Wi, Ui, Wf ,
Uf , Wo, Uo, bi, bf and bo are the weights and biases of the network, and σg is the
sigmoid activation function.

The main advantage of LSTM networks over standard RNNs is that they are
able to selectively retain or forget information from the past, which allows them
to effectively process long sequences without suffering from the problem of vanishing
gradients. This makes LSTM networks well-suited to tasks such as language modeling,
speech recognition, and time series forecasting.

2.3.5 Transformers

Definition

The Transformer is a Deep Learning model architecture introduced in (Vaswani
et al., 2017). It is mainly considered for Natural Language Processing (NLP) tasks,
such as language translation, text summarization and text generation.
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The Transformer model architecture is based on the concept of self-attention,
which allows the model to weigh the importance of different words in the input se-
quence when making a prediction. This contrasts with traditional RNN architectures,
such as the LSTM or the GRU which use recurrence to weigh the importance of pre-
vious words in the input sequence.

The Transformer model consists of an encoder and a decoder, structures made
up of multiple layers of self-attention and feed-forward neural networks. The encoder
takes in a sequence of words, such as a sentence, and generates a set of hidden states
that represent the meaning of the input sequence. The decoder then takes in the
hidden states from the encoder and generates a new sequence of words, such as a
translation of the input sentence. A representation of the encoder-decorder architec-
ture of the Transformer model can be found in Figure 2.10:

Figure 2.10: The Transformer architecture. Extracted from (Jia, 2019).

One of the main advantages of the Transformer architecture over RNN-based
architectures is its ability to parallelize the computations. This allows the model to
process an entire sequence at once, rather than processing it one word at a time as
in RNNs. This results in faster training and inference times, which are particularly
important for large-scale NLP tasks.
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Another advantage of the transformer model is that it does not suffer from the
vanishing gradient problem, which is a common issue with RNNs. The self-attention
mechanism in the transformer allows the model to weigh the importance of words
in the input sequence, regardless of their position, which makes it more robust to
long-term dependencies.

Transformer architecture has implied a breakthrough in the field of Deep Learn-
ing. In fact, transformer-based models have gone beyond state-of-the-art results in
various NLP tasks and have become the de facto standard in most NLP applications.

Next, we delve into a more detailed explanation of the self-attention mech-
anism, which forms the core of the Transformer architecture. Additionally, we ex-
plore the multi-head attention mechanism, which amplifies self-attention capabilities.
Furthermore, we discuss positional encoding, a technique that enables computation
parallelization while maintaining a sense of sequence ordering within the input.

Self-attention

Self-attention is a mechanism that enables a model to focus on various parts
of the input sequence, assigning different levels of importance to different elements
when making predictions. To clarify this concept, we introduce the query Q, key K,
and value V matrices. These matrices are learnable parameters of the self-attention
mechanism, and they encode various aspects of the input sequence:

Query (Q): The Query matrix is used to represent the elements in the sequence
that we are currently trying to weight or attend to.

Key (K): The Key matrix is used to represent the elements in the sequence against
which we want to compare the Query elements.

Value (V): The Value matrix is used to represent the content or information asso-
ciated with each element in the sequence.

The self-attention mechanism can be mathematically represented as follows:

Given an input sequence of length T and a set of query, key and value matrices,
Q, K, and V , respectively, the attention weights, A, are computed as the dot product
of the query Q and the key K matrix, scaled by the square root of the dimension of
the key K matrix and then passed through a softmax function.

The attention weights, A, for each position i in the input sequence are computed
as:

A = softmax(
QKT

√
dk

) (2.34)
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where dk is the dimension of the key matrix.

The context vector, C, is then computed as the dot product of the attention
weights A and the value matrix:

C = AV (2.35)

Finally, the output of the self-attention layer is computed as the concatenation
of the context vectors for all positions in the input sequence:

O = [C1, ..., CT ] (2.36)

Multi-head attention

Multi-head attention is an extension of the self-attention mechanism that allows
the model to attend to different parts of the input sequence simultaneously. This
is done by performing multiple self-attention operations, each with different weight
matrices, and concatenating the resulting attention outputs.

The mathematical foundation of multi-head attention is similar to the self-
attention, with the main difference being that multiple queries, keys, and values
are created and multiple dot product attention are performed using different weight
matrices. The output of each attention head is concatenated and passed through a
final linear layer to obtain the final output.

The multi-head attention mechanism allows the model to attend to different
parts of the input sequence simultaneously, which allows the model to learn more
nuanced representations of the input. This is particularly useful in NLP tasks, where
the meaning of a sentence can depend on multiple words and phrases.

Positional encoding

Positional encoding is a mechanism implemented in the Transformer architec-
ture to provide the model with information about the relative position of the elements
in the input sequence. This is necessary because the self-attention mechanism used in
the Transformer architecture does not inherently consider the order of the elements
in the input sequence.

In the Transformer architecture, each element in the input sequence is rep-
resented as a vector, and these vectors are passed through multiple layers of self-
attention and feed-forward neural networks. However, since the self-attention mech-
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anism only considers the relationships between the vectors, and not their order, the
model is unable to distinguish between two sentences with the same elements but
different order.

To overcome this limitation, positional encoding is used to add information
about the relative position of the words in the input sequence to the vectors repre-
senting the words. This is done by adding a fixed vector, called the positional encoding
vector, to each word vector. The value of the positional encoding vector is determined
by the position of the word in the input sequence, and the mathematical function used
to generate these vectors is based on transcendental functions, specifically on sine and
cosine functions.

The mathematical function used to generate the positional encoding vectors,
as presented in (Vaswani et al., 2017), is:

PE(pos,2i) = sin(
pos

10000
2i

dmodel

)

PE(pos,2i+1) = cos(
pos

10000
2i

dmodel

) (2.37)

where pos is the position of the word in the input sequence, i is the dimension
of the word vector, and dmodel is the dimension of the positional encoding vector.

The resulting word vectors with the added positional encoding are then passed
through the multiple layers of the Transformer model.

We illustrate in Figure 2.11 how the position of each element in a sequence is
encoded within the positional encoding paradigm.

Main transformer architectures

There is a wide variety of Transformer-based models currently used in NLP
tasks. However, in this section we are going to present just those that are relevant to
this thesis: the BERT model and the DistilBERT model.

Bidirectional Encoder Representations from Transformers (BERT)

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et
al., 2019) is a pre-trained Transformer-based neural network model for NLP tasks. It
was designed to understand the meaning of a text by analyzing the context in which
words appear. BERT is trained on a large corpus of text data, which allows it to
learn the relationships between words and their meanings.
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The BERT model is trained on a task of predicting missing words in a sentence,
called the Masked Language Model (MLM) task. This task is used to train the model
to understand the context of a word by looking at the words surrounding it, both to
the left and the right. It is bidirectional in the sense that it considers the context from
both directions, which allows it to understand the meaning of a word in the context
of the entire sentence.

Figure 2.11: Positional encoding representation.

One of the main uses of BERT is for text classification tasks. To use BERT
for text classification, the pre-trained model is fine-tuned on a labeled dataset for the
specific task. Fine-tuning involves training the model on a new dataset while keeping
the pre-trained weights fixed, and only updating the weights of the last layers of the
model. The fine-tuned model can then be used to classify new text data into different
categories.

BERT can be fine-tuned on various text classification tasks such as sentiment
analysis, topic classification, and named entity recognition. The pre-trained BERT
model can be fine-tuned on a specific dataset with a specific classification task, and
it often gives state-of-the-art results on various text classification benchmarks.
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Distilled Bidirectional Encoder Representations from Transformers (DistilBERT)

A distilled version of BERT (DistilBERT) (Sanh et al., 2020) is a smaller,
faster, and cheaper version of the BERT model. DistilBERT is trained on the same
data as BERT, but uses fewer parameters, which makes it faster and more efficient
to run.

The model is distilled from a larger BERT model, meaning that it is trained to
approximate the behavior of the larger model while using fewer parameters. This is
achieved through knowledge distillation (Hinton et al., 2015), where the outputs from
the larger model are used to guide the training of the smaller model. The result is a
smaller model that maintains similar levels of performance as the larger model on a
variety of NLP tasks.

DistilBERT has been shown to perform well on a wide range of natural language
understanding tasks, such as question answering and sentiment analysis, while being
smaller and faster than the original BERT model.

Overall, DistilBERT is a useful model for developers and researchers who want
to use BERT’s powerful language understanding capabilities in their applications but
are limited by computational resources or want to reduce the size of the model for
deployment.

2.4 Machine Learning models for Emergency Medical Call
Incidents triage

Next, we expose the state-of-the-art of how Machine and Deep Learning tech-
niques are being used in the emergency medical triage problem, considering research
that has dealt with similar—or rather similar—problems than ours. We describe what
they provide, as well as their limitations.

If we focus on Machine Learning-based solutions for out-of-hospital emergency
medical triage, the literature we found is scarce, since 1) it is a very specific problem
and 2) the field of Machine Learning—and Deep Learning—is relatively novel and
hence, there is still some reluctancy in its usage by the emergency medical dispatch
professionals. However, we present the most relevant works found in this field.

Finally, it has to be taken into account that at the time this thesis began, none
of the studies we are about to present had been published.

Cardiac arrest recognition: (Blomberg et al., 2019) considered a Machine Learn-
ing approach to the detection of cardiac arrest from audio files of emergency
calls. Their results show that sensitivity in this detection can be increased via
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Machine Leaning while keeping a decent value of specificity. Specifically, they
achieved sensitivity values of 84.1%, and specificity values of 97.3%.

Risk scores prediction: exposed in (Spangler et al., 2019), the authors developed
Gradient Boosting models to predict the risk associated to each of the patients
involved in a prehospital emergency medical event. Results from their study
shown that Machine Learning-based scores outperformed rule-based triage al-
gorithms and human prioritization decisions in this prehospital triage setting.

Conveyance needs for unconscious patients: exposed in (Tollinton et al., 2020),
they developed Random Forest and Gradient Boosting models to determine
whether free text dispatcher observations could improve the prediction of un-
conscious patients who require conveyance. Results from their study showed
that considering this Machine Learning-based strategy improved the outcome
in terms of predicting these conveyance needs from an AUC of 0.57 to 0.64.

Most probable clinical pathways: presented in (Veladas et al., 2021), they de-
signed and implemented a text-based model to calculate the top-3 and the top-5
most probable clinical pathways associated to a telephonic emergency medical
event. Results from their work revealed an accuracy of around 95% in the
prediction of these clinical pathways.

Intelligent telephone triage: documented in (HAN, 2022), they developed a Ran-
dom Forest model to determine the acuity of an out-hospital medical emergency
case given the available structured information during the emergency medical
call. Results reported in their work indicate a reduction in over-triage rates of
around 15% whilst maintaining a similar level of under-triage rates.

Under-triage prediction: described in (Inokuchi et al., 2022), they evaluated dif-
ferent types of Machine Learning models, specifically Support Vector Machines,
Lasso Regression, Random Forest, Gradient Boosting and Deep Learning mod-
els. These models can facilitate the early detection of under-triaged patients.
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Deep ensemble multitask

classification of emergency medical

call incidents combining multimodal

data improves emergency medical

dispatch

The objective of this work was to develop a predictive model to aid non-clinical
dispatchers in classifying emergency medical call incidents by their life-threatening
level (yes/no), admissible response delay (undelayable, minutes, hours, days), and
emergency system jurisdiction (emergency system/primary care) in real-time. We
used 1 244 624 independent incidents from the Valencian emergency medical dispatch
service in Spain, compiled retrospectively from 2009 to 2012, including clinical fea-
tures, demographics, circumstantial factors, and free text dispatcher observations.
Based on them, we designed and developed DeepEMC2, a deep ensemble multitask
model integrating four subnetworks: three specialized to context, clinical, and text
data, respectively, and another to ensemble the former. The four subnetworks are
composed in turn by multi-layer perceptron modules, bidirectional long short-term
memory units, and a bidirectional encoding representations from transformers mod-
ule. DeepEMC2 showed a macro F1-score of 0.759 in life-threatening classification,
0.592 in admissible response delay, and 0.757 in emergency system jurisdiction. These
results show a substantial performance increase of 12.5%, 17.5%, and 5.1%, respec-
tively, with respect to the current in-house triage protocol of the Valencian emergency
medical dispatch service. Besides, DeepEMC2 significantly outperformed a set of
baseline machine learning models, including naive bayes, logistic regression, random

59



Chapter 3. Deep ensemble multitask classification of emergency medical call incidents

forest, and gradient boosting (α = 0.05). Hence, DeepEMC2 is able to: 1) capture
information present in emergency medical calls not considered by the existing triage
protocol, and 2) model complex data dependencies not feasible by the tested baseline
models. Likewise, our results suggest that most of this unconsidered information is
present in the free text dispatcher observations. To our knowledge, this study de-
scribes the first Deep Learning model undertaking emergency medical call incidents
classification. Its adoption in medical dispatch centers would potentially improve
emergency dispatch processes, resulting in a positive impact in patient well-being and
health services sustainability.

The contents of this chapter were published in the journal publication (Ferri
et al., 2021)—thesis contributions C1 and P1.

3.1 Introduction

EMD involves the reception and management of requests for medical assis-
tance in an emergency medical services system (J. J. Clawson & Dernocoeur, 1988).
It comprises two main dimensions: call-taking, where emergency medical calls are
received and incidents are classified according to their priority—triaged—and control-
ling, where the best available resources are dispatched to handle the event (Blandford
& William Wong, 2004).

The call-taking process is generally managed by emergency medical dispatchers
(Stratton, 1992). These mediators are in many cases non-clinical staff, trained with
the essential knowledge of medical emergencies for the proper and efficient manage-
ment of the incident (Blandford & William Wong, 2004; J. J. Clawson & Dernocoeur,
1988; J. Clawson, 1981; Stratton, 1992). Dispatchers usually follow a clinical proto-
col, established in the medical dispatch center, and periodically verified by medical
supervisors (Palumbo et al., 1996).

However, despite preparation and the existence of triage protocols, assigning
priorities to EMCIs is a challenging and stressful task for dispatchers, requiring con-
stant concentration (Ek et al., 2013; Forslund et al., 2004; Weibel et al., 2003). Ad-
ditionally, there is always an inherent uncertainty on the real patient state, since the
information of the event is gathered from telephonic interview processes. Furthermore,
there are time constraints due to the incident priority or the need for tackling other
incoming calls (Leprohon & Patel, 1995). A wrong priority assignment derives either
in insufficient medical attention or unnecessary resource deployment (Hjälte et al.,
2007; Sramek et al., 1994). In consequence, EMCIs triage protocols are continuously
revised and enhanced.

Many triage algorithms, such as the Emergency severity index (Gilboy et al.,
2012), the Manchester triage system (Mackway-Jones et al., 2013), the Canadian
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triage and acuity scale (Murray et al., 2004) or the Australasian triage scale (Considine
et al., 2004), have been widely studied and enriched (Christ et al., 2010; Seiger et
al., 2011; Storm-Versloot et al., 2011; Zachariasse et al., 2017). However, they are
difficult to benchmark, deriving in no international agreement about their use for
EMD (FitzGerald et al., 2010). Likewise, these algorithms depend on structured
clinical information which is not always available during the call (Farand et al., 1995).
As such, improvements in EMD processes by redefining this sort of protocols are
extremely costly and limited.

Hence, approaches for EMD improvement based on alternative paradigms such
as Machine Learning, and particularly Deep Learning, are gaining momentum. Deep
Learning is at the state of the art of Machine Learning in tasks involving complex
types of data (LeCun et al., 2015), e.g., high dimensional, unstructured, sequential,
multimodal (Hinton et al., 2012; Hirschberg & Manning, 2015; Russakovsky et al.,
2015; Silver et al., 2016), such as those found in EMCI databases. Likewise, this
and other Machine Learning tools have already been applied to tackle EMD chal-
lenges such as ambulance allocation (Chen & Lu, 2014; McLay & Mayorga, 2013),
prediction of emergency calls volume (Channouf et al., 2007), automatic stress detec-
tion of the caller (Lefter et al., 2011), interpretable knowledge extraction (Barrientos
& Sainz, 2012), performance monitoring (Klement & Snášel, 2011), cardiac arrest
calls assistance (Blomberg et al., 2019) or triaging unconscious and fainting patients
(Tollinton et al., 2020). Therefore, ML, and in particular Deep Learning, is a feasible
and promising technology to improve EMD through EMCI classification. However,
most current studies dealing with EMCI by means of ML—such as those previously
exposed—tend to focus on specific disorders, developing high quality models but re-
stricted to narrow domains, not being designed to handle the wide casuistry intrinsic
to general EMCI classification.

In the Valencian Community (Spain), the triage of EMCI is currently supported
by an in-house triage protocol, based on a clinical decision tree, grounded on heavily
structured clinical variables, e.g., chest pain (yes or no), collected throughout the
interview in a sequential manner. Therefore, free text dispatcher observations, with
higher expressiveness than structured data, cannot be automatically processed by the
protocol, limiting its generalization to situations beyond the established guidelines.

These limitations, along with the potential capability of Deep Learning to en-
hance general EMCI classification—through the provision of decision support to non-
clinical dispatchers—was spotted by the Health Services Department of the Valencian
region. Since no previous studies were known to have dealt with this problem before,
a new study was required to assess the performance of Deep Learning in general EMCI
classification.

In this chapter, we develop and evaluate a Deep Learning model to provide
decision support to non-clinical dispatchers in EMCI triage from the medical dispatch
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center of the Valencian region. Our model is designed to integrate the EMCI data
collected during the call and carry out its classification. Despite of the existence of
studies dealing with EMCI classification for specific disorders, to our knowledge, this
is the first large-scale study undertaking a general EMCI classification trough Deep
Learning.

3.2 Materials

3.2.1 Dataset

Overview

A total of 1 244 624 independent EMCI of the Health Services Department of
the Valencian Community, were compiled in retrospective from 2009 to 2012. The
Health Services Department board of the Valencian Community chose this time win-
dow due to its high data reliability—during this period, coordinating physicians su-
pervised dispatcher’ recordings—and the absence of critical changes in the emergency
pathology of the population of the Valencian region over the last 15 years.

These EMCI data included during-call and after-call data. We categorized the
data variables as structured—fixed fields—and unstructured—open fields—as well
as stationary—with no implicit order—and sequential—with an implicit order (Fig-
ure 3.1).

During-call data

During-call data (Figure 3.1 top) are recorded during the emergency medical
call. These data consist of demographics, circumstantial factors, clinical features—
collected throughout the triage tree navigation—and free text dispatcher observations:

Demographics data—structured and stationary—include age, gender and risk
group variables. Age is a numerical discrete feature, gender is a categorical binary
variable (male, female) and risk group is a categorical multiclass variable—with mul-
tiple possible values, such as asthmatic, allergic, cardiac, diabetic, neoplastic, etc.

Circumstantial factors data—structured and stationary—include date and caller
type variables. The latter consists on a categorical multiclass variable, keeping infor-
mation about the person or institution which made the emergency medical call and
taking values such as police, red cross, the patient, a relative, etc.
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Figure 3.1: Dataset variables arranged by type. Names and cardinality, before and after
pre-processing (derived variables), are presented, indicating how many variables—or sub-
words, when referring to text features—are available per case after pre-processing. Examples
for their values are also included. Class frequencies for each output label are also reported.
N is equal to the final 722 270 EMCI used in the study.

Clinical variables data—structured and sequential—include features providing
relevant medical information. They are collected in a sequential manner during the
call, registering a subset of them, from the total 71 variables available. A full list
including all these variables is available in Table 3.1 and Table 3.2. These variables
are categorical, presenting one possible value or multiple ones. An example of how
four clinical variables and their values are registered during an emergency medical
call could be: previous trauma, yes; hemorrhage, yes; bleeding site, rectal bleeding;
consequences of the clinic, severe blood loss.
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Table 3.1: Clinical variables with some of their example values. Certain variables have just
one possible associated value, while others may exhibit multiple values. To ease presentation,
example values are limited to three in this table.

Variable Example values
Active arrhythmia yes
Active suicide attempt yes
Acute decompensation of mental illness yes
Administration of medication yes
Age less than 1 year, over 70 years
Altered behavior abnormal behavior, aggressiveness/agitation
Arterial vascular clinic yes
Bleeding site epistaxis, hematuria, melena
Blood glucose abnormal
Blood or mucus in stool no, yes
Breathing absent, labored
Burn yes
Causation of intake autolysis attempt , medication error
Choking yes
Clinic start abrupt, progressive
Clinic triggers upsetting
Clinical evolution stable without worsening
Consequences of the clinic mild blood loss, moderate blood loss, severe blood loss
Constipation yes
Consumption of toxic substances yes
Cyanosis yes
Death yes
Diarrhea yes
Dizziness yes
Drug intake no, yes
Dyspnoea no, yes
Dysuria and / or hematuria yes
Eating / bilious vomiting yes
Epidemiological criteria contact with contaminated samples, contact with diagnosed cases
Epidemiological infectious disease yes
Existence of neurological focality yes
Fever over 38, over 39
Flu syndrome yes
Gastrointestinal symptoms yes
Hemorrhage no, yes
Hypertensive crisis yes

Finally, free text dispatcher observations—unstructured and sequential—consist
on short sentences, written during the call and providing additional relevant informa-
tion which cannot be recorded in a structured manner. The language in which they
are written is Spanish. Examples of two free text dispatcher observations bound each
one to a different event are (translated into English): according to the caller epileptic
crisis, he has drunk and taken pills, he is half-conscious with half-closed eyes; patient
bleeds abundantly from the head after falling at home, they have just found it in a pool
of blood.
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Table 3.2: Clinical variables with some of their example values. Certain variables have just
one possible associated value, while others may exhibit multiple values. To ease presentation,
example values are limited to three in this table.

Variable Example values
ICTUS code criteria no
Impaired consciousness yes
Impaired consciousness level yes
Incident location highway, inter-urban road, lakes or rivers and other inland waters
Injury severity major, minor, moderate
Intake household product yes
Intake of substance (medicine or toxic) yes
Itchiness yes
Medical history cardiac pathology, copd, diabetes
Menstruation yes
Nasal congestion no, yes
Number of injured from 1 to 3, over 3
Ongoing birth yes
Pain abdomen, generalized, head, lumbar area
Pregnant no, yes
Previous trauma no, yes
Prior care no, yes
Recovered unconscious yes
Regular medication impossible to obtain, insulin, oral antidiabetics
Relationship and contact level absent, present
Seizures yes
Sickness yes
Signs of severity no, yes
Skin alteration type edema/swelling
Skin disorders yes
Symptoms of glottic edema yes
Time of evolution over 24 hours
Toxic substance heroin
Treatment prescribed treatment for the clinical picture, psychiatric medication
Type of accident aggression, collision, drowning
Unconscious no, yes
Vegetative picture no, yes
Venous vascular clinic yes
Vomiting yes
Without further information yes

After-call data

After-call data are recorded at a time after the call and used to derive EMCI
classification labels, since they provide reliable up-to-date information about the real
patient state. These data include: posterior physician diagnosis, standardized by In-
ternational classification of diseases codes (I.C.D., 2021), such as syncope (ICD 780.2)
or acute myocardial infarction (ICD 410); maneuvers and procedures indicating if the
patient was intubated, reanimated, sedated, received surgery, etc.; and hospitaliza-
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tions and urgency stays with information about the department where the patient
was treated, the amount of time he stayed there and his discharge code.

Labels derivation

We transcribed the information contained in after-call data to three different
and complementary EMCI classification labels (Figure 3.1 bottom): life-threatening
level (yes/no), admissible response delay (undelayable, minutes, hours, days) and
emergency system jurisdiction (emergency system/primary care). The mapping be-
tween after-call data and EMCI classification labels was established by a panel of 17
physicians from the Health Services Department of the Valencian Community, using
a Delphi methodology (Dalkey, 1969).

Data quality assessment and inclusion criteria

To ensure the highest reliability of the model training data, we performed and
reported a data quality analysis on the included data (Sáez et al., 2019). The analysis
included the assessment of data quality dimensions of completeness and consistency, as
well as temporal and multi-source variability (Sáez et al., 2015, 2016, 2017)—changes
in the statistical distributions of data over time or among sources, respectively. The
main findings included: approximately 30% of data with at least one missing label;
and outlying distributions in some dispatchers, especially those with less than 100
calls.

According to these results, we considered, for the next stages of our work, those
EMCI which after-call data were fully available, and which during-call data were
registered by non-novice dispatchers—dispatchers with more than 100 calls managed.
The final working dataset size comprised 722 270 EMCI.

3.2.2 Framework

The implementation language was Python 3.7.3 (G. van Rossum (Guido),
1995), making use of libraries Pandas (McKinney, 2010), NumPy (van der Walt et al.,
2011), and Fuzzywuzzy (Cohen, 2011), for data pre-processing and Sklearn (Pedregosa
et al., 2011), Pytorch (version 1.4.0) (Paszke et al., 2017), Hugginface transformers
(Wolf et al., 2019) and Hyperopt (Bergstra et al., 2015) for modeling.
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3.3 Methods

3.3.1 Data pre-processing

Depending on variable type, different pre-processing techniques were applied,
mapping the original data to a matrix representation to be used for the Deep Learning
model (Figure 3.1 right, highlighted pre-processing blocks):

Age, a structured stationary discrete ordinal variable, was mapped to a fuzzy
(Zadeh, 1965) representation through piecewiselinear functions (Novák et al., 2012).
These membership functions, represented in Figure 3.2, were validated by physicians
of the Health Services Department of the Valencian Community. This smoothing
transformation was carried out to avoid sharp transitions derived from grouping in a
small set of categories discrete ordinal variables with high cardinality in their values.

Figure 3.2: Piecewise linear functions representing age group membership.

Gender, risk group and caller type, structured stationary categorical variables,
were one-hot encoded while several variables were derived from the date variable:
weekday, month, if the day was or not a weekend day and if the day was or not
was a bank holiday. These resulting variables, also structured stationary categorical
variables, were one-hot encoded too.

Regarding the clinical variables, structured sequential variables, each variable-
value pair was converted to an integer, conforming then, sequences of integers that
were pre-padded afterwards, to ensure sequences of fixed length (Dwarampudi &
Reddy, 2019). This length was equal to 7, since in more than 99% of the incidents
reported, the number of clinical variables collected was equal or lower than 7.
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Spelling correction processes by means of fuzzy string matching (Wagner &
Fischer, 1974) were applied to the free text dispatcher observations, unstructured se-
quential variables, to reduce vocabulary dimensionality and noise. Besides, subword
tokenization with WordPiece was carried out to reduce vocabulary size (Wu et al.,
2016). To ensure sequences of fixed length while keeping information about the orig-
inal sequences lengths, post-padding and attention mask generation were conducted.
The padding length was set in 68, since in more than 99% of the incidents reported,
the number of subwords written was equal or lower than 68.

Finally, labels, structured stationary categorical data, were one-hot encoded,
deriving in a label matrix of 8 columns, each one associated with a specific label-class
pair.

3.3.2 Data splitting and sampling

To evaluate model performance and tune hyperparameters without any bias,
data were iteratively and randomly split into six subsets (Figure 3.3) (Kohavi, 1995).

First, data were randomly split into two disjoint design and test sets, with
80% and 20% proportions respectively. Next, the design set was randomly divided
again into a training and a validation set, with 80% and 20% proportions. Finally,
a sampling step was performed taking 100000 elements to define a training and a
validation sample.

Figure 3.3: Data splitting and sampling. The number of data of each partition, along
with its percentage respect the total number of data, are provided. Abbreviations: HP,
hyperparameter.
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3.3.3 Deep neural network design

The problem of classifying EMCI combining multimodal data was divided into
four subproblems: three EMCI classification problems taking as inputs for each one
EMCI data from the same type—structured stationary, structured sequential and
unstructured sequential—and a last EMCI classification problem taking as inputs
inner outputs obtained from the solution of the prior problems. To solve these four
challenges, four Deep Learning subnetworks were developed: the Context subnetwork
(ConNet), the Clinical subnetwork (CliNet), the Text subnetwork (TextNet) and the
Ensemble subnetwork (EnsNet). Finally, once trained, they were combined in a single
global modular neural network model (Kacprzyk & Pedrycz, 2015).

Likewise, as the life-threatening, response delay and jurisdiction labels provide
different but related information, e.g., a life-threatening situation implies a low ad-
missible response delay, a multitask learning (Caruana, 1997) paradigm was followed,
to exploit these label dependences. To promote training efficiency and regulariza-
tion while reducing the number of subnetworks parameters, a hard parameter sharing
approach (Ruder, 2017b) was adopted. Hence, each of the four developed subnet-
works presented a task-shared block—same set of parameters for all label prediction
tasks—and a task-specific block—specific set of parameters for each label prediction
task.

The ensemble of the four multitask subnetworks defined DeepEMC2—Deep
Ensemble Multitask Classifier for Emergency Medical Calls—the global and definitive
Deep Learning model.

Next, we describe in detail each of the subnetworks integrated in DeepEMC2,
supported by Figure 3.4:

The Context subnetwork (Figure 3.4 left) deals with the demographics and cir-
cumstantial factors bound to an EMCI. It consists on a multi-layer perceptron (MLP)
(Malsburg, 1986) due to its adequateness to model structured and stationary data,
composed by dense and output blocks. A dense block integrates a fully connected
layer (Goodfellow et al., 2016) a batch normalization layer (Ioffe & Szegedy, 2015)
to manage internal covariate shift, a leaky ReLU (Maas et al., 2013) activation func-
tion to avoid vanishing and exploding gradients, while preventing dead neurons issues
(Nwankpa et al., 2018) and a dropout layer (Hinton et al., 2012) to prevent neuron
co-adaptation. An output block is composed by a fully connected layer and a softmax
activation function, to dispose of a normalization score—between 0 and 1—for each
class of each predicted label.

The Clinical subnetwork (Figure 3.4 center) deals with the clinical features
collected during the call. It consists on a recurrent model, since clinical features are
notified in a sequential manner, being their recording order potentially informative. It
is composed by an embedding layer (Bengio et al., 2000), which compresses the sparse
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input space into a smaller and dense one; a stack of multiple bidirectional long short-
term memory (BLSTM) (Schuster & Paliwal, 1997) units, which capture long-term
dependences far better than standard recurrent models; multiple skip connections (He
et al., 2016) across the BLSTM units, to reduce the risk of losing relevant informa-
tion during BLSTM propagation; a concatenation block—concatenates the outputs of
these skip connections—and a MLP module, integrated by dense and output blocks,
to act as an intermediary between the multiple BLSTM outputs and the final label
predictions.

The Text subnetwork (Figure 3.4 right) deals with the free text dispatcher
observations—unstructured and sequential—written during an EMCI. It is composed
by a bidirectional encoding representations from transformers (BERT) (Devlin et al.,
2019) block, since this model is at the state of the art in natural language processing
tasks, including text classification, and a MLP module, to relate BERT outputs with
label outputs. The BERT block is comprised in turn by an embedding block, an
encoder block (Vaswani et al., 2017), and a pooler block, while the MLP component
is constituted by dense and output blocks.

The Ensemble subnetwork (Figure 3.4 bottom) integrates inner outputs from
the ConNet, the CliNet and the TextNet to generate the final outputs of DeepEMC2.
It consists of a concatenation block with a MLP component, composed by dense and
output blocks. The inputs of the concatenation block are the outputs of the last
layer of the dense block prior to the task-specific block of each one of the former
subnetworks. It takes these inner outputs, and not the final output scores since these
last values aggregate tons of information in just a small set of scalar values; hence,
the modeling potential of the inner outputs is higher.

3.3.4 Parameter tuning

Subnetworks were trained in a constructive modularized manner (Kacprzyk &
Pedrycz, 2015), so they were independently trained and assembled later as loosely
coupled models. The optimizer selected for that was ADAM (Kingma & Ba, 2017),
given its learning adaptability, noisy gradients management and learning process sta-
bility (Ruder, 2017a; Sun et al., 2019). A term of weight decay (Krogh & Hertz, 1991)
was included in the parameters upgrading rule expression, to promote regularization.
Likewise, it was followed a mini-batch upgrading approach (Bertsekas, 1994), com-
puting gradients with backpropagation (Hecht-Nielsen, 1989) and backpropagation
through time (Werbos, 1990). The objective function was a cross-entropy (Janocha
& Czarnecki, 2017) loss (CEL). For each subnetwork, three CEL were calculated—one
per label—averaged afterwards and finally backpropagated to carry out the parame-
ter tuning process. Layers with leaky ReLU activation functions were initialized with
Kaiming initialization (He et al., 2015), while softmax activation function layers were
initialized with Xavier’s initialization (Glorot & Bengio, 2010).
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Figure 3.4: DeepEMC2—Deep Ensemble Multitask Classifier for Emergency Medical
Calls—architecture, including its constituting subnetworks—the Context subnetwork, the
Clinical subnetwork, the Text subnetwork and the Ensemble subnetwork. Arrows indicate
the forward propagation direction, for each subnetwork, as well as the global network
(DeepEMC2), colored according to the particular neural network they refer.
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3.3.5 Hyperparameter tuning

The influence of hyperparameters over subnetworks performance was carefully
considered in this work, in order to maximize the attainable outcomes. The hyperpa-
rameters studied were related with subnetworks architecture and optimizer settings.

Hyperparameters were tuned following a multi-step strategy (Figure 3.5).

The first step involved an automatic active learning (Settles, 2009) hyperpa-
rameter optimization process (Figure 3.5 top): four surrogate models—one per sub-
network—based on tree-structured parzen estimators (Bergstra et al., 2011), learned
the conditional probability distribution of subnetworks hyperparameters given their
associated CEL. Aiming to maximize the Expected Improvement (Jones, 2001) of the
CEL, new hyperparamter configurations were iteratively sampled from the surrogate
models, being upgraded after each training loop. Thereby, 280 different subnetworks—
70 hyperparameter configurations times four subnetworks—were trained and evalu-
ated in the training and validation samples, respectively.

Figure 3.5: Multi-step hyperparameter tuning strategy. Yellow arrows imply unidirection-
ality, while blue arrows stand for a feedback loop, both inside a hyperparameter optimization
step. Green arrows denote unidirectionality across hyperparameter optimization steps. Ab-
breviations: HP, hyperparameter; TR, training; VAL, validation; DSG, design TS, test.

Next, the best hyperparameter configurations proposed by the surrogate models
were selected (Figure 3.5 middle). To prevent overfitting, the best five hyperparameter

72



3.3 Methods

configurations for each subnetwork were taken to retrain and validate the subnetworks,
in the training and the validation set, respectively, obtaining a total of 20 models
trained in this step. Then, the CEL was obtained for each of them and those hyperpa-
rameter configurations with the best value—lowest validation CEL—were considered
as the optimal hyperparameter configuration.

Finally, the optimal hyperparameters were used to retrain the four subnetworks
using the whole design set, to ensure a proper exploitation of the data (Figure 3.5
bottom). Once trained, its integration into a single architecture defined DeepEMC2—
the global network—evaluated later in the test set.

3.3.6 Evaluation

In-house triage protocol and baseline models

First, to assess if DeepEMC2 provides an improvement in EMCI classification
respect the existing clinical rules, performance metrics were obtained for the current
in-house triage protocol of the Valencian emergency dispatch service.

Second, to compare the performance of the Deep Learning model respect well-
known machine learning models in EMCI classification, we trained and evaluated the
following baseline models:

1. Multinomial naive bayes (NB) (Bayes & Price, 1763): including a term of ad-
ditive Laplace smoothing (Manning et al., 2008).

2. Logistic regression (LR) (Nelder & Wedderburn, 1972): including a penalty
term for L2 regularization (Ng, 2004) and resorting to L-BFGS (Liu & Nocedal,
1989) as optimizer algorithm.

3. Random forest (RF) (Ho, 1995): considering Gini impurity as splitting criterion
(Raileanu & Stoffel, 2004), while assembling a total of 300 tree estimators whose
maximum depth was equal to 50, being these optimal values determined via
hyperparameter tuning procedures.

4. Gradient boosting (GB) (Friedman, 2001): considering mean squared error with
improvement score by Friedman (Friedman, 2001) as splitting criterion, with a
total of 300 tree estimators whose maximum depth was set in 5, being these
optimal values determined by hyperparameter tuning processes.

Notably, the input data for these baseline models had to be adapted to be
processed by them. Clinical variables were one-hot encoded instead of being fed
as sequences of integers. Regarding free text observations, once spelling correction

73



Chapter 3. Deep ensemble multitask classification of emergency medical call incidents

processes, subword tokenization and sentence truncation were carried out, subwords
were one-hot encoded.

Metrics

Performance metrics were obtained in the test set (144 454 independent EMCI)
for each label prediction task and each model trained—we recall here that EnsNet
outputs are the same as DeepEMC2. The evaluation metrics included accuracy, re-
call, precision and F1-score (Maimon & Rokach, 2010; Yang & Liu, 1999). For binary
labels (life-threatening, jurisdiction), recall, precision and F1-score were referencing
the interest class—life-threat and emergency system jurisdiction. Regarding the mul-
ticlass label (response delay), recall and precision were calculated for each class and
then averaged following a macro approach. Likewise, for all labels, macro F1-score
(Maimon & Rokach, 2010; Yang & Liu, 1999) was computed, to dispose of a balanced
multiclass performance descriptor—not influenced by class frequencies. Finally, for all
metrics, 95% confidence intervals were calculated by 1000 bootstrap samples (Efron
& Tibshirani, 1994) extracted from the test set.

Metrics were calculated in the test set, for the protocol, the baseline models—
naive bayes, logistic regression, random forest and gradient boosting—and the Deep
Learning models developed—the ConNet, the CliNet, the TextNet and DeepEMC2.
We recall here that, although DeepEMC2 is the definitive Deep Learning model which
takes into account input data globally, results referring its constituting subnetworks,
contrasted with baseline models trained with the same type of input data of each
subnetwork, are also reported, to analyze the contribution of each set of inputs to the
global model and where Deep Learning provides a substantial gaining over the other
kind of models.

Likewise, percentage differences between DeepECM2 and the protocol are also
reported, as well as percentage differences between DeepECM2 and the best baseline
model—that baseline model with the best balanced multiclass performance—which
has been measured in our work in terms of macro F1-score.

3.4 Results

Table 3.3, Table 3.4 and Table 3.5 show the classification performance results
for the life-threatening level, admissible response delay and emergency system juris-
diction labels, respectively.
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3.4.1 Life-threatening level

Table 3.3 shows that DeepEMC2—the global Deep Learning model—highly
outperforms the current protocol in the life-threatening prediction task with a 13.2%
of accuracy improvement and a 12.5% of macro F1-score increment. This incre-
ment is statistically significant as reflected by the absence of overlapping in the 95%
confidence intervals (CI). DeepEMC2 captures more true life-threatening situations—
higher recall—being much more precise—with less false positives.

In comparison to the baseline models, although DeepEMC2 does not offer the
best recall or precision, it achieves the best trade-off between them, as indicated by the
best F1-score, being this metric statistically superior to those F1-scores attained by
the baseline models. Likewise, referring to the best balanced two-class performance,
DeepEMC2 presents the best macro F1-score, with statistically significant difference
respect to the baselines models.

Focusing on the subnetworks, the ConNet is the weakest Deep Learning model.
The CliNet offers the better detection rate for true life-threatening situations but at
the expense of a significant amount of false positives. Finally, the TextNet exhibits
the overall better behavior although its capability to capture true life-threatening
events is not the best among the subnetworks.

Regarding the comparative performance among the subnetworks and their re-
spective baseline models, it stands out the performance similitude among the ConNet
and some of their associated baseline models as well as the high outcomes resemblance
among the CliNet and the baseline models using clinical variables. Finally, notably
the TextNet presents greater differences respect its corresponding baseline models,
being these differences notorious in the F1-score and macro F1-score.
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Table 3.3: Performances of the in-house triage protocol, baseline models and Deep
Learning models in life-threatening prediction (test set). Bootstrapped 95% confidence
intervals are shown between brackets. Percentage differences between DeepEMC2—the
global Deep Learning model—and the protocol ∆P (%), along with percentage differences
between DeepEMC2 and the best baseline model ∆BM (%)—highest F1-score and F1-
scoreMACRO—are also reported. Abbreviations: MAC, macro; Ctx., context; Cli., clinical;
Glo., global; NB, naive bayes; LR, logistic regression; RF, random forest; GB, gradient
boosting; DL, Deep Learning; ∆P, DeepEMC2 difference respect to the protocol; ∆BM,
DeepEMC2 difference respect to the best baseline model in life-threatening.

Life-threatening level (yes/no)

Single-class metrics (yes) Two-class metrics (yes/no)

Model Recall Precision F1-score Accuracy F1-scoreMAC

Protocol 0.644[0.641,0.647] 0.547[0.544,0.551] 0.592[0.589,0.595] 0.639[0.637,0.641] 0.634[0.632,0.636]

Ctx. NB 0.407[0.404,0.410] 0.563[0.559,0.567] 0.472[0.469,0.475] 0.631[0.629,0.633] 0.594[0.592,0.596]

Ctx. LR 0.411[0.407,0.414] 0.577[0.573,0.581] 0.480[0.476,0.483] 0.638[0.636,0.640] 0.601[0.599,0.604]

Ctx. RF 0.465[0.462,0.469] 0.526[0.522,0.529] 0.494[0.491,0.497] 0.612[0.610,0.614] 0.590[0.588,0.592]

Ctx. GB 0.428[0.425,0.432] 0.588[0.584,0.592] 0.495[0.492,0.499] 0.646[0.644,0.648] 0.611[0.609,0.613]

Ctx. DL 0.440[0.436,0.443] 0.583[0.579,0.587] 0.501[0.498,0.504] 0.644[0.642,0.647] 0.613[0.610,0.615]

Cli. NB 0.732[0.729,0.735] 0.550[0.547,0.553] 0.628[0.625,0.630] 0.647[0.645,0.650] 0.646[0.644,0.649]

Cli. LR 0.752[0.750,0.755] 0.586[0.583,0.589] 0.659[0.656,0.661] 0.683[0.681,0.685] 0.682[0.680,0.684]

Cli. RF 0.764[0.761,0.767] 0.585[0.583,0.589] 0.663[0.661,0.665] 0.684[0.682,0.686] 0.683[0.681,0.685]

Cli. GB 0.763[0.760,0.766] 0.585[0.583,0.589] 0.663[0.660,0.665] 0.684[0.682,0.686] 0.683[0.681,0.685]

Cli. DL 0.790[0.787,0.793] 0.581[0.578,0.584] 0.669[0.667,0.672] 0.683[0.681,0.685] 0.682[0.681,0.685]

Text NB 0.681[0.678,0.685] 0.647[0.644,0.650] 0.664[0.661,0.666] 0.719[0.718,0.721] 0.711[0.710,0.714]

Text LR 0.629[0.626,0.633] 0.728[0.724,0.731] 0.675[0.672,0.678] 0.754[0.752,0.756] 0.738[0.736,0.740]

Text RF 0.514[0.511,0.517] 0.783[0.780,0.787] 0.621[0.618,0.624] 0.745[0.743,0.747] 0.714[0.712,0.716]

Text GB 0.578[0.575,0.581] 0.758[0.755,0.762] 0.656[0.653,0.659] 0.753[0.752,0.755] 0.732[0.730,0.734]

Text DL 0.638[0.635,0.642] 0.737[0.734,0.740] 0.684[0.681,0.687] 0.760[0.758,0.762] 0.745[0.744,0.747]

Glo. NB 0.729[0.726,0.732] 0.635[0.632,0.638] 0.679[0.676,0.681] 0.720[0.718,0.722] 0.715[0.713,0.717]

Glo. LR 0.652[0.649,0.656] 0.736[0.733,0.740] 0.692[0.689,0.695] 0.764[0.762,0.766] 0.750[0.748,0.752]

Glo. RF 0.585[0.582,0.589] 0.776[0.773,0.779] 0.667[0.665,0.670] 0.763[0.761,0.765] 0.742[0.740,0.744]

Glo. GB 0.616[0.613,0.620] 0.762[0.759,0.765] 0.681[0.679,0.684] 0.766[0.764,0.768] 0.748[0.746,0.750]

DeepEMC2 0.671[0.668,0.675] 0.742[0.739,0.745] 0.705[0.702,0.707] 0.771[0.770,0.773] 0.759[0.757,0.761]

∆P (%) 2.7[2.1,3.4] 19.5[18.8,20.1] 11.3[10.7,11.8] 13.2[12.9,13.6] 12.5[12.1,12.9]

∆BM (%) 1.9[1.2,2.6] 0.6[-0.1,1.2] 1.3[0.7,1.8] 0.7[0.4,1.1] 0.9[0.5,1.3]
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3.4.2 Admissible response delay

Table 3.4 shows that DeepEMC2 outcomes are significantly superior to those
achieved by the protocol in the response delay prediction task (CI 95%).

Overall detection of situations with a specific admissible response delay (unde-
layable, minutes, hours, days) is largely improved by DeepEMC2—15.8% increment
in macro recall—while remarkably enhancing overall precision—17.3% increment. Re-
garding the general performance in all classes, DeepEMC2 significantly improves the
protocol, with a 16.4% of accuracy improvement and a 17.5% of macro F1-score in-
crement.

DeepEMC2 does not offer the best overall precision compared to the baseline
models. However, it improves the overall recall and the best—balanced multiclass
performance, in terms of macro F1-score. Furthermore, this global performance is
the best, in terms of statistically significance difference respect the baseline models,
although the performance difference respect the global gradient boosting model—best
baseline model in admissible response delay prediction—is at the limit, since 0 is the
lower bound of the 95% confidence intervals for performance differences.

Focusing on DeepEMC2 subnetworks for response delay prediction, the ConNet
is at the bottom in performance terms, not being capable of outperforming the proto-
col. The CliNet is clearly over the ConNet and already beats the protocol, while the
TextNet is the best DeepEMC2 subnetwork in all metrics, with a substantial increase
respect to the CliNet.

Regarding the comparative performance among the subnetworks and their re-
spective baseline models, it can be appreciated the performance similitude among the
ConNet and some of their associated baseline models as well as the high outcomes re-
semblance among the CliNet and the baseline models fed with the clinical variables.
Finally, the TextNet presents greater differences respect its corresponding baseline
models, being these differences significant in the macro F1-score metric.
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Table 3.4: Performances of the in-house triage protocol, baseline models and Deep Learn-
ing models in response delay prediction (test set). Bootstrapped 95% confidence inter-
vals are shown between brackets. Percentage differences between DeepEMC2—the global
Deep Learning model—and the protocol ∆P (%), along with percentage differences between
DeepEMC2 and the best baseline model ∆BM (%)—highest F1-scoreMACRO—are also re-
ported. Abbreviations: MAC, macro; Ctx., context; Cli., clinical; Glo., global; NB, naive
bayes; LR, logistic regression; RF, random forest; GB, gradient boosting; DL, Deep Learn-
ing; ∆P, DeepEMC2 difference respect to the protocol; ∆BM, DeepEMC2 difference respect
to the best baseline model in response delay prediction.

Admissible response delay (undelayable, minutes, hours, days)

Model RecallMAC PrecisionMAC F1-scoreMAC Accuracy

Protocol 0.411[0.409,0.413] 0.416[0.414,0.419] 0.401[0.398,0.403] 0.428[0.426,0.430]

Ctx. NB 0.375[0.373,0.377] 0.382[0.379,0.385] 0.364[0.362,0.366] 0.396[0.394,0.399]

Ctx. LR 0.376[0.374,0.378] 0.396[0.393,0.398] 0.369[0.367,0.371] 0.406[0.403,0.408]

Ctx. RF 0.348[0.345,0.350] 0.357[0.354,0.359] 0.350[0.348,0.352] 0.371[0.369,0.373]

Ctx. GB 0.382[0.380,0.384] 0.414[0.411,0.417] 0.383[0.381,0.385] 0.415[0.413,0.417]

Ctx. DL 0.376[0.374,0.378] 0.415[0.412,0.418] 0.377[0.374,0.379] 0.413[0.411,0.415]

Cli. NB 0.458[0.456,0.460] 0.503[0.501,0.506] 0.460[0.458,0.462] 0.482[0.480,0.484]

Cli. LR 0.479[0.477,0.481] 0.522[0.520,0.525] 0.488[0.486,0.490] 0.505[0.503,0.507]

Cli. RF 0.477[0.475,0.479] 0.533[0.530,0.535] 0.485[0.483,0.488] 0.507[0.504,0.509]

Cli. GB 0.477[0.475,0.479] 0.532[0.530,0.535] 0.485[0.483,0.488] 0.507[0.504,0.509]

Cli. DL 0.477[0.475,0.479] 0.530[0.527,0.532] 0.485[0.483,0.487] 0.506[0.504,0.508]

Text NB 0.527[0.524,0.529] 0.517[0.515,0.519] 0.519[0.517,0.521] 0.533[0.531,0.535]

Text LR 0.544[0.542,0.546] 0.564[0.562,0.567] 0.550[0.548,0.553] 0.569[0.567,0.572]

Text RF 0.524[0.522,0.527] 0.583[0.581,0.586] 0.535[0.533,0.538] 0.563[0.561,0.566]

Text GB 0.545[0.543,0.547] 0.577[0.575,0.580] 0.554[0.552,0.556] 0.574[0.572,0.576]

Text DL 0.544[0.542,0.546] 0.583[0.580,0.585] 0.555[0.553,0.557] 0.576[0.574,0.578]

Glo. NB 0.537[0.534,0.539] 0.531[0.529,0.534] 0.533[0.531,0.535] 0.549[0.547,0.551]

Glo. LR 0.557[0.555,0.559] 0.579[0.577,0.581] 0.564[0.562,0.567] 0.582[0.580,0.585]

Glo. RF 0.547[0.545,0.549] 0.593[0.590,0.595] 0.557[0.555,0.560] 0.581[0.579,0.583]

Glo. GB 0.562[0.560,0.565] 0.593[0.591,0.596] 0.572[0.570,0.574] 0.589[0.587,0.592]

DeepEMC2 0.569[0.567,0.571] 0.589[0.587,0.591] 0.576[0.574,0.579] 0.592[0.590,0.594]

∆P (%) 15.8[15.4,16.2] 17.3[16.8,17.7] 17.5[17.1,18.1] 16.4[16,16.8]

∆BM (%) 0.7[0.2,1.1] -0.4[-0.9,0] 0.4[0,0.9] 0.3[-0.2,0.7]
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3.4.3 Emergency system jurisdiction

Table 3.5 shows that DeepEMC2 significantly outperforms the protocol in the
jurisdiction prediction task (95% CI). It captures more situations which are juris-
diction of the emergency system—better recall—being more precise—with less false
positives. Respect to the overall performance in both classes, DeepEMC2 surpasses
the protocol, with a 4.5% of accuracy improvement and a 5.1% of macro F1-score
increment.

DeepEMC2 does not offer the best recall or precision compared to the baseline
models. However, it achieves, along with the gradient boosting model, the best trade-
off between them, as indicated by their best F1-score, being this metric statistically
superior to that attained by the logistic regression model—best baseline model in
emergency system jurisdiction prediction. Likewise, referring to the best balanced
two-class performance, DeepEMC2 presents the best macro F1-score, with statistically
significant differences respect the baselines models.

Focusing on DeepEMC2 subnetworks, although the ConNet presents the high-
est recall values, its precision is not the best, with worse general results than the
protocol in the jurisdiction prediction task. The CliNet provides a substantial im-
provement over the later subnetwork, with an overall performance above the protocol.
As in life-threatening and response delay, the TextNet is the subnetwork attaining the
best outcomes.

Regarding to the comparative performance among the subnetworks and their
respective baseline models, notably the performance is similar among the ConNet and
some of their associated baseline models as well as the high outcomes resemblance
among the CliNet and the baseline models fed with the clinical variables. Finally,
it has to be highlighted that the TextNet presents greater differences respect its
corresponding baseline models, being these differences notorious in the F1-score and
accuracy.
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Table 3.5: Performances of the in-house triage protocol, baseline models and Deep Learning
models in jurisdiction prediction (test set). Bootstrapped 95% confidence intervals are shown
between brackets. Percentage differences between DeepEMC2—the global Deep Learning
model—and the protocol ∆P (%), along with percentage differences between DeepEMC2

and the best baseline model ∆BM (%)—highest F1-score and F1-scoreMACRO—are also
reported. Abbreviations: MAC, macro; Ctx., context; Cli., clinical; Glo., global; NB, naive
bayes; LR, logistic regression; RF, random forest; GB, gradient boosting; DL, Deep Learning;
∆P, DeepEMC2 difference respect to the protocol; ∆BM, DeepEMC2 difference respect to
the best baseline model in jurisdiction prediction.

Emergency system jurisdiction (yes/no)

Single-class metrics (yes) Two-class metrics (yes/no)

Model Recall Precision F1-score Accuracy F1-scoreMAC

Protocol 0.855[0.854,0.857] 0.800[0.798,0.802] 0.827[0.825,0.828] 0.756[0.754,0.757] 0.706[0.703,0.708]

Ctx. NB 0.892[0.891,0.894] 0.752[0.750,0.754] 0.816[0.815,0.818] 0.726[0.724,0.728] 0.638[0.636,0.640]

Ctx. LR 0.919[0.918,0.921] 0.746[0.744,0.748] 0.824[0.822,0.825] 0.731[0.729,0.733] 0.629[0.627,0.631]

Ctx. RF 0.850[0.848,0.852] 0.745[0.743,0.747] 0.794[0.793,0.796] 0.699[0.697,0.701] 0.618[0.615,0.620]

Ctx. GB 0.936[0.935,0.937] 0.744[0.742,0.746] 0.829[0.828,0.831] 0.737[0.735,0.739] 0.628[0.625,0.630]

Ctx. DL 0.945[0.943,0.946] 0.741[0.739,0.743] 0.830[0.829,0.832] 0.736[0.734,0.738] 0.620[0.618,0.622]

Cli. NB 0.897[0.896,0.899] 0.800[0.798,0.802] 0.846[0.844,0.847] 0.777[0.775,0.778] 0.720[0.718,0.723]

Cli. LR 0.906[0.904,0.908] 0.798[0.796,0.800] 0.848[0.847,0.850] 0.779[0.777,0.781] 0.721[0.718,0.723]

Cli. RF 0.901[0.899,0.902] 0.801[0.799,0.803] 0.848[0.847,0.850] 0.780[0.778,0.782] 0.724[0.722,0.726]

Cli. GB 0.916[0.914,0.917] 0.793[0.791,0.795] 0.850[0.849,0.851] 0.779[0.778,0.781] 0.717[0.714,0.719]

Cli. DL 0.900[0.899,0.902] 0.802[0.800,0.804] 0.848[0.847,0.849] 0.780[0.778,0.782] 0.724[0.722,0.726]

Text NB 0.793[0.791,0.795] 0.833[0.831,0.835] 0.812[0.811,0.814] 0.750[0.748,0.752] 0.719[0.717,0.721]

Text LR 0.896[0.895,0.898] 0.810[0.807,0.811] 0.851[0.849,0.852] 0.785[0.783,0.787] 0.734[0.732,0.736]

Text RF 0.936[0.934,0.937] 0.782[0.780,0.784] 0.852[0.851,0.853] 0.778[0.776,0.780] 0.704[0.702,0.707]

Text GB 0.906[0.905,0.907] 0.803[0.801,0.805] 0.851[0.850,0.853] 0.784[0.782,0.786] 0.728[0.726,0.730]

Text DL 0.917[0.916,0.919] 0.804[0.802,0.806] 0.857[0.856,0.858] 0.791[0.789,0.793] 0.734[0.732,0.736]

Glo. NB 0.818[0.817,0.820] 0.834[0.832,0.836] 0.826[0.825,0.828] 0.765[0.763,0.766] 0.731[0.729,0.733]

Glo. LR 0.902[0.901,0.904] 0.816[0.814,0.818] 0.857[0.855,0.858] 0.794[0.792,0.796] 0.745[0.743,0.747]

Glo. RF 0.925[0.924,0.926] 0.802[0.800,0.804] 0.859[0.858,0.860] 0.793[0.791,0.795] 0.734[0.732,0.737]

Glo. GB 0.914[0.913,0.916] 0.811[0.809,0.813] 0.860[0.858,0.861] 0.796[0.794,0.798] 0.743[0.741,0.745]

DeepEMC2 0.895[0.894,0.897] 0.827[0.825,0.829] 0.860[0.858,0.861] 0.801[0.799,0.802] 0.757[0.755,0.759]

∆P (%) 4[3.7,4.3] 2.7[2.3,3.1] 3.3[3,3.6] 4.5[4.2,4.8] 5.1[4.7,5.6]

∆BM (%) -0.7[-1,-0.4] 1.1[0.7,1.5] 0.3[0,0.6] 0.7[0.3,1] 1.2[0.8,1.6]
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3.5 Discussion

3.5.1 Relevance

The superior performance of DeepEMC2 and some of the baseline models, re-
spect to the in-house triage protocol, suggests the existence of information provided
during the emergency medical call not considered by the current protocol, but cap-
tured by the machine learning models. Likewise, the Deep Learning approach is
preferable over the other families of models tested, since DeepEMC2 outcomes are
significantly above those attained by the baseline models.

In referring context and clinical variables, Deep Learning is not clearly at the
top. However, regarding the free text dispatcher observations, the Deep Learning
approach is, overall, remarkably superior. Likewise, as TextNet outcomes are far bet-
ter than those attained by the ConNet and CliNet, the most valuable information
provided during the emergency medical call would be present at these unstructured
features. Since text fields are unbounded, they would embrace wider casuistry, allow-
ing more precision in the EMCI description, lowering, consequently, its uncertainty.

Regarding the clinical variables, they stand as an excellent life-threatening
detector features—about 80% of total cases. This could be due to the fact that dis-
patchers ask for them to reduce chances of missing situations where patient’s life is at
risk. Similarly, the outstanding emergency system jurisdiction recall of demographics
and circumstantial factors—capturing about 95% of total cases—may be related with
patient profiles highly susceptible from requiring emergency aid, e.g., elderly cardiac
patient males.

Comparing classification scores across tasks, the hardest classification problem
appeared to predict the admissible response delay, probably derived from the fact
that it is a multiclass label, presenting twice possible outputs (undelayable, minutes,
hours, days) than the other labels (life-threatening, jurisdiction), which are binary.

The modular approach followed in this work, assembling four specialized sub-
networks into a single global network (DeepEMC2), has shown that the potential of
the aggregated network is superior to any of its individual components, balancing their
respective weaknesses and strengths while properly integrating processed information
within each one.

Unlike previous studies (Barrientos & Sainz, 2012; Blomberg et al., 2019; Chan-
nouf et al., 2007; Chen & Lu, 2014; Klement & Snášel, 2011; Lefter et al., 2011;
Maxwell et al., 2009; McLay & Mayorga, 2013; Tollinton et al., 2020), we offer gen-
eral EMCI classification, not being restricted to specific disorders. Hence, incidents
can be classified as they come, without needing a prior routing step which may in-
troduce fatal biases in posterior processes. Besides, this holistic approach eases the
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embedding of DeepEMC2 in a clinical decision support system platform, avoiding the
implementation of filtering operations which may hinder its usability.

Finally, the results of this work imply that current emergency dispatch pro-
cesses could be improved by means of Deep Learning, eventually deriving in a positive
impact over patient wellbeing and health services sustainability.

3.5.2 Limitations

The main limitation of this work is the inherent uncertainty bound to the
problem: in the studied dataset it was likely to find similar input combinations pre-
senting completely different label values. In other words, the challenge faced in this
work exhibits classes overlap, where different disorders may present the same clinical
picture. For example, chest pain may imply a life-threatening situation, if the under-
lying unknown cause is a heart attack, or not, since it could be derived from a prior
anxiety crisis. This non-discriminative variability sets bounds in terms of maximum
performance attainable by any model—Bayes error (Fukunaga, 2013). As such, from
a model applicability viewpoint, although DeepEMC2 notably surpasses the in-house
triage protocol, it is not error-free. However, its value lies in offering recommenda-
tions regarding to EMCI classification which tend to be more accurate than those
offered by the protocol, leading to better decision support, which in turn derives in
EMD improvement.

Besides, the data available to conduct this work lies between 2009 and 2012
years (both included). Even though the clinical framework of pathologies like heart
failure or epileptic crisis could be fairly constant across time, an in-depth study of
potential dataset shifts (Quinonero-Candela et al., 2008) and related abrupt or gradual
changes regarding the statistical distributions of new data has to be carried out before
implementing the model in emergency medical dispatch centers.

3.5.3 Future work

Next steps include the evaluation of DeepEMC2 with prospective cases from the
Valencia region—with more recent incidents, monitoring the aforementioned dataset
shifts and acting in consequence. Passing this phase favorably will enable us to be-
gin the integration of the model into a clinical Decision Support System (CDSS) in
an emergency medical dispatch center. The DeepEMC2 CDSS will incorporate a
graphical user interface to allow fast and straightforward interactions between the
dispatcher and the model during the call. Likewise, a prospective evaluation of the
system performance and added value on routine settings through a randomized con-
trolled trial for CDSS (Angus, 2020) will be carried out. Finally, once these steps
have been conducted, and with the approval of emergency medical experts of the

82



3.6 Conclusions

Health Services Department, the resulting tool will be implemented in the emergency
medical dispatch center of the Valencian Community.

3.6 Conclusions

A novel deep ensemble multitask model (DeepEMC2) designed to aid non-
clinical dispatchers during emergency medical calls to classify incidents by their life-
threatening level, admissible response delay and emergency system jurisdiction, has
been developed and successfully evaluated. To our knowledge, this is the first Deep
Learning model implemented to face this challenge.

The performance achieved by the model is highly superior to that attained
by the current in-house triage protocol of the emergency medical dispatch service of
the Valencian Community, achieving a macro F1-score improvement of 12.5%, 17.5%,
5.1% in life-threatening, response delay and jurisdiction classification, respectively.
Likewise, DeepEMC2 outcomes are above those accomplished by the additional ma-
chine learning models tested, including naive bayes, logistic regression, random for-
est and gradient boosting. This increment was proved as statistically significant
(α = 0.05).

Remarkably, the network modular design with specialized subnetworks for the
different data modalities has allowed discovering the potential benefit of the informa-
tion contained in free text fields for the automatic classification of emergency medical
call incidents. This information can be used to optimize current guidelines.

The implantation of this model in medical dispatch centers would have a re-
markable impact in patient well-being and health services sustainability.
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Chapter 4

Discovering key topics in emergency

medical dispatch from free text

dispatcher observations

The objective of this work was to discover key topics latent within free text
dispatcher observations registered during emergency medical calls. We analyzed a
total of 1 374 931 independent retrospective cases from the Valencian emergency med-
ical dispatch service in Spain, spanning from 2014 to 2019. Text fields underwent
preprocessing to reduce vocabulary size and filter out noise, including accent and
punctuation mark removal, as well as the elimination of uninformative and infre-
quent words. Key topics were inferred from the multinomial probabilities over words
conditioned on each topic from a Latent Dirichlet Allocation model, trained follow-
ing an online mini-batch variational approach. The optimal number of topics was
set by analyzing the values of a topic coherence measure based on the normalized
pointwise mutual information, across multiple validation K-folds. Our results sup-
port the presence of 15 key topics latent in free text dispatcher observations, related
with: ambulance request; chest pain and heart attack; respiratory distress; head falls
and blows; fever, chills, vomiting, and diarrhea; heart failure; syncope; limb injuries;
public service body request; thoracic and abdominal pain; stroke and blood pressure
abnormalities; pill intake; diabetes; bleeding; consciousness. The discovery of these
topics implies the automatic characterization of a huge volume of complex unstruc-
tured data containing relevant information linked to emergency medical call incidents.
Hence, results from this work could lead to the update of structured emergency triage
algorithms to directly include this latent information in the triage process, resulting
in a positive impact in patient well-being and health services sustainability.
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The contents of this chapter were published in the conference paper (Ferri et al.,
2022a)—thesis contributions C2 and P3.

4.1 Introduction

Emergency medical dispatch entails the reception and management of demands
for medical assistance in an emergency medical services system (J. J. Clawson & Der-
nocoeur, 1988). It involves emergency medical calls attendance and events triage
according to their priority, process generally managed by emergency medical dis-
patchers. These mediators tend to follow a clinical protocol focused on a small set of
structured clinical variables (Stratton, 1992).

In the Valencian Community (Spain), the triage of emergency medical call in-
cidents (EMCI) is currently assisted by an in-house triage protocol, a clinical decision
tree based on the collection of structured variables. The dispatcher raises questions
to the caller until reaching a final tree node, which has a priority assigned to it, the
incident priority.

However, information not covered by the decision tree is also registered during
the call in an unstructured manner in free text fields. This information, comple-
mentary to that provided by the structured variables, cannot be taken into account
automatically by the clinical protocols, and thus, it is left unused.

We have studied in Chapter 3 that considering these free text dispatcher obser-
vations notably improves EMCI triage. Specifically, we have developed DeepEMC2,
a Deep Learning model able to automatically deal with structured and unstructured
information in real-time, providing performance increases of 12.5%, 17.5% and 5.1%
in terms of macro F1-score in life-threatening, admissible response delay and emer-
gency system jurisdiction prediction, respect to the current in-house triage protocol
of the Valencian emergency medical dispatch service (Ferri et al., 2021).

In addition, prior studies have shown the potential of text mining techniques
and, concretely, topic extraction methods, to infer high-level information from huge
amounts of unstructured medical data (Cheng et al., 2020; Pérez et al., 2018).

Given the utmost relevance of free text dispatcher observations in EMCI triage
and the availability of methods to explore them from a Machine Learning perspective,
we present in this work an unsupervised analysis of these free text fields, with the
aim of 1) discovering and understanding what information dispatchers report during
emergency call incidents and 2) exploring how this latent information is distributed
across incidents.
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4.2 Materials and Methods

A total of 1 374 931 free text dispatcher observations linked to EMCI of the
Health Services Department of the Valencian Community, were compiled in retro-
spective from 2014 to 2019. Given the data source, our available free text fields were
written in Spanish.

A set of preprocessing operations were carried out in order to reduce dimension-
ality to enhance posterior topic extraction processes. Dispatcher observations were
converted to lowercase and then, as text fields were written in Spanish, accents marks
were deleted. Punctuation marks were also discarded along with stopwords. Words
not appearing at least 50 times in the corpus were dropped, resulting in a vocabulary
reduction from 74 914 to 4584—discarding 94% of terms—while keeping around 96%
of the total word counts in the corpus. Finally, text fields were tokenized.

Data was split using a holdout (Kohavi, 1995) methodology, with proportions
of 80% for training and then 20% for testing. Next, cross-validation (Kohavi, 1995)
splits were conducted over the training set, taking K = 4, without allowing repetition.

Topics were inferred from the multinomial probabilities over words conditioned
on each topic from a Latent Dirichlet Allocation (LDA) (Blei et al., 2003) model. We
preferred LDA over Latent Semantic Analysis (Deerwester et al., 1990) because LDA
offers a generative modeling approach, and LDA over Probabilistic Latent Semantic
Analysis (Hofmann, 1999) (PLSA) because the number of parameters estimated in
PLSA grows linearly with the number of training documents and generalization to
new documents is easier with LDA. LDA is a hierarchical generative Bayesian model,
which assumes the existence of K latent topics in a collection of text documents. Next
we present the generative process of LDA, to generate a corpus D of M documents
each one with Nd words:

For each document d in a corpus of D documents:

� Draw a topic mixture from a Dirichlet prior, θd ∼ Dirichlet(α)

� For each word wn in document d:

– Draw a topic zn from the multinomial topic mixture,
zn ∼ Multinomial(θd)

– Draw a word wn from the topic-specific word distribution,
wn ∼ Multinomial(βzn)

Here α is the hyperparameter of the Dirichlet prior, θd is the topic mixture for
document d, and β is the matrix of the topic-specific word distributions.
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The LDA model was trained following an online mini-batch variational infer-
ence approach (Hoffman et al., 2010). The optimal number of topics was set analyzing
the values of a topic coherence measure, where word context vectors were created us-
ing the normalized pointwise mutual information (Röder et al., 2015). The distance
among word context vectors was calculated with the cosine distance, obtaining the
final coherence score as the arithmetic mean of all distances, following the procedures
described in (Syed & Spruit, 2017).

We tested different number of topics, specifically 5, 10, 15, 20, 25, 30 and
35. For each combination, we trained four LDA models, one per training K-fold,
and calculated the aforementioned topic coherence measure in their respective vali-
dation folds. That number of topics offering the best overall performance across the
validation K-folds was considered as the optimal number of topics.

Finally, we retrained the model with all the training data using the optimal
configuration. For each topic, the most probable words were extracted and studied to
infer topic semantics and naming it. After that, we derived the topic distribution in
the training and the test corpora, to understand which were the most frequent topics
in dispatcher free text fields, as well as to evaluate potential overfitting issues.

4.3 Results

Figure 4.1 shows the value of the topic coherence performance metric across
the different K-folds, for each number of topics combination:

Figure 4.1: Number of topics selection. Topic coherence across K-folds over training set.
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It can be appreciated that the optimal topic coherence value is reached at 15
topics.

Figure 4.2 displays the 8 words with higher associated probability respect to
each topic. Each topic has been named according to the semantics its defining words
represent.

Figure 4.2: Topics discovered, described by their 8 words with highest probability condi-
tioned on each topic. Word probabilities conditioned on each topic are represented in the
x-axis.

It can be observed the presence of 13 clinical topics—T2, T3, T4, T5, T6,
T7, T8, T10, T11, T12, T13, T14, T15—along with 2 resource dispatch topics—T1,
T9. Likewise, most predominant semantics in the clinical topics are cardiovascular
disorders—T2, T6, T11—and injuries T4, T8, T14.

Figure 4.3 presents the distribution of topics in the training and test corpora,
sorted by its frequency of appearance in descending order.
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Figure 4.3: Topics distribution in the train and test corpus, sorted by frequency in de-
scending order.

It can be inferred from this figure that there are no over-represented or under-
represented topics. Likewise, there is a strong similarity between training and test
topic distributions. Both are good signs indicating that overfitting does not seem to
be present.

4.4 Discussion

The characterization of casuistry latent in complex unstructured data carried
out in this chapter may lead emergency medical professionals to redefine structured
decision tree algorithms in order to improve emergency medical dispatch processes.

Although the majority of topics are well-defined and delimited, some topics
would require further study to evaluate the presence of topic mixtures and subtopics.

Future work will include studying relations among the topics found and po-
tential clusters bound to the structured variables also registered during the incident.
Finally, it is of interest to study why some words appear in different contexts, i.e.,
topics, despite having similar meanings, such as chest pain and thoracic pain.
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4.5 Conclusions

This work has tackled the discovery of key topics in emergency medical dispatch
from free text dispatcher observations. A pipeline comprising word filtering opera-
tions, number of topics selection and Latent Dirichlet Allocation model training, has
been applied over 1 374 931 independent retrospective cases from the Valencian emer-
gency medical dispatch service in Spain. Results support the existence of 15 latent
topics, whose consideration could lead to the improvement of clinical triage proto-
cols, deriving in turn, in a positive impact in patient well-being and health services
sustainability.
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Chapter 5

Deep continual learning for

emergency medical call incidents

text classification under the

presence of dataset shifts

The aim of this chapter is to develop and evaluate a deep classifier that can ef-
fectively prioritize EMCI according to their life-threatening level under the presence
of dataset shifts. We utilized a dataset consisting of 1 982 746 independent EMCI
instances obtained from the Health Services Department of the Region of Valencia
(Spain), with a time span from 2009 to 2019 (excluding 2013). The dataset includes
free text dispatcher observations recorded during the call, as well as a binary vari-
able indicating whether the event was life-threatening. To evaluate the presence of
dataset shifts, we examined prior probability shifts, covariate shifts, and concept
shifts. Subsequently, we designed and implemented four deep Continual Learning
strategies—cumulative learning, continual fine-tuning, experience replay, and synap-
tic intelligence—alongside three Deep Continual Learning baselines—joint training,
static approach, and single fine-tuning—based on DistilBERT models. Our results
demonstrated evidence of prior probability shifts, covariate shifts, and concept shifts
in the data. Applying Continual Learning techniques had a statistically significant
(α = 0.05) positive impact on both backward and forward knowledge transfer, as
measured by the F1-score, compared to non-continual approaches. We can argue that
the utilization of Continual Learning techniques in the context of EMCI is effective
in adapting Deep Learning classifiers to changes in data distributions, thereby main-
taining the stability of model performance over time. To our knowledge, this study
represents the first exploration of a Continual Learning approach using real EMCI
data.
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The contents of this chapter are under review in the journal Computers in
Biology and Medicine, specifically reviewer’s comments are being addressed—thesis
contributions C3, C4 and P4.

5.1 Introduction

EMD involves the reception and handling of requests for medical assistance in
emergency situations (J. J. Clawson & Dernocoeur, 1988). It is a challenging task
characterized by a high level of uncertainty, limited decision time, and scarce resources
(FitzGerald et al., 2010). Given the potential severe consequences, including patient
mortality and significant costs, associated with errors in this critical environment,
there is a need for decision support tools to enhance call-taking situations.

The EMD process consists of two main components: triage, which assesses
the priority of incidents, and resource allocation, which assigns the most appropriate
resources to respond to each incident. In the context of triage, dispatchers typically
follow predefined clinical guidelines in the form of decision trees (FitzGerald et al.,
2010; Storm-Versloot et al., 2011). Examples of these triage protocols include the
Emergency Severity Index (Wuerz et al., 2001) and the Manchester Triage System
(Mackway-Jones et al., 2013). However, these clinical algorithms have two main
limitations: firstly, they are based on archetypical cases, overlooking the vast number
of incidents with complex characteristics, and secondly, they heavily rely on structured
clinical information, which is not always available during emergency medical calls. As
a result, these algorithms are unable to automatically handle unstructured data, such
as free text.

During emergency medical calls, a significant amount of data is generated (Bar-
roeta Urquiza & Boada Bravo, 2011). While these data are typically stored in health
institution databases, they are often underutilized and only used for basic business in-
telligence analyses. Consequently, the latent information contained within these data,
including hidden statistical patterns, is not considered to improve triage protocols.
Moreover, a substantial portion of this data is in the form of unstructured informa-
tion, which cannot be automatically processed by current triage protocols (Ferri et
al., 2022a; Tollinton et al., 2020). Therefore, an alternative approach is needed to
complement the limitations of existing triage protocols and enhance EMD processes.

Machine Learning stands out as one of the most promising approaches in the
EMD environment. Numerous studies have demonstrated the value offered by Ma-
chine Learning tools in this domain. For instance, (Spangler et al., 2019) developed
Machine Learning-based models to predict the risk associated with individual pa-
tients in prehospital emergency medical events. Their findings revealed that Machine
Learning-based scores surpassed rule-based triage algorithms and human prioritiza-
tion decisions in terms of performance. Similarly, (Blomberg et al., 2019) explored the
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application of Machine Learning in detecting cardiac arrest from audio files of emer-
gency calls. They demonstrated that Machine Learning techniques can increase sen-
sitivity in cardiac arrest detection while maintaining a reasonable level of specificity.
Furthermore, (Inokuchi et al., 2022) conducted an evaluation of different Machine
Learning models and their impact on the early detection of under-triaged patients.
Their study revealed that Machine Learning models can effectively aid in identifying
under-triaged patients, leading to improved patient outcomes.

In the specific context of the emergency medical services of the Valencian Re-
gion, Spain, a project was undertaken with the objective of developing Machine Learn-
ing models utilizing historical EMD data for predicting incident priority and assessing
its influence on the EMD process. As part of this project, a deep ensemble multitask
Deep Learning model called DeepEMC2 was created, as described in Chapter 3 and
(Ferri et al., 2021). The model showed improvements in performance metrics com-
pared to the existing in-house triage system. Specifically, it achieved better predic-
tions in terms of life-threatening (+12.5%), admissible response delay (+17.5%), and
emergency system jurisdiction (+5.1%). Notably, the model’s success was attributed
mainly to features extracted from free text, which proved to be more predictive than
the clinical variables recorded during the call.

However, it should be noted that the data used to train the DeepEMC2 model
only covered the period from 2009 to 2012. As information systems, dispatchers,
coordination centers, and demographics evolve over time, dataset shifts occur, leading
to changes in the joint probability distribution of inputs and outputs between the
training and testing stages (Moreno-Torres et al., 2012; Quinonero-Candela et al.,
2008). In fact, the Valencian EMCI information system underwent significant changes
in 2013, including updates to the in-house decision tree and dispatcher experience.
Consequently, the DeepEMC2 model developed in (Ferri et al., 2021) using data from
2009 to 2012 may require adjustments to mitigate potential performance degradation
resulting from distributional shifts caused by these changes.

Therefore, it is reasonable to consider the incorporation of Continual Larning
strategies to address the challenge of dataset shifts in EMCI. Continual Learning
strategies facilitate the integration of new knowledge while avoiding catastrophic for-
getting (McCloskey & Cohen, 1989; Parisi et al., 2019), enabling a sustainable learning
process over time and providing adaptable decision support for call-takers. To im-
plement this Continual Learninga approach, we exploit multiple learning experiences
within our EMCI data, each associated with a different time period or batch of data
(Lomonaco et al., 2021). Consequently, multiple data streams were derived from
each batch, and the deep models learn from these streams according to the Continual
Learning strategy defined.

Building upon the significance of text features highlighted in previous studies
(Ferri et al., 2021, 2022a), our study has focused on developing Continual Learning
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pipelines to ensure consistent decision support for the prediction of life-threatening
levels using free text dispatcher observations.

The primary objective of this work is to investigate the extent to which various
Continual Learning strategies enable lifelong adaptation of deep triage models over
time. While acknowledging the inevitable negative impact on performance due to
changes in data distributions in real-world scenarios, our framework aims to minimize
such effects by leveraging Continual Learning techniques. To achieve this, we first
assess the presence of dataset shifts and subsequently, explore and evaluate multi-
ple Continual Learning pipelines designed to mitigate the adverse effects on model
performance resulting from distributional drifts.

The findings of our study contribute to the advancement of decision support
systems in emergency medical triage, with practical applications in real settings.
These systems have the potential to positively impact patient well-being and enhance
the sustainability of health services. Although we can find studies concerned with the
development Machine Learning models focused on dealing with medical data in the
presence of temporal distributional drifts (Guo et al., 2023), (Guo et al., 2022), (Lem-
mon et al., 2023), to the best of our knowledge, this is the first study to tackle real
EMCI data using a Continual Learning approach, representing a significant contribu-
tion to the field and one of the earliest real-world applications of Continual Learning
methods.

5.2 Materials

5.2.1 Dataset

A dataset comprising a total of 1 982 746 independent Emergency Medical Call
Incidents (EMCI) was compiled from the Health Services Department (HSD) of the
Valencian Region, covering the period from 2009 to 2019, with the exception of 2013
due to unavailability of data during the system update of the Valencian EMCI’s
information system.

The EMCI data consisted of both during-call and after-call information. During-
call data were collected in real-time during the emergency medical call and included
free text dispatcher observations written in the Spanish language. These observa-
tions were short sentences describing the incident, such as ”stabbing chest pain with
shortness of breath”, ”fever, general malaise, vomiting” or ”traffic accident, profuse
bleeding, unconscious”. During inference, these observations were used as input for
prediction.

After-call data were recorded at a later time, following the completion of the
call. This data encompassed information such as physician diagnosis, hospitalizations,

96



5.3 Methods

urgent care visits, medical procedures, and treatments received by the patient. Im-
portantly, these after-call data were not used during prediction but rather offline, for
inferring whether the emergency event constituted a life-threatening situation, con-
sidering a mapping developed by expert physicians from the HSD of the Valencian
Region. This binary variable served as the classification label in our work.

Next, we provide, in Table 5.1, some examples of the data considered to train
and evaluate our deep triage models.

Table 5.1: Examples of free text notes belonging to the dataset. The Life-threat column
indicates whether the situation is life-threatening (1) or not (0).

Text Life-threat

83-year-old woman with respiratory and cardiac insufficiency. Neoplastic
disease in progression.

1

14 year old male with fever of 39º, he has been like this for 1 hour and
also general malaise.

0

85 year old woman with a lot of fatigue and cough since yesterday. Today
saturation at 85, she is on oxygen at home.

0

5.2.2 Framework

Our experiments were implemented in Python (G. van Rossum (Guido), 1995),
utilizing the libraries Numpy (Walt et al., 2011) and Pandas (McKinney, 2010) for
data management, PyTorch (Paszke et al., 2017) and HuggingFace’s Transformers
(Wolf et al., 2019) for modeling, Avalanche (Lomonaco et al., 2021) for Continual
Learning, and Optuna (Akiba et al., 2019) for hyperparameter tuning.

5.3 Methods

5.3.1 Data preparation

We utilized Natural Language Processing (NLP) techniques for both data pre-
processing and inference with respect to free text variables. These techniques involved
the utilization of language models, which are further described in Section 3.3. We
applied pre-processing functions (e.g., lowercasing, removal of special characters, and
accent marks) to enhance the languaje model encoding capability. Additionally, we
employed sub-word tokenization using WordPiece (Wu et al., 2016) to reduce the
size of the vocabulary. Subsequently, these sub-words were mapped to indexes, and
padding and truncation operations were applied to ensure that all text records shared

97



Chapter 5. Deep continual learning for emergency medical call incidents text classification

the same sequence length, facilitating computation. Boolean attention masks were
generated to exclude the impact of padding indexes.

The data were organized into ten learning experiences, each representing one
year. Each learning experience consisted of a training stream and a test stream.
Similarly, each training stream comprised a pure training stream and a validation
stream, which were used for hyperparameter tuning operations without overfitting to
the test stream. Next, the data arrangement process is presented in Table 5.2.

Table 5.2: Data arrangement process. The data is divided into experiences, with each
experience corresponding to a different year. Furthermore, each experience consists of three
distinct and non-overlapping data streams: a pure training stream, a validation stream, and
a test stream. Abbreviations: Exp, Experience.

Exp Year Pure train Validation Test Total

1 2009 101 669 43 710 36 864 182 243
2 2010 100 147 42 465 35 713 178 325
3 2011 101 245 43 459 35 930 180 634
4 2012 101 253 43 399 35 801 180 453
5 2014 92 396 39 860 33 134 165 390
6 2015 106 013 45 461 37 977 189 451
7 2016 110 883 47 302 39 591 197 776
8 2017 132 934 56 986 47 454 237 374
9 2018 129 963 55 692 46 111 231 766
10 2019 133 835 57 525 47 974 239 334

5.3.2 Dataset shifts assessment

As the phenomenon of dataset shift has already been introduced in the Ra-
tionale section, we do not provide an in-depth explanation in this section. Instead,
we focus on elucidating how we assessed the three primary sources of drift in our
work: prior probability shifts, covariate shifts, and concept shifts (Moreno-Torres et
al., 2012).

Prior probability shift

To assess the presence of prior probability shifts in our study, we calculated the
empirical probabilities of life-threatening events over time. These probabilities were
plotted on a temporal graph, and a stationarity test was conducted. Specifically, we
employed the Kwiatkowski–Phillips–Schmidt–Shin test (Kwiatkowski et al., 1992),
which tests the null hypothesis of data distribution stationarity.
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Covariate shift

To evaluate the presence of distributional changes in these covariates, we con-
structed multiple pairwise text classification models (refer to the Modeling section for
more information about model structure and rationale) for each pair of years. Sub-
sequently, we compared their performance in terms of the Area Under Curve (AUC)
against the expected performance of a random model. This comparison allowed us to
determine whether the model could predict the year from which the data originated.
If the model demonstrated the ability to make accurate predictions, it would indicate
the presence of a covariate shift, suggesting that the covariates varied across different
years.

Concept shift

To assess the presence of concept shift, we trained a deep model (refer to the
Modeling section for more details about the model architecture and rationale) for
each year and evaluated its performance across all years. Any differences in model
performance over the years could be interpreted as variations resulting from changes
in the conditional distribution.

5.3.3 Modeling

The emergence of new Deep Learning architectures, such as Transformers
(Vaswani et al., 2017), has significantly improved the performance of a wide array
of NLP tasks. The attention mechanism in Transformers enables the model to access
information from all elements of a text, allowing for contextual modeling of word
and sentence meanings. Additionally, the Transformer architecture is well-suited for
transfer learning in NLP, where knowledge gained from a more general task is utilized
to specialize a model for new problems with limited data. This transfer of linguis-
tic knowledge is achieved through pre-training and fine-tuning. Pre-training involves
training language models using unsupervised learning tasks on extensive collections
of text data, while fine-tuning involves further adapting the pre-trained model to
specific supervised learning tasks, such as sequence classification. Transformer-based
architectures have achieved state-of-the-art results across a wide range of NLP tasks.
To ensure the effectiveness of the model in the presence of dataset shifts, we combine
this paradigm with Continual Learning.

In the previous DeepEMC2 model, deep models based on the BERT architec-
ture (Devlin et al., 2019; Ferri et al., 2021) were employed, resulting in a significant
improvement compared to non-Deep Learning approaches. However, considering that
we are evaluating multiple Continual Learning strategies, the data volume is large,
and our main objective is to study different Continual Learning pipelines, we opted
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to use the DistilBERT (Sanh et al., 2020) model in this work. DistilBERT offers
an excellent balance between performance and efficiency, as it has significantly fewer
parameters than BERT with only a minor performance decrease due to knowledge
distillation (Hinton et al., 2015). In addition, it can be used locally, eliminating the
privacy risks that come into play when using APIs, which is particularly prudent given
that we are handling sensitive data. It is important to note that we did not train our
DistilBERT models from scratch; instead, we utilized the pretrained version available
at (Wolf et al., 2019) and adopted a transfer learning approach by fine-tuning the
model for the specific downstream task. Therefore, our model architecture consists
of:

1. An embedding block, which includes a word embedding layer, positional encod-
ing layer (Vaswani et al., 2017), layer normalization layer (Ba et al., 2016), and
dropout layer (Hinton et al., 2012).

2. Multiple Transformer blocks, each composed of multi-head self-attention layers,
layer normalization layers, and feed-forward layers.

3. An output block consisting of feed-forward layers, with the last layer utilizing
softmax as the activation function.

For parameter tuning, we utilized the AdamW (Loshchilov & Hutter, 2019)
optimizer, a variant of the Adam (Kingma & Ba, 2017) algorithm, known for its
suitability in training Transformer models (Loshchilov & Hutter, 2019). The model
was trained using a mini-batch training approach, and the loss function employed was
cross-entropy (Janocha & Czarnecki, 2017), weighted to address class imbalance:

L =
N∑

n=1

−
∑C

c=1
1
υc
log expxn,c∑C

i=1 expxx,i yn,c

N
(5.1)

Here, N denotes the mini-batch size, C represents the number of classes, υ
indicates the class frequency in the dataset, x denotes the logits, and y refers to the
true target value.

5.3.4 Continual learning baselines

To assess the added value of including Continual Learning strategies for model
adaptation over time, we employed three baseline techniques: a static model, single
fine-tuning, and joint training. These baselines allow us to evaluate the impact of
different approaches on model performance over the course of learning experiences.
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Static model

The static model represents the scenario in which the model is not retrained
over time, providing insight into how performance may decline if no action is taken.
In this approach, we fine-tuned our pretrained DistilBERT model using only the data
from the first learning experience (i.e., the year 2009). This approach serves as a
lower performance bound for forward transfer of knowledge (Lopez-Paz & Ranzato,
2017) since it does not update the model with instances from recent experiences.

Single fine-tuning

The single fine-tuning strategy involves retraining the original model, pre-
trained DistilBERT, using data exclusively from the current learning experience. For
subsequent learning experiences, the model weights are not retained, and the model is
reinitialized with the pretrained DistilBERT weights. This approach provides a lower
performance bound for backward transfer of knowledge (Lopez-Paz & Ranzato, 2017)
since it does not retain information from previous experiences, considering only the
data from the current experience.

Joint training

To estimate the best performance achievable by any Continual Learning strat-
egy, we employed the joint training approach. This strategy involves training our
deep model using data from all learning experiences, incorporating data from all
years. While this approach is not applicable in a real-world setting, as we do not
have access to future data at a given year, implementing this approach allows us to
establish an upper bound for performance in terms of both forward and backward
transfer of knowledge.

5.3.5 Continual learning strategies

We evaluated the following Continual Learning strategies:

Cumulative

The cumulative strategy involves re-estimating model parameters using data
from the current learning experience as well as all the data encountered in previous
experiences. This approach utilizes all available information up to that point, but
it can be computationally expensive and may not be applicable if data from certain
time periods is not accessible due to privacy or regulatory concerns.
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Continual fine-tuning

The continual fine-tuning strategy is based on an incremental fine-tuning pro-
cess. At each learning experience (in our case, the year), the model weights are
initialized with the weights from the previous experience. Training at the current
experience only considers the data from that particular experience.

Experience replay

The experience replay strategy relies on an external memory, known as a replay
buffer, with a predefined size B. This buffer stores data samples from previous learn-
ing experiences. At each experience, data samples are sampled from the replay buffer,
allowing the model to retain information about previous data patterns. This approach
does not require as much computational resources as the cumulative strategy.

Synaptic intelligence

Synaptic intelligence (Zenke et al., 2017) is a regularization-based strategy that
mitigates catastrophic forgetting by incorporating a knowledge retention penalty into
the loss function. Unlike the previous strategies, it does not rely on resampling or
storing data from all previous experiences. The loss function to optimize at experience
e follows the structure:

Le = He + c
K∑

k=1

Ωe
k(θ̃k − θk)

2 (5.2)

Here, He represents the standard loss to minimize at experience e (in our case,
the per-class weighted cross-entropy loss), c is a global dimensionless weighting param-
eter, Ωe

k is the per-parameter regularization strength for parameter k and experience

e, θ̃k denotes the value of parameter k at the previous experience, and θk represents
the value of parameter k at the current learning experience.

5.3.6 Evaluation

To evaluate and compare the advantages and disadvantages of each Contin-
ual Learning strategy, as well as to assess their performance in comparison to the
baseline techniques, we calculated their backward and forward transfer (Lopez-Paz
& Ranzato, 2017). Backward transfer refers to how learning from a particular expe-
rience affects prior knowledge, while forward transfer refers to how learning from a
specific experience influences the acquisition of future knowledge.
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For each Continual Learning strategy l and experience e, we computed the
backward and forward transfer using the following formulas:

BWT l
e =

1

e− 1

e−1∑
i=1

M l
i (5.3)

FWT l
e =

1

E − e

E∑
i=e+1

M l
i (5.4)

(5.5)

Here, Ms
i represents the value of the performance metric of strategy l at expe-

rience i, and E denotes the total number of experiences (in our case, years).

Additionally, we calculated the global backward and forward transfer, which
provides an average performance estimation across all experiences for a specific strat-
egy:

BWT l
global =

1

E − 1

E−1∑
j=1

BWT l
j (5.6)

FWT l
global =

1

E − 1

E−1∑
j=1

FWT l
j (5.7)

(5.8)

Furthermore, we utilized multiple evaluation metrics to assess the performance
of each strategy. Specifically, we obtained the AUC, accuracy, recall, precision and
F1-score.

Finally, 95% confidence intervals for the global backward and forward transfer
were estimated for each strategy. To derive them, we followed the next expression:

CI95%l = m̄± 1.96
sl√
E

(5.9)

Here m̄ will correspond to the BWT l
global or FWT l

global, and sl is the sample

standard deviation computed with the series of BWT l
e or FWT l

e.
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5.3.7 Hyperparameter tuning

To determine the optimal hyperparameters, an automatic active learning ap-
proach (Settles, 2009) was employed. For each Continual Learning strategy, a set of
hyperparameters was defined, including parameters such as learning rate and batch
size. Additionally, a range of values was proposed for each hyperparameter. For ex-
ample, for the learning rate, values of 0.0001 and 0.00001 were considered, while for
the batch size, values of 16 and 32 were explored. The sampling space for the hyper-
parameters was discrete to avoid overfitting issues due to the curse of dimensionality.

A Bayesian optimization strategy was then employed, where an auxiliary prob-
abilistic generative model was iteratively trained. The purpose of this model was
twofold: 1) to estimate the probability of the objective performance metric (in this
case, the weighted cross-entropy) given a specific set of hyperparameters, and 2) to
sample new hyperparameter values on each iteration in the hope of improving the
performance metric.

Once the optimal hyperparameters were determined through these experiments
on the pure training and validation sets, they were used for the final retraining stage
of each strategy. The models were retrained using the full training set, and the
performance metrics reported in this work were obtained from the test set.

5.4 Results

5.4.1 Dataset shifts assessment

Prior probability shift

The empirical probability of the life-threatening class over time is illustrated
in Figure 5.1.

The plot reveals two distinct drops in the class probability: one occurring be-
tween the years 2012 and 2014, and another between 2016 and 2017. However, from
2009 to 2012, the life-threatening class probability showed a gradual increase. Fur-
thermore, the empirical probability appears to stabilize qualitatively in the remaining
time periods, namely between 2014 and 2016, and between 2017 and 2019.
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Figure 5.1: Empirical life-threatening probability over time. A significant drop in the class
probability is observed over time.

In addition, the Kwiatkowski–Phillips–Schmidt–Shin test (Table 5.3) suggests
rejecting the null hypothesis of stationarity.

Table 5.3: P-value of the Kwiatkowski–Phillips–Schmidt–Shin test. Assessment of the
stationarity of the empirical life-threatening probability distribution over time.

Kwiatkowski–Phillips–Schmidt–Shin test
.018*

The findings from Figure 5.1 and Table 5.3 confirm the presence of a prior
probability shift in our data.

Covariate shift

Figure 5.2 presents the performance, in terms of AUC, of DistilBERT text
classification models trained to predict the year from which the data originated. The
models utilized the free text dispatcher observations as input features.
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Figure 5.2: Area under the curve matrix of DistilBERT text classification models predicting
the year from which the data originated. An abrupt covariate shift is observed between the
2009-2012 data batch and the 2014-2019 data batch.

As shown in Figure 5.2, the AUC values are consistently higher than those
expected from a random model, which would have an AUC around 0.5. There is a
clear distinction in the writing style of the free text fields between the 2009-2012 period
and the 2014-2019 period, as indicated by the AUC of 1 on the test set. Moreover,
within each time window, the AUC values gradually increase over time.

These observations confirm the presence of a distinct and abrupt covariate shift
between the 2012 and 2014 periods, with smoother and gradual changes occurring
within the 2009-2012 and 2014-2019 time windows.
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Concept shift

The performance of the DistilBERT models trained to assess the presence of
concept shift is depicted in Figure 5.3:

Figure 5.3: F1-score matrix of DistilBERT text classification models trained on data from
one year (y-axis) and evaluated on the test set of all years (x-axis). A moderate performance
drop is observed between the 2009-2012 batch and the 2015-2019 batch, with the year 2014
showing the lowest performance.

As illustrated in Figure 5.3, there is a significant performance drop in all models
from 2009 to 2012, with the lowest F1-score observed in 2014. This confirms the
presence of concept shift. Although there is a slight recovery in performance from 2015
to 2019, it still remains far from the values observed in the first period. Furthermore,
the models trained on the 2015-2019 data show consistent performance within that
time window, but experience a notable performance drop in the year 2014. This drop
is less severe in the 2009-2012 models but is still noticeable. Thus, the existence of
concept shifts is confirmed.
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5.4.2 Continual learning

Backward transfer

The backward transfer, measured by the F1-score, for the Continual Learning
strategies and baseline techniques is presented in Figure 5.4. The x-axis represents the
model’s performance in a specific year, while the y-axis indicates the average F1-score
obtained when testing the model with data from previous years.

Figure 5.4: Backward transfer over time, spanning from 2010 to 2019 (excluding 2009 due
to the lack of available data for 2008) computed using the F1-score. Continual Learning
strategies enhance knowledge retention over time. Abbreviations: FT, fine-tuning; Exp,
experience; int, intelligence.

As depicted in Figure 5.4, Continual Learning strategies prevent significant
performance drops compared to not utilizing Continual Learning techniques. All
Continual Learning strategies perform above the expected lower performance bound
defined by single fine-tuning. Furthermore, there is a clear trend of decreasing average
F1-scores over time, with a more pronounced drop in 2015 when 2014 is included in
the backward transfer computation. However, the performance decrease is moderate
rather than severe.
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When comparing the different techniques, joint training stands out as the ap-
proach offering the best overall performance over time in terms of backward transfer
measured by the F1-score. It serves as the upper baseline, as expected. The static
baseline exhibits a performance decrease over time, although not as severe as some
of the other approaches assessed. Among the Continual Learning strategies, the cu-
mulative approach performs the best, while single fine-tuning represents the lower
performance bound in terms of backward transfer.

Table 5.4 presents the global backward transfer, computed for the AUC, accu-
racy, recall, precision, and F1-score, along with their 95% confidence intervals.

Table 5.4: Global backward transfer for each reference metric, with 95% confidence intervals
shown in brackets. Abbreviations: AUC, area under curve; JT, joint training; ST, static;
CM, cumulative; CFT, continual fine-tuning; ER, experience replay; SI, synaptic intelligence;
SFT, single fine-tuning.

Strategy AUC Accuracy Recall Precision F1-score

JT 0.809[0.808,0.809] 0.766[0.764,0.767] 0.744[0.742,0.746] 0.685[0.684,0.686] 0.712[0.711,0.713]

ST 0.823[0.821,0.824] 0.737[0.733,0.74] 0.747[0.743,0.751] 0.647[0.64,0.654] 0.689[0.686,0.692]

CM 0.793[0.787,0.798] 0.755[0.754,0.757] 0.72[0.713,0.726] 0.677[0.675,0.68] 0.696[0.694,0.698]

CFT 0.8[0.795,0.805] 0.763[0.762,0.764] 0.672[0.663,0.681] 0.711[0.708,0.715] 0.687[0.684,0.691]

ER 0.753[0.747,0.758] 0.754[0.753,0.756] 0.698[0.692,0.703] 0.683[0.681,0.685] 0.689[0.686,0.691]

SI 0.809[0.805,0.813] 0.763[0.762,0.765] 0.657[0.645,0.67] 0.721[0.715,0.727] 0.683[0.678,0.687]

SFT 0.753[0.759,0.765] 0.76[0.759,0.761] 0.643[0.632,0.655] 0.72[0.715,0.724] 0.675[0.67,0.679]

Table 5.4 demonstrates statistically significant differences α = 0.05 between
the implemented Continual Learning pipelines and the lower baseline—since the 95%
confidence intervals are not overlapping (Rosner, 2015)—indicating that Continual
Learning techniques lead to performance improvements compared to not utilizing
them. Among the Continual Learning strategies, the cumulative approach exhibits
the best overall performance.

Forward transfer

Figure 5.5 illustrates the forward transfer, measured by the F1-score, for the
Continual Learning strategies and baseline techniques. The x-axis represents a specific
year, and the y-axis indicates the average F1-score obtained when testing the model
with data from the incoming years.
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Figure 5.5: Forward transfer over time, spanning from 2009 to 2018 (excluding 2019 due
to the lack of available data for 2020) computed using the F1-score. Continual Learning
strategies are crucial for enabling forward knowledge transfer over time. Abbreviations: FT,
fine-tuning; Exp, experience; int, intelligence.

As observed in Figure 5.5, Continual Learning strategies exhibit a distinct
behavior compared to the baselines. The Continual Learning techniques show a com-
mon trend, with a notable increase in forward transfer in 2014. On the other hand,
the baselines demonstrate the expected upper and lower bounds, with joint training
serving as the upper bound and the static approach as the lower bound. Among the
Continual Learning strategies, there is no clear winner as they interconnect over time,
although continual fine-tuning and synaptic intelligence appear to perform better.

Table 5.5 presents the global forward transfer, computed for the AUC, accuracy,
recall, precision, and F1-score, along with their 95% confidence intervals.
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Table 5.5: Global forward transfer for each reference metric, with 95% confidence intervals
shown in brackets. Abbreviations: AUC, area under curve; JT, joint training; SFT, single
fine-tuning; CM, cumulative; CFT, continual fine-tuning; ER, experience replay; SI, synaptic
intelligence; ST, static.

Strategy AUC Accuracy Recall Precision F1-score

JT 0.818[0.817,0.819] 0.792[0.79,0.794] 0.724[0.723,0.725] 0.697[0.695,0.699] 0.709[0.708,0.71]

SFT 0.78[0.778,0.783] 0.755[0.746,0.765] 0.718[0.708,0.729] 0.644[0.631,0.657] 0.674[0.668,0.679]

CM 0.811[0.808,0.814] 0.749[0.739,0.758] 0.745[0.735,0.755] 0.628[0.616,0.641] 0.676[0.671,0.681]

CFT 0.814[0.811,0.817] 0.757[0.749,0.765] 0.743[0.737,0.75] 0.638[0.627,0.649] 0.682[0.677,0.687]

RP 0.789[0.784,0.795] 0.752[0.744,0.761] 0.732[0.721,0.743] 0.635[0.623,0.646] 0.675[0.67,0.68]

SI 0.823[0.819,0.826] 0.759[0.75,0.768] 0.73[0.722,0.737] 0.646[0.633,0.658] 0.68[0.675,0.686]

ST 0.811[0.811,0.812] 0.694[0.693,0.696] 0.808[0.805,0.811] 0.545[0.541,0.55] 0.648[0.646,0.65]

Table 5.5 indicates statistically significant differences (α = 0.05) between the
implemented Continual Learning pipelines and the lower baseline—since the 95%
confidence intervals are not overlapping (Rosner, 2015)—implying that Continual
Learning techniques lead to improvements compared to not utilizing them. Among the
Continual Learning strategies, continual fine-tuning and synaptic intelligence stand
out.

5.5 Discussion

5.5.1 Relevance

The findings of our study underscore the criticality of employing Continual
Learning strategies for effective backward and forward knowledge transfer. To ensure
the sustained performance of our EMCI classifier over time, the utilization of Contin-
ual Learning techniques becomes imperative. Importantly, our study represents the
first investigation to incorporate Continual Learning within the learning pipelines of
deep models designed for emergency triage support.

The identified dataset shifts, encompassing prior probability shifts, covariate
shifts, and concept shifts, align closely with the changes implemented by the Health
Services Department of the Valencian Community in 2014 regarding information sys-
tem and coordination protocols. While these shifts may not be drastic, they are
notable and should not be disregarded. Particularly, significant shifts in data dis-
tribution, pertaining to concepts and application-based data, can severely impede
model performance. Consequently, our argument follows that the capacity to effec-
tively handle these moderate yet significant data shifts may enhance model resilience
when faced with more substantial changes in the future.
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Figure 5.6 provides a comprehensive overview of the global backward and for-
ward metrics, specifically focusing on F1-score, as discussed in the previous sec-
tion. This visual representation clearly demonstrates the indispensability of Con-
tinual Learning strategies in mitigating catastrophic forgetting, as they facilitate the
accumulation of knowledge over time, while also enabling effective knowledge forward
transfer.

Figure 5.6: Global backward and forward transfer, computed with the F1-score. Continual
Learning strategies play a vital role to enhance backward and forward knowledge transfer.
Abbreviations: FT, fine-tuning; Exp, experience; int, intelligence.

Among the different Continual Learning strategies evaluated, both the cumu-
lative and experience replay approaches exhibit similar behavior. The cumulative
strategy can be viewed as an experience replay technique with unlimited memory.
These two strategies outperform the others in terms of knowledge retention. However,
in terms of knowledge transfer, the synaptic intelligence and continual fine-tuning
approaches showcase superior performance, as they yield more positive impacts on
predictive performance in subsequent years.

Considering the specific nature of our problem, where forward transfer holds
greater significance than backward transfer, and taking into account the computa-
tional resources required for training time and memory, it would be reasonable to
lean towards adopting a continual fine-tuning approach to address our problem. This
choice offers several advantages, including easier integration into the retraining rou-
tine associated with the model, which can be seamlessly embedded into a deployed
decision support system for emergency triage.
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5.6 Conclusions

The continual fine-tuning approach allows us to capitalize on its superior ability
to facilitate knowledge transfer and enhance predictive performance in subsequent
years. Additionally, it offers practical benefits in terms of computational efficiency
and resource utilization, which are valuable considerations when dealing with the
constraints of our problem. By selecting this approach, we can effectively balance the
importance of forward transfer, the available computational resources, and the ease
of integration into our existing model retraining processes.

5.5.2 Limitations

The primary limitation of our work lies in the significant uncertainty associ-
ated with the phone triage process. Since data collection occurs remotely, within
a time-critical context, the information gathered is often incomplete. Consequently,
any model involved in providing decision support must rely on limited incoming data,
which can introduce biases in certain cases. This inherent challenge imposes con-
straints on the achievable performance of any Machine Learning support model.

5.5.3 Future work

Regarding future endeavors, we identify two main directions for further explo-
ration. Firstly, we propose a multitask Continual Learning approach to address the
problem, incorporating considerations for admissible response delays and the jurisdic-
tion labels of the emergency system. Secondly, we suggest the inclusion of additional
input features, such as demographics, contextual information, or structured clinical
features, thus forming a multimodal Continual Learning approach. These avenues of
research hold promise for advancing the field and expanding the scope of our investi-
gations.

5.6 Conclusions

In this work, we have conducted an extensive investigation into dataset shifts
and Continual Learning strategies within the domain of EMCI triage. Our study
provides compelling evidence of prior probability shifts, covariate shifts, and con-
cept shifts within our data, which directly impact the performance of models over
time. The utilization of Continual Learning strategies has been demonstrated as cru-
cial in mitigating the adverse effects caused by distributional drifts, both in terms
of backward and forward knowdledge transfer. Consequently, adopting a Continual
Learning approach becomes highly valuable in maintaining the quality of clinical deci-
sion support within the context of EMCI triage. The implementation of the Continual
Learning routines developed in this study for EMCI triage will have a significant and
positive direct impact on patient well-being and the sustainability of health services.
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Chapter 6

Deep continual multitask

classification of emergency medical

call incidents under dataset shifts

affecting feature domain

The in-house triage protocol utilized by the emergency medical dispatch service
of the Valencian Region, has undergone modifications since its inception. Additional
branches have been integrated, while preceding questions have been removed in ac-
cordance with the specific needs and handling of distinct EMCI cases. Furthermore,
as referenced in prior chapters, significant alterations occurred during the transition
from the CORDEX to CoordCom information system in 2013, significantly impacting
the structure of the clinical protocol. Dispatcher expertise and training have similarly
progressed over time, shaping the utilization of this in-house triage protocol. Within
this current chapter, we investigate the presence of dataset shifts, focusing on the clin-
ical variables along with the three severity labels. Hence, this constitutes a multitask
approach, spanning from 2009 to 2019, totaling 1 414 575 EMCI cases. Multiple deep
continual pipelines were developed, considering two key aspects: the manner in which
model parameters should be updated over the years—comprising static, cumulative,
from-scratch, and fine-tuning approaches—and how variations in the feature domain
impacted model performance over time. This evaluation entailed a static, a dynamic
and a predefined approach. Our findings reveal that fluctuations in performance can-
not be disregarded. Simultaneously, we posit that fine-tuning models in combination
with the allocation of additional dimensions to incorporate new variables, present
an effective and efficient solution for their gradual updates over time. Lastly, when
taking into account this latter approach and excluding the year 2014, during which
the information system underwent a change, it becomes apparent that performance
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fluctuations in the upcoming years are constrained. Specifically, the variability in
terms of F1-score performance across all three labels remained stable within 5% rate
change.

The contents of this chapter are being submitted to the journal npj Digital
Medicine—thesis contributions C3, C4 and P6.

6.1 Introduction

Out-of-hospital emergency medical triage is a complex challenge, demanding
fast-paced decisions with great uncertainty, all within a context where errors can
potentially lead to fatal outcomes. The professionals responsible for these critical
decisions—emergency medical dispatchers—undergo specialized training programs de-
signed to optimize their ability to handle incidents appropriately (Stratton, 1992).
However, despite their knowledge, emergency medical dispatch centers provide clini-
cal guidelines to dispatchers, outlining the prescribed procedures for conducting the
triage process. This not only aids dispatchers in their task but also serves to minimize
variability among professionals, ensuring a more equitable level of assistance (Farand
et al., 1995).

The aforementioned set of guidelines employed is commonly referred to as clin-
ical protocols. This category encompasses a wide array of protocols, with some of
the most renowned ones being the Manchester Triage System (Mackway-Jones et al.,
2013), the Canadian Triage Scale (Murray et al., 2004), the Emergency Severity In-
dex (Gilboy et al., 2012) or the Australasian Triage Scale (Considine et al., 2004).
Despite the diverse range of protocols and their individual distinctions, they exhibit
significant shared characteristics. One of the most prominent commonalities is their
structural arrangement in the form of decision trees, comprising clinical inquiries
linked to various branches. Based on the responses offered by the caller, a distinct
pathway is followed, culminating in a terminal node marked with the priority level to
be assigned to the incident.

Within the domain of out-of-hospital emergency medical triage in the Valencian
Region, an in-house triage protocol was conceived by experts within the HSD of the
region. Initially inspired by the Manchester Triage System, the protocol underwent
iterative adaptations over time, drawing upon the insights and expertise of coordina-
tor physicians. Notably, certain unique features were integrated based on localized
requirements. For instance, given the prevalence of pyrotechnic accidents in the re-
gion, these in-house triage protocol incorporates a dedicated branch to address such
incidents—an aspect not found in the Manchester Triage System. Consequently, the
protocol exhibits a hierarchical structure, featuring queries linked to distinct branches.
The responses to these queries correspond to values attributed to structured clinical
variables, culminating in final leaf nodes that are related to specific priority levels.
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Nonetheless, as examined in the preceding chapter of this thesis, the phe-
nomenon of distributional drifts (Moreno-Torres et al., 2012; Quinonero-Candela et
al., 2008) manifests over time. In the context of healthcare processes and medicine,
these distributional variations are intrinsic (Sáez & Garćıa-Gómez, 2018; Sáez et al.,
2020), and out-of-hospital emergency medical triage processes in the Valencian Re-
gion are no exception. The occurrence of these shifts is attributed to a multitude of
factors. Foremost, it is imperative to underscore the pivotal alteration in the informa-
tion system during 2013, which engendered substantial shifts in protocols, personnel
and emergency coordination. Furthermore, changes in telephone operators, targeted
training initiatives, updates to clinical variables via the evolution of the in-house triage
protocol—led by coordinator physicians—have collectively exerted their impact over
time.

Hence, a meticulous examination of the implications of these transformations
on data distributions becomes imperative, particularly when aiming to implement a
Machine Learning-based system. Given that the outcomes of such a system could be
impacted by disparities in data distributions across time, it is paramount to assess the
extent of this variability. To achieve this, an initial quantitative analysis focusing on
dataset shifts, encompassing evaluations of prior probability shifts, covariate shifts,
and concept shifts, stands as an essential preliminary stage.

Upon completing the evaluation and exploration of potential distributional al-
terations, the incorporation of mechanisms to mitigate possible adverse consequences
stemming from these shifts is imperative. The objective is to sustain model perfor-
mance at a consistent level. Thus, the incorporation of Deep Continual Learning
techniques (Parisi et al., 2019) is mandatory. These techniques not only retain valu-
able knowledge for subsequent experiences but also offer the necessary adaptability
to promptly acclimate to new changes that usher in a paradigm shift.

In this chapter, we have developed multiple Deep Continual Learning pipelines,
drawing from the most effective and efficient strategies identified in the previous chap-
ter, considering its effectiveness and efficiency. Besides, we introduce the requirement
of not solely considering the evolution of model weights but also recognizing the emer-
gence of novel clinical features alongside the disappearance of existing ones over time.

6.2 Materials

6.2.1 Dataset

We considered a total of 1 414 575 independent EMCI from the Health Services
Department of the Valencian Region, compiled from 2009 to 2019, excluding 2013—
since the emergency information system changed during that year.
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The EMCI data employed in these studies encompassed both during-call and
after-call data. During-call data were recorded during the emergency medical call
and included the clinical tree variables and values associated to the path followed
by the dispatcher in the in-house decision tree. Some examples of possible clinical
features sets associated each one to a different incident are: 1) “Previous trauma:
no; Shortness of breath: yes; Nasal congestion: no” and 2) “Active arrhythmia: yes;
History: cardiac pathology; Dizziness: yes; Incident location: public road/street”.
These data were used at inference time as input for the prediction. On the other
hand, after-call data were recorded at a time after the call. They include physi-
cian diagnosis, hospitalizations, urgency stays, maneuvers and procedures the patient
underwent. After-call data were used offline—i.e., not in prediction time—to infer
the output variables of the predictive model: if the emergency event implied or not
a life-threatening situation, which was the admissible response delay—undelayable,
minutes, hours, days—and if the event was jurisdiction of the emergency system or
primary care.

6.2.2 Framework

The implementation language of our experiments was Python (G. van Rossum
(Guido), 1995), using the libraries Numpy (van der Walt et al., 2011) and Pandas
(McKinney, 2010) for data management. To implement and train the designed models
we considered PyTorch (Paszke et al., 2017) and HuggingFace’s Transformers (Wolf
et al., 2019). Finally, we used Optuna (Akiba et al., 2019) for hyperparameter tuning.

6.3 Methods

6.3.1 Data preparation

Prior to conducting any analyses involving dataset shifts or Deep Continual
Learning pipelines, we prepared our data using the following procedures:

Concerning the clinical variables, our initial step involved harmonizing the
newly introduced variables post-2013 and their counterparts from the previous period.
This harmonization was pursued as many of these novel features retained identical
meanings to those of existing variables, with the only distinction being changes in
nomenclature. Recognizing the significance of maintaining accuracy and mitigating
potential biases, this correspondence mapping process was meticulously supervised
and validated by experts specializing in out-of-hospital medical emergencies. These
experts were affiliated with the HSD of the Valencian Region, the very individuals
responsible for curating and providing the crucial data that underpinned our study.
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Labels categories were encoded through one-hot encoding. This encoding
method facilitated the subsequent integration of these labels into the Deep Learn-
ing models that were developed. As such, from the life-threatening label, two distinct
one-hot encoded variables were derived. Likewise, four such variables originated from
the admissible response delay label, and an additional two stemmed from the emer-
gency system jurisdiction label.

Next, we proceeded to segment our data in order to capture temporal varia-
tions while simultaneously mitigating concerns related to overfitting. To achieve this,
we initially partitioned our dataset into distinct learning experiences (Lomonaco et
al., 2021). The initial experience comprised data solely from the CORDEX system
(2009-2012), and subsequently, each ensuing experience corresponded to a specific
year under the CoordCom information system (2014-2019). This partitioning strat-
egy was selected due to forthcoming architectural and training variations within the
Clinical subnetwork of the DeepECM2 model (Ferri et al., 2021). This subnetwork
was trained collectively on the entire CORDEX data batch, rather than in a year-
by-year manner. Thus, if we intend to evaluate the potential negative impacts of
architectural modifications, it is imperative to ensure the use of consistent data sets
for performance metric comparisons.

Following this initial partition, a subsequent iterative division was performed
for each of these experiences. For each experience, an initial split was conducted for
training and testing, allocating 80% for training and 20% for testing. This partition
served to gauge the actual model performance. Subsequently, the training set was
further divided into a pure training subset and a validation subset, with proportions
70% and 30%, respectively. The validation subset was exclusively employed for hyper-
parameter tuning, with no inclusion of cases from the test set. Figure 6.1 represents
how our dataset has been divided according to the exposed procedure.

Subsequently, we transformed the string feature values into indexes. This con-
version was necessary to enable the subsequent utilization of an Embedding Layer
(Bengio et al., 2000), which will map every index to a dense vector in our models.
Additionally, we undertook padding and truncation operations to ensure a consistent
sequence length, thereby fastening training processes.

It is pertinent to note that this index conversion process exhibited variations
depending on the Deep Continual Learning strategy followed, as well as if we were
working with a training set—training, pure training—or an evaluation set—validation,
test set. Details about the specific generation of the feature to index maps are ex-
posed in posterior sections, where Continual Learning techniques are described. Here
we comment that those relations between the feature string identifier and its corre-
sponding index value were learned and updated just in the training sets, since these
feature to index maps must be kept in the evaluation sets to estimate the overfitting

119



Chapter 6. Deep continual multitask classification of emergency medical call incidents

effect of this preprocessing operation—otherwise, posterior performance metrics will
be higher but misleading.

Figure 6.1: The data organization process involves the division of data into distinct
learning experiences. Concurrently, each experience is characterized by three distinct, non-
overlapping data streams: a pure training stream, a validation stream, and a test stream.
Here, N symbolizes the volume of data within each experience and stream. The present
learning experience is denoted in green, while future experiences—whose data remains
unavailable—are depicted in red. In contrast, previous experiences—whose data has al-
ready been considered—are shaded in blue.

6.3.2 Dataset shifts assessment

As the phenomenon of dataset shift has already been introduced in the Ra-
tionale section, we do not provide an in-depth explanation in this section. Instead,
we focus on elucidating how we assessed the three primary sources of drift in our
work: prior probability shifts, covariate shifts, and concept shifts (Moreno-Torres et
al., 2012).
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Prior probability shifts

To assess the existence of prior probability shifts in our study, we computed
the empirical class probabilities for each severity label—life-threatening, admissible
response delay, and emergency system jurisdiction. Subsequently, we conducted an
in-depth analysis to discern any trend in these probabilities across the temporal di-
mension.

Covariate shift

To assess the presence of distributional changes within these covariates over
time, we computed the empirical probabilities for each individual input feature and
scrutinized the temporal evolution of their respective trends.

Concept shift

To evaluate the existence of concept shifts, we aimed to compute the proba-
bilities associated with each class for the three severity labels originating from the
most frequent protocol pathways.By evaluating the extent of significant variations
in these probabilities across time, one could infer the occurrence of a concept shift
in the conditional probabilities. It is important to note, however, that a substantial
disparity existed between the most frequent pathways in the CORDEX and Coord-
Com systems. Consequently, this significant discrepancy considerably diminished the
available data for conducting this particular type of analysis. As a result, we were
compelled to directly investigate the evolution of model performance across each of
the predefined experiences.

6.3.3 Deep neural network design

Considering the outcomes detailed in Chapter 3, where Deep Learning models
exhibited superior performance compared to other Machine Learning approaches, the
focus in this chapter remains on models of a similar nature. However, in contrast
to Chapter 3, the present chapter excludes the adoption of recurrent architectures
or other sequential models like the Transformer (Vaswani et al., 2017). The primary
rationale for this deviation lies in the unavailability of information regarding the order
in which clinical variables were recorded during the call for CoordCom data. Con-
sequently, our design had to center around a model that is order-independent when
processing clinical variables. In essence, this model must generate consistent predic-
tions even when presented with the same features in varying orders. Moreover, this
model should adeptly handle the challenge posed by the emergence and disappearance
of novel features over time.
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In the subsequent section, we introduce the model that we developed to align
with these specific requirements. Due to its inherent characteristics, we have named
this model the Clinical Invariant Network, denoted as CliInvNet for brevity.

Clinical Invariant Network

The Clinical Invariant Network comprises a multitask (Caruana, 1997) deep
neural network, constituted by two principal components: the Clinical Encoder and
the Multitask Classifier. The Clinical Encoder, serving as the network’s hard pa-
rameter sharing element, forms its core. Meanwhile, the Multitask Classifier contains
distinct branches, each associated with a specific label. These branches are responsible
for computing predicted probabilities for the various classes within each label.

Focusing on the Clinical Encoder, we constructed it with an initial Embedding
Layer (Bengio et al., 2000). This layer facilitates the mapping of clinical variables,
expressed as indexes, into dense vector representations, a significantly more efficient
alternative to one-hot encodings. Moreover, this Embedding Layer enables the accom-
modation of novel features over time. We achieve this by pre-allocating a substantial
number of entries within the corresponding lookup matrix without impacting sub-
sequent architectural elements. Subsequent to the Embedding Layer, an Adaptive
Average Pooling block (Szegedy et al., 2016) was employed. This component serves
to aggregate the representations of all features within an observation into a singular
representation. This functionality allows the network to accommodate varying num-
bers of features per entry. Additionally, the Adaptive Average Pooling Layer endows
the network with order-invariant capabilities, preserving results even with altered fea-
ture orders. Following this, multiple dense blocks were introduced, each encompassing
a Fully Connected Layer (Rosenblatt, 1958), Layer Normalization (Ba et al., 2016), a
GELU activation function (Hendrycks & Gimpel, 2016), and a Dropout Layer (Hinton
et al., 2012) to counteract neuron co-adaptation.

The Multitask Classifier, responsible for incorporating task-specific components
into the architecture, consists of three branches. Each branch contains several dense
blocks, culminating in an output block. These output blocks consist of a Fully Con-
nected Layer followed by a Softmax activation function.

It is important to highlight that the selection of specific hyperparameter values,
including the number of dense blocks and embedding dimensions, is discussed in a
subsequent section focused exclusively on hyperparameter selection.

Illustrated in Figure 6.2, the main architecture of CliInvNet is visually repre-
sented:
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Figure 6.2: Clinical Invariant Network architecture.

6.3.4 Parameter tuning

Concerning the parameter tuning process, we used the AdamW (Loshchilov
& Hutter, 2019) optimizer, a variant of the Adam (Kingma & Ba, 2017) algorithm.
The feeding paradigm followed was a mini-batch training approach (Bertsekas, 1994),
while the loss function considered was the soft F1-score (Janocha & Czarnecki, 2017).
This choice was driven by its intrinsic suitability as a class-weighted metric, aligning
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well with the argmax saturation procedures in the transition from output scores to
the saturated predicted labels. An intriguing advantage here is that we need not fine-
tune the threshold for each experience; instead, it remains constant, and the learning
process inherently leverages class weighting through the loss. To further enhance
our training, we incorporated a cosine annealing learning rate scheduler, which aligns
aptly with deep transfer learning scenarios (Loshchilov & Hutter, 2017).

Likewise, it is pertinent to acknowledge that layers featuring ReLU activation
functions were initialized using Kaiming initialization (He et al., 2015), whereas layers
incorporating the softmax activation function were initialized with Xavier’s initializa-
tion (Glorot & Bengio, 2010).

6.3.5 Continual Learning

Moving forward, we introduce the Continual Learning strategies designed to
facilitate the model’s adaptation across the distinct experiences over time. An essen-
tial distinction needs to be highlighted at this juncture—namely, the differentiation
between approaches centered on scrutinizing the ramifications of coping with a fea-
ture domain that exhibits temporal fluctuations and methodologies geared towards
the process of updating model weights.

Feature domain

We propose in this chapter three different strategies to deal with varying feature
domains: a static domain strategy, a dynamic domain strategy, and a predefined
domain strategy. We evaluated these three approaches, applying them across all the
continual parameter updating strategies, which are presented in the posterior section.
This systematic comparison enabled us to effectively discern the effects attributed to
the weight updating process from those arising from the fluctuations in the feature
domain.

Next, we present in detail each one of these feature domain strategies:

Static domain

The static domain strategy entails the utilization of the feature identifier-to-
index conversion map from the CliNet within DeepEMC2. In this approach, this
map remains unchanged after the initial experience and is not updated subsequently.
Nevertheless, it is essential to acknowledge that, as elucidated in the data prepara-
tion section, a mapping has been established between the CoordCom variables and
CORDEX variables. Therefore, even when new variables emerge, if they maintain
some correspondence with the CORDEX system, the map refers to a familiar clinical
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feature. Conversely, for features that emerge over time without any correspondence
to prior CORDEX variables, they are linked to the index that designates unknown
or infrequent nodes within the CliNet. Thus, despite their novelty, we can still work
with them.

Hence, under the static domain approach, the number of active entries of the
Embedding Layer of the CliInvNet remains unchanged across all the learning experi-
ences, although the value of those dense representations that are enabled varies over
time as the model learns from new data.

Dynamic domain

The dynamic domain strategy is based on the recurrent update of the feature
identifier-to-index map with each new experience—confined exclusively to the train-
ing sets, as previously elucidated. Consequently, we establish a frequency threshold,
mirroring the one employed in the CliNet, to discern when a feature qualifies as in-
frequent. Such features are then either assigned to the unknown index or mapped
to a distinct integer designated solely for that feature. Across the series of expe-
riences, we monitor and revise the cumulative absolute frequency of each feature’s
occurrences. This iterative process facilitates the emancipation of features that were
initially mapped to the unknown integer, permitting their adaptation in subsequent
experiences and preventing them from becoming stagnant.

Hence, under the dynamic domain approach, the number of active entries of the
Embedding Layer of the CliInvNet varies over the learning experiences, as long as the
cumulative clinical variable frequency surpasses the required threshold. In addition,
the value of those enabled dense representations vary over time as the model learns
from new data.

Furthermore, it is imperative to underscore that while the index mapping fluc-
tuates over time, the index used to represent infrequent features remains constant.
This standardization ensures the avoidance of overlap and the introduction of noise. It
is particularly important as certain subsequent parameter updating strategies involve
amalgamating data across multiple experiences.

Predefined domain

The predefined domain strategy employs a distinctive approach to handle fea-
ture domain changes over time. At the core of this methodology is the use of a
predefined embedding matrix derived from a large pretrained natural language pro-
cessing model. Specifically, for this work, we selected the ALBERT model (Lan et al.,
2020) pretrained on a Spanish corpus (Face., 2023). This choice is motivated by the
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fact that our dataset contains clinical variables originally in Spanish. Additionally,
the dimensionality of the ALBERT model’s embeddings closely matches that of the
embeddings used in the static and dynamic approaches, enabling effective comparisons
across these strategies.

It is essential to note that, under this feature domain approach, structured
clinical variables are transformed into an unstructured natural language processing
representation. Subsequently, we apply subword tokenization to the unstructured clin-
ical data, breaking down the text into smaller, meaningful subtokens. After subword
tokenization, we utilize the embedding matrix derived from the pretrained ALBERT
model. This matrix allows us to obtain stable numerical representations for each
subtoken. By leveraging a pretrained NLP model like ALBERT, we harness its ca-
pacity to capture semantic and contextual information from the clinical features in
text format, thus enhancing the quality of our embeddings.

The predefined approach is intended to maintain stability through the con-
sistent use of the ALBERT embedding matrix across all learning experiences. This
ensures that the numerical representations for clinical variables remain robust and
consistent, even as the model learns from new data.

Parameter updating over experiences

In the preceding subsection, we described the challenge posed by the variable
feature domain across experiences. In this section, our focus shifts towards the dy-
namic adaptation of model weights across experiences. This adaptation aims to retain
pertinent information for facilitating decision support in the forthcoming years, while
simultaneously overwriting obsolete patterns and statistical associations. This plas-
ticity effect introduces the capacity to assimilate novel knowledge.

In light of the findings from the previous chapter, which underscored similari-
ties among certain Continual Learning strategies, our evaluation here will be directed
primarily towards those strategies anticipated to exhibit distinct behaviors. Specifi-
cally, we will examine the cumulative strategy, prized for its capacity to accumulate
knowledge, the from-scratch approach, esteemed for its resilience to past experience
noise, and fine-tuning, identified for its adept balance between backward and forward
knowledge transfer. Moreover, the interpretability of results from these techniques is
notable, a crucial consideration as these techniques will be evaluated in conjunction
with the feature domain approaches. Subsequently, we proceed to offer more detailed
insights into each of these strategies:
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From scratch

The from-scratch approach involves exclusively utilizing data from the current
experience, necessitating the initialization of a new model and training it anew on
each occasion. This approach may appear to be less advantageous, given that it
incorporates a substantially smaller dataset compared to the majority of Continual
Learning strategies. However, in scenarios where pronounced dataset shifts transpire
over time, this approach may indeed be prudent. By eschewing the integration of
noise from previous experiences into the current one, it emerges as a sensible option.

Fine-tuning

We consider this strategy given the results shown in the previous chapter. It
strikes a balance by keeping some information about the past—as model weights are
not initialized randomly—but favouring forward knowledge transfer, evading exces-
sive anchoring to past experiences—a trait that could typify some other Continual
Learning strategies.

Cumulative

In this strategy, data from the current experience is combined with data from
all preceding experiences. Consequently, the volume of data employed for training
expands with each new experience. This augmentation in data utilization brings
about heightened computational demands and memory requirements. However, it
offers the advantage of retaining a comprehensive record of previous data patterns.
As a result, the model stands to benefit from a data accumulation standpoint—an
advantageous attribute, given that Deep Learning models tend to exhibit enhanced
performance with a larger pool of available data.

6.3.6 Hyperparameter tuning

Hyperparameter selection was carefully addressed in this study, as hyperpa-
rameters may have a substantial impact in the final performance.

An automatic active learning (Settles, 2009) approach was adopted. For each
pipeline—comprising the feature domain approach coupled with the parameter up-
dating strategy—an hyperparameter set was defined, e.g., learning rate, batch size.
At the same time, for each hyperparameter, some range values were proposed, e.g.,
for learning rate we considered the values 0.0001 and 0.00001, and for batch size
32 and 64. Consequently, the sampling space allowed for the hyperparameters was
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discrete, since a continuous one may derive in overfitting issues due to the curse of
dimensionality (Bellman, 1956).

Subsequently, a Bayesian optimization strategy was followed, where an auxil-
iary probabilistic generative model was trained iteratively to 1) estimate the prob-
ability of the objective performance metric—in our case, the soft F1-score—given a
set of hyperparameters and 2) sample new hyperparameter values on each iteration
expecting to improve the performance metric.

Finally, it is crucial to emphasize that these optimal hyperparameters were
derived from experiments conducted on the pure training and validation sets. Sub-
sequent retraining was then carried out using the complete training set, with perfor-
mance metrics calculated on the test set.

6.3.7 Evaluation

To evaluate the performance of each tested pipeline and determine the one
best suited for consistent decision support over time, particularly in mitigating the
adverse impact of performance drifts affecting feature domains, we calculated the
F1-score associated with each severity label for every pipeline.

Specifically, we computed the F1-score for the positive class of the ”life-threatening”
label (i.e., the ”life-threat” class) and the ”jurisdiction” label (i.e., the ”emergency
system jurisdiction” class). For the ”admissible response delay” label, we calculated
the F1-score using macro-averaging, as we cannot designate a reference class among
the four classes.

We computed these metrics for each experience, considering two approaches.
First, we calculated them considering the training of the pipeline up to the current
experience, allowing us to assess the absence of overfitting while estimating model
performance in the current experience. Second, we computed them by training the
model up to the previous experience. This approach helps us understand how model
performance diminishes when applied to novel incoming data, which may exhibit
variations in data distributions. Therefore, we obtain information about both in-
sample and out-of-sample performance by considering these two assessments.

We then averaged and studied the performance for each feature domain and
parameter updating strategy over the years to gain a better understanding of the
effect of each approach. Additionally, we obtained non-parametric 95% confidence
intervals using bootstrap resampling Efron and Tibshirani, 1994, with a total of 1000
resamples per pipeline.

It is worth noting that, even though it was not subjected to retraining, we
incorporated the outcomes of the Clinical subnetwork from DeepEMC2 into this eval-
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uation. This inclusion served as a baseline, allowing for comparing the performance
of the pipelines examined in this study.

6.4 Results

Next, the results of the analyses to determine the presence of dataset shifts are
presented and described, along with the results relative to the evaluation of the Deep
Continual Learning pipelines designed.

6.4.1 Dataset shifts assessment

Prior probability shifts

Figure 6.3: Prior probability shift assessment through empirical class probabilities.

In relation to the life-threatening label, a dataset shift is evident in terms of
prior probability. Notably, a discernible decline in empirical probability is observed
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between the CORDEX system and the CoordCom system, spanning the years 2012 to
2014. Furthermore, there is a noticeable shift in empirical probability between 2016
and 2017, albeit exhibiting a smoother transition. Consequently, a prior probability
shift manifests within the life-threatening label.

Focusing on the empirical admissible response delay distributions, a marked
and abrupt alteration in empirical probabilities becomes apparent between 2012 and
2014. Following this abrupt shift, a conspicuous and gradual drift is observable.
During this drift, occurrences of undelayable events decrease while those associated
with minutes continue to rise. Thus, a prior probability shift is also evident within
the admissible response delay label.

Lastly, directing our attention to the emergency system jurisdiction label, a
clear and abrupt transition can be inferred from the analysis of Figure 6.3. Subse-
quent to this transition, a discernible upward trend emerges, bearing semblance to the
pattern observed in CORDEX, although operating within a distinct probability range.
Based on this analysis, it is evident that a dataset shift concerning the emergency
system jurisdiction label is present.

Covariate shift

Figure 6.4: Square root of the empirical probabilities linked to the 20 most frequently
occurring clinical features in our dataset.
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Upon inspecting Figure 6.4 depicting covariate shifts, it becomes evident that a
number of the most prevalent features present in CORDEX completely vanish during
the transition to CoordCom. Conversely, it is noted that certain features that are
highly documented in CoordCom were absent in the earlier CORDEX dataset. These
scenarios collectively imply a significant covariate shift phenomenon. Furthermore,
albeit of lesser magnitude, oscillations, and disruptions in trends are discernible, par-
ticularly during the CoordCom years. These irregularities become more pronounced
in the transition from 2017 to 2018.

Concept shift

Figure 6.5: Performance of the Clinical subnetwork of the DeepEMC2 model over time,
for each of the three severity labels, in terms of F1-score. This F1-score is referenced to the
positive class in the life-threatening and emergency system jurisdiction label, while macro-
averaged for the admissible response delay label.

From the analysis of Figure 6.5, it is evident that dataset shifts are present.
This is substantiated by the declining performance of the Clinical subnetwork over
time, notably during the periods between 2012 and 2014, as well as between 2017 and
2018. However, the existence of a concept shift cannot be definitively established, as
these performance variations are strongly correlated with the covariate shifts. Con-
sequently, it is plausible that the performance fluctuations primarily stem from vari-
ations in input features and their scarcity in past years, rather than solely changes in
conditional probabilities.
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6.4.2 Continual learning

Next, we present the results achieved for the distinct Deep Continual Learning
pipelines examined within this study. The differentiation is made between current
and upcoming year performances, for each of the three severity labels.

Performance with training up to the current year

Life-threatening

Figure 6.6: Life-threatening performance over time with training up to the current year
for each pipeline.

Table 6.1: Average F1-score values for life-threatening performance with training up to
the current year for each pipeline tested. Non-parametric 95% confidence intervals for each
average value are provided between brackets.

Parameter Feature domain

updating Static Dynamic Predefined Mean

From scratch 0.588 [0.584, 0.591] 0.587 [0.584, 0.59] 0.577 [0.574, 0.58] 0.584 [0.581, 0.587]

Fine-tuning 0.592 [0.589, 0.595] 0.591 [0.588, 0.594] 0.59 [0.587, 0.593] 0.591 [0.588, 0.594]

Cumulative 0.591 [0.587, 0.594] 0.59 [0.587, 0.593] 0.589 [0.585, 0.592] 0.59 [0.587, 0.593]

Mean 0.59 [0.587, 0.593] 0.589 [0.586, 0.592] 0.585 [0.582, 0.588] 0.588 [0.585, 0.591]
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Upon observing Figure 6.6, a discernible trend of declining performance be-
comes apparent, characterized by an extended continuity over time. Considering the
Clinical subnetwork of DeepEMC2, featuring a static domain and a static parameter
updating strategy, it functions as an anticipated baseline, given its lack of retraining
over time. When analyzing the effect of feature domains, distinguishing significant
performance disparities between the static and dynamic approaches proves challeng-
ing, although the predefined domain method performs slightly worse. Shifting focus
to the parameter updating strategies over time, marginal degradation in results is
evident within the from scratch approach compared to the relatively analogous fine-
tuning and cumulative strategies.

Admissible response delay

Figure 6.7: Admissible response delay performance over time with training up to the
current year for each pipeline.
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Table 6.2: Average macro F1-score values for admissible response delay performance with
training up to the current year for each pipeline tested. Non-parametric 95% confidence
intervals for each average value are provided between brackets.

Parameter Feature domain

updating Static Dynamic Predefined Mean

From scratch 0.505 [0.502, 0.507] 0.509 [0.507, 0.511] 0.496 [0.494, 0.498] 0.503 [0.501, 0.505]

Fine-tuning 0.511 [0.509, 0.513] 0.514 [0.512, 0.516] 0.507 [0.505, 0.509] 0.511 [0.508, 0.513]

Cumulative 0.512 [0.509, 0.514] 0.513 [0.511, 0.515] 0.507 [0.505, 0.509] 0.511 [0.509, 0.513]

Mean 0.509 [0.507, 0.511] 0.512 [0.51, 0.514] 0.503 [0.501, 0.505] 0.508 [0.506, 0.51]

Upon analyzing Figure 6.7, a minor performance dip in 2014 and 2015 is no-
ticeable, subsequently recovering thereafter. Considering the Clinical subnetwork, it
serves as the anticipated baseline, as it remains untrained. Its performance suffers
significantly due to the domain shift in 2014, followed by a gradual yet smoother de-
cline. Unlike the life-threatening label, where feature domain performances exhibited
minimal disparity, discernible nuances emerge here, favoring the dynamic approach.
Notably, average values for the dynamic feature domain consistently surpass those of
the static approach as well as the predefined one, across all tested parameter updating
strategies. Similar to the life-threatening label, parameter updating strategies mirror
a similar pattern, with the from scratch approach yielding inferior results, overtaken
by the fine-tuning and dynamic strategies. Notably, no pronounced discrepancies are
discerned between the latter two.

Emergency system jurisdiction

Upon observing Figure 6.8, a general decline in performance becomes apparent,
albeit within a functional range that preserves model utility. A parallel pattern to
the life-threatening label manifests, albeit with a distinction: the emergency system
jurisdiction label exhibits comparatively higher values, with a tendency to rebound
slightly in the latter experiences. The Clinical subnetwork does not function as an
anticipated baseline, surpassing other pipelines incorporating retraining. Correspond-
ingly, equivalently to the life-threatening scenario, discernible discrepancies between
the static and dynamic feature domain approaches remain absent, although, for the
jurisdiction label, the predefined domain approach outperforms both the dynamic and
static ones. Turning to the parameter updating strategies over time, their influence,
though subtle, is evident. The fine-tuning strategy yields the best results, followed
by the cumulative approach, and finally, the from-scratch approach.
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Figure 6.8: Emergency system jurisdiction performance over time with training up to the
current year for each pipeline.

Table 6.3: Average F1-score values for emergency system jurisdiction performance with
training up to the current year for each pipeline tested. Non-parametric 95% confidence
intervals for each average value are provided between brackets.

Parameter Feature domain

updating Static Dynamic Predefined Mean

From scratch 0.745 [0.743, 0.747] 0.744 [0.742, 0.746] 0.747 [0.745, 0.749] 0.745 [0.743, 0.747]

Fine-tuning 0.749 [0.747, 0.751] 0.75 [0.748, 0.751] 0.751 [0.749, 0.753] 0.75 [0.748, 0.752]

Cumulative 0.746 [0.744, 0.748] 0.747 [0.745, 0.749] 0.748 [0.746, 0.75] 0.747 [0.745, 0.749]

Mean 0.747 [0.745, 0.749] 0.747 [0.745, 0.749] 0.749 [0.747, 0.751] 0.747 [0.746, 0.749]
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Performance with training up to the previous year

Life-threatening

Figure 6.9: Life-threatening performance over time with training up to the previous year
for each pipeline.

Table 6.4: Average F1-score values for life-threatening performance with training up to
the previous year for each pipeline tested. Non-parametric 95% confidence intervals for each
average value are provided between brackets.

Parameter Feature domain

updating Static Dynamic Predefined Mean

From scratch 0.561 [0.558, 0.565] 0.573 [0.569, 0.576] 0.549 [0.545, 0.552] 0.561 [0.557, 0.564]

Fine-tuning 0.563 [0.56, 0.567] 0.566 [0.563, 0.57] 0.567 [0.564, 0.57] 0.566 [0.562, 0.569]

Cumulative 0.559 [0.555, 0.562] 0.573 [0.57, 0.576] 0.567 [0.563, 0.57] 0.566 [0.563, 0.57]

Mean 0.561 [0.558, 0.565] 0.571 [0.567, 0.574] 0.561 [0.557, 0.564] 0.564 [0.561, 0.568]

Upon observing both Figure 6.9 and Table 6.4, and comparing them with their
corresponding current year counterparts in Figure 6.6 and Table 6.1, it becomes evi-
dent that the behavior for the subsequent year is notably more erratic, characterized
by pronounced and abrupt transitions. In the context of the baseline model, the Clin-
ical subnetwork derived from DeepEMC2 exhibits a gradual decline in performance
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over time, marked by an initial drop in 2014 and a subsequent prominent dip in
2017. Contrasting with this, other pipelines showcase a conspicuous descent in 2014,
which is subsequently compensated through retraining with data from the same year,
followed by a steady performance degradation.

Simultaneously, it is noteworthy that discrepancies among pipelines are accen-
tuated in the context of next year’s performances, as opposed to their current year
counterparts. Unlike the situation in the current year, distinct disparities emerge
between the static, the dynamic, and the predefined feature domain approaches, with
the dynamic approach yielding superior results. In terms of parameter updating
strategies, the values tend to remain relatively similar between the fine-tuning and
cumulative approaches, while the from scratch approach yields inferior results.

Admissible response delay

Figure 6.10: Admissible response delay performance over time with training up to the
previous year for each pipeline.
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Table 6.5: Average macro F1-score values for admissible response delay performance with
training up to the previous year for each pipeline tested. Non-parametric 95% confidence
intervals for each average value are provided between brackets.

Parameter Feature domain

updating Static Dynamic Predefined Mean

From scratch 0.489 [0.487, 0.491] 0.492 [0.49, 0.495] 0.474 [0.472, 0.477] 0.485 [0.483, 0.488]

Fine-tuning 0.487 [0.484, 0.489] 0.497 [0.494, 0.499] 0.481 [0.479, 0.484] 0.488 [0.486, 0.49]

Cumulative 0.487 [0.485, 0.489] 0.494 [0.492, 0.497] 0.485 [0.483, 0.487] 0.489 [0.486, 0.491]

Mean 0.488 [0.485, 0.49] 0.494 [0.492, 0.497] 0.48 [0.478, 0.482] 0.487 [0.485, 0.49]

From an examination of both Figure 6.10 and Table 6.5, it is evident that the
behavior in the forthcoming year for the admissible response delay label exhibits a
notably smoother trend when compared to that of the life-threatening label. Re-
ferring to the baseline model, the Clinical subnetwork originating from DeepEMC2

demonstrates a gradual performance decline over time.

In relation to the pipelines incorporating retraining, a dip in performance is
discernible in 2014, subsequently recuperating after retraining with data from the
same year. Following this, performance exhibits a consistent upward trajectory. Ad-
ditionally, it is worth noting that the dynamic feature domain approach presents a
more favorable behavior than the static and predefined feature domain paradigms.
Regarding parameter updating strategies, the comparison reveals that the fine-tuning
strategy yields the most favorable results, followed by the cumulative approach, and
lastly, the from-scratch strategy.

Emergency system jurisdiction

Upon examining both Figure 6.11 and Table 6.6, it becomes evident that cer-
tain pipelines experience a notable and abrupt decline in performance during 2014.
However, this decline is effectively mitigated through retraining efforts. Subsequent
to retraining, performance remains relatively stable. Turning to the baseline model,
represented by the Clinical subnetwork of DeepEMC2, it is evident that performance
remains resilient and consistent over time, with minor fluctuations.

When scrutinizing other pipelines, fluctuations over time are worth noting.
Nonetheless, performance remains within controlled ranges, without significant drops,
except in 2014. Remarkably, the dynamic and predefined feature domain approaches
consistently outperform the static approach across all tested pipelines, with similar
performance between the dynamic and predefined methods. Similarly, when assessing
different strategies for updating model weights over time, fine-tuning emerges as the
best strategy, albeit with only marginal separation from the performance achieved by
the from-scratch and cumulative strategies.
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Figure 6.11: Emergency system jurisdiction performance over time with training up to the
previous year for each pipeline.

Table 6.6: Average F1-score values for emergency system jurisdiction performance with
training up to the previous year for each pipeline tested. Non-parametric 95% confidence
intervals for each average value are provided between brackets.

Parameter Feature domain

updating Static Dynamic Predefined Mean

From scratch 0.72 [0.718, 0.722] 0.735 [0.733, 0.737] 0.731 [0.729, 0.733] 0.729 [0.726, 0.731]

Fine-tuning 0.726 [0.724, 0.728] 0.734 [0.732, 0.736] 0.739 [0.737, 0.741] 0.733 [0.731, 0.735]

Cumulative 0.717 [0.714, 0.719] 0.737 [0.735, 0.739] 0.734 [0.732, 0.737] 0.729 [0.727, 0.731]

Mean 0.721 [0.719, 0.723] 0.735 [0.733, 0.737] 0.735 [0.733, 0.737] 0.73 [0.728, 0.732]
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Relative performance variation

Next, we present a bar plot in Figure 6.12 illustrating the relative performance
variation. This variation is based on the optimal updating strategy, identified as
fine-tuning, in conjunction with the optimal feature domain approach, which is the
dynamic feature domain.

Figure 6.12: Performance with training up to the previous year variation over time—in
percentage terms—for the pipeline achieving the most favorable outcomes—fine-tuning with
dynamic feature domain—for each of the severity labels, namely: life-threatening, admissible
response delay, and emergency system jurisdiction.

Upon observing this graph, a pattern emerges: the system change results in
a significant performance deterioration from 2012 to 2014. This loss is particularly
severe in the case of the life-threatening and admissible response delay labels. Sub-
sequent to this period, performance exhibits oscillations, with certain years showing
improvement while others witness declines. Notably, this variability remains within
a 5% range, indicating a bounded and controlled fluctuation.
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6.5 Discussion

6.5.1 Relevance

Through an analysis of the prior probability shift graphs for each severity label,
it can be deduced that the severity of handled incidents was significantly reduced after
the transition from CORDEX to CoordCom. This is reasonable, as new dispatchers
and coordination protocols were introduced, which exhibited a more cautious and less
specific approach compared to the previous operators. These new dispatchers dealt
with events that were less urgent, unlike the prior operators who managed a higher
proportion of genuine emergency cases.

Upon examining covariate shifts, it is evident that while most clinical features
remained unchanged, some disappeared over the years while new ones were intro-
duced. Additionally, the frequencies of certain existing features underwent variations.
This phenomenon could be linked to the earlier mentioned increase in the number of
non-severe cases that were attended to.

The study on concept shift was unable to definitively establish whether per-
formance declines were due to actual shifts in conditional variations or were a con-
sequence of the covariate shift itself. Nonetheless, the key takeaway is that without
intervention, the performance of the Clinical subnetwork within the DeepEMC2 model
will gradually deteriorate over time.

Examining the evolution of the feature domain over the years in light of the
results, it becomes evident that, while the performance with training up to the cur-
rent year does not clearly reflect this, the dynamic feature domain approach holds
substantial value in forecasting for the upcoming year—in terms of performance with
training up to the previous year. Therefore, we find it appropriate to select this
approach over the static and the predefined methods.

Shifting our focus to parameter updating strategies, we conclude that fine-
tuning stands as the optimal choice. Although it may not consistently yield the best
performance, it emerges as the prevailing strategy, showcasing effectiveness coupled
with efficiency. This approach facilitates significant knowledge transfer at a reasonable
computational cost, in contrast to the cumulative approach. Additionally, it retains
partial information from past experiences during the initialization phase, a factor that
provides this strategy with an advantage over the from-scratch approach.

Similarly, the observation that the cumulative approach, despite employing
a larger pool of training data, does not consistently yield the optimal performance
could potentially be attributed to the paradigm shift caused by distributional drifts.
In this context, incorporating data from previous experiences might introduce noise
rather than mitigate prediction errors. Therefore, we can assert that retraining with
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historical data might impede the seamless transfer of knowledge and that discarding
patterns from prior experiences could be more advantageous.

An additional noteworthy point for discussion is that the Clinical subnetwork,
contrary to expectations, does not serve as a baseline when predicting emergency
jurisdiction labels, neither in the present nor the subsequent year. This phenomenon
may be attributed to the composition of CoordCom data, which encompasses a higher
proportion of primary care cases compared to CORDEX. Consequently, the inclusion
of these incidents seems to have limited the model’s performance in relation to this
specific label.

Finally, it is important to highlight that the performance attained during the
CORDEX period is not fully regained in the CoordCom context, even after retrain-
ing. This holds true for both the life-threatening label and the emergency system
jurisdiction label. This discrepancy could be attributed to the same sample selection
phenomenon elucidated in previous sections, where the transition from CORDEX to
CoordCom led to an increase in the number of non-severe incidents being attended
to.

6.5.2 Limitations

While our study has provided valuable insights, and we have focused on evaluat-
ing a significant number of critical configurations, we acknowledge there are numerous
additional combinations that remain unexplored but could also be relevant for imple-
mentation and testing. Exploring these scenarios may provide further insights into
the temporal behavior of our models.

6.5.3 Future work

In future work, we envision incorporating innovative Continual Learning strate-
gies to enhance the updating of model weights. These strategies would extend beyond
the cumulative, from-scratch, and fine-tuning approaches currently explored. Addi-
tionally, we intend to broaden our assessment of feature domain methodologies. Fur-
thermore, there is merit in extending the scope of our analysis to encompass diverse
feature types, such as free text features and context data, particularly if a multimodal
analysis approach is adopted.
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6.6 Conclusions

In this chapter, our focus has been on investigating the existence of dataset
shifts within the context of the clinical variables multitask prediction problem. We
have also explored multiple pipelines designed to address these shifts and quantify
the resultant anticipated performance declines. The outcomes of our analysis un-
veil significant alterations attributed to the transition from CORDEX to CoordCom,
which occurred between 2012 and 2014, as well as more gradual variations witnessed
between 2017 and 2018.

Moreover, we emphasize the necessity of dynamic feature domain updates on an
annual basis to mitigate performance deterioration in subsequent years. In terms of
parameter updates for our models, our findings suggest that retaining data from prior
experiences for retraining purposes is not the optimal choice. Instead, we advocate
for the adoption of fine-tuning approaches, as they offer a more effective and efficient
solution. Therefore, our key recommendation from this chapter is to implement dy-
namic feature updating strategies in conjunction with fine-tuning mechanisms. When
considering these recommendations and excluding the year 2014, during which the
information system underwent a change, it becomes apparent that performance fluc-
tuations in the subsequent years are limited. Specifically, the variability in terms of
F1-score performance across all three labels remained stable within a 5% rate change.
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Chapter 7

Deep continual multitask

classification of emergency medical

call incidents over time combining

multimodal data

The development of the DeepEMC2 model, as discussed in Chapter 3, has
demonstrated the potential to enhance the triage process for out-of-hospital emer-
gency calls using Deep Learning techniques. However, in subsequent chapters (Chap-
ter 5 and Chapter 6), issues related to dataset shifts have been identified when analyz-
ing our incidents data over time. This concern cannot be disregarded or bypassed, as
it leads to detrimental performance effects on the DeepEMC2 model, which is intended
for deployment within emergency medical dispatch centers. Hence, in the preceding
chapters, we have formulated and executed Continual Learning strategies aimed at
tackling this challenge. Yet, these strategies were previously applied separately to the
textual observations provided by dispatchers and the clinical features. However, in
this particular chapter, we adopt a multimodal approach. This approach encompasses
the necessary adaptations to the DeepECM2 model, allowing us to collectively con-
sider contextual, clinical and free text data for predicting severity labels—specifically,
life-threatening conditions, admissible response delay, and emergency system jurisdic-
tion. The overarching goal is to mitigate the adverse effects stemming from dataset
shifts as much as possible, while also incorporating mechanisms to prepare the model
for unanticipated changes.

The results from this chapter suggest that the model’s predictive performance
for the subsequent year remains within acceptable operational bounds. Consequently,
if alterations are gradual and not excessively pronounced, the measures that have
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been implemented can ensure a satisfactory level of performance for our decision-
support model in the out-of-hospital medical triage context. Nevertheless, it remains
crucial to diligently observe shifts in data distribution and performance metrics. This
proactive monitoring is imperative to promptly address potential fluctuations that
might be substantial, potentially resulting in adverse performance consequences with
significant implications for deployment.

The contents of this chapter are being submitted to the journal Artificial Intel-
ligence in Medicine—thesis contributions C4, C5 and P7.

7.1 Introduction

Developing an Artificial Intelligence model for the classification of out-of-hospital
Emergency Medical Call Incidents (EMCI) holds significant potential in terms of im-
proving patient well-being and sustaining health services (Ferri et al., 2021). Never-
theless, what may appear promising from a research standpoint might not translate as
successfully into real-world deployment. This discrepancy often arises due to the pres-
ence of dataset shifts (Quinonero-Candela et al., 2008)—changes in data distributions
that emerge post the model’s development phase, inherent to medical domain (Sáez
et al., 2020). Consequently, when striving to offer decision support for out-of-hospital
medical emergencies, careful considerations are essential, and Artificial Intelligence
models must be conceptualized with the anticipation that such shifts will inevitably
materialize over time.

In prior chapters, we introduced the DeepEMC2 model, an ensemble multitask
multimodal approach that significantly enhances the in-house triage protocol of the
Valencian Region. Nonetheless, the data employed encompassed the years between
2009 and 2012, corresponding to the CORDEX system dataset. Upon acquiring the
CoordCom data—encompassing the years 2014 to 2019—we embarked on distinct
analyses. Our focus was directed towards evaluating alterations in data distributions
and feature domains across the two systems over various years. Additionally, we ex-
plored the integration of Continual Learning (Parisi et al., 2019) strategies to mitigate
the adverse impacts of dataset shifts. Our analysis was concentrated on both clinical
and textual features, underscoring the necessity of adopting a Continual Learning
methodology to counterbalance the effects stemming from distributional shifts.

In this chapter, we adopt a comprehensive perspective, encompassing all acces-
sible features and labels over the entire time span at our disposal. This undertaking
presents a profound and multifaceted challenge, merging continual, multimodal, and
multitask learning. Our input data is composed of contextual, clinical, and textual fea-
tures, while our output data consists of severity labels—specifically, life-threatening,
admissible response delay, and emergency system jurisdiction. The model is struc-
tured to undergo Continual Learning training across a series of experiences, with the
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overarching objective of maximizing its future performance. Furthermore, measures
are incorporated to augment the model’s resilience towards missing data and dynamic
feature domains.

7.2 Materials

7.2.1 Dataset

Overview

A comprehensive collection of 2 054 694 distinct Emergency Medical Call In-
cidents (EMCI) originating from the Health Services Department of the Valencian
Region was taken into consideration. This dataset was compiled over the period
spanning 2009 to 2019, excluding the year 2013 due to alterations in the emergency
system during that time.

The EMCI dataset encompasses data obtained both during and subsequent
to the call. The subsequent sections delineate a comprehensive breakdown of the
elements constituting each of these categories:

During-call data

During-call data were recorded during the emergency medical call and were
integrated by the contextual features—date, number of patients involved, age, sex—
clinical features—clinical variables derived from the in-house decision tree—and free
text features—unstructured data written by the emergency medical dispatcher cap-
turing what it cannot be modeled by the prior variables. These data were used at
inference time as input for the prediction.

After-call data

After-call data were recorded at a time after the call. They include physician
diagnosis, hospitalizations, urgency stays, maneuvers and procedures the patient un-
derwent. After-call data were used offline—i.e., not in prediction time—to infer if the
emergency event implied or not a life-threatening situation, which was the admissible
response delay—undelayable, minutes, hours, days—and if the event was jurisdiction
of the emergency system or primary care. Hence, the after-call was used to derive the
three severity labels to predict.
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7.2.2 Framework

The implementation language of our experiments was Python (G. van Rossum
(Guido), 1995), using the libraries Numpy (van der Walt et al., 2011) and Pandas
(McKinney, 2010) for data management. To implement and train the designed models
we considered PyTorch (Paszke et al., 2017) and HuggingFace’s Transformers (Wolf
et al., 2019). Finally, we used Optuna (Akiba et al., 2019) for hyperparameter tuning.

7.3 Methods

7.3.1 Data preprocessing

Distinct preprocessing techniques were employed based on the variable type,
effectively transforming the initial data into a matrix format suitable for utilization
in the Deep Learning models.

Given the occurrence of incidents involving multiple patients, the age variable
necessitated categorization into distinct groups. This step facilitated the handling of
incidents characterized by both single-patient and multi-patient scenarios. To achieve
this categorization, we adopted fuzzy representations (Zadeh, 1965). Specifically, we
chose sigmoid functions for their inherent smoothness, which helps avoid abrupt tran-
sitions between different age groups. Sigmoid functions provide a smoother behavior
compared to the trapezoidal functions considered in Chapter 3. The membership
functions employed are visually depicted in Figure 7.1.

Figure 7.1: Sigmoid functions representing age group membership.
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The representation of the sex variable involved employing ratios to account
for various scenarios. This included the creation of a male ratio, a female ratio,
and a missing ratio. This approach acknowledges the possibility of incidents with
multiple patients, some of whose sex might be unknown. Similarly, the date variable
underwent transformations to derive additional features. These features encompassed
the weekday, month, a binary indicator for weekend days, and a binary indicator for
labor days. The resultant non-binary features were subsequently mapped to indexes,
with distinct mapping schemes for each temporal categorical variable. Furthermore,
a number of patients feature was generated and subsequently normalized to fit within
the interval [0, 1).

Concerning clinical variables, each variable-value pair underwent conversion to
an index. This process generated sequences of integers that were subsequently sub-
jected to post-padding and truncation, thereby ensuring uniform sequence lengths.
For this particular case, the sequence length was set at 14, a value chosen because
more than 99% of reported incidents included 14 or fewer clinical variables. It is crucial
to emphasize that although these variables were organized as sequences, their inherent
order is not of significance. This is primarily due to the absence of information re-
garding the order of clinical variables within the CoordCom system. Subsequently, in
the modeling section, the methodology for achieving predictions that remain invariant
to feature order will be elaborated upon.

As for text features, subword tokenization utilizing the WordPiece technique
(Wu et al., 2016) was employed to minimize vocabulary size. To maintain sequences of
consistent lengths while preserving information about the original sequence lengths,
post-padding and attention mask generation were conducted. The padding length
was set at 64, as over 99% of reported incidents featured subword sequences of 64 or
fewer elements.

Lastly, labels, corresponding to structured categorical data, were encoded using
a one-hot encoding scheme. This resulted in a label matrix with 8 columns, each
associated with a specific label-class pair.

7.3.2 Data splitting

As we did in previous chapters, data was split into multiple experiences to
capture the temporal variations while avoiding overfitting issues. First, we divided
our dataset into multiple learning experiences (Lomonaco et al., 2021). We consid-
ered a first experience constituted by data solely derived from the CORDEX system.
Subsequent experiences corresponded to individual years within the CoordCom infor-
mation system. This partitioning strategy was chosen because, as detailed later, novel
architectures, both for the DeepEMC2 model (Ferri et al., 2021) and its constituent
subnetworks, will be considered. Given that the model and its subnetworks were not
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trained on a yearly basis but rather on the entire CORDEX data batch, employing the
same data batches for performance metric comparison becomes imperative to assess
the potential negative impacts introduced by architectural modifications.

Following this initial partition, a second, iterative partitioning was implemented
for each of the designated experiences. For every experience, an initial division into
training and test sets was executed, with a sampling ratio of 80% for training and 20%
for testing. This testing subset played a crucial role in estimating the real performance
of the model. Subsequently, the previously mentioned training set underwent a further
partition, resulting in distinct pure training and validation subsets. The allocation
proportions for this secondary division were set at 70% for the training subset and 30%
for the validation subset. It is noteworthy that the validation subset was exclusively
employed for the fine-tuning of hyperparameters, without any data originating from
the test subset being utilized in this process.

It is important to emphasize that we have deliberately chosen a specific time
window for the defined experiences. While it may appear plausible to adopt a more
granular time division, such as trimesters, it is crucial to take into account that
retraining becomes feasible only when true labels are accessible. Hence, the selection
of a one-year time interval presents a pragmatic approach. The acquisition of labels
for every instance within shorter time spans, such as per month, is not practically
feasible due to bureaucratic procedures. Moreover, it is pertinent to consider that the
data exhibits distinct annual seasonality patterns. By employing a yearly division, we
effectively mitigate the potential confounding influence introduced by this temporal
variability. This strategy ensures that our analysis remains coherent and conclusive,
especially when contrasted with a scenario where finer temporal divisions are utilized,
such as monthly intervals.

7.3.3 Deep neural network design

As elaborated in Chapter 3, the task of classifying EMCI by combining mul-
timodal data was deconstructed into four distinct subproblems. These subproblems
encompassed three EMCI classification tasks, each focused on EMCI data of a specific
nature, and a final EMCI classification task that employed the solutions from these
subproblems to carry out a global multimodal EMCI classification. To tackle these
four challenges, four distinct Deep Learning networks were formulated: the Context
Network (ConNet), the Clinical Network (CliNet), the Text Network (TextNet), and
the Global Network (GloNet).

Given that the labels for life-threatening incidents, response delay, and juris-
diction provide distinct yet interconnected information, a multitask learning approach
(Caruana, 1997) was pursued to exploit these label dependencies. In order to enhance
training efficiency, introduce regularization, and minimize the overall number of net-
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work parameters, a hard parameter sharing strategy (Ruder, 2017b) was adopted.
Consequently, each of the four developed subnetworks incorporated a task-shared
block—employing the same parameter set across all label prediction tasks—and a
task-specific block—utilizing distinct parameter sets for each label prediction task.

It has to be underscored that the Global Network presented in this chapter
can be regarded as an evolution of the original DeepEMC2 model (Ferri et al., 2021).
However, as elucidated in subsequent sections, it integrates mechanisms capable of
accommodating variations in distributions over time, including alterations in feature
domains. In addition, unlike its predecessor, this version is trained end-to-end, negat-
ing the need for a preliminary training phase involving the subnetworks, followed by
the network responsible for aggregating inner representations.

The forthcoming subsections provide a more comprehensive breakdown of the
architectural details pertaining to each of the networks developed within this chapter.

Context Network (ConNet)

The Context Network (ConNet), illustrated in Figure 7.2, is designed to handle
the contextual data associated with an EMCI. This includes information such as age,
sex, the number of patients involved, whether it is a labor day, and features related
to the weekday and month. ConNet is structured as a multitask (Caruana, 1997)
deep neural network, composed of two primary components: a Context Encoder and
a Multitask Classifier.

The Context Encoder constitutes the segment of the model responsible for hard
parameter sharing. Within this encoder, we find two Embedding Layers (Bengio et
al., 2000). The first Embedding Layer, denoted as W , maps the indexes representing
weekdays to dense numerical representations. The second Embedding Layer, denoted
as M , performs a similar function for the indexes referencing months. Following
these embedding layers, a Concatenation Block merges the encoded representations
from the previous embedding layers with the remaining features that already possess
appropriate numerical representations. These features include age membership data,
sex-related features, the number of patients, and the labor day indicator. Subsequent
to this Concatenation Block, a sequence of dense blocks processes these encoded
representations. A Dense Block comprises a Fully Connected Layer (Rosenblatt,
1958), Layer Normalization (Ba et al., 2016), a GELU activation function (Hendrycks
& Gimpel, 2016), and a Dropout Layer (Hinton et al., 2012).

The outputs emerging from the final Dense Block are then transmitted to the
Multitask Classifier. This component is responsible for introducing task-specific ele-
ments into the architecture and comprises three label branches. Each branch consists
of multiple dense blocks culminating in an output block. These output blocks encom-
pass a Fully Connected Layer, followed by a Softmax activation function.
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Figure 7.2: Context Network (ConNet) architecture.
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Clinical Network (CliNet)

The Clinical Network (CliNet), as depicted in Figure 7.3, is engineered to pro-
cess the clinical variables associated with an EMCI. It adheres to the identical archi-
tecture as the Clinical Invariant Network, previously presented in Chapter 6. CliNet is
formulated as a multitask deep neural network, comprising two primary constituents:
the Clinical Encoder and the Multitask Classifier. The Clinical Encoder, serving as
the bedrock of the network’s hard parameter sharing mechanism, constitutes its core.
Meanwhile, the Multitask Classifier accommodates separate branches, each dedicated
to a specific label. These branches are tasked with generating predicted probabilities
for the various classes within their respective labels.

Zooming in on the Clinical Encoder, its construction initiates with an initial
Embedding Layer. This layer facilitates the transformation of clinical variables, ex-
pressed as indexes, into dense vector representations—an approach far more efficient
than one-hot encodings. Importantly, this Embedding Layer enables the network to
gracefully adapt to novel features over time. This adaptability is achieved by pre-
allocating an extensive number of entries within the associated lookup matrix, all
without impacting subsequent architectural elements. Subsequent to the Embedding
Layer, an Adaptive Average Pooling block (Szegedy et al., 2016) is deployed. This
component serves to aggregate the representations of all features within an observa-
tion into a single representation. This functionality allows the network to accommo-
date varying numbers of features per entry. Moreover, the Adaptive Average Pooling
Layer confers order-invariant capabilities to the network, ensuring consistent results
regardless of alterations in feature order. Following this, a series of dense blocks is
introduced, with each block incorporating a Fully Connected Layer, Layer Normal-
ization, a GELU activation function, and a Dropout Layer.

The structure and functionality of the Multitask Classifier align with that of
the Context Network, as presented in the previous subsection, following a similar
architecture and methodology.

Text Network (TextNet)

The Text Network (TextNet), illustrated in Figure 7.4, is specialized in handling
the free text dispatcher observations linked to an EMCI. It operates as a multitask
deep neural network, composed of two primary components: the Text Encoder and the
Multitask Classifier. The Text Encoder, serving as the cornerstone of the network’s
hard parameter sharing, constitutes its nucleus. Meanwhile, the Multitask Classifier
comprises separate branches, each dedicated to a specific label. These branches com-
pute the predicted probabilities for the various classes within their respective labels.
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Figure 7.3: Clinical Network (CliNet) Architecture.

Directing our focus towards the Text Encoder, it assumes the form of a BERT
(Devlin et al., 2019) module, albeit with certain distinctions. This variant of the
Transformer (Vaswani et al., 2017) model encompasses an Embedding Block as its
initial component. This Embedding Block comprises a Token Embedding Layer, a
Position Embedding Layer, a Token Type Embedding Layer, Layer Normalization,
and Dropout. Subsequently, a total of twelve attention blocks process the embeddings
generated earlier, culminating in the Pooler. The Pooler is tasked with consolidating
the inner representations within encodings while significantly reducing dimensionality.

The Multitask Classifier adheres to the same structure and functionality as
presented in the previous subsection for the Context and Clinical networks.

It is crucial to underscore that the model is not trained from scratch. Instead,
a pretrained multilingual version of the BERT model was leveraged to constitute the
Text Encoder. This pretrained model is available at (Town, 2023). Furthermore,
most of the model parameters are frozen to capitalize on pretraining, mitigate com-
putational expenses, and enhance performance.
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Figure 7.4: Text Network (TextNet) architecture.

End-to-end DeepEMC2 - Global Network (GloNet)

The End-to-end Deep Ensemble Multitask Classifier for Emergency Medical
Calls, denoted as End-to-end DeepEMC2 or Global Network (GloNet), as illustrated
in Figure 7.5, operates at the intersection of context data, clinical data, and text data
simultaneously, functioning as a multimodal model. It is a multitask deep neural
network composed of two primary components: an Encoder and a Multitask Classifier.
The Encoder, base of the network’s hard parameter sharing mechanism, is a composite
structure comprising the previously introduced Context Encoder, Clinical Encoder,
and Text Encoder. The outputs generated by each of these individual encoders are
amalgamated within a Concatenation Block before being relayed to the Multitask
Classifier.

The Multitask Classifier mirrors the structure detailed for the preceding net-
works, with separate branches designated for each label. These branches compute
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the predicted probabilities for the various classes encompassed within each label. It
adheres to the same architecture and principles outlined in the prior subsections.

It is important to emphasize a notable distinction in this novel iteration of the
DeepEMC2 model. Apart from the incorporation of mechanisms to address changes
in data distributions and feature domain variability (as elucidated in forthcoming
sections), a pivotal shift pertains to its training methodology. Unlike the original
DeepEMC2 model, which involved training individual encoders followed by the Multi-
task Classifier, the End-to-end DeepEMC2 model is specifically designed to be trained
end-to-end. Nevertheless, it is crucial to note that a significant proportion of the
parameters within the Text Encoder are preserved as non-trainable, as previously
justified in the preceding subsection.

Figure 7.5: End-to-end Deep Ensemble Classifier for Emergency Medical Calls
(DeepEMC2) architecture. This model is also identified as the Global Network (GloNet).
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7.3.4 Parameter tuning

Regarding the parameter tuning process, we adopted the AdamW optimizer
(Loshchilov & Hutter, 2019), which is a variation of the Adam algorithm (Kingma &
Ba, 2017), chosen for its efficacy in training transformer models (Loshchilov & Hutter,
2019). Our training process adhered to a mini-batch approach (Bertsekas, 1994) for
data feeding. The selected loss function was the soft F1-score (Janocha & Czarnecki,
2017), since is advantageous for incorporating argmax saturation procedures during
the transition from output scores to the saturated predicted labels. Importantly, this
obviates the necessity to adjust the threshold for each experience, as the constant
threshold remains intact, and the learning process naturally attunes itself. In addition,
a learning rate scheduler was integrated, specifically a cosine annealing learning rate
scheduler, which is well-aligned with the demands of deep transfer learning (Loshchilov
& Hutter, 2017).

Furthermore, it’s worth noting that layers featuring GELU activation func-
tions were initialized using the Kaiming initialization technique (He et al., 2015),
while layers employing the softmax activation function were initialized using Xavier’s
initialization (Glorot & Bengio, 2010).

7.3.5 Continual Learning

Scalability of feature support

To accommodate the gradual integration of novel clinical features over time due
to updates in the in-house decision tree, we implemented a dynamic feature domain
updating strategy, firstly presented in Chapter 6.

Hence, for clinical features, we updated the mapping between feature identifiers
and their corresponding indices for every new experience, exclusively within the train-
ing sets and not the evaluation sets. This entailed establishing a frequency threshold
that determined when a feature was considered infrequent and thus designated to
be mapped either to the unknown index or to an index exclusive to that particular
feature. Across different experiences, we tracked and updated the cumulative ab-
solute frequency of occurrences for each feature. Consequently, features that were
initially mapped to the unknown index due to their rarity could potentially be un-
blocked in subsequent experiences, preventing them from being indefinitely restricted.
It is imperative to underscore that while the index mapping evolves over time, the
index designated for representing infrequent features remains constant. This strategic
decision safeguards against index overlap and the introduction of extraneous noise.
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Parameter updating over experiences

As demonstrated in chapters 5 and 6, fine-tuning, despite its relative simplicity
from a technical standpoint, yields the most favorable outcomes in terms of effective
knowledge forward transfer. Notably, this approach proves to be not only effective
but also efficient, as it obviates the necessity to retain historical data. This efficiency
presents a compelling trade-off compared to alternative strategies, such as cumula-
tive learning. Moreover, fine-tuning aligns seamlessly with considerations of data
privacy, as information pertaining to previous data is encoded within the model’s
weights. Consequently, there is no requirement to access past data, which might only
be available for a limited duration. Furthermore, this approach harmonizes with con-
temporary trends in the realm of Deep Learning. Transfer learning methodologies,
particularly prominent in the context of Natural Language Processing, are recognized
as state-of-the-art practices. The consistency of the fine-tuning approach with these
modern practices underscores its relevance and potential.

7.3.6 Hyperparameter tuning

In this study, meticulous attention was devoted to the selection of hyperpa-
rameters, recognizing their influence on the ultimate performance outcomes.

An automated active learning approach (Settles, 2009) was adopted for this
purpose. For each pipeline—context, clinical, text and end-to-end DeepEMC2—a
distinct set of hyperparameters was established. This encompassed parameters like
learning rate and batch size. Furthermore, a range of values was proposed for each
hyperparameter. For instance, in the case of the learning rate, values such as 0.0001
and 0.00001 were considered, while for batch size, options included values such as 64
or 128, among others. However, the chosen hyperparameter sampling space remained
discrete, given that a continuous space could potentially lead to overfitting issues
owing to the curse of dimensionality (Bellman, 1956).

Subsequently, a Bayesian optimization methodology was employed. This it-
erative process involved training an auxiliary probabilistic generative model, which
fulfilled two primary objectives: 1) estimating the probability of achieving the objec-
tive performance metric—in this instance, the soft F1-score—given a specific set of
hyperparameters, and 2) generating new hyperparameter values during each iteration
with the expectation of enhancing the performance metric.

It is imperative to emphasize that these hyperparameters deemed as optimal
were established through experiments conducted on the pure training and validation
sets. Following this determination, retraining procedures were executed using the
complete training set, and performance metrics were subsequently computed on the
test set. This comprehensive methodology ensured that the chosen hyperparameters
were robustly validated avoiding overfitting to the test set.

158



7.4 Results

7.3.7 Evaluation

To asses the performance of each of the individual networks and the end-to-end
deep model developed over time, we calculated the F1-score for each of the severity la-
bels associated to each pipeline. This F1-score was relative to the positive class for the
life-threatening label—life-threat class—as well as for jurisdiction label—emergency
system jurisdiction—while it was macro averaged for the admissible response delay
label—as we cannot set a reference class among the four categories. In addition to
this metric calculation, we included non-parametric 95% confidence intervals, using
the bootstrap technique (Efron & Tibshirani, 1994), by considering a total of 1000
resamples.

We computed these metrics for each experience, considering two approaches.
First, we calculated them by training the model up to the current experience, allowing
us to assess the absence of overfitting while estimating model performance in the
current experience. Second, we computed them by training the model up to the
previous experience. This approach helps us understand how model performance
diminishes when applied to novel incoming data, which may exhibit variations in
data distributions. Therefore, we obtain information about both in-sample and out-
of-sample performance by considering these two assessments.

Furthermore, it is essential to mention that we also calculated baseline per-
formance on the CORDEX dataset. This enabled us to gauge the behavior of the
implemented models in situations where they were comparable to the DeepEMC2

model, covering the time span from 2009 to 2012. This step served to verify that de-
spite the architectural changes introduced to provide scalability and robustness over
time, the modeling performance was not severely affected and in line with the original
DeepEMC2 model.

7.4 Results

7.4.1 Baseline performance in CORDEX

Next, we present in Table 7.1 the performance, in terms of F1-score obtained
for each of the severity labels, considering the models from Chapter 3 and the ones
from this chapter (Chapter 7).
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Table 7.1: Baseline performance comparison, i.e., model performances in the CORDEX
dataset, which integrates our first learning experience, comprising the years from 2009 to
2012. The F1-scores for each of the severity labels are reported, including the 95% non-
parametric confidence intervals between brackets.

Labels

Inputs Methodology Life-threatening Response delay Jurisdiction

Context
Chapter 3 0.501 [0.498, 0.504] 0.377 [0.374, 0.379] 0.830 [0.829, 0.832]

Chapter 7 0.483 [0.479, 0.486] 0.316 [0.313, 0.318] 0.739 [0.738, 0.742]

Clinical
Chapter 3 0.669 [0.667, 0.672] 0.485 [0.483, 0.487] 0.848 [0.847, 0.849]

Chapter 7 0.672 [0.669, 0.675] 0.491 [0.488, 0.494] 0.837 [0.835, 0.839]

Text
Chapter 3 0.684 [0.681, 0.687] 0.555 [0.553, 0.557] 0.857 [0.856, 0.858]

Chapter 7 0.706 [0.703, 0.709] 0.567 [0.564, 0.569] 0.846 [0.844, 0.847]

Global
Chapter 3 0.705 [0.702, 0.707] 0.576 [0.574, 0.579] 0.860 [0.858, 0.861]

Chapter 7 0.712 [0.709, 0.716] 0.577 [0.574, 0.579] 0.851 [0.85, 0.853]

From the analysis of Table 7.1, it is evident that within the dataset established
by the CORDEX data, the metrics achieved by both individual networks and the
global model align with those documented in Chapter 7. However, some important
observations should be noted.

Firstly, the exclusion of caller and risk-group information has resulted in a
noticeable loss in performance, particularly for the emergency system jurisdiction
label, as seen in the Context Network.

Excluding the Context Network, the modifications introduced in this chapter
have proven beneficial, resulting in improved performance compared to what was
previously achieved, except for the jurisdiction label. In the case of the jurisdiction
label, performance has been detrimentally affected, possibly due to the use of a more
class-balanced loss function, such as the soft F1-score, compared to the previously used
cross-entropy loss. As the emergency system jurisdiction class is the most prevalent,
the F1-score for this class has decreased.

When we compare the performance of individual networks, we observe a trend
similar to what was noted in Chapter 3. The Context Network (ConNet) consistently
exhibits the lowest F1-score across the three severity labels, followed by the Clinical
Network (CliNet), the Text Network (TextNet), and, ultimately, the Global Network
(GloNet). Notably, TextNet’s performance closely approaches that of GloNet, albeit
slightly inferior.

Focusing on the networks developed in this chapter, we find the most favorable
outcomes for the emergency jurisdiction label, with all F1-scores surpassing 0.73. The
life-threatening label follows in terms of performance, with F1-score values ranging
from 0.48 to 0.71. Lastly, the admissible response delay label aligns with expectations,
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exhibiting the least favorable performance, with values ranging from around 0.31 to
0.57.

These findings reinforce the notion that free text input provides the most sub-
stantial predictive utility. It is worth noting that the collective integration of the
three distinct input types only marginally outperforms the predictive capability of
standalone free text input.

7.4.2 Performance with training up to the current year

Life-threatening

Figure 7.6: Life-threatening performance over time with training up to the current year
for each model. Non-parametric 95% confidence intervals are displayed with shaded areas.

Upon careful examination of Figure 7.6 performance graph for the life-threatening
label, a notable observation surfaces: the transition between the CORDEX and Co-
ordCom information systems, which occurred in 2013, engendered a significant decline
in performance across all networks.

Following the pivotal year of 2014, a recovery in performance is evident in the
Text and Global networks. Nonetheless, it is worth noting that these networks fail
to fully recover the initial CORDEX performance levels. Conversely, the Clinical and
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Context networks exhibit a continuous decline in performance until 2017 and 2018,
respectively. Although a partial recovery is observed thereafter, it remains slight.

Lastly, it is imperative to emphasize that the GloNet consistently emerges
as the model attaining the most favorable outcomes throughout the examined time
frame. However, a notable exception occurs in 2014 when the CliNet momentarily
surpasses it. The second-strongest performer is the TextNet, followed by the CliNet.
In contrast, the ConNet lags significantly behind in terms of performance, registering
notably lower metrics compared to its counterparts.

Admissible response delay

Figure 7.7: Admissible response delay performance over time with training up to the
current year for each model. Non-parametric 95% confidence intervals are displayed with
shaded areas.

From the analysis of Figure 7.7 performance graph for the admissible response
delay label, a distinct pattern emerges: the transition from the CORDEX to the
CoordCom information system in 2013 precipitated a significant and notable drop in
performance across all subnetworks.

After this performance dip, both the ConNet and CliNet subnetworks exhibit
a degree of stability, with minor fluctuations oscillating around a central trend. In
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contrast, the Text and Global networks exhibit a capacity for performance recovery,
eventually surpassing the macro F1-score achieved within the CORDEX system.

It is crucial to underline that among the networks, the GloNet consistently
emerges as the frontrunner in terms of performance. Following suit, the TextNet takes
the second position, while the CliNet lags notably behind in a distant third place.
The ConNet experiences even more pronounced performance challenges, ranking last
in terms of performance pertaining to this particular severity label and metric.

Emergency system jurisdiction

Figure 7.8: Emergency system jurisdiction performance over time with training up to the
current year for each model. Non-parametric 95% confidence intervals are displayed with
shaded areas.

Upon careful observation of Figure 7.8 performance graph for the emergency
system jurisdiction label, a discernible pattern emerges: the transition between the
CORDEX and CoordCom information systems in 2013 yielded a marked and sub-
stantial decline in performance across all networks.

Subsequent to this performance downturn, the networks’ performance exhibits
fluctuations around a central trend, albeit at varying levels. Importantly, it is notable
that any of the implemented networks has the potential to rebound to CORDEX
performance levels.
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Lastly, it is crucial to underscore that once again, the GloNet consistently
emerges as the network achieving the most favorable outcomes over the course of
time. Following suit, the TextNet takes the second position, with the CliNet closely
trailing, capable of momentarily surpassing it in 2014. Notably trailing behind is the
ConNet, positioned at a significant distance in terms of performance metrics.

7.4.3 Performance with training up to the previous year

Life-threatening

Figure 7.9: Life-threatening performance over time with training up to the previous year
for each model. Non-parametric 95% confidence intervals are displayed with shaded areas.

By examining Figure 7.9 performance graph for the life-threatening label, a
clear deduction can be made: all networks experience a decline in performance in
2014. Notably, the ConNet exhibits a continuous decrease in performance across
subsequent years. The CliNet showcases oscillations around a central trend, without
displaying indications of recuperating to previous levels. Conversely, both the TextNet
and GloNet, after the dip in 2014, manage to restore their performance levels in the
subsequent years. Furthermore, the ranking order of networks, from the best to the
least performing, remains consistent with the findings from the current year results.
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Admissible response delay

Figure 7.10: Admissible response delay performance over time with training up to the
previous year for each model. Non-parametric 95% confidence intervals are displayed with
shaded areas.

Analyzing Figure 7.10 performance graph for the admissible response delay la-
bel, a notable observation is evident: all networks encounter a performance decline
in 2014. Subsequent to this, from 2015 onwards, the subsequent year’s performance
trends exhibit stability for the CliNet and ConNext. In contrast, both the TextNet
and GloNet display an augmentation in performance, commencing in 2017. Further-
more, it remains noteworthy that the GloNet consistently ranks as the top-performing
network, followed by the TextNet, the CliNet, and ultimately, the ConNet.
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Emergency system jurisdiction

Figure 7.11: Emergency system jurisdiction performance over time with training up to the
previous year for each model. Non-parametric 95% confidence intervals are displayed with
shaded areas.

Based on the analysis presented in Figure 7.11, it is deducible that all networks
experience a decline in performance during 2014. The ConNet fails to restore its per-
formance, resulting in a gradual decrease over time. Similarly, the CliNet is unable to
rebound; however, it manages to maintain a consistent level of performance over time.
The TextNet and the GloNet exhibit some recovery in 2015, but beyond that point,
they exhibit oscillations without displaying a distinct upward or downward trend. It
is noteworthy that the GloNet achieves the most favorable outcomes, followed by the
TextNet, the CliNet, and the ConNet. Nevertheless, it should be highlighted that
the performance of the ConNet significantly lags behind the F1-score achieved by the
other networks.
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7.4.4 Relative performance variation

Figure 7.12: Performance with training up to the previous year variation over time—in
percentage terms— for the end-to-end DeepEMC2 model (Global Network). This relative
variation is shown for each of the severity labels: life-threatening, admissible response delay
and emergency system jurisdiction.

Upon examining Figure 7.12, it becomes evident that even the most high-
performing model experiences a substantial decline in performance relative to the
alteration of the information system from CORDEX to CoordCom. Furthermore,
it is noticeable that the emergency system jurisdiction label undergoes a discernible
reduction of approximately 7%, which, although significant, is notably less severe
than the performance decreases of around 17% for the life-threatening and response
delay labels. Following the fine-tuning of the model in 2014, the performance for the
subsequent year shows a marked improvement compared to the performance in 2014
itself. This improvement suggests that the data from 2015 might contain less noise
than the data from 2014. Upon refining the model with data from 2015, performance
demonstrates fluctuations in the subsequent years. Some years exhibit decreases,
while others show improvements. However, these year-to-year variations are minimal
in contrast to the variations experienced during the system transition. Furthermore,
starting from 2015, these fluctuations remain consistent across all the labels.
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7.5 Discussion

7.5.1 Relevance

Based on the analysis of the results presented in the preceding section, it can be
deduced that text emerges as the data modality that offers superior predictive capa-
bility. This holds true not only within the CORDEX dataset, as previously evidenced
by earlier experiments, but also across all subsequent years in the CoordCom dataset.
Furthermore, text exhibits the least pronounced decline in performance over time,
rendering it more resilient to shifts in the dataset. This resilience can be attributed
to the inherently unstructured nature of textual data. Dispatcher observations, even
if slightly disparate between systems, are unlikely to display substantial variations, in
contrast with structured data that can manifest in various representations.

An additional noteworthy observation pertains to the similarity in performance
between the prior iteration of the DeepEMC2 model and the current one—End-to-
end DeepEMC2 (i.e., the Global Network) introduced in this chapter—within the
foundational CORDEX setting. However, it is crucial to emphasize that the model
developed in this chapter incorporates mechanisms that impart tolerance to missing
data, dataset shifts, and dynamic feature domains. Regrettably, these mechanisms
were absent in the initial version of DeepEMC2.

Similarly, a decline in model performance can be observed when transition-
ing from one dataset to another. Despite consistent retraining efforts, the perfor-
mance metrics within CoordCom do not reach the same heights as those achieved in
CORDEX, except for the admissible response delay label. As elaborated in the pre-
vious chapter, this discrepancy could stem from a sample selection bias. Notably, the
presence of over-triage and the greater frequency of non-emergency events handled
by CoordCom dispatchers may have introduced noise into the data.

Although the Global Network outperforms other models across all experimen-
tal tests, it does not provide a huge difference respect to the performance trajectory
defined by the Text Network. This phenomenon holds true for both the CORDEX
and CoordCom experiments and reinforces the relevance of free text dispatcher ob-
servations.

Ultimately, the outcomes derived from this chapter substantiate the feasibil-
ity of deploying the model in practical scenarios. Notably, the fine-tuning strategy
demonstrates remarkable efficacy in maintaining the model’s performance similar to
that achieved during the training year, even in the presence of minor changes. We
contend that as long as this fine-tuning approach is applied annually, barring sub-
stantial alterations, the expected performance will remain stable within acceptable
variability limits of no more than 2.5%. This assertion gains further credence from
the consistent performance of the subsequent year since 2015.
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7.5.2 Limitations

While we have implemented measures to address dataset shifts and thereby
alleviate the decline in performance over time, it is important to acknowledge that in
the presence of unforeseen shifts in data distribution, the performance of subnetworks
could potentially encounter challenges. Therefore, it becomes imperative to rigorously
monitor both performance metrics and distributional changes. This proactive moni-
toring will enable swift responses to sudden alterations, ensuring timely adaptations
to the model to maintain its effectiveness.

7.5.3 Future work

In terms of future research directions, we recommend an exploration of vari-
ous combinations of input features. For instance, investigating the fusion of clinical
encoder with the text encoder could yield insightful results. Similarly, there exists
a compelling opportunity to assess alternative methods of combining the inner rep-
resentations, moving beyond concatenation. Techniques such as pooling these repre-
sentations or employing cross-attention mechanisms among different modalities are
avenues that warrant investigation and could potentially contribute to enhancing the
model’s performance and understanding of the underlying data.

7.6 Conclusions

This chapter has focused on the comprehensive examination of the DeepEMC2

model’s updated version, encompassing design, implementation, and evaluation as-
pects. This revision encompasses alterations in architecture, training procedures,
and preprocessing techniques, aimed at addressing challenges associated with the ad-
verse impacts of dataset shifts and facilitate automatic adaptation to evolving feature
domains. Importantly, this adaptation can be achieved without the necessity of com-
pletely overhauling the model each time a new feature emerges or an existing one is
removed.

The findings of this study indicate that the model’s performance for predicting
outcomes in the following year remains within operational bounds. Consequently, if
changes are gradual and not overly drastic, the implemented measures can safeguard
a reasonable level of performance for our decision-support model in the context of
out-of-hospital medical triage. Nevertheless, it remains vital to diligently monitor
alterations in data distribution and performance metrics. This proactive monitoring
is essential in order to rapidly respond to potential variations that could be sub-
stantial, potentially leading to detrimental performance consequences with significant
deployment implications.
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Chapter 8

A Deep Learning tool to classify

out-of-hospital emergency medical

incidents in real time

Previous chapters have encountered the challenge of devising a Deep Learning-
based model to facilitate out-of-hospital medical emergency triage. However, should
we aspire to deploy this model practically, apart from the foundational backend ad-
vancements, there arises a necessity for corresponding front-end enhancements. In
other words, we must establish a means through which the dispatcher, a potential end-
user of DeepECM2, can engage with the model without necessitating explicit compre-
hension of its underlying mechanisms. Consequently, within this chapter, we present
the conceptualization and assessment, with some archetypical cases, of a prototypical
tool integrated by a basic Graphical User Interface (GUI) and the DeepECM2, includ-
ing the necessary preprocessing operations before feed the data to the deep model.
This tool serves the purpose of enabling interaction between a user—potentially an
out-of-hospital emergency medical dispatcher—and DeepEMC2, the Deep Learning
model conceived in preceding chapters. The tool is meticulously structured to retain
identical inputs as those employed by an emergency medical dispatcher in the Valen-
cian Region’s genuine operational context. Moreover, the computational efficiency of
our models during inference ensures real-time responsiveness, aligning aptly with the
exigencies of online problem-solving. The creation of this tool signifies a substantial
stride forward, facilitating users’ engagement with DeepEMC2 in an intuitive and ac-
cessible manner. Lastly, it is noteworthy that ongoing collaboration with Omda, the
multinational entity overseeing the CoordCom system, is underway. The objective is
to formulate and integrate a Clinical Decision Support System (CDSS) for real-time
interaction with DeepEMC2, within the emergency medical dispatch center of the
Valencian Region.
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The contents of this chapter were presented at the conference (Ferri et al.,
2022b)—thesis contributions C6 and P2. In addition, the GUI is available online at
(“Deep multitask ensemble classification of emergency medical call incidents combin-
ing multimodal data”, 2023).

8.1 Introduction

Tools designed to facilitate interaction between users and complex Deep Learn-
ing models play a crucial role in simplifying the adoption of advanced Machine Learn-
ing technologies. These tools serve as a bridge, enabling users to harness the capa-
bilities of Deep Learning models without requiring an in-depth understanding of the
underlying algorithms. This user-friendly approach ensures that individuals and or-
ganizations can seamlessly engage with Deep Learning models, even without delving
into the intricacies of neural networks, optimization techniques, or feature engineer-
ing. Instead, users can focus on obtaining real-time predictions and insights that
enhance their decision-making processes (Berner, 2007).

The value of these interaction tools is particularly pronounced in various do-
mains where Deep Learning models are applied. They abstract away technical com-
plexities, allowing users to make informed decisions based on AI-driven recommenda-
tions. Whether it involves tasks like image recognition, natural language understand-
ing, or predictive analytics, these tools empower users to integrate Deep Learning
capabilities into their workflows effortlessly. For instance, such a tool could enable
users to input data and receive predictions or classifications generated by the model’s
outputs, all without requiring them to possess an extensive grasp of the intricate
mathematical details and algorithms that power the model (Milde et al., 2018; Yaa-
coub et al., 2022).

Furthermore, these interaction tools assume a pivotal role in enabling real-
time engagement with Deep Learning models, a critical aspect in applications like au-
tonomous vehicles or emergency response systems, mirroring the context of our thesis
work. In scenarios where swift and accurate decisions are imperative, a straight-
forward interaction tool acts as a conduit for users to receive real-time predictions
promptly. This capability empowers users to make informed decisions based on the
model’s outputs, thereby enhancing operational efficiency and safety in time-sensitive
contexts (R. T. Sutton et al., 2020).

In preceding chapters, our primary focus has revolved around the development
of a model aimed at achieving optimal predictive performance for severity labels,
all while effectively navigating the challenges posed by evolving dataset distributions
over time. However, the current chapter signifies a pivotal shift in our narrative.
Here, our attention turns toward constructing and demonstrating a practical tool
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that facilitates the model’s utilization by emergency medical dispatchers. This tool
seamlessly combines a basic GUI with the capabilities of DeepEMC2.

While this tool currently exists as a prototype designed for demonstration pur-
poses, it represents a foundational step. It lays the groundwork for the integration of
our model into the information system that governs the emergency medical dispatch
service within the Valencian Region. Future advancements in this endeavor will en-
compass the seamless incorporation of DeepEMC2 into Omda’s information system,
more specifically, the CoordCom information system that is currently in active use.
This progressive integration will establish a direct and immediate interaction channel
between dispatchers and the Deep Learning model, thereby enhancing the provision
of triage support in real-time scenarios.

8.2 Materials and methods

8.2.1 Deep Learning tool design and implementation

Overview

The DeepEMC2 interaction tool, accessible via (“Deep multitask ensemble clas-
sification of emergency medical call incidents combining multimodal data”, 2023),
embodies a web-based graphical user interface meticulously devised to facilitate user
interaction with the Deep Learning model DeepEMC2. Its primary purpose revolves
around supporting the out-of-hospital emergency medical triage procedure by effec-
tuating predictions of three critical labels: the gravity level pertaining to potentially
life-threatening situations, permissible response timeframes, and jurisdiction alloca-
tion within the emergency system.

Furthermore, owing to the Spanish linguistic nature of the training data and
the targeted user base encompassing dispatchers of the emergency medical dispatch
service within the Valencian Region, the tool has been configured to operate exclu-
sively in Spanish.
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Framework

The tool interface was developed using the Django framework (Forcier et al.,
2008) in Python (G. van Rossum (Guido), 1995), integrating the Pytorch (Paszke
et al., 2017) implementation of the DeepEMC2 model.

Input data

The input data within the DeepEMC2 tool interface is categorized across dis-
tinct input sections, delineated as follows:

� Contextual data: encompassing age and sex variables.

� Clinical variables: these are the pertinent clinical variables aligned with each
question within the in-house triage protocol.

� Free text dispatcher’s observations: this entails the provision of unstruc-
tured textual information, to be inputted within a dedicated text box.

It is noteworthy that date-derived variables are not manually entered as they
undergo automatic generation. Similarly, the calculation of the number of involved
patients is automated. Importantly, it is worth emphasizing that input fields need
not be uniformly populated to initiate the model, as DeepEMC2 has been engineered
to accommodate the lack of data. However, it is prudent to acknowledge that the
omission of information can potentially influence prediction quality. Consequently, it
is advisable to supply the model with as much available data as possible to enhance
prediction performance.

Output data

The tool furnishes the user with an array of prediction data linked to each
of the three severity labels: namely, life-threatening, admissible response delay, and
emergency system jurisdiction. Simultaneously, it warrants emphasis that the proba-
bilities corresponding to each class within every label are visually presented through
color-coded bars. This presentation mechanism serves the purpose of imparting to
the user a sense of the prediction’s inherent uncertainty.

174



8.2 Materials and methods

Data privacy

The data inputted by the user within the interface tool and the resulting pre-
dicted labels are intentionally not retained, a measure driven by considerations sur-
rounding privacy and memory constraints. This particular functionality is slated
for incorporation in forthcoming iterations of the tool, an initiative undertaken in
partnership with Omda. This integration process will culminate in the seamless as-
similation of the tool into the CoordCom emergency medical dispatch information
system.

8.2.2 Basic functionality assessment

We evaluated the basic functionality of our tool, ensuring its capability to
receive user input information, preprocess it, input it to the model, generate predic-
tions, and retrieve them to the user in real-time and in an understandable manner.
However, aspects such as user satisfaction and usability are beyond the scope of our
work and will be addressed in later development phases during collaboration with
Omda. This collaboration will occur when the final decision support tool for use in
the Valencian dispatch center is being developed. Therefore, we emphasize that the
tool presented in this chapter serves as an example of how an end-user might inter-
act with DeepEMC2 without knowledge of its implementation details and should be
considered a prototype.

To execute this functionality evaluation, we curated a repertoire of exemplary
scenarios mirroring real-world instances encountered within out-of-hospital emergency
medical contexts. These incidents presented different severity, as well as diverse input
data availability. Furthermore, it is pertinent to clarify that although these scenarios
are featured in Table 8.1 in the English language, they were originally written in
Spanish for input into the model. This choice is in alignment with the training data
language of DeepEMC2, which is rooted in Spanish.
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Table 8.1: Example cases evaluated with the Graphical User Interface. Although these
scenarios are presented in English, they were originally written in Spanish for input into the
model. This choice aligns with the language of the training data used for DeepEMC2, which
is Spanish.

Case ID Age Sex Tree Text

1 22 Female No previous trauma,
fever over 38, flu syn-
drome

Fever 38, sore throat with
general malaise, no history of
illness

2 67 Male No previous trauma,
with chest pain, abrupt
onset of symptoms,
dyspnea

Possible heart attack cold
sweat heart pain

3 Unknown Unknown Unknown Possible heart attack cold
sweat pain in the heart

4 Unknown Unknown Unknown Cold sweat and pain in heart
but rules out heart attack,
possible anxiety crisis

8.3 Results

8.3.1 Deep Learning tool design and implementation

We present the web-based GUI implementation, as it is shown on the web in
Figure 8.1.

Figure 8.1: User interface of the tool to interact with DeepEMC2.
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Next, we have split the presentation into different parts, demarcating the di-
verse input categories as well as the resultant outputs:

Contextual data section

Figure 8.2: Contextual data section of the user interface.

From the observation of Figure 8.2 we can appreciate that the user can in-
put their age via the designated field, or alternatively, through the utilization of
arrow-based selection. Sex is implemented with buttons that only allow an exclusive
selection—either one or other but not both. Likewise, information about multiple
patients can be introduced, wherein users can left the cells unfilled. Complementary
context variables as the number of patients involved and date-derived variables are
calculated internally, without requiring the user to input them.

Clinical variables section

Figure 8.3: Clinical variables section of the user interface.
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The section pertaining to clinical variables, as depicted in Figure 8.3, adopts
an iterative scheme, mirroring the structure of the in-house triage protocol, which
adheres to a tree-like arrangement. Upon selecting a particular variable, the screen
transitions to exhibit the array of subsequent variables accessible along the designated
tree path. To accommodate for potential errors, users are equipped with a dedicated
button to navigate backward, if necessary, allowing them to re-enter another node
that might be better suited for case definition. Analogous to the context features,
this section is also open to being left unfilled.

Free text observations section

Figure 8.4: Free text box of the user interface.

The inclusion of dispatcher observations in the form of free text is facilitated
through a designated text box positioned at the bottom of the GUI, as illustrated
in Figure 8.4. This feature is characterized by its intuitive application, as it merely
involves entering unstructured data into the provided field. Much akin to the handling
of context and clinical data, this free text box is also capable of being left unfilled.

Prediction results

Upon the user’s initiation by clicking the Predict button within the GUI, the
window presenting prediction results is activated. Each distinct label occupies an in-
dividual row within this window: the foremost row corresponds to the life-threatening
label, followed by the admissible response delay label, and ultimately, the emergency
system jurisdiction label. Concurrently, for every label, the probabilities of each re-
spective class are exhibited through horizontal bar graphs, wherein distinct colors are
assigned to each class.
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Figure 8.5: Prediction outcomes of tool to interact with DeepEMC2. Within the figure,
Riesgo vital stands out for Life-threatening, Demora en la respuesta for Admissible response
delay, Jurisdicción for Emergency system jurisdiction, Śı for Yes, No for No, Minutos for
Minutes, Horas for Hours and Dı́as for Days.

8.3.2 Basic functionality assessment

Next, we proceed to showcase the outcomes corresponding to each of the ex-
emplar cases selected for the evaluation of the implemented tool’s functionality:

Case 1

After observing the model outputs as depicted in Figure 8.6, a clear observation
emerges. The model is able to discern that the presented case does not pertain to a
severe scenario, and further, does not warrant engagement with the emergency medical
dispatch system. Instead, it implies a situation that could be suitably addressed
within primary care facilities.
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Figure 8.6: Predicted outcomes for Case 1 by the model across all severity labels. Distinct
colors correspond to each class within the labels. Within the figure, Riesgo vital stands out
for Life-threatening, Demora en la respuesta for Admissible response delay, Jurisdicción for
Emergency system jurisdiction, Śı for Yes, No for No, Minutos for Minutes, Horas for Hours
and Dı́as for Days.

Case 2

The observations drawn from Figure 8.7 distinctly indicate that the model con-
fers a substantial degree of priority to the facets of life-threatening severity, admissible
response delay, and emergency system jurisdiction in a scenario wherein an urgent
intervention is imperative, as evident in the case of a heart attack.
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Figure 8.7: Predicted outcomes for Case 2 by the model across all severity labels. Distinct
colors correspond to each class within the labels. Within the figure, Riesgo vital stands out
for Life-threatening, Demora en la respuesta for Admissible response delay, Jurisdicción for
Emergency system jurisdiction, Śı for Yes, No for No, Minutos for Minutes, Horas for Hours
and Dı́as for Days.

Case 3

Through an examination of Figure 8.8, it becomes evident that the model
adeptly manages incomplete input data, making accurate predictions solely reliant on
the dispatcher’s free text observations. Furthermore, it’s noteworthy that the model
effectively determines the severity, albeit with a slight reduced level of certainty. This
outcome aligns with anticipated and desired behavior, as less comprehensive informa-
tion has been furnished, thus warranting a corresponding decrease in the anticipated
level of certainty.
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Figure 8.8: Predicted outcomes for Case 3 by the model across all severity labels. Distinct
colors correspond to each class within the labels. Within the figure, Riesgo vital stands out
for Life-threatening, Demora en la respuesta for Admissible response delay, Jurisdicción for
Emergency system jurisdiction, Śı for Yes, No for No, Minutos for Minutes, Horas for Hours
and Dı́as for Days.

Case 4

Upon comparing Figure 8.8 and Figure 8.9, it is observed that the model ex-
hibits natural language comprehension, accurately deciphering contextual nuances.
This observation substantiates the fact that the model doesn’t rely on keyword-based
mechanisms; instead, it demonstrates the ability to perform intricate high-level inter-
pretive tasks. This capacity is particularly pivotal in the context of out-of-hospital
emergency medical triage situations.
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Figure 8.9: Predicted outcomes for Case 4 by the model across all severity labels. Distinct
colors correspond to each class within the labels. Within the figure, Riesgo vital stands out
for Life-threatening, Demora en la respuesta for Admissible response delay, Jurisdicción for
Emergency system jurisdiction, Śı for Yes, No for No, Minutos for Minutes, Horas for Hours
and Dı́as for Days.

8.4 Discussion

8.4.1 Relevance

The outcomes in the preceding section demonstrate the feasibility of developing
a tool that bridges the gap between users, potentially including emergency medical
dispatchers, and DeepEMC2. In this paradigm, users are not obligated to possess
knowledge or comprehension of the inner workings of the deep model; they can effec-
tively wield it to acquire real-time recommendations concerning life-threatening situ-
ations, admissible response delays, and emergency system jurisdiction. This seamless
interaction between the user and the model through the GUI embodies a straightfor-
ward process.

The examination of various cases has substantiated that the tool responds ef-
fectively, aligned with the expected outcomes. This validation serves to underscore
the functional efficacy of the ongoing developments. Despite being in the prototype
phase, these developments represent a foundational stride towards the eventual inte-
gration of the deep model within the operational routine of out-of-hospital emergency
medical triage procedures.
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8.4.2 Limitations

While we have tested the fundamental functionality of the tool using a few
example cases, we have not explored dimensions such as aesthetics and usability
through interactions with potential users or incorporated their feedback. This decision
aligns with our initial goal, as mentioned at the beginning of this chapter, which was
to create a prototypical tool to demonstrate how an end user can interact with the
complex deep model. It is essential to note that the final system for integration
into the Valencian emergency dispatch center will be developed in collaboration with
Omda.

8.4.3 Future work

In terms of future endeavors, we are actively engaged in collaboration with
the multinational entity Omda, the architect of the CoordCom system—an informa-
tion system presently operational within the medical dispatch services of the Valen-
cian Region. The objective of this collaboration lies in the seamless incorporation of
DeepEMC2 into the prevailing system utilized by emergency dispatchers within the
Valencian Region. This integration necessitates the requisite adaptations to align the
deep model with the existing framework. As a consequence of these modifications,
the operator’s workflow will remain unaltered; however, the deep model will oper-
ate inconspicuously in the background, delivering insights to the emergency medical
coordinators stationed within the center.

Subsequent to the embedding of the model within the CoordCom system, our
roadmap entails the implementation of additional evaluation and monitoring mea-
sures. The objective of this phase is to gauge the contributions of the decision-support
model within an authentic operational environment. This evaluative endeavor will
take into consideration the dimensions that were not extensively covered within the
prototype, thus furnishing a comprehensive assessment of the model’s impact and
efficacy.

8.5 Conclusions

In the course of this chapter, we have developed a prototype tool aimed at fa-
cilitating user interaction—potentially by emergency medical dispatchers—with the
DeepEMC2 model. The tool interface design adheres to principles of simplicity and
transparency, granting users the capacity to engage with the model effortlessly. It
empowers users to input the same types of information they would utilize in actual
emergency scenarios. Although the tool stands as a prototype, it offers an instanta-
neous response, instantaneously conveying recommendations from the Deep Learning
model to the user. This information can be seamlessly integrated into the decision-
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making process for out-of-hospital emergency medical triage. Crucially, it is worth
underscoring that as of the current juncture in drafting this thesis manuscript, our
collaboration with Omda is underway. The objective is to seamlessly integrate the
model into the CoordCom system, subsequently evaluating its performance within a
real-world context. This phase will be complemented by the necessary adjustments
aimed at optimizing the model’s value within the workflow of out-of-hospital medical
emergencies.
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Chapter 9

Concluding remarks and

recommendations

This chapter describes the primary concluding remarks and recommendations.
In addition to this summary, it offers valuable insights for furthering scientific research
and development based on the findings presented.

9.1 Concluding remarks

Technological advancements have been pivotal in enhancing the management
of out-of-hospital medical emergencies throughout history. Commencing with the
invention of the ambulance and the telephone and evolving to include innovations
such as the defibrillator and GPS, these technologies, once groundbreaking, are now
deemed essential components of any emergency medical dispatch service. In fact, any
service lacking access to these tools would be considered outdated, ill-equipped, and
ill-prepared to address out-of-hospital emergencies effectively.

This thesis has been founded on the premise that Artificial Intelligence and
Machine Learning tools represent the contemporary innovative technologies that will
become significant in the near future within the realm of emergency medical dispatch.
Through our research, we have demonstrated that Deep Continual Multimodal Multi-
task models provide a substantial value when determining incoming incident severity,
compared to traditional approaches. This implies that out-of-hospital emergency
medical emergency triage has wide room for improvement with the integration of
these technologies within emergency medical dispatch workflow. Hence, this thesis
has proven the potential of a Deep Continual Multimodal Multitask framework for
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triage support while justifying its integration into emergency medical dispatch centers,
which could greatly benefit patient outcomes.

In fact, in light of the results from this thesis, various stakeholders are adopt-
ing policies to include decision support models of this nature to enhance the triage
process. This is evident in the collaboration with the Health Services Department
of the Valencian Region and the Omda company (Project PJ2). The objective is to
integrate the advanced model developed in this thesis into the Valencian Region’s
emergency medical dispatch center. In the foreseeable future, Artificial Intelligence
and Machine Learning tools will be indispensable components of every emergency
medical dispatch center.

Furthermore, beyond the immediate practical impact of the research presented
in this thesis on the Valencian Emergency Medical Dispatch Service, our work has
made significant contributions to the state-of-the-art in the fields of Machine Learn-
ing, Deep Learning, and Biomedical Data Science. The Deep Continual Multimodal
Multitask framework developed in this thesis, along with the end-to-end DeepEMC2
architecture and its training procedures, can serve as templates for other researchers
working on similar problems, extending beyond the emergency medical context. The
complexity of the problem addressed in this thesis has led us to design novel models
and strategies to tackle it. These methodologies could be adapted to other domains
facing problems with similar structures. The scientific publications in top-ranked
journals and presentations at international conferences resulting from this thesis vali-
date the quality of the research conducted in the domains of Biomedical Data Science,
Machine Learning, and Deep Learning.

The specific concluding remarks of this thesis are listed as follows:

CR1 Machine Learning, and particularly Deep Learning, has demonstrated signifi-
cant potential for enhancing the out-of-hospital emergency medical call triage
process. In particular, Deep Learning models have exhibited the capability to
outperform the existing in-house triage protocol of the Valencian emergency
medical dispatch service by a substantial margin. Specifically, regarding macro
F1-score, the performance enhancement was of 12.5%, 17.5%, and 5.1% in life-
threatening, admissible response delay, and jurisdiction determination, respec-
tively. This improvement suggests that integrating AI-based tools into the emer-
gency medical triage workflow should be seriously considered, given the potential
advantages they could offer regarding patient well-being and efficient resource
allocation. It is worth noting that while our models do not directly recommend
specific resources, their decision-making is strongly influenced by the incident’s
assigned priority, making them an invaluable asset in optimizing the allocation
of resources.
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CR2 Free text dispatcher observations represent a valuable source of information that
can be effectively harnessed by Deep Learning models and characterized using
unsupervised Machine Learning techniques. This realization carries several im-
portant implications. Firstly, it suggests that the most pertinent information for
assessing the severity of an incident is not necessarily encoded within structured
data, such as the clinical variables found in the in-house triage protocol or other
triage protocols such as the Manchester triage system or the Emergency severity
index. Instead, it appears that the extensive and intricate array of scenarios in-
herent to emergency medical call incidents demands a more nuanced description,
which is furnished by the unstructured nature of free text data. Moreover, Deep
Learning has witnessed substantial advancements in recent years. Pretrained
natural language processing models, trained on vast datasets, are readily ac-
cessible online, often available for free, and can be downloaded and fine-tuned
for specific tasks. These models exhibit robust capabilities, including natural
language understanding, enabling them to effectively capture intricate patterns
within the free text dispatcher observations.

CR3 Dataset shifts are a phenomenon inherently associated with Machine Learn-
ing and the medical domain; the context of out-of-hospital emergency medical
triage aided by Deep Learning-based models is no exception. Data distributions
naturally differ across domains and evolve over time for various reasons that are
beyond our control. These shifts in data, if unattended, can lead to significant
performance declines that may severely impact the effectiveness of any model
deployed to assist in the emergency medical triage process. Given the critical
consequences of errors in the emergency medical triage process, it becomes im-
perative to actively monitor these dataset shifts, promptly detect them, and
subsequently take necessary corrective actions to address them.

CR4 Continual Learning techniques are essential for maintaining the Machine Learn-
ing model’s performance over time, allowing the model to adapt to abrupt and
gradual distributional shifts. In the context of the EMCIs in the Valencian Re-
gion, we have discovered that fine-tuning techniques exhibit an excellent balance
between effectiveness and efficiency. These techniques outperform others con-
sidering higher amounts of data during the training phase, such as cumulative
learning. This suggests that, for our dataset, prioritizing forward knowledge
transfer over backward knowledge transfer is a prudent approach to maximize
the performance of our Deep Learning models in the coming years. Additionally,
the continual feature domain techniques developed in this thesis have demon-
strated their utility in enhancing out-of-sample predictions for the following
year.

CR5 Employing a Deep Continual Multimodal Multitask learning approach, com-
bining contextual information, clinical structured information from the in-house
protocol, and free text dispatcher observations, while including mechanisms to

189



Chapter 9. Concluding remarks and recommendations

mitigate temporal distributional drifts, is a prudent choice, notwithstanding the
inherent technical complexity in its design and implementation. This approach
leverages information from multiple modalities, enhancing its overall value, and
can be implemented as an end-to-end solution, reducing training time and mem-
ory requirements while increasing robustness. Moreover, the multitask approach
permits a reduction in the number of parameters necessary to capture the in-
tricate patterns present in out-of-hospital emergencies, leveraging the fact that
life-threatening, response delay, and jurisdiction labels are closely related. This
reduction is particularly significant, as a Continual Learning approach is man-
dated, and expediting the training process by diminishing model dimensionality
is paramount. Additionally, it results in reduced inference times and decreased
storage requirements for allocating the model.

CR6 It is feasible to interact with a Deep Continual Multimodal Multitask model,
similar to the ones developed in this thesis, by means of an interface tool. This
enables users unfamiliar with the intricate computational processes involved,
to interact with the model effortlessly. In this setup, the dispatcher provides
the input features in a straightforward manner, and the model computes the
predicted probabilities for each of the different severity labels, in real-time and
in accordance with data privacy concerns. Importantly, data does not need to
be stored on the server once predictions for a specific case have been calculated.
The initial interface tool prototype presented in this thesis represents the initial
step toward integrating the model into the Valencian emergency medical dis-
patch service. This integration project is currently underway as of the writing
of this thesis and is being conducted in collaboration with the company Omda.

9.2 Recommendations

Despite the significant value offered by the models developed in this thesis,
Emergency Medical Triage remains a complex challenge, owing to the time and uncer-
tainty constraints involved, coupled with the potential consequences of errors within
this context. It necessitates ongoing scrutiny, analysis, and refinement to remain in a
state of constant progress and evolution, ultimately providing more effective prioriti-
zation of out-of-hospital emergency medical incidents.

The research and developments outlined in this thesis serve as a foundational
framework for future research branches and technological advancements. With the
overarching goal of perpetually enhancing out-of-hospital emergency medical triage
using Machine Learning and Deep Learning tools, we propose the following recom-
mendations:

R1 The most relevant information required for effective out-of-hospital emergency
medical triage is often found within unstructured text fields. Consequently,
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processes should be geared toward integrating innovative models and tools spe-
cialized in handling such unstructured data, thereby enhancing the automated
natural language understanding capabilities. Furthermore, the significance of
text-based information opens up avenues for new research endeavors, where au-
tomatic audio transcription technologies can be combined with natural language
understanding techniques. While including free text dispatcher observations
already provides substantial value compared to in-house triage protocols, en-
compassing a comprehensive incident depiction through the transcription of the
entire real-time conversation into text could yield even more accurate predictive
outcomes.

R2 Monitoring model performance over time is essential because excellent perfor-
mance metrics at a specific time point do not necessarily guarantee the safe
deployment of a model indefinitely. Dataset shifts are inevitable due to natural
causes, and their early detection is of paramount importance. It is of utmost im-
portance to characterize these shifts, identify their underlying causes, and assess
their effects on both marginal and joint distributions. Understanding whether
changes are gradual, abrupt, or recurrent is also relevant as it effectively informs
the appropriate strategies for managing and mitigating these shifts.

R3 Continual Learning techniques are indispensable for maintaining and recuperat-
ing model performance over time, and we strongly advocate for their adoption
in the context of deep out-of-hospital emergency medical incident classifica-
tion. Furthermore, it is worth emphasizing that fine-tuning the deep model
periodically with current out-of-hospital emergency medical data represents a
straightforward yet highly effective and efficient strategy for retaining knowledge
about past patterns while incorporating information about new ones. To evalu-
ate whether novel Continual Learning approaches provide additional value, it is
advisable to compare these approaches against the fine-tuning method, which
can serve as a baseline for assessment.

R4 Certain features may emerge and disappear over time, leading to a specific type
of dataset shift that presents significant challenges. It is imperative to ad-
dress these challenges proactively before they manifest. Any model designed to
contend with this phenomenon should incorporate mechanisms to handle this
issue effectively. In this thesis, we have proposed a straightforward yet effective
method for addressing this challenge, which has proven to be beneficial in the
context of our out-of-hospital emergency medical call data. When confronting
similar issues in problems like the one presented in this thesis, we encourage
considering this dynamic feature domain adaptation approach. Its utility and
ease of implementation make it a viable choice, serving as a preliminary step
before delving into more intricate and resource-intensive strategies, just as we
recommended earlier to prioritize fine-tuning before exploring more complex
and costly Continual Learning strategies.
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R5 The emergency medical dispatcher does not need to possess detailed knowledge
or understanding of the inner workings of a deep triage support model running
in the background. Their primary requirements are that their workflow remains
unaltered, the system interaction is intuitive, and the feedback provided is com-
prehensible, ultimately aiding them in performing their profession more effec-
tively. Consequently, any decision-support tool designed for implementation in
an emergency medical dispatch service should prioritize these considerations.
Moreover, with a focus on enhancing professionals’ trust in these complex sys-
tems, new avenues of research could emerge, centered on the interpretability and
explainability of deep models. Providing insights into what aspects of an inci-
dent the model is paying attention to (such as specific words, clinical features,
or contextual features) could contribute to user acceptance, complementing rig-
orously calculated evaluation metrics. This transparency in model behavior can
help build confidence among users and improve their overall experience with the
system.
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Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2018). Multimodal machine learning: A survey
and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41 (2),
423–443.

Barrientos, F., & Sainz, G. (2012). Interpretable knowledge extraction from emergency call
data based on fuzzy unsupervised decision tree. Knowledge-based systems, 25 (1), 77–87.

Barroeta Urquiza, J., & Boada Bravo, N. (2011). Los servicios de emergencia y urgencias
médicas extrahospitalarias en españa. Mensor.

Bayes, T., & Price, n. (1763). Lii. an essay towards solving a problem in the doctrine of
chances. by the late rev (F. b. M. P. Mr. Bayes & A. John Canton, Eds.). Philosophical
Transactions of the Royal Society of London, 53, 370–418.

Bellman, R. (1956). Dynamic programming and lagrange multipliers. Proceedings of the
National Academy of Sciences of the United States of America, 42 (10), 767–769.

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic language model.
Advances in neural information processing systems, 13.

193

http://arxiv.org/abs/1607.06450


Bibliography
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