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ABSTRACT

The aim of this paper is to study the sufficient conditions for the exis-
tence of attractor of a generalized cyclic iterated function system com-
posed of a complete metric space and a finite collection of generalized
cyclic F-contraction mappings. Some examples are presented to sup-
port our main results and concepts defined herein. The results proved
in the paper extend and generalize various well known results in the
existing literature.
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1. INTRODUCTION AND PRELIMINARIES

Hutchinson [8] proposed and studied iterated function system. Using a fi-
nite family of contraction maps on Euclidean space R", the Hutchinson op-
erator was defined which has a closed and bounded subset of R™ and has a
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fixed point, known as attractor of iterated function system, see for example in
[5, 6, 11, 18, 19, 20]. Banakh and Nowak [3] introduced the concept of topo-
logical iterated function system and attractor attractor, that generalizes the
usual iterated function system in metric spaces. That is to say, every iterated
function system is a topological iterated function system but not conversely.
Particularly, in [13], the authors proved that a space, called “shark teeth” [4]
is a topological iterated function system but is not homeomorphic to the usual
iterated function system.

The concept of a new type of contraction mapping known as F-contraction
mapping was initiated by Wardoski [24]. He then proved a fixed point result
as an interesting generalization of the Banach contraction principle. Nazir
et al. [22] defined a Hutchinson operator with the help of a finite family
of F-contractions on a complete metric space which is itself generalized F-
contraction on the family of compact sets. The concept of cyclic contraction
mapping was introduced by Rus [16]. Pecurar and Rus [14] proved some fixed
point results for cyclic p-contraction mappings on a metric space. Karapinar
[9] obtained the unique fixed points of cyclic weak p-contraction mappings and
established well-posedness problem of these mappings. Other useful results of
cyclic contraction mappings were obtained in [7, 10, 25].

In this paper, by using generalized cyclic F-contraction mappings, we de-
fined generalized Hutchinson operators on the class of compact subsets of a
metric space. We obtained several results on the existence of attractors of
these generalized Hutchinson operators. Some examples are presented to sup-
port results proved herein. Our results extend and unify various well known
comparable results in the existing literature. Consistent with Searcoid [17], the
following definitions and results will be needed in the sequel.

Let X be any nonempty set. Then for any x € X and ¢ > 0, the open ball
in a metric space (X, d) is defined as

B.(z)={ye X :d(z,y) <e}.
The topology 7 on a metric space (X, d) is as follows:
7={UCX: VueU, Fe>0suhthat B.(z) CU}.

A subset Y in a metric space (X, d) is said to be bounded if and only if the set
{d(z,y) : x,y € Y} is bounded above.

Let C be a closure of C' with respect to a metric space (X, d). Then
ceC < B.(e)NC#@ foralle>0.
A set C in a metric space (X, d) is closed if and only if C' = C.
Definition 1.1. Let (X, d) be a metric space. A subset K of X is said to be
compact if and only if every open cover of K (by open sets in M) has a finite

subcover. If M itself has this property, then we say that M is a compact metric
space.
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Theorem 1.2. Let (X, d) be a dislocated metric space, and let K be a compact
subset of X. Then K is a closed subset of X, and K is bounded.

Definition 1.3. A metric space (X, d) is sequentially compact if every se-
quence has a convergent subsequence.

Theorem 1.4. A metric space (X, d) is compact if and only if it is sequentially
compact.

Theorem 1.5. Let f be a continuous selfmap on compact set X in a metric
space (X, d) into itself. Then the range f(X) of f is also compact.

Denote by C(X), the collection of all nonempty compact subsets of a metric
space (X, d). For My, N, € C(X),
H(My, N1) = max{ sup d(ni, M;), sup d(mq,N1)},
n1 €Ny m1 €My
where
d(nl,Ml) = inf{d(nl,ml) tmy € Ml}

is the distance of a point ny from the set M;. The mapping H : C(X) xC(X) —
R, defined above, is known as Pompeiu-Hausdorff metric induced by d. If
(X,d) is a complete metric space, then (C(X), H) is also a complete metric
space.

If the range X of a mapping is replaced with the class of sets having some spe-
cific topological properties, then we have the concept of a point to set mapping.
This initiates the study of metric fixed point theory for multivalued mappings.
Nadler [12] obtained fixed point of multivalued mapping satisfying certain con-
tractive condition on a complete metric space and hence multivalued version
of Banach contraction principle was obtained (see also in [1], [2], [21]).

We need the following Lemma in the sequel.

Lemma 1.6 ([22]). In a metric space (X,d), for R,S,U,V € C(X), the fol-
lowing hold:

(i): If S C U, then supd(r U) < supd(r S).
(ii): sup d(z,U) = max{sup d(r U) bup d(s,U)}.

reRUS

(iif): H(RUS,UUV) < max[H(R,U), H(S,V)}.

Lemma 1.7 ([15]). In a complete metric space (X,d), if B is a closed subset
of X, then C(B) is also a closed subset of the complete metric space (C(X), H).

Denote by £, the collection of all continuous mappings F : R; — R satisfy-
ing the following conditions:

(Fy) F is strictly increasing, that is, for o, 8 € Ry, a < [ implies that
Fla) < F(B).
(Fy) For any sequence {\,} C R,

lim A\, =0 and lim F(\,) = —o0 are equivalent.
n—oo n—oo
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(F3) For any n € (0,1), we have lim A"F(\) = 0.

n—0+

Let us recall the concept of F-contraction mapping [23].

Definition 1.8. Let (X, d) be a metric space. A mapping f : X — X is known
as an JF-contraction if for mi,n; € X, we have F € F and 7 > 0 such that

T+ F(d(fmy, frn)) < F(d(ma,n1)),
whenever d(fmq, fni) > 0.

Definition 1.9 ([14]). Let X be any nonempty set and f : X — X. A finite
family {X1, X2, X3, ..., X} of nonempty subsets of X with X = U/_; X, is
called a cyclic representation of X with respect to f if

f(Xl) C X27 ~~7f(Xr71) - er and f(Xr) C X1~

2. CycLIC F-CONTRACTION ITERATED FUNCTION SYSTEMS

In this section, we introduce the notion of a cyclic F-contraction iterated
function system in a metric space.

Definition 2.1 ([22]). In a complete metric space (X, d), a set {X; f,, n =
1,2, ..., k} is said to be a generalized iterated function system if each f,, : X —
X is F-contraction for n € {1,2,3, ..., k}.

Definition 2.2. Let (X, d) be a complete metric space. A set {X; f,, n =
1,2,...,k} is said to be a generalized cyclic iterated function system if each
fn : X=X is cyclic F-contraction for n € {1,2,3, ..., k}.

Definition 2.3. Let {B;}/_; be a collection of nonempty closed subsets of a
metric space (X,d). A self-mapping f : U;_,;B; — Ul_; B, is known as cyclic
F-contraction on {B;}I_; if there exists F € F and 7 > 0 such that

a) f(B;) C By for i € N,., where B,.41 = By;

b) 7+ F(d(fm1, fn1)) < F(d(my,ny)) for all my € B;, ny € By for

1 € N,. provided that d(fm1, fni) > 0.
If f satisfies condition (a), then f is called a cyclic function.

We now present an example of a cyclic F-contraction mapping which is
neither contraction nor F-contraction.

Example 2.4. Let X = [0,2] be equipped with the usual metric d on X,
B1 = [O, 1]7 and BQ = [0,2]
Define f : By U By — B; U Bs by

Zif me[0,1],
f(m) = 1 if me (1,3
+if me (3,2,
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Note that, f is neither a contraction nor an F-contraction. Indeed, if we take

= — = — h
m 2,71 177ten
3 26 1 A 3 26
- JR— :i>—: —_, — .
d(f(). () = 35 2 55 = M(5, T2) for any A € [0,1)

Define F € F by F(A) = In(X) + A\. We show that fis a cyclic F-contraction

ODX:BlLJBQ.

Clearly,
J(B,) = [O&]Q[O,Q]:Bg, and
fB,) = 10.51€10,1] = By,

Now, we consider the following cases:
Case 1:

Let m € By, n € Bs.

If n € [0, 1], then

m n _
Fm) — )] = 1% =) = Lpm —nl = e~ "d(m, ),
where 7 = 1n(4).
In case n € (1, 2], then
m 1 1
—_ = |l— = = = = — < — — —e 7
fm) — F)) = 1%~ 1= Tm 1] < Llm —n| = e~ d(m, )
where 7 = In(4).
When n € (2,2], then
1 1 2 1
_ S Bl I _ S <z I
Fm) = Pl = 1% — 4= Tm = 2 < Hm—n| = ed(m, ),
where 7 = In(4).
Case 2:
For m € By, n € B;y.
Let m € [0,1]. Then
m n 1 .
Fm) )] = 1% ") = L —n = e~"d(m, ),
where 7 = In(4).
If m € (1, 3], then
1 n 1 1
— = |- — —| = — — < — — —e 7
Fm) = ) = 15— % = 111 —n] < {lm —n| = e d(m. )
where 7 = In(4).
In case m € (2,2], then
1 12
[m) = fm)| = |5 = &I = 715 —nl < 7lm —n| = 7d(m,n),

where 7 = In(4).
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1
Heree ™ = T that is, 7 = In(4). Thus, f is a cyclic F-contraction on By U Ba.

Theorem 2.5. Let {B;}I_, be the collection of nonempty closed subsets of
a metric space (X,d) and f : U_yB;, — Ul_B; a continuous cyclic F-
contraction. Then the map defined by f : C(UI_B;) — C(UI_1B;) is also a
cyclic F-contraction with respect to Hausdorff metric H with the same F.

Proof. We take K € B; for some i € N,.. Applying the definition of cyclic
map, we obtain f(K) C B;;1 . Also, the continuity of f implies that f(K)
is a compact set. Therefore, f(K) € C(B;+1) which implies that f(C(B;)) C
C(B;+1) for each i € N,..

We take M7 € C(B;) and Ny € C(B;41) for some i € N,.. First we claim that

T+ F( sup  d(fmy,.f(Ny))) < F( sup d(mi,Ny)).
fmi€f(My) my €M,

As fis cyclic F-contraction of f, we obtain
T+ F(d(fmy,fny)) < F(d(my,ny)) for all my € B;, ny € B;y; for i € N,.
Thus

T+ F( sup d(fmy,f(Ny)) = 7+ F( sup inf  d(fmy,fny))
fmi€f(My) fmief(My) fra€f(N1)
< F(s inf d
< (mfleuz)w onf (ma,m))
< F( sup d(mq,Ny)).
mi1 €My

Similarly, we have

T+ F( sup d(fni, f(M)) < F( sup (ng, My)).

fni€f(N1) n1€N;
So
T+ F(H(f(M), f(N1)))
= 7+ F(max{ sup d(fmi, f(N1)), sup d(fni, f(M1))})
fmief(My) frni€f(N1)
< F(max{ sup d(mq,Ny), sup d(ni, Mi)})
m1 €My ni1 €Ny

= f(H(Ml,Nl))

Hence, f is cyclic F-contraction on {B;}7_;. O

Theorem 2.6. Let {B;}_, be the collection of nonempty closed subsets of a
metric space (X,d), and N a fived natural number. If f, : Ui_1B; — Ul_B;
for all n € NN are cyclic F-contractions, then the map T : C(U_1B;) —
C(UI_1B;) defined by T(M) = UN_, fo(M) for M € C(UI_, B;) is also a cyclic
F-contraction.

Proof. Let K € C(B;) for some i € N,.. By Theorem 2.9, for each n € Ny, f, isa
cyclic F-contraction. Therefore f,,(K) € C(B;41) for all n € Ny which implies
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that T(K) = UN_, £, (K) € C(B;+1), and consequently, T(C(B;)) C C(B;y1)
for i € N,.
Since f,, is cyclic F-contraction for each n € Ny, we have

T+ F(H(f,(M,).f,(N,))) < F(H(M,N,))
for all M; € C(B;), N1 € C(Bj41) for each i € N,..
If My € C(B;), and Ny € C(Bj41) for some i € N, then we have
H(T(M), T(N1)) = H(Up_y fa(M1),UnZy fn(N1))
< max{H(fi(M1), fi(N1)), ..., H(fn(M1), fn(N1)) }-

By applying F on bothe sides of the above inequality, we obtain that
T+ F(H(T(My), T(N1)))
7+ F(H(UR 1 fu (M), UnZy fn(N1)))
7+ F(max{H (f1 (M), f1(N1)), .., H(fx(M1), fn(N1))})
F(H (My, N1) ).

INIA

(]
Definition 2.7. Let {B;}!_; be a collection of nonempty closed subsets of X.
A mapping T : Ul_,C(B;) — U;_,C(B;) is known as

(1) a generalized cyclic F-contraction if there exists F € f and 7 > 0 such
that for M, € C(Bl), Ny € C(BZ+1) with H(T (Ml) ,T(Nl)) > 0, we

have
T+ F(H(T(M,),T(N,)) < F(Mr(M;,N;)),
where
Mz(My,Ny) = max{H(M,Ny), H(M, T(M,)), H(Ny, T(N,)),
H(M;,T(N,)) —g H(Ni,T(M,)) JH(T2(M, ), T(M,)),

H(T*(My),Ny), H(T* (M), T(Ny))}.

(2) a generalized rational cyclic F-contraction if there exists F € F and
7 > 0 such that for M; € C(BZ), N; € C(BH_1) WlthH(T(Ml) ,T(Nl)) >
0, we have

T+ F(H(T(M,),T(N,)) < F(Np (M, N,)),
where
H(Ny, T(N)) [L+ H(My, T(M, )]
1+ H(M,N,) ’
H(N, T (M) [L + H(M:, T(M,))]
1+ H(M;,N;) ’
H(My;,T(My))[1+ H(Ml;T(MJ)]}
1+ H(My,N,) '

Nr(Mi,N;) = max{
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An operator T defined above in (1) is called a generalized cyclic F-Hutchinson
operator, whearas in (2) T is called a generalized rational cyclic F-Hutchinson
operator.

Theorem 2.8 ([22]). In a complete metric space (X, d), suppose that {X : fn,:
n=1,2,....k} is a generalized iterated function system. If T : C(X) — C(X) is
defined by T(My) = UN_, fo(My) for My € C(X) and there exists F € F and
T > 0 such that for My, N1 € C(X) with H (T (My),T (N1)) > 0, we have

7+ F(H(T(M,),T(N,)) < F(Mz(M1,Ny)),
where
Mp(My,Ny) = max{H (M;,N;), HM;,T(M,)), H(N{,T(N,)),
HOWTON,) A0 sy v,
H(T*(M,),Ny), H(T*(M,;),T(N,))}.
Then T has a unique fized point U € C(X), that is,
U=T(U)=Up_1 fn(U).
Moreover, for any initial set My € C(X), the sequence of compact sets
{Mo, T(M,), T*(My)....}
converges to the fixed point of T.

Definition 2.9. Let A be a nonempty compact set of (X, d). Then A is called
an attractor of the iterated function system if
(i) T(A) = A and
(ii) there exists an open set V; C X such that A C V; and klim TH(B) = A
—00
for any compact set B C Vi, where the limit is taken with respect to
the Pompeiu-Hausdorff metric.

3. MAIN RESULTS

In the following, we obtain the existence of a unique attractor of generalized
cyclic F—contraction operator.

Theorem 3.1. In a complete metric space (X,d), suppose that {B;}i_, is
the collection of nonempty closed subsets of X and {X; fn,n = 1,2,...,k} is
a generalized cyclic iterated function system. If T : C(Ul_;B;) — C(U’" 1B:)
defined by
T(L) = UN_, f (L) for each L € C(Ul_, B;)
is a generalized cyclic F-Hutchinson operator, then T has unique attractor
U € C(By), that is,
U=T(U)=Ufa(U).

Moreover, for an initial set Lo € C(UI_B;), the sequence of compact sets

{L0,T(Lo), T*(Lo), ...}

converges to an attractor of T.
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Proof. Suppose that Ly is an arbitrary element in C(U]_; B;). Then, there ex-
ists some ig such that Lo € C(Bj,). Also T(C(B;,)) € C(Bj,,,) implies that
T (Lo) € C(Biy,,) - Thus there exists £1 € C(By,,,) such that T (L) = L.
Also, T(C(Biy+1)) € C(Bi,,,) implies that Lo = T (£1) € C (Bj,,,) - Continu-
ing this way, we define a sequence of sets {L,,,} by

El = T(£0)7 ‘62 =T (‘Cl) ) "'7£m+1 = T(Lm)

for m € NU{0}.

Now we assume that £, # L,,+1 for all m € NU {0}. If not, then L = Li 41
for some k implies that £ = T'(L)) which completes the Proof.

Thus, Ly, # Ly for all m € NU{0}. By using (1) of Definition 2.7, for
Ly €C(By,,,,)and L1 =T (L) € C(Bj,,+2), we obtain that

T+ F(HLm+1.Lmy2)) = 7+ FH(T(Lm), T(Lims1)))
< F(MT(ﬁm:Eerl))v

where
M (ﬁm,ﬁm_/_]) = maX{H(ﬁm’Em—i—l)v H (ﬁm, T (Lm)) ﬂH (‘Cm+17 T (Em-l-l)) )
H (L, T (Lims1)) + H (Lins1, T (L))
2 b

H(T? (L) T (L)), H (T? (Ln) s Lont1) s
H (T2 (*CM) aT(£m+1))}

= maX{H<'cm;£m+1)) H (£m7£m+l) 9 H (Eerl ;£m+2) )
H Em,ﬁm + H Em ;£m

( +2) 5 ( +1 +1)7H(£m+2y£m+1)7
H (Lyt2.Lnt1) , H (L2, L)}
max{H (Lo, Lmt1), H (Lm+1,Lm+2)
H (L, Lmi1) + H (£m+1,£m+2)}

2

= maX{H (ﬁm;£m+1) 5 H (£m+17£m+2>}-

IN

Thus, we have

T + .F(H(ﬁm+1,£m+2))

IN

F (max{H (L, Lrmt1), H (Lnt1,Lm+2)})
= F(H(LmLmi1)),
that is,
f(H(£m+1}£m+2)) < }—(H(ﬁm:['erl)) -
for all m € NU {0}. Therefore, we have

F(H(Ln,Lnt1) < F(H(Lp-1,Ln)) =7
< F(H(Ln-2,Ln-1)) =27
< L SF( (Co,ﬁl))—nT
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and we get ILm F (H(L,,Ly+1)) = —oo which by (F») implies that
Tim H(Lp,Los1) = 0.
Now by (F3), there exists h € (0,1) such that
Wm [H(Ly,Lrs1)]" F (H(Ly,Lry1)) = 0.

n—oo

Thus we have
[H(Lp, Loy )] F (H(L,Log1)) = [H(L Lo )] F (H(Lo,Loy1))
< —n7[H(Ly, L) <0.
On taking the limit as n — oo, we obtain that
lim n[H(Lp,Lni1)]" = 0.
As li_>m n% H(Lyp,Lny1) = 0, there exists ny € NU {0} such that
n (oo}
nFH(Ly, L) < 1

for all n > ny. So we have

1
nl/h
for all n > ny. For m,n € NU {0} with m > n > ny, we have

H(En;lcm) H(£n7£n+1) + H(‘anrl 7£n+2) + ...+ H(‘Cmfhﬁm)

(oo}

1
> i

i=n

H(‘Cn;['nJrl) S

IN

As, >, 21% < o0, we get H(Ly,Ly) — 0 as n,m — oco. Therefore {£,} is
a Cauchy sequence in C(U!_,B;). As (C(U;_,B;), H) is complete, £, — U as
n — oo for some U € C(UI_, B;).

Note that the iterative sequence {£,} has infinite number of terms in C (B;)
for each i = 1,2, ...,7. Hence, in each C (B;) for i = 1,2, ...,r, we can construct
a subsequence of {L£,,} that converges to U. Since each element in C (B;) for
i=1,2,..,r,is closed, we conclude U € N> ,C (B;) # .

Let V = N{_,C(B;) and denote by C(V'), the collection of all nonempty
compact sets of V. Then T|¢c(yy : C(V) — C(V) is a self mapping with domain
of compact sets. It follows from Theorem 2.8 that T'|¢(yy has a unique attractor
in C(V). O
Remark 3.2. In Theorem 3.1, if S(UI_;X;) is the union of the collection of
all singleton subsets of X, where X = U]_;X;. Then, clearly S(U/_;X;) C
C(UI_,X;). Moreover, if we take f, = f for each n where f = fi, then the
mapping T becomes

T(m) = f(m).

By using the above Remark, we obtain the following results for the existence
of fixed point.
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Corollary 3.3. In a complete metric space (X,d), suppose that {X; fn,n =
1,2,....,k} is a generalized cyclic iterated function system. If f : X — X s
defined as in the Remark 3.2 and there exists some F € [ and T > 0 such that
formy € C(X;) and ny € C(X;41) with d(f(ma), f(n1)) > 0, the following
condition holds

T+ F(d(fmy, fn1)) < F(My(ma,ni)),
where
My(mi,ny) = max{d(mi,ni),d(m1, fmi),d(ni, fni),
d d
(mh fnl) ; (nh fml) ) d(mela nl))
d(fzmla fma), d(f2m1, fni)}.
Then f has a unique fized point x € X. Moreover, for any initial point xq € X,
the sequence {wo, fxo, f2w0,...} converges to the fized point of f.

Corollary 3.4. In a complete metric space (X, d), suppose that {B;}I_, is the
nonempty collection of closed subsets of X. Suppose that (X; fr,n=1,2,...,k)
is a cyclic iterated function system, where each f; fori=1,2,....k is a cyclic
contraction. Then the map T : C(U;_B;) — C(Ul_1B;) defined in Theorem
3.1 has a unique attractor. Moreover, for any set Ly € C(B;), the sequence of
compact sets {Lo, T (Lo),T? (Lo) ...} converges to an attractor of T.

Proof. 1t follows from Theorem 2.5 that each f; for ¢ = 1,2,...,k is a cyclic
contraction on X. Moreover, the mapping T': C(Uj_, B;) — C(U]_, B;) defined
by

T(L) =UF_, fu(L), for all £ € C(B;)
is also cyclic contraction on C(B;) with respect to Hausdorft metric H. The
result then follows from Theorem 3.1. O

Theorem 3.5. In a complete metric space (X, d), suppose {B;}i_, is the col-
lection of nonempty closed subsets X and {X; fn,n =1,2,....,k} is a generalized
cyclic iterated function system. If T : C(UJ_1B;) — C(B;) defined by

T(L) = UN_, £ (L) for each L € C(U_,B;)

is a generalized rational cyclic F-Hutchinson operator, then T has a unique
attractor U € C(UI_, B;), that is,

U =T(U) = UL, [ (0).

Moreover, for an initial set Lo € C(UI_1B;), the sequence of compact sets
{Lo,T(Lo), T?*(Lo), ...}

converges to an attractor of T.

Proof. Let Ly be an arbitrary element in C(U;_; B;). Then, there exists some i
such that Lo € C(B;,). Also T'(C(B;,)) € C(Bi,,,) implies that T (Lo) € By, , -
Thus there exists £, € C(B such that T'(Ly) = £L1. Also, T(C(Bi,+1)) C

io+1)

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 |89



T. Nazir, M. Abbas and H. H. Lodhi

C(Bi,,,) implies that Lo = T (£,) € Bj,,,. Continuing this way, we define a
sequence of sets {£,,,} by
L1=T(Lo), Lo=T (L), L1 =T (Lon)

for m e NU{0}.
Now assume that £,, # L;,+1 for all m € NU {0}. If not, then £, = Ly for
some k, which implies that £, = T(L) and hence the proof. Thus, £,,, # L41
for all m € NU {0}. Using (2) of Definition 2.7, for £,, € C(B;,,,,) and
L1 =T (L) € C(B;,, +2), we obtain that
T+ F(H(Lms1.Lmt2)) = 7+ F (H(T (L), T(Lm+1)))
S -/—"(NT (Lm;['m—ﬁ-l))a

where
NT (ﬁmyﬁm-i-l) — max{ H(Cerl, T(lﬁ—:z};l(gil;zmji(lfma T(‘CM))}
H(Lmi1, T(Lm)) [L+ H(Lm, T(Ln))]
14+ H( Ly, Lmt1) ’
H(Ly, T(L)) [1 4+ H( L, T(Em))}}
1+ H( Ly, Lnt1)
H(£m+17£m+2) [1 + H(£m7£m+1)]
1+ H(Lm’ﬁm—&-l) ’
H(£m+1 7£m+1) [1 + H(‘cmvchrl)]
1+ H(Lym,Lomt1) ’
H( Ly, L) [T+ H L, Lont1)] )
L+ H(Com Loms1)
= max{H(Lm+1,Lm+2), HLm,Lrms1)}

b

= max{

Thus, we have
T+ F (H(Lmy1,Lmi2)) F (max{H (Limy1,Lm+2) H(Lm,Lomy1)})

f (H(£7rw£’rrL+1)) )

IN

that is,
F(H(Lmy1,Lmi2)) < F (H(Lp,Lmi1)) =7
for all m € NU {0}. Therefore
F(H(Ln,Lr41)) F(H(Lp-1,Ln)) —T
]:(H(,Cnfg,ﬁnfl)) — 27
. < F(H(Ly,L1)) —nT

gives that lim F (H(L,,Ln+1)) = —oo which by (F2) becomes

n—oo

[VASVANVA

lim H(£n7£n+1) =0.

n—oo

From (F3), there exists h € (0,1) such that
i [H(L L)) F (H(En L)) = O
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Thus we have

[H(£n7£n+1)}h]: <H<£m[’n+l)) - [H(£n>£n+1)]h]:(H(‘COr‘CnJrl))
< _nT[H(['n;»CnJrl)}h <0.

On taking the limit as n — oo, we obtain that

lim n[H(L,,Lni1)]" = 0.

n—oo

As lim nw H(L,,L,41) = 0, there exists n; € NU {0} such that

n—oo
n*H(Lpy Los1) < 1

for all n > ny. So,

1

H(£n;£n+1) < W

for all n > ny. For m,n € NU{0} with m > n > n;, we have

H(Ln,Lr) < H(Lp,Lny1)+ H(Lyy1,Lng2) + oo + H(Lm—1,Lm)

oo

1
D i

i=n

As 32, zl% is convergent, H(L,,Lm,) — 0 as n,m — co. Therefore {L£,} is
a Cauchy sequence in X. As (C(U]_,B;), H) is complete, £, — U* as n — o0
for some U* € C(U]_, B;).

Note that a sequence {L,} has infinite number of terms in C (Ui_,B;), for
each i = 1,2,...,7. Hence, in each C (B;) for i = 1,2,...,r, we can construct a
subsequence of {£,,} that converges to U*. As each B;,i=1,2,...,7, is closed,
we conclude that U* € NI_,C(B;) # @.

Let V. =nNI_,C (B;) and C(V') denotes the collection of all nonempty compact
sets of V. Then T'|¢(vy : C(V') — C(V) is a self mapping on the family of compact
sets of V.

Now by the Definition 2.7 (2) and following the similar arguments to those
given in the proof of the Theorem 2.8, we obtain that the map T'|¢(yy has a
unique attractor in C(V). O

Corollary 3.6. In a complete metric space (X,d), suppose that {X; fn,n =
1,2,....,k} is a generalized cyclic iterated function system. Let f : X — X be
defined as in Remark 3.2. If there exists some F € F and 7 > 0 such that
formy € C(X;) and ny € C(X;41) with d(f(ma), f(n1)) > 0, the following
condition holds

7+ F(d(fma, fr1)) < FWNy(ma,m)),
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where

_ d(ny, f (n1)) [1 +d(mq, f(m1))]
Ny(mi,ny) = max{ T+ d(my.m)

d(n, f (m1)) [1 + d(ma, f(m))]
1 —+ d(ml,nl)

d(ma, f (m1)) [1 + d(ma, f(m1))]
1 + d(ml,nl)

b

)

1.

Then f has a unique fixed point x € X. Moreover, for any initial point xg € X,
the sequence {wo, fxo, f2wo,...} converges to the fized point of f.

Example 3.7. Let X = [0,2] x [0,2] be equipped with a Euclidian metric d
on X, A; =[0,1] x [0,1] and Az = [0,2] x [0,2]. Define fi, fo : X — X by

(2,4) a,yelo,1],

fle, _ and
(z,y) { (L4 zye(,2,
[ GE) myen
falzy) = { (3L zye(1,2.

Clearly, f; (A1) C A and f; (As) C A; for each i = 1,2.

Now, for x = (z1,y1) € [0,1] x[0,1] = A and y = (z2,¥2) € [0,2] X [0,2] = Aa,
we have the following cases:

CaseI: If x = (x1,11) € [0,1]x][0,1] = Ay andy = (z2,y2) € [0,1]Xx[0,1] C Ay,
then

dfi ). A () = a5 (D)

< \/(1?1 —x2)" + (y1 — 2)°
= d(xy).
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Case II: In case x = (x1,y1) € [0,1] x [0,1] = 41 and y = (z2,y2) € (1,2] x

1 Gg))

(1,2] C Ag, we have

d(f1 (%), f1(y))

<

d ((Zl

Y1
"4

L2y
16\ 3

\/(!101 —22)” + (y1 — )?

d(x,y).

Also, for x = (z1,y1) € [0,2] x[0,2] = Ay and y = (z2,y2) € [0,1] x[0,1] = Ay,
we consider the following two cases:
Case I If x = (z1,y1) € [0,1] x [0,1] C Ay and y = (x2,y2) = [0,1] x [0,1] =

Al, then

d(f1(x), f1(y))

[0,1] x [0,1] = Ay, we have

d(fi1(x), f1(y))

A

V@ — )+ (
d(x,y).

Case II: Finally for x = (z1,41) € (1,2 x (1,2] C Az and y = (z2,y2) €

2
1’2)

\/($1 —22)" + (11 — 12)°

d(x,y).

Now, again for x = (z1,51) € [0,1] x [0,1] = Ay and y = (22,92) = [0,2] x
[0,2] = Az, we consider the following cases:
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Case L: If x = (z1,y1) € [0,1]%[0,1] = A; and y = (x2,y2) € [0,1]x[0,1] C Aq,
then

df (), £0) = d((F5).(5 %)
-2y (o
= \/; (21 —x2)2+é(y1—y2)2
< \/(561 — )2 + (11 — 12)°

= d(x,y).

Case II: For x = (z1,y1) € [0,1]x[0,1] = A; and y = (22, y2) = (1,2]x(1,2] C
Ay, we have

d(f2 (%), f2(y))

Il
U
/N
—
w| B
w|=
(S
] =
S~—
N———

I
=3
»

=

Also, for x = (z1,41) € [0,2]x[0,2] = Ay and y = (22,92) € [0,1] x [0,1] = Ay,
we consider the following two cases:

Case I: In case x = (z1,11) € [0,1] x [0,1] C Ay and y = (22,y2) = [0,1] x
[0,1] = Ay, we obtain that

df(), L) = d((F5).(5. %)
G- G-5)
= \/;($1—$2)Q+;(yl—yz)2

< \/(Il —22)” + (11 — 12)°
= d(x,y).
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Case II: Finally, if x = (z1,51) € (1,2] x (1,2] € Ay and y = (z2,y2) €
[0,1] x [0,1] = Ay, then

df2(x), 2 (y) = d (<

1(3 > 1/3 ?
B %9 (3-=) +5(G-»)
< \/(1‘1 - 332)2 + (y1 — y2)2
= d(x,y).
Now there exists 7 > 0 such that
d(fi(x).i(y)1+7Vd(x,y))* < d(x,y)and
d(f2(x),f2(y) (1 + 7V/d(x,¥))* < d(x,y).

If we consider the cyclic iterated function system {X; f1, fo} with mapping
T+ C(U7_,[0,2]%) — C(U_, [0, 2]%) given by

T (A) = f1 (A)U f2 (A) for all A € C(U_,[0,2]?).

Then, for Al € CZ([O,QP), Ay € Ci+1([0,2]2) with H(T (Al) 7T(A2)) > 0, we
have

H(T (Al) ,T (AQ))(]. -+ TN/ H(Al, Ag))z S H (Al, AQ) .
Thus, T is a generalized cyclic F-Hutchinson operator. And, for any set Wy €
C(U7_1]0,2]?), the sequence of sets {Wo, T(Wp), T*(Wp), ...} converges to the
unique attractor of an operator 7.
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