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Abstract

The aim of this paper is to study the sufficient conditions for the exis-
tence of attractor of a generalized cyclic iterated function system com-
posed of a complete metric space and a finite collection of generalized
cyclic F-contraction mappings. Some examples are presented to sup-
port our main results and concepts defined herein. The results proved
in the paper extend and generalize various well known results in the
existing literature.
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1. Introduction and preliminaries

Hutchinson [8] proposed and studied iterated function system. Using a fi-
nite family of contraction maps on Euclidean space Rn, the Hutchinson op-
erator was defined which has a closed and bounded subset of Rn and has a
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fixed point, known as attractor of iterated function system, see for example in
[5, 6, 11, 18, 19, 20]. Banakh and Nowak [3] introduced the concept of topo-
logical iterated function system and attractor attractor, that generalizes the
usual iterated function system in metric spaces. That is to say, every iterated
function system is a topological iterated function system but not conversely.
Particularly, in [13], the authors proved that a space, called “shark teeth” [4]
is a topological iterated function system but is not homeomorphic to the usual
iterated function system.
The concept of a new type of contraction mapping known as F-contraction
mapping was initiated by Wardoski [24]. He then proved a fixed point result
as an interesting generalization of the Banach contraction principle. Nazir
et al. [22] defined a Hutchinson operator with the help of a finite family
of F-contractions on a complete metric space which is itself generalized F-
contraction on the family of compact sets. The concept of cyclic contraction
mapping was introduced by Rus [16]. Pecurar and Rus [14] proved some fixed
point results for cyclic ϕ-contraction mappings on a metric space. Karapinar
[9] obtained the unique fixed points of cyclic weak ϕ-contraction mappings and
established well-posedness problem of these mappings. Other useful results of
cyclic contraction mappings were obtained in [7, 10, 25].

In this paper, by using generalized cyclic F-contraction mappings, we de-
fined generalized Hutchinson operators on the class of compact subsets of a
metric space. We obtained several results on the existence of attractors of
these generalized Hutchinson operators. Some examples are presented to sup-
port results proved herein. Our results extend and unify various well known
comparable results in the existing literature. Consistent with Searcoid [17], the
following definitions and results will be needed in the sequel.

Let X be any nonempty set. Then for any x ∈ X and ε > 0, the open ball
in a metric space (X,d) is defined as

Bε(x) = {y ∈ X : d(x, y) < ε}.

The topology τ on a metric space (X,d) is as follows:

τ = {U ⊆ X : ∀ u ∈ U, ∃ ε > 0 suh that Bε(x) ⊆ U}.

A subset Y in a metric space (X,d) is said to be bounded if and only if the set
{d(x, y) : x, y ∈ Y } is bounded above.

Let C be a closure of C with respect to a metric space (X,d) . Then

c ∈ C ⇐⇒ Bε(c) ∩ C 6= ∅ for all ε > 0.

A set C in a metric space (X,d) is closed if and only if C = C.

Definition 1.1. Let (X,d) be a metric space. A subset K of X is said to be
compact if and only if every open cover of K (by open sets in M) has a finite
subcover. If M itself has this property, then we say that M is a compact metric
space.
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Theorem 1.2. Let (X,d) be a dislocated metric space, and let K be a compact
subset of X. Then K is a closed subset of X, and K is bounded.

Definition 1.3. A metric space (X,d) is sequentially compact if every se-
quence has a convergent subsequence.

Theorem 1.4. A metric space (X,d) is compact if and only if it is sequentially
compact.

Theorem 1.5. Let f be a continuous selfmap on compact set X in a metric
space (X,d) into itself. Then the range f(X) of f is also compact.

Denote by C(X), the collection of all nonempty compact subsets of a metric
space (X,d). For M1, N1 ∈ C(X),

H(M1, N1) = max{ sup
n1∈N1

d(n1,M1), sup
m1∈M1

d(m1, N1)},

where

d(n1,M1) = inf{d(n1,m1) : m1 ∈M1}
is the distance of a point n1 from the set M1. The mapping H : C(X)×C(X)→
R+ defined above, is known as Pompeiu-Hausdorff metric induced by d. If
(X,d) is a complete metric space, then (C(X), H) is also a complete metric
space.
If the range X of a mapping is replaced with the class of sets having some spe-
cific topological properties, then we have the concept of a point to set mapping.
This initiates the study of metric fixed point theory for multivalued mappings.
Nadler [12] obtained fixed point of multivalued mapping satisfying certain con-
tractive condition on a complete metric space and hence multivalued version
of Banach contraction principle was obtained (see also in [1], [2], [21]).

We need the following Lemma in the sequel.

Lemma 1.6 ([22]). In a metric space (X,d), for R,S, U, V ∈ C(X), the fol-
lowing hold:

(i): If S ⊆ U, then sup
r∈R

d(r, U) ≤ sup
r∈R

d(r, S).

(ii): sup
x∈R∪S

d(x, U) = max{sup
r∈R

d(r, U), sup
s∈S

d(s, U)}.

(iii): H(R ∪ S,U ∪ V ) ≤ max{H(R,U), H(S, V )}.

Lemma 1.7 ([15]). In a complete metric space (X,d), if B is a closed subset
of X, then C(B) is also a closed subset of the complete metric space (C(X), H).

Denote by z, the collection of all continuous mappings F : R+ → R satisfy-
ing the following conditions:

(F1) F is strictly increasing, that is, for α, β ∈ R+, α < β implies that
F(α) < F(β).

(F2) For any sequence {λn} ⊆ R+,

lim
n→∞

λn = 0 and lim
n→∞

F (λn) = −∞ are equivalent.
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(F3) For any η ∈ (0, 1), we have lim
η→0+

ληF(λ) = 0.

Let us recall the concept of F-contraction mapping [23].

Definition 1.8. Let (X,d) be a metric space. A mapping f : X → X is known
as an F-contraction if for m1, n1 ∈ X, we have F ∈ z and τ > 0 such that

τ + F(d(fm1, fn1)) ≤ F(d(m1, n1)),

whenever d(fm1, fn1) > 0.

Definition 1.9 ([14]). Let X be any nonempty set and f : X → X. A finite
family {X1, X2, X3, ..., Xr} of nonempty subsets of X with X = ∪ri=1Xi is
called a cyclic representation of X with respect to f if

f(X1) ⊂ X2, ..., f(Xr−1) ⊂ Xr, and f(Xr) ⊂ X1.

2. Cyclic F-contraction iterated function systems

In this section, we introduce the notion of a cyclic F-contraction iterated
function system in a metric space.

Definition 2.1 ([22]). In a complete metric space (X,d), a set {X; fn, n =
1, 2, ..., k} is said to be a generalized iterated function system if each fn : X →
X is F-contraction for n ∈ {1, 2, 3, ..., k}.

Definition 2.2. Let (X,d) be a complete metric space. A set {X; fn, n =
1, 2, ..., k} is said to be a generalized cyclic iterated function system if each
fn : X→X is cyclic F-contraction for n ∈ {1, 2, 3, ..., k}.

Definition 2.3. Let {Bi}ri=1 be a collection of nonempty closed subsets of a
metric space (X,d). A self-mapping f : ∪ri=1Bi → ∪ri=1Bi is known as cyclic
F-contraction on {Bi}ri=1 if there exists F ∈ z and τ > 0 such that

a) f(Bi) ⊆ Bi+1 for i ∈ Nr, where Br+1 = B1;
b) τ + F(d(fm1, fn1)) ≤ F(d(m1, n1)) for all m1 ∈ Bi, n1 ∈ Bi+1 for

i ∈ Nr provided that d(fm1, fn1) > 0.

If f satisfies condition (a), then f is called a cyclic function.

We now present an example of a cyclic F-contraction mapping which is
neither contraction nor F-contraction.

Example 2.4. Let X = [0, 2] be equipped with the usual metric d on X,
B1 = [0, 1], and B2 = [0, 2].
Define f : B1 ∪B2 → B1 ∪B2 by

f(m) =


m
4 if m ∈ [0, 1],

1
4 if m ∈ (1, 32 ]

1
6 if m ∈ ( 3

2 , 2].
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Note that, f is neither a contraction nor an F-contraction. Indeed, if we take

m =
3

2
, n =

26

17
, then

d(f(
3

2
), f(

26

17
)) =

1

12
≥ λ

34
= λd(

3

2
,

26

17
) for any λ ∈ [0, 1).

Define F ∈ z by F(λ) = ln(λ) + λ. We show that f is a cyclic F-contraction
on X = B1 ∪B2.
Clearly,

f(B1) = [0,
1

4
] ⊆ [0, 2] = B2, and

f(B2) = [0,
1

2
] ⊆ [0, 1] = B1.

Now, we consider the following cases:
Case 1:
Let m ∈ B1, n ∈ B2.
If n ∈ [0, 1], then

|f(m)− f(n)| = |m
4
− n

4
| = 1

4
|m− n| = e−τd(m,n),

where τ = ln(4).
In case n ∈ (1, 32 ], then

|f(m)− f(n)| = |m
4
− 1

4
| = 1

4
|m− 1| ≤ 1

4
|m− n| = e−τd(m,n),

where τ = ln(4).
When n ∈ ( 3

2 , 2], then

|f(m)− f(n)| = |m
4
− 1

6
| = 1

4
|m− 2

3
| ≤ 1

4
|m− n| = e−τd(m,n),

where τ = ln(4).

Case 2:
For m ∈ B2, n ∈ B1.
Let m ∈ [0, 1]. Then

|f(m)− f(n)| = |m
4
− n

4
| = 1

4
|m− n| = e−τd(m,n),

where τ = ln(4).
If m ∈ (1, 32 ], then

|f(m)− f(n)| = |1
4
− n

4
| = 1

4
|1− n| ≤ 1

4
|m− n| = e−τd(m,n),

where τ = ln(4).
In case m ∈ ( 3

2 , 2], then

|f(m)− f(n)| = |1
6
− n

6
| = 1

4
|2
3
− n| ≤ 1

4
|m− n| = e−τd(m,n),

where τ = ln(4).
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Here e−τ =
1

4
, that is, τ = ln(4). Thus, f is a cyclic F-contraction on B1 ∪B2.

Theorem 2.5. Let {Bi}ri=1 be the collection of nonempty closed subsets of
a metric space (X,d) and f : ∪ri=1Bi → ∪ri=1Bi a continuous cyclic F-
contraction. Then the map defined by f : C(∪ri=1Bi) → C(∪ri=1Bi) is also a
cyclic F-contraction with respect to Hausdorff metric H with the same F .

Proof. We take K ∈ Bi for some i ∈ Nr. Applying the definition of cyclic
map, we obtain f(K) ⊆ Bi+1 . Also, the continuity of f implies that f(K)
is a compact set. Therefore, f(K) ∈ C(Bi+1) which implies that f(C(Bi)) ⊆
C(Bi+1) for each i ∈ Nr.
We take M1 ∈ C(Bi) and N1 ∈ C(Bi+1) for some i ∈ Nr. First we claim that

τ + F( sup
fm1∈f(M1)

d(fm1,f(N1))) ≤ F( sup
m1∈M1

d(m1,N1)).

As f is cyclic F-contraction of f, we obtain

τ + F(d(fm1,fn1)) ≤ F(d(m1,n1)) for all m1 ∈ Bi, n1 ∈ Bi+1 for i ∈ Nr.

Thus

τ + F( sup
fm1∈f(M1)

d(fm1,f(N1))) = τ + F( sup
fm1∈f(M1)

inf
fn1∈f(N1)

d(fm1,fn1))

≤ F( sup
m1∈M1

inf
n1∈N1

d(m1,n1))

≤ F( sup
m1∈M1

d(m1,N1)).

Similarly, we have

τ + F( sup
fn1∈f(N1)

d(fn1, f(M1)) ≤ F( sup
n1∈N1

(n1,M1)).

So

τ + F(H(f(M1), f(N1)))

= τ + F(max{ sup
fm1∈f(M1)

d(fm1, f(N1)), sup
fn1∈f(N1)

d(fn1, f(M1))})

≤ F(max{ sup
m1∈M1

d(m1, N1), sup
n1∈N1

d(n1,M1)})

= F(H(M1, N1)).

Hence, f is cyclic F-contraction on {Bi}ri=1. �

Theorem 2.6. Let {Bi}ri=1 be the collection of nonempty closed subsets of a
metric space (X,d), and N a fixed natural number. If fn : ∪ri=1Bi → ∪ri=1Bi
for all n ∈ NN are cyclic F-contractions, then the map T : C(∪ri=1Bi) →
C(∪ri=1Bi) defined by T (M) = ∪Nn=1fn(M) for M ∈ C(∪ri=1Bi) is also a cyclic
F-contraction.

Proof. LetK ∈ C(Bi) for some i ∈ Nr. By Theorem 2.9, for each n ∈ NN, fn is a
cyclic F-contraction. Therefore fn(K) ∈ C(Bi+1) for all n ∈ NN which implies
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that T (K) = ∪Nn=1fn(K) ∈ C(Bi+1), and consequently, T (C(Bi)) ⊆ C(Bi+1)
for i ∈ Nr.
Since fn is cyclic F-contraction for each n ∈ NN, we have

τ + F(H(fn(M1),fn(N1))) ≤ F(H(M1,N1))

for all M1 ∈ C(Bi), N1 ∈ C(Bi+1) for each i ∈ Nr.

If M1 ∈ C(Bi), and N1 ∈ C(Bi+1) for some i ∈ Nr, then we have

H(T (M1), T (N1)) = H(∪Nn=1fn(M1),∪Nn=1fn(N1))

≤ max{H(f1(M1), f1(N1)), ...,H(fN(M1), fN(N1))}.

By applying F on bothe sides of the above inequality, we obtain that

τ + F(H(T(M1),T(N1)))

= τ + F(H(∪Nn=1fn(M1),∪Nn=1fn(N1)))

≤ τ + F(max{H(f1(M1), f1(N1)), ...,H(fN(M1), fN(N1))})
≤ F(H (M1, N1) ).

�

Definition 2.7. Let {Bi}ri=1 be a collection of nonempty closed subsets of X.
A mapping T : ∪ri=1C(Bi)→ ∪ri=1C(Bi) is known as

(1) a generalized cyclic F-contraction if there exists F ∈ z and τ > 0 such
that for M1 ∈ C(Bi), N1 ∈ C(Bi+1) with H (T (M1) , T (N1)) > 0, we
have

τ + F(H(T(M1),T(N1)) ≤ F(MT (M1,N1)),

where

MT (M1,N1) = max{H(M1,N1), H(M1,T(M1)), H(N1,T(N1)),

H(M1,T(N1)) +H(N1,T(M1))

2
, H(T2(M1),T(M1)),

H(T2(M1),N1), H(T2(M1),T(N1))}.

(2) a generalized rational cyclic F-contraction if there exists F ∈ z and
τ > 0 such that for M1 ∈ C(Bi),N1 ∈ C(Bi+1) withH (T (M1) ,T (N1)) >
0, we have

τ + F(H(T(M1),T(N1)) ≤ F(NT (M1,N1)),

where

NT (M1,N1) = max{
H(N1,T (N1)) [1 +H(M1,T(M1))]

1 +H(M1,N1)
,

H(N1,T (M1)) [1 +H(M1,T(M1))]

1 +H(M1,N1)
,

H(M1,T (M1)) [1 +H(M1,T(M1))]

1 +H(M1,N1)
}.
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An operator T defined above in (1) is called a generalized cyclic F-Hutchinson
operator, whearas in (2) T is called a generalized rational cyclic F-Hutchinson
operator.

Theorem 2.8 ([22]). In a complete metric space (X,d), suppose that {X : fn, :
n = 1, 2, ..., k} is a generalized iterated function system. If T : C(X)→ C(X) is
defined by T (M1) = ∪Nn=1fn(M1) for M1 ∈ C(X) and there exists F ∈ z and
τ > 0 such that for M1, N1 ∈ C (X) with H (T (M1) , T (N1)) > 0, we have

τ + F(H(T(M1),T(N1)) ≤ F(MT (M1,N1)),

where

MT (M1,N1) = max{H(M1,N1), H(M1,T(M1)), H(N1,T(N1)),
H(M1,T(N1)) +H(N1,T(M1))

2
, H(T2(M1),T(M1)),

H(T2(M1),N1), H(T2(M1),T(N1))}.
Then T has a unique fixed point U ∈ C(X), that is,

U = T (U) = ∪kn=1fn(U).

Moreover, for any initial set M0 ∈ C(X), the sequence of compact sets

{M0,T(M0),T
2
(M0),...}

converges to the fixed point of T .

Definition 2.9. Let A be a nonempty compact set of (X,d). Then A is called
an attractor of the iterated function system if

(i) T (A) = A and
(ii) there exists an open set V1 ⊆ X such that A ⊆ V1 and lim

k→∞
T k(B) = A

for any compact set B ⊆ V1, where the limit is taken with respect to
the Pompeiu-Hausdorff metric.

3. Main Results

In the following, we obtain the existence of a unique attractor of generalized
cyclic F−contraction operator.

Theorem 3.1. In a complete metric space (X,d), suppose that {Bi}ri=1 is
the collection of nonempty closed subsets of X and {X; fn, n = 1, 2, ..., k} is
a generalized cyclic iterated function system. If T : C(∪ri=1Bi) → C(∪ri=1Bi)
defined by

T (L) = ∪Nn=1fn(L) for each L ∈ C(∪ri=1Bi)

is a generalized cyclic F-Hutchinson operator, then T has unique attractor
U ∈ C(Bi), that is,

U = T (U) = ∪ki=1fn(U).

Moreover, for an initial set L0 ∈ C(∪ri=1Bi), the sequence of compact sets

{L0, T (L0), T 2(L0), ...}
converges to an attractor of T .
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Proof. Suppose that L0 is an arbitrary element in C(∪ri=1Bi). Then, there ex-
ists some i0 such that L0 ∈ C(Bi0). Also T (C(Bi0)) ⊆ C(Bi0+1) implies that

T (L0) ∈ C
(
Bi0+1

)
. Thus there exists L1 ∈ C(Bi0+1

) such that T (L0) = L1.

Also, T (C(Bi0+1)) ⊆ C(Bi0+2) implies that L2 = T (L1) ∈ C
(
Bi0+2

)
. Continu-

ing this way, we define a sequence of sets {Lm} by

L1 = T (L0), L2 = T (L1) , ...,Lm+1 = T (Lm)

for m ∈ N ∪ {0} .
Now we assume that Lm 6= Lm+1 for all m ∈ N ∪ {0}. If not, then Lk = Lk+1

for some k implies that Lk = T (Lk) which completes the Proof.
Thus, Lm 6= Lm+1 for all m ∈ N ∪ {0}. By using (1) of Definition 2.7, for
Lm ∈ C(Bim+1) and Lm+1 = T (Lm) ∈ C(Bim+2), we obtain that

τ + F (H(Lm+1,Lm+2)) = τ + F (H(T (Lm) ,T (Lm+1)))

≤ F (MT (Lm,Lm+1)) ,

where

MT (Lm,Lm+1) = max{H(Lm,Lm+1), H (Lm, T (Lm)) , H (Lm+1, T (Lm+1)) ,

H (Lm, T (Lm+1)) +H (Lm+1, T (Lm))

2
,

H(T 2 (Lm) , T (Lm)), H
(
T 2 (Lm) ,Lm+1

)
,

H
(
T 2 (Lm) , T (Lm+1)

)
}

= max{H(Lm,Lm+1), H (Lm,Lm+1) , H (Lm+1,Lm+2) ,

H (Lm,Lm+2) +H (Lm+1,Lm+1)

2
, H(Lm+2,Lm+1),

H (Lm+2,Lm+1) , H (Lm+2,Lm+2)}
≤ max{H(Lm,Lm+1), H (Lm+1,Lm+2) ,

H (Lm,Lm+1) +H (Lm+1,Lm+2)

2
}

= max{H (Lm,Lm+1) , H (Lm+1,Lm+2)}.

Thus, we have

τ + F (H(Lm+1,Lm+2)) ≤ F (max{H (Lm,Lm+1) , H (Lm+1,Lm+2)})
= F (H (Lm,Lm+1)) ,

that is,

F (H(Lm+1,Lm+2)) ≤ F (H(Lm,Lm+1))− τ
for all m ∈ N ∪ {0}. Therefore, we have

F (H(Ln,Ln+1)) ≤ F (H(Ln−1,Ln))− τ
≤ F (H(Ln−2,Ln−1))− 2τ

≤ ... ≤ F (H(L0,L1))− nτ

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 87



T. Nazir, M. Abbas and H. H. Lodhi

and we get lim
n→∞

F (H(Ln,Ln+1)) = −∞ which by (F2) implies that

lim
n→∞

H(Ln,Ln+1) = 0.

Now by (F3), there exists h ∈ (0, 1) such that

lim
n→∞

[H(Ln,Ln+1)]hF (H(Ln,Ln+1)) = 0.

Thus we have

[H(Ln,Ln+1)]hF (H(Ln,Ln+1))− [H(Ln,Ln+1)]hF (H(L0,Ln+1))

≤ −nτ [H(Ln,Ln+1)]h ≤ 0.

On taking the limit as n→∞, we obtain that

lim
n→∞

n[H(Ln,Ln+1)]h = 0.

As lim
n→∞

n
1
h H(Ln,Ln+1) = 0, there exists n1 ∈ N ∪ {0} such that

n
1
h H(Ln,Ln+1) ≤ 1

for all n ≥ n1. So we have

H(Ln,Ln+1) ≤ 1

n1/h

for all n ≥ n1. For m,n ∈ N ∪ {0} with m > n ≥ n1, we have

H (Ln,Lm) ≤ H (Ln,Ln+1) + H (Ln+1,Ln+2) + ...+ H (Lm−1,Lm)

≤
∞∑
i=n

1

i1/h
.

As,
∑∞
i=1

1

i1/h
< ∞, we get H (Ln,Lm) → 0 as n,m → ∞. Therefore {Ln} is

a Cauchy sequence in C(∪ri=1Bi). As (C(∪ri=1Bi), H) is complete, Ln → U as
n→∞ for some U ∈ C(∪ri=1Bi).
Note that the iterative sequence {Ln} has infinite number of terms in C (Bi)
for each i = 1, 2, ..., r. Hence, in each C (Bi) for i = 1, 2, ..., r, we can construct
a subsequence of {Ln} that converges to U . Since each element in C (Bi) for
i = 1, 2, ..., r, is closed, we conclude U ∈ ∩mi=1C (Bi) 6= ∅.

Let V = ∩ri=1C (Bi) and denote by C(V ), the collection of all nonempty
compact sets of V. Then T |C(V ) : C(V )→ C(V ) is a self mapping with domain
of compact sets. It follows from Theorem 2.8 that T |C(V ) has a unique attractor
in C(V ). �

Remark 3.2. In Theorem 3.1, if S(∪ri=1Xi) is the union of the collection of
all singleton subsets of X, where X = ∪ri=1Xi. Then, clearly S(∪ri=1Xi) ⊆
C(∪ri=1Xi). Moreover, if we take fn = f for each n where f = f1, then the
mapping T becomes

T (m) = f(m).

By using the above Remark, we obtain the following results for the existence
of fixed point.
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Corollary 3.3. In a complete metric space (X,d), suppose that {X; fn, n =
1, 2, ..., k} is a generalized cyclic iterated function system. If f : X → X is
defined as in the Remark 3.2 and there exists some F ∈ z and τ > 0 such that
for m1 ∈ C (Xi) and n1 ∈ C (Xi+1) with d(f(m1), f(n1)) > 0, the following
condition holds

τ + F (d (fm1, fn1)) ≤ F(Mf (m1, n1)),

where

Mf (m1, n1) = max{d(m1, n1),d(m1, fm1),d(n1, fn1),

d(m1, fn1) + d(n1, fm1)

2
,d(f2m1, n1),

d(f2m1, fm1),d(f2m1, fn1)}.
Then f has a unique fixed point x ∈ X. Moreover, for any initial point x0 ∈ X,
the sequence {x0, fx0, f2x0, ...} converges to the fixed point of f .

Corollary 3.4. In a complete metric space (X,d), suppose that {Bi}ri=1 is the
nonempty collection of closed subsets of X. Suppose that (X; fn, n = 1, 2, ..., k)
is a cyclic iterated function system, where each fi for i = 1, 2, ..., k is a cyclic
contraction. Then the map T : C(∪ri=1Bi) → C(∪ri=1Bi) defined in Theorem
3.1 has a unique attractor. Moreover, for any set L0 ∈ C(Bi), the sequence of
compact sets {L0, T (L0) , T 2 (L0) , ...} converges to an attractor of T .

Proof. It follows from Theorem 2.5 that each fi for i = 1, 2, ..., k is a cyclic
contraction on X. Moreover, the mapping T : C(∪ri=1Bi)→ C(∪ri=1Bi) defined
by

T (L) = ∪kn=1fn(L), for all L ∈ C(Bi)
is also cyclic contraction on C(Bi) with respect to Hausdorff metric H. The
result then follows from Theorem 3.1. �

Theorem 3.5. In a complete metric space (X,d), suppose {Bi}ri=1 is the col-
lection of nonempty closed subsets X and {X; fn, n = 1, 2, ..., k} is a generalized
cyclic iterated function system. If T : C(∪ri=1Bi)→ C(Bi) defined by

T (L) = ∪Nn=1fn(L) for each L ∈ C(∪ri=1Bi)

is a generalized rational cyclic F-Hutchinson operator, then T has a unique
attractor U ∈ C(∪ri=1Bi), that is,

U = T (U) = ∪ki=1fn(U).

Moreover, for an initial set L0 ∈ C(∪ri=1Bi), the sequence of compact sets

{L0, T (L0), T 2(L0), ...}
converges to an attractor of T .

Proof. Let L0 be an arbitrary element in C(∪ri=1Bi). Then, there exists some i0
such that L0 ∈ C(Bi0). Also T (C(Bi0)) ⊆ C(Bi0+1) implies that T (L0) ∈ Bi0+1 .
Thus there exists L1 ∈ C(Bi0+1) such that T (L0) = L1. Also, T (C(Bi0+1)) ⊆
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C(Bi0+2
) implies that L2 = T (L1) ∈ Bi0+2

. Continuing this way, we define a
sequence of sets {Lm} by

L1 = T (L0), L2 = T (L1) , ...,Lm+1 = T (Lm)

for m ∈ N ∪ {0} .
Now assume that Lm 6= Lm+1 for all m ∈ N ∪ {0}. If not, then Lk = Lk+1 for
some k, which implies that Lk = T (Lk) and hence the proof. Thus, Lm 6= Lm+1

for all m ∈ N ∪ {0}. Using (2) of Definition 2.7, for Lm ∈ C(Bim+1) and
Lm+1 = T (Lm) ∈ C(Bim+2), we obtain that

τ + F (H(Lm+1,Lm+2)) = τ + F (H(T (Lm) ,T (Lm+1)))

≤ F (NT (Lm,Lm+1)) ,

where

NT (Lm,Lm+1) = max{H(Lm+1,T (Lm+1)) [1 + H(Lm,T(Lm))]

1 + H(Lm,Lm+1)
,

H(Lm+1,T (Lm)) [1 + H(Lm,T(Lm))]

1 + H(Lm,Lm+1)
,

H(Lm,T (Lm)) [1 + H(Lm,T(Lm))]

1 + H(Lm,Lm+1)
}

= max{H(Lm+1,Lm+2) [1 + H(Lm,Lm+1)]

1 + H(Lm,Lm+1)
,

H(Lm+1,Lm+1) [1 + H(Lm,Lm+1)]

1 + H(Lm,Lm+1)
,

H(Lm,Lm+1) [1 + H(Lm,Lm+1)]

1 + H(Lm,Lm+1)
}

= max{H (Lm+1,Lm+2) ,H(Lm,Lm+1)}.
Thus, we have

τ + F (H(Lm+1,Lm+2)) ≤ F (max{H (Lm+1,Lm+2) ,H (Lm,Lm+1)})
= F (H (Lm,Lm+1)) ,

that is,
F (H(Lm+1,Lm+2)) ≤ F (H(Lm,Lm+1))− τ

for all m ∈ N ∪ {0}. Therefore

F (H(Ln,Ln+1)) ≤ F (H(Ln−1,Ln))− τ
≤ F (H(Ln−2,Ln−1))− 2τ

≤ ... ≤ F (H(L0,L1))− nτ
gives that lim

n→∞
F (H(Ln,Ln+1)) = −∞ which by (F2) becomes

lim
n→∞

H(Ln,Ln+1) = 0.

From (F3), there exists h ∈ (0, 1) such that

lim
n→∞

[H(Ln,Ln+1)]hF (H(Ln,Ln+1)) = 0.
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Thus we have

[H(Ln,Ln+1)]hF (H(Ln,Ln+1))− [H(Ln,Ln+1)]hF (H(L0,Ln+1))

≤ −nτ [H(Ln,Ln+1)]h ≤ 0.

On taking the limit as n→∞, we obtain that

lim
n→∞

n[H(Ln,Ln+1)]h = 0.

As lim
n→∞

n
1
h H(Ln,Ln+1) = 0, there exists n1 ∈ N ∪ {0} such that

n
1
h H(Ln,Ln+1) ≤ 1

for all n ≥ n1. So,

H(Ln,Ln+1) ≤ 1

n1/h

for all n ≥ n1. For m,n ∈ N ∪ {0} with m > n ≥ n1, we have

H (Ln,Lm) ≤ H (Ln,Ln+1) + H (Ln+1,Ln+2) + ...+ H (Lm−1,Lm)

≤
∞∑
i=n

1

i1/h
.

As
∑∞
i=1

1

i1/h
is convergent, H (Ln,Lm) → 0 as n,m → ∞. Therefore {Ln} is

a Cauchy sequence in X. As (C(∪ri=1Bi), H) is complete, Ln → U∗ as n → ∞
for some U∗ ∈ C(∪ri=1Bi).
Note that a sequence {Ln} has infinite number of terms in C (∪ri=1Bi) , for
each i = 1, 2, ..., r. Hence, in each C (Bi) for i = 1, 2, ..., r, we can construct a
subsequence of {Ln} that converges to U∗. As each Bi, i = 1, 2, ..., r, is closed,
we conclude that U∗ ∈ ∩ri=1C(Bi) 6= ∅.

Let V = ∩ri=1C (Bi) and C(V ) denotes the collection of all nonempty compact
sets of V. Then T |C(V ) : C(V )→ C(V ) is a self mapping on the family of compact
sets of V .

Now by the Definition 2.7 (2) and following the similar arguments to those
given in the proof of the Theorem 2.8, we obtain that the map T |C(V ) has a
unique attractor in C(V ). �

Corollary 3.6. In a complete metric space (X,d), suppose that {X; fn, n =
1, 2, ..., k} is a generalized cyclic iterated function system. Let f : X → X be
defined as in Remark 3.2. If there exists some F ∈ z and τ > 0 such that
for m1 ∈ C (Xi) and n1 ∈ C (Xi+1) with d(f(m1), f(n1)) > 0, the following
condition holds

τ + F (d (fm1, fn1)) ≤ F(Nf (m1, n1)),
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where

Nf (m1, n1) = max{d(n1, f (n1)) [1 + d(m1, f(m1))]

1 + d(m1, n1)
,

d(n1, f (m1)) [1 + d(m1, f(m1))]

1 + d(m1, n1)
,

d(m1, f (m1)) [1 + d(m1, f(m1))]

1 + d(m1, n1)
}.

Then f has a unique fixed point x ∈ X. Moreover, for any initial point x0 ∈ X,
the sequence {x0, fx0, f2x0, ...} converges to the fixed point of f .

Example 3.7. Let X = [0, 2] × [0, 2] be equipped with a Euclidian metric d
on X, A1 = [0, 1]× [0, 1] and A2 = [0, 2]× [0, 2] . Define f1, f2 : X → X by

f1(x, y) =

{ (
x
4 ,

y
4

)
x, y ∈ [0, 1],(

1
6 ,

1
6

)
x, y ∈ (1, 2],

and

f2(x, y) =

{ (
x
3 ,

y
3

)
x, y ∈ [0, 1],(

1
5 ,

1
5

)
x, y ∈ (1, 2].

Clearly, fi (A1) ⊆ A2 and fi (A2) ⊆ A1 for each i = 1, 2.
Now, for x = (x1, y1) ∈ [0, 1]× [0, 1] = A1 and y = (x2, y2) ∈ [0, 2]× [0, 2] = A2,
we have the following cases:
Case I: If x = (x1, y1) ∈ [0, 1]×[0, 1] = A1 and y = (x2, y2) ∈ [0, 1]×[0, 1] ⊆ A2,
then

d(f1 (x) , f1 (y)) = d
(

(
x1
4
,
y1
4

), (
x2
4
,
y2
4

)
)

=

√(x1
4
− x2

4

)2
+
(y1

4
− y2

4

)2
=

√
1

16
(x1 − x2)

2
+

1

16
(y1 − y2)

2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).
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Case II: In case x = (x1, y1) ∈ [0, 1] × [0, 1] = A1 and y = (x2, y2) ∈ (1, 2] ×
(1, 2] ⊆ A2, we have

d(f1 (x) , f1 (y)) = d

(
(
x1
4
,
y1
4

), (
1

6
,

1

6
)

)

=

√(
x1
4
− 1

6

)2

+

(
y1
4
− 1

6

)2

=

√
1

16

(
x1 −

2

3

)2

+
1

16

(
y1 −

2

3

)2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).

Also, for x = (x1, y1) ∈ [0, 2]× [0, 2] = A2 and y = (x2, y2) ∈ [0, 1]× [0, 1] = A1,
we consider the following two cases:
Case I: If x = (x1, y1) ∈ [0, 1]× [0, 1] ⊆ A2 and y = (x2, y2) = [0, 1]× [0, 1] =
A1, then

d(f1 (x) , f1 (y)) = d
(

(
x1
4
,
y1
4

), (
x2
4
,
y2
4

)
)

=

√(x1
4
− x2

4

)2
+
(y1

4
− y2

4

)2
=

√
1

16
(x1 − x2)

2
+

1

16
(y1 − y2)

2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).

Case II: Finally for x = (x1, y1) ∈ (1, 2 × (1, 2] ⊆ A2 and y = (x2, y2) ∈
[0, 1]× [0, 1] = A1, we have

d(f1 (x) , f1 (y)) = d

(
(
1

6
,

1

6
), (

x2
4
,
y2
4

)

)

=

√(
1

6
− x2

4

)2

+

(
1

6
− y2

4

)2

=

√
1

16

(
2

3
− x2

)2

+
1

16

(
2

3
− y2

)2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).

Now, again for x = (x1, y1) ∈ [0, 1] × [0, 1] = A1 and y = (x2, y2) = [0, 2] ×
[0, 2] = A2, we consider the following cases:
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Case I: If x = (x1, y1) ∈ [0, 1]×[0, 1] = A1 and y = (x2, y2) ∈ [0, 1]×[0, 1] ⊆ A2,
then

d(f2 (x) , f2 (y)) = d
(

(
x1
3
,
y1
3

), (
x2
3
,
y2
3

)
)

=

√(x1
3
− x2

3

)2
+
(y1

3
− y2

3

)2
=

√
1

9
(x1 − x2)

2
+

1

9
(y1 − y2)

2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).

Case II: For x = (x1, y1) ∈ [0, 1]×[0, 1] = A1 and y = (x2, y2) = (1, 2]×(1, 2] ⊆
A2, we have

d(f2 (x) , f2 (y)) = d

(
(
x1
3
,
y1
3

), (
1

5
,

1

5
)

)

=

√(
x1
3
− 1

5

)2

+

(
y1
3
− 1

5

)2

=

√
1

9

(
x1 −

3

5

)2

+
1

9
(y1 −

3

5

2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).

Also, for x = (x1, y1) ∈ [0, 2]× [0, 2] = A2 and y = (x2, y2) ∈ [0, 1]× [0, 1] = A1,
we consider the following two cases:
Case I: In case x = (x1, y1) ∈ [0, 1] × [0, 1] ⊆ A2 and y = (x2, y2) = [0, 1] ×
[0, 1] = A1, we obtain that

d(f2 (x) , f2 (y)) = d
(

(
x1
3
,
y1
3

), (
x2
3
,
y2
3

)
)

=

√(x1
3
− x2

3

)2
+
(y1

3
− y2

3

)2
=

√
1

9
(x1 − x2)

2
+

1

9
(y1 − y2)

2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).
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Case II: Finally, if x = (x1, y1) ∈ (1, 2] × (1, 2] ⊆ A2 and y = (x2, y2) ∈
[0, 1]× [0, 1] = A1, then

d(f2 (x) , f2 (y)) = d

(
(
x1
3
,
y1
3

), (
1

5
,

1

5
)

)

=

√(
1

5
− x2

3

)2

+

(
1

5
− y2

3

)2

=

√
1

9

(
3

5
− x2

)2

+
1

9

(
3

5
− y2

)2

<

√
(x1 − x2)

2
+ (y1 − y2)

2

= d(x,y).

Now there exists τ > 0 such that

d(f1(x),f1(y))(1 + τ
√

d(x,y))2 ≤ d(x,y) and

d(f2(x),f2(y))(1 + τ
√

d(x,y))2 ≤ d(x,y).

If we consider the cyclic iterated function system {X; f1, f2} with mapping
T : C(∪ri=1[0, 2]2)→ C(∪ri=1[0, 2]2) given by

T (A) = f1 (A) ∪ f2 (A) for all A ∈ C(∪ri=1[0, 2]2).

Then, for A1 ∈ Ci([0, 2]2), A2 ∈ Ci+1([0, 2]2) with H(T (A1) , T (A2)) > 0, we
have

H(T (A1) , T (A2))(1 + τ
√
H(A1, A2))2 ≤ H (A1, A2) .

Thus, T is a generalized cyclic F-Hutchinson operator. And, for any set W0 ∈
C(∪ri=1[0, 2]2), the sequence of sets {W0, T (W0), T 2(W0), ...} converges to the
unique attractor of an operator T .
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