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ABSTRACT

In this paper, we introduce generalizations of the concept of MR-
Kannan type contractions and utilize those conditions to derive new
fixed point theorems under both contractive and non-contractive con-
ditions. Our approach enhances various existing results related to en-

riched mappings.
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1. KNOWN RESULTS

The study of fixed points in general poses two significant problems [8]:

(1) What conditions on the structure of the ambient space and/or on the
properties of the mapping must be added to guarantee the existence of at least

one fixed point for the mapping?

(2) How can one effectively locate and approximate such a fixed point?
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In a recent work, Anjum et al. [1] addressed the aforementioned problems by
introducing the notion of MR-Kannan type contractions and providing a char-
acterization of normed spaces using MR-Kannan type contractions with a fixed
point. Additionally, they studied the Ulam-Hyers stability and well-posedness
results for the introduced mappings. It is worth noting that the notion of
MR-Kannan type contractions encompasses the concept of enriched Kannan
contractions introduced in [5]. The concept of enriched contraction covers a
wide range of mappings, including both contractive and non-contractive classes.
For further insights into enriched contractions, we refer the reader to Berinde
[2], [3] Berinde and Pacuar [4] and references therein.

Throughout this paper, (X, ||-||) denotes the normed space over the field R,
which is the set of all real numbers. In [1], Anjum et al. defined the following;:

Q={A: X >R ANa)#A0Vze X},
and
OU={¢y: X >R:¢(x)#-1Vze X}

Let T : X — X. For each fixed A € 2, an operator T) : X — X is said to be a
generalized averaged mapping if

Th(z)=(1—Xz))x + ANz)Tz, VreX. (1.1)
It is important to note that the class of generalized averaged mappings was

studied in [9]. Indeed, if we choose v € (0,1) and set A(x) =« for all z € X,
then (1.1) simplifies to an averaged mapping, given by

Ta(x) = (1 — )z ++Tx.
The following definition is essentially introduced in [1]:

Definition 1.1. A mapping T : X — X is said to be a (¢, a)-MR-Kannan

type contraction, if there exist ¢ € U and a € [0, %) such that

() + Tz yP(y) +Ty‘ - a(‘ 1
1+ () L+4(y) || 7 \[1+¢()

holds for all z,y € X.

1
z—Tx —i—“ y—Ty ),
| | 1500 I |

In the first step, we generalize the definition of a (1, a)-MR-Kannan type
contraction by redefining the classes of functions 2 and U as follows:

Q={1:X—->(0,1)VzeX},
and
U'={¢Y: X —=1[0,00): VzeX}.
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In light of Q* and U*, we now define a (¢, a, k)-MRB-Kannan type contrac-
tion.

Definition 1.2. A mapping 7' : X — X is said to be a (v, a, k) MRB-Kannan
type contraction, if there exist ¢ € U*, k € (0,00) and a € [0, ) such that

[ — Tz

S

T
+ || o= 7o)

(1.2)

holds for all z,y € X.

The next definition is a (¢, «, a, k)—MRB—Cirié—Reich—Rus type contraction:

Definition 1.3. A mapping 7 : X — X is said to be a (¢, a, k)-MRB-Ciri¢-
Reich- Rus type contraction, if there exist ¢ € U*, k € (0,00), o € (0,1] and
a € [0,1) such that

w(z) + kTx  yy(y) + KTy .
o B < ol -+ of |5

s I =Tl

ll = Ta|

(1.3)
holds for all z,y € X.

Remark 1.4. (i) If we put @ = 0 in (1.3), then we get a (¢, k)-MRB-Banach
type contraction.

(ii) If we take ¢(x) = b for all z € X and k = 1 in (1.3), then we get an
enriched Cirié¢-Reich-Rus type contraction [3].
2. MAIN RESULTS
We begin with the following result:

Theorem 2.1. Let (X, |-||) be a Banach space and T : X — X be a (¢, a,k)-
MRB-Kannan type contraction. Then

(i) Fiz(T)= {z"};
(i) there exists A € Q* such that the generalized Krasnoselskii iteration
associated to T, that is, the sequence {x, 52, given by

Tnt1 = (1 = XMzp))xn + Map)T2n, n >0, (2.1)

converges to x* for any initial guess xg € X.
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Proof. Let A(z) = #u) for all x € X. Taking ¢(x) = 0, the proof is

straightforward. Therefore, considering ¥ (x) > 0, it is clear that A € Q*.
Utilizing (1.2), we have:

P (e (g =)o) =2 (o (g o)
< a(A@)@ - o) + AW - T,

which can be expressed equivalently as

ITe — Thyll < ( e - Taall + 1y - TAyn), Va,y € X, (2.2)

where T} is the generalized averaged operator defined in (1.1). Since a € [0, 3),

2
inequality (2.2) implies that T) is a Kannan contraction.
The generalized Krasnoselskii iteration process {zy }5°, defined by (2.1), is
precisely the Picard iteration associated with Ty (1.1), i.e.,

Tpy1 = Thwn, n2>0.
The remaining part of the proof follows a similar approach to the proof of

Theorem 2.0.3 in [1]. O

The proof for the next fixed point theorem follows the same line of reasoning
as presented in the proofs of Theorem 2.1.

Theorem 2.2. Let (X, ||-||) be a Banach space and T : X — X be a (¥, o, a,k)-
MR B-Cirié¢-Reich-Rus type contraction. Then conclusion of Theorem 2.1 holds.

The local version of Theorem 2.1 can be proven using a similar approach as
outlined in Theorem 2.0.5 in [1].

Theorem 2.3. Let (X,|||) be a Banach space and B(0,r) = {x € X :
|0 — 2| < r}, where © € X and r > 0. Let T : B(0,r) = X be a (¢, a,k)-
MRB-Kannan type contraction mapping. Further, assume that

k+9(0) (13a>r
1+a

5 _Tol < | YW
o~ il < |24
The characterization of a normed space presented below can be established
using a similar approach as outlined in Corollary 3.0.2 of [1] (also see [10]).

Then T has a unique fized point in B(0,r).

Corollary 2.4. Let (X, ||-||) be a normed space and T : X — X be a (¢, a,k)-
MRB-Kannan type contraction mapping such that T has a unique fized point.
Then (X, ||||) is a Banach space.
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3. GENERALIZED (¢, a, k)-MRB-KANNAN AND
(1, a, a, k)-MRB-CIRIG-REICH-RUS MAPPINGS

We now extend the criteria a € [0, 1) assumed in the (¢, a, k)-MRB-Kannan
type contraction mapping to 0 < a < oo and introduce the notion of a gener-
alized (¢, a, k)-MRB-Kannan mapping.

Definition 3.1. A mapping T : X — X is said to be a generalized (¢, a, k)-

MRB-Kannan mapping, if there exist ¢ € U*,k € (0,00) and a € [0, 00) such

that

a(z) + KTz yw(y)—i-kTyH <a(‘ k
k+(x) k+1(y) k+ ()

holds for all z,y € X.

o = Tallt| s = 7ol ).
1)

Similarly, we can define generalized (¢, a, a, k)—MRB-Ciric’—Reich—Rus map-
ping:
Definition 3.2. A mapping T : X — X is said to be a generalized (¢, o, a, k)-
MRB-Cirié-Reich-Rus mapping, if there exist ¥ € U*,k € (0,00),a € [0,1)
and a € [0, 00) such that
zp(z) + kTx  y(y) + kTy k
- <a(lz—yll) +a||;—7>
k+v(x) k+1(y) k+(z)

e -ml). e

[ — Ta|

holds for all z,y € X

In 1966, Browder and Petryshyn [6] introduced the notion of asymptotic
regularity.
Definition 3.3. A mapping 7T is said to be asymptotically regular on X if for
eachz € X, T"tlx — TPz — 0 as n — oo.

Now, we present a new result where T satisfies a generalized (4, a, k)-MRB-
Kannan mapping under the assumption of asymptotic regularity of the same
mapping.

Theorem 3.4. Let (X, ||-||) be a Banach space and T : X — X be a generalized
(¢, a, k)-MRB-Kannan continuous mapping. Suppose Th(x) is asymptotically
regular mapping. Then

(i) Fie(T) = {z"};

(ii) for any initial guess xg € X, a sequence {x,}52,, given by
Tnt1 = (L = XMzp))zn + Map) T2, n >0,
converges to x*.

Proof. Let A(z) = k+w( y for all z € X. Taking P(z) = 0, the proof is
straightforward. Therefore, considering ¥ (x) > 0, it is clear that A € Q.
Utilizing (3.1), we have:
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P (G =)o) =22 (o (g o)
< a( @)@ - ) + A - T,

which can be written in an equivalent form as

[Thz — Tyl < a( |z —Thz|l + [ly — Thyll ) Yo,y e X. (3.3)

As a € [0,00), by (3.3) T turns out to be a generalized Kannan contraction.

The generalized Krasnoselskii iteration process {x,}22, defined by (ii) is
the Picard iteration associated with T}, that is,

Tnt1 = Inxp, n>0.

The proof up to the establishment of the Cauchy sequence of {x,, }52, follows
along similar lines as given in the proof of Theorem 2.6 of Gérnicki [7]. Since
X is a Banach space, we have x* = lim,, ,o, . Using the continuity of T},
we immediately obtain x* = Thz*, so by Fix(T)= Fix(T)), we have Tz* = x*.
Uniqueness of the fixed point of the mapping follows easily. ]

Theorem 3.5. Let (X, ||-||) be a Banach space and T : X — X be a generalized
(¥, a, a, k)-MRB-Clirié-Reich-Rus mapping. Then conclusion of Theorem 3.4
holds.

Proof. The proof is similar to the proof of Theorem 3.4. O

Remark 3.6. The Ulam-Hyers stability and well-posedness results for the map-
pings considered here can be investigated following a similar approach as pre-
sented in [1].

4. CONCLUSION

In this paper, we have extended the scope of the study of MR-Kannan type
contraction mappings in the context of the generalized averaged operator. Ad-
ditionally, we have introduced the notion of a generalized MRB-Kannan type
mapping, which further extends the concepts of MRB-Kannan type contrac-
tions and enriched contractions. Along similar lines, we have defined a general-
ized MRB-Ciri¢-Reich-Rus mapping and proven the existence of a fixed point
by incorporating the generalized averaged operator, asymptotic regularity, and
continuity of the mapping.
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