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Abstract

We show that for a nice partial action η with closed domain of a compact
group G on a profinite space X the orbit space X/ ∼G is profinite,
this leads to the fact that when G is profinite the enveloping space
XG is also profinite. Moreover, we provide conditions for the induced
quotient map πG : X → X/ ∼G of η to have a continuous section.
Relations between continuous sections of πG and continuous sections
of the quotient map induced by the enveloping action of η are also
considered. At the end of this work, we prove that the category of
separately continuous actions on profinite spaces is reflective in the
category of separately continuous actions on compact Hausdorff spaces.
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1. Introduction

A topological space X is called profinite if there exists an inverse system of
finite discrete spaces for which its inverse limit is homeomorphic to X, equi-
valently, X is profinite if it is compact, Hausdorff and zero-dimensional (that
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is, X has a basis of clopen subsets). A topological group is profinite if it is
profinite as a topological space. Important examples of profinite groups and
profinite spaces are the group of p-adic integers, where p is a prime number, the
Galois group on an arbitrary Galois extension, fundamental groups of connected
schemes, and the set of connected components of a compact Hausdorff space.
For details about profinite spaces and profinite groups, the interested reader
may consult [14] or [18].

On the other hand, partial actions of groups appeared in the context of
C∗-algebras in [5] and [12], in which C∗-algebraic crossed products by partial
automorphisms were introduced and studied by analyzing their internal struc-
ture. Partial actions of groups have also appeared in other contexts, such as the
theory of operator algebras, Galois cohomology, Hopf algebras, Polish spaces,
the theory of R-trees and model theory (see [4] and [8] for a detailed account
of recent developments about partial actions).

A relevant question is whether a partial action is obtained as restriction of a
corresponding collection of total maps on some superspace. In the topological
context this is known as the globalization problem, and was studied in [2] and
[10]. They showed that for any partial action η = {ηg}g∈G of a topological
group G on a topological space X, there is a topological space Y and a conti-
nuous action µ of G on Y, such that X is embedded in Y and η is the restriction
of µ to X. Such a space is called a globalization of X. It is also shown that
there is a minimal globalization XG called the enveloping space of X. However,
structural properties of X are not in general inherited by XG, for instance, in
[9], it is shown that the enveloping space of a partial action of a countable group
on a compact metric space is Hausdorff if and only if the domain of each ηg
is clopen for all g ∈ G. While assuming that both X and G are Polish spaces,
sufficient conditions for XG to be Polish are established in [15]. Likewise, in
[19] it was proven that the globalization of a partial action on a connected 2-
complex may result in a complex which is not connected. Therefore, a natural
problem is to establish which properties of the space X are also satisfied by
the space XG.

The present work is structured as follows: After the introduction, we pro-
vide in Section 2 the necessary background and notations about (set theoretic)
partial and topological partial actions, and their corresponding globalization.
We give some preliminary results that will be needed in the work. Also, we
introduce the category of continuous partial actions of a group G on topological
spaces, which we will denote as PAG, and we will show that PAG is a category
with products. In Section 3 we work with partial actions on a profinite space
X and we present in Theorem 3.1 a sufficient condition for the space X/∼G
to be profinite, where ∼G is the orbit equivalence relation determined by the
partial action, as given in equation (2.8). Later, we treat the problem of finding
a continuous section to the quotient map πG : X → X/∼G and we show the
existence of such a section when the group G is profinite (see Theorem 3.6),
extending the classical result on continuous and free (global) actions. It is im-
portant to notice that continuous sections have been relevant in the context of
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partial actions, for instance, in [6] continuous sections of Banach bundles play
a crucial role in the characterization of continuous twisted partial actions of
locally compact groups on C∗-algebras.

The goal of the second part of Section 3 is to find relations between con-
tinuous sections of the quotient map πG and ΠG, respectively (being ΠG the
corresponding quotient map induced by the globalization). We show how to
find a continuous section of ΠG having a continuous section of πG. It is im-
portant to remark that the converse does not seem to be true, that is, having
a continuous section of ΠG does not seem to imply that πG has a continuous
section; ı́tems (ii) and (iii) of Proposition 3.9 deal with this problem (see also
Proposition 3.10). We finish this work with Section 4, which has a categorial
flavor. Indeed, we show in Proposition 4.5 that PAG is a category with in-
verse limits. Since the globalization problem is closely related to a reflectivity
property (see Proposition 4.4), being the globalization a reflector, in [11] the
authors studied the problem of when the corresponding reflector of the category
of partial group actions on sets with an algebraic structure to a subcategory
of global actions, is a globalization. In our case, we deal with some categories
related to global actions of G on compact Hausdorff and profinite spaces, and
we show in Proposition 4.8 that the category of separately continuous actions
on profinite spaces is reflective in the category of separately continuous actions
on compact Hausdorff spaces.

2. Preliminaries on partial actions

In this section we establish our conventions about partial actions and we
prove some results that will be useful throughout the work. We start with the
following definitions:

Definition 2.1. Let A,B,X be sets. We say that f : A ⇀ B is a partial
function if there exists C ⊆ A such that the restriction of f to C is a function.
A partial set action of A on X is a partial function A × X ⇀ X given by
(a, x) 7→ a · x, for all a ∈ A and x ∈ X, such that a · x is defined, which we
denote by ∃a · x.

Definition 2.2 ([10, p. 87-88]). Let G be a group with identity element 1 and
X be a set. A partial action of G on X is a partial set action η of G on X such
that for each g, h ∈ G and x ∈ X the following assertions hold:

(PA1) If ∃g · x, then ∃g−1 · (g · x) and g−1 · (g · x) = x,
(PA2) If ∃g · (h · x), then ∃(gh) · x and g · (h · x) = (gh) · x,
(PA3) ∃1 · x and 1 · x = x.

It is said that G acts (globally) on X if ∃g · x, for all (g, x) ∈ G×X.

Given a partial action η of G on X, g ∈ G, x ∈ X and U ⊆ X; we set:

• G ∗ U = {(g, u) ∈ G × U | ∃g · u}. In particular, G ∗X is the domain
of η,
• Xg = {x ∈ X | ∃ g−1 · x}.
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Then η induces a family of bijections {ηg : Xg−1 3 x 7→ g · x ∈ Xg}g∈G, such
that η1 is the identity of X and ηg−1 = η−1

g . We also denote this family by
η. The following result characterizes partial actions in terms of a family of
bijections:

Proposition 2.3 ([17, Lemma 1.2]). A partial action η of G on X is a family
of bijections η = {ηg : Xg−1 → Xg}g∈G, where Xg ⊆ X, for all g ∈ G; such
that:

(i) X1 = X and η1 = idX,
(ii) ηg(Xg−1 ∩Xh) = Xg ∩Xgh,

(iii) ηgηh : Xh−1∩Xh−1g−1 → Xg∩Xgh, and ηgηh = ηgh in Xh−1∩Xh−1g−1 ,

for all g, h ∈ G.

Given x ∈ X and U ⊆ X we set:

Gx = {g ∈ G | ∃g · x}, GU =
⋃
u∈U

Gu, (2.1)

and
GU · U = {g · u | u ∈ U, g ∈ Gu}. (2.2)

Then U is called G-invariant if GU · U ⊆ U.
The next lemma will be useful in our work:

Lemma 2.4. Let η be a partial action of G on X and U a nonempty subset of
X, then the following statements are true:

(i) η(G ∗ U) = GU · U ,
(ii) GU · U and its complement are G-invariant,
(iii) If U is G-invariant, then the restriction η �G∗U is a partial action of

G on U.

Proof. Statements (i) and (iii) are straightforward. To show (ii) Let A := GU ·U
and B := X \A. Given a ∈ A, there are u ∈ U and g ∈ Gu such that a = g · u;
thus, for all h ∈ Ga, one gets by (PA2) that hg ∈ Gu and h · a = (hg) · u ∈ A,
then GA · A ⊆ A ⊆ GA · A and A is G-invariant. On the other hand, given
b ∈ B and g ∈ Gb such that g · b = a ∈ A, it follows by (PA1) that g−1 ∈ Ga
and b = g−1 · a ∈ GA · A = A, hence (GB · B) ∩ A = ∅, so that GB · B ⊆
(X \A) = B ⊆ GB ·B, and B is G-invariant.

�

Remark 2.5. As a consequence of ı́tem (i) in Lemma 2.4, the following formula
holds:

GU · U =
⋃
g∈GU

ηg(U ∩Xg−1).

From now on in this work, G will denote a topological group and X a
topological space. We endow G×X with the product topology and G∗X with
the subspace topology. Moreover, η : G ∗X → X will denote a partial action.
It is said that η is:

• topological, if Xg is open and ηg is a homeomorphism, for all g ∈ G;
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• continuous, if η is a continuous map;
• nice, if η is continuous and G ∗X is open in G×X.

We proceed with the following lemma:

Lemma 2.6. Let η be a partial action of G on X. The following assertions
hold:

(i) If η is topological and U is an open subset of X, then the set GU · U
defined in Remark (2.5) is open,

(ii) If G ∗X is clopen, then Xg is clopen, for all g ∈ G.

Proof. (i) It follows from the fact that for every g ∈ G the set Xg is open, ηg
is a homeomorphism and GU · U =

⋃
g∈GU

ηg(U ∩Xg−1) as observed in Remark

2.5. For (ii) take g ∈ G, first let us prove that Xg is closed. Indeed, if Xg = X
this is clear. Otherwise, take x ∈ X \Xg and since G ∗X is closed, there exist
open sets U ⊆ G and V ⊆ X such that (g−1, x) ∈ U×V ⊆ (G∗X)c. Moreover,
if y ∈ V then (g−1, y) /∈ G ∗X and y /∈ Xg. This shows that Xg is closed. To
prove that Xg is open take x ∈ Xg, then (g−1, x) ∈ G ∗X and there are open
sets U ⊆ G and V ⊆ X such that (g−1, x) ∈ U × V ⊆ G ∗X, from this we get
x ∈ V ⊆ Xg and Xg is open. �

Let X and Y be sets equipped with partial actions by a group G. A function
f : X → Y is called a G-map if for each g ∈ G and x ∈ X such that ∃g · x
then ∃g · f(x) and f(g · x) = g · f(x). If G is a topological group, then we
denote by PAG the category of pairs (θ,X), where θ is a continuous partial
action of G on the topological space X, and its morphisms are continuous G-
maps. Also, we denote by AG the full subcategory of PAG whose objects are
continuous actions of G on topological spaces. The next lemma tells us that
PAG is a category with products (see Proposition 2 and Theorem 3 of [3]).
Other categorical properties of PAG and AG will be explored in Section 4.

Lemma 2.7. Let G be a group and {Xj}j∈J be a collection of nonempty sets
equipped with partial actions θj : G ∗Xj → Xj, for all j ∈ J . Put X =

∏
j∈J

Xj

and set

G ∗X = {(g, (xj)j∈J) ∈ G×X : (g, xj) ∈ G ∗Xj , ∀j ∈ J}.
We define:

∆(θ) : G ∗X 3 (g, x) 7→ (θj(g, xj))j∈J ∈ X, (2.3)

where x = (xj)j∈J ∈ X, then ∆(θ) is a partial action of G on X. Moreover,
if G is a topological group, {Xj}j∈J is a family of topological spaces and X is
endowed with the product topology, then the following assertions hold:

(a) For any j ∈ J , the projection ρj : X → Xj is a continuous G-map and
∆(θ) is continuous, provided that θj is continuous for any j ∈ J,

(b) G ∗X is closed in G×X provided that G ∗Xj is closed in G×Xj , for
each j ∈ J ,

(c) The triple (X,∆(θ), {ρj}j∈J) satisfies the universal property of product
in PAG.
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Furthermore, if J is finite, then ∆(θ) is topological as long as for all j ∈ J,
each θj is topological.

Proof. It is not difficult to see that ∆(θ) is a partial action of G on X. Take
j ∈ J. It is easy to see that ρj is a continuous G-map. Now suppose that θj

is continuous, to prove that ∆(θ) is continuous, we only need to show that
ρj ◦∆(θ) : G ∗X → Xj is continuous. Set γj : G ∗X 3 (g, x) 7→ (g, ρj(x)) ∈
G ∗Xj , then γj is continuous and ρj ◦∆(θ) = θj ◦ γj is continuous, as desired.

To prove (b), take g ∈ G and x ∈ X such that (g, x) /∈ G ∗X. Then there
exists j ∈ J with (g, xj) /∈ G∗Xj . Since G∗Xj is closed there are neighborhoods
U ⊆ G and V ⊆ Xj , of g and xj , respectively for which (U × V ) ∩ G ∗Xj =

∅. Note that W = U × ρ−1
j (V ) is a neighborhood of (g, x) in G × X and

W ∩ (G ∗X) = ∅. This shows that G ∗X is closed in G×X.
We now prove (c). Let (υ, Y ) be an object in PAG, where υ : G ∗ Y → Y is

a continuous partial action, and suppose that there exists {ζj : Y → Xj}j∈J a
collection of continuous G-maps. We set ζ : Y 3 y 7→ (ζj(y))j∈J ∈ X. Observe
that ζ is a continuous G-map and the following diagram is commutative for
each j ∈ J :

Y
ζ //

ζj

��

X

ρj~~
Xj

Also note the map ζ is unique, and this finishes part (c). From the rest of the
proof, we suppose that J is finite. Observe that:

Xg =
∏
j∈J

(Xj)g, for any g ∈ G.

Since each θj is topological then for all g ∈ G and j ∈ J, the set (Xj)g is open;
besides, since J is finite, then the product topology coincides with the box
topology on X, therefore Xg is open. The continuity of each bijection ∆(θ)g :
Xg−1 3 (xj)j∈J 7→ (θj(g, xj))j∈J ∈ Xg, is clear, then ∆(θ) is topological.

�

Given a topological group G, it is easy to see that ρ : G × G 3 (g, h) 7→
gh−1 ∈ G is a continuous (global) action of G on itself. Then the following
result follows from Lemma 2.7 and the action ρ defined above:

Corollary 2.8. Let η be a topological partial action of G on X, then the family
of bijections η̂ = {η̂g : (G×X)g−1 → (G×X)g}g∈G, where (G×X)g = G×Xg

and

η̂g : G×Xg−1 3 (h, x) 7→ (hg−1, ηg(x)) ∈ G×Xg,

is a topological partial action of G on G×X. In addition:

(a) η̂ is continuous whenever η is,
(b) dom(η̂) is closed in G× (G×X) whenever dom(η) is closed in G×X.
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2.1. Induced partial actions and globalization. Let u be a continuous
action of G on a topological space Y and X ⊆ Y be an open set. For g ∈ G,
set

Xg = X ∩ ug(X) and ηg = ug � Xg−1 , (2.4)

then η : G ∗X 3 (g, x) 7→ ηg(x) ∈ X is a nice partial action of G on X, and we
say that η is induced by u or that η is the restriction of u to X. Observe that
G ∗X is open in G×X because:

G ∗X = {(g, x) ∈ G×X : ug(x) ∈ X} = (G×X) ∩ u−1(X).

An important question in the study of partial actions is whether they can
be induced by global actions. In the topological sense, this turns out to be
affirmative, and a proof was given in [2, Theorem 1.1] and independently in
[10, Section 3.1]. We recall their construction. Let η = {ηg : Xg−1 → Xg}g∈G
be a topological partial action of G on X. We define an equivalence relation R
on G×X as follows:

(g, x)R(h, y)⇐⇒ x ∈ Xg−1h and ηh−1g(x) = y, (2.5)

and we denote by [g, x] the equivalence class of the pair (g, x). Consider the
enveloping space or the globalization XG = (G×X)/R of X, endowed with the
quotient topology. Then by [10, (iii) Proposition 3.9], the following action is
continuous:

µ : G×XG 3 (g, [h, x])→ [gh, x] ∈ XG. (2.6)

The map µ is called the enveloping action of η. Further the following map:

ι : X 3 x 7→ [1, x] ∈ XG, (2.7)

is a continuous injection such that G · ι(X) = XG. Moreover, it follows by
[10, Proposition 3.12] that ι : X → ι(X) is an open map if and only if η is
continuous. On the other hand, ι(X) is open in XG if and only if G∗X is open
in G×X. Therefore, if η is a nice partial action, then ι : X → XG is an open
map and we can identify X with the open subspace ι(X) of XG.

2.2. An alternative construction of the enveloping action. Given a
topological partial action of G on X, one defines the orbit equivalence rela-
tion ∼G on X as follows:

x ∼G y ⇐⇒ ∃g ∈ Gx such that g · x = y, (2.8)

for each x, y ∈ X. The elements of X/∼G are the orbits Gx · x, with x ∈ X,
the set X/ ∼G is called the orbit space and it is endowed with the quotient
topology. It follows by [15, Lemma 3.2] that the next induced quotient map:

πG : X 3 x 7→ Gx · x ∈ X/∼G, (2.9)

is continuous and open.
We will use the fact that PAG is a category with products to present an

alternative construction of the enveloping action of a partial action. First we
highlight the following auxiliary lemma:
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Lemma 2.9. Let η : G ∗ X → X be a topological partial action and let γ :
G×X → X be a continuous global action, such that:

If x ∈ X, g ∈ Gx and h ∈ G, then g ∈ Gγ(h,x), and γ(h, η(g, x)) = η(g, γ(h, x)).
(2.10)

Then γ induces a continuous global action of G on the orbit space X/ ∼G .

Proof. Consider the following map:

Γγ : G× (X/ ∼G) −→ X/ ∼G
(g, πG(x)) 7→ πG(γ(g, x)),

where πG is the induced quotient map of η, defined in (2.9). Then follows by
(2.10) that Γγ is a well-defined map, moreover it is not difficult to check that
Γγ is a global action. Observe that Γγ is continuous because the following
diagram is commutative:

G×X
γ //

idG×πG
��

X

πG

��
G×X/ ∼G

Γγ

// X/ ∼G

�

Remark 2.10. Let η : G ∗ X → X be a topological partial action of G on X
and consider the topological partial action η̂ given in Corollary 2.8. Denote by
∼Ĝ the orbit equivalence relation on G×X determined by η̂.

a) By [15, Theorem 3.3], we get

XG = (G×X)/∼Ĝ . (2.11)

b) On the other hand, if λ : G×G→ G is the binary operation on G and
1 : G ×X 3 (g, x) 7→ x ∈ X is the trivial action, then it follows from
Lemma 2.7 that the next function is a global action:

λ× 1 :G× (G×X) −→ G×X
(g, (h, x)) 7→ (gh, x).

Observe that λ × 1 and η̂ satisfy (2.10), hence λ × 1 induces a global
action Γλ×1. It follows from (2.11) that Γλ×1 = µ.

3. Partial actions on profinite spaces

For the reader’s convenience we recall that a topological space X is profi-
nite if and only if X is compact, Hausdorff, and zero-dimensional (that is, X
has a basis of clopen subsets). In addition, if X is compact (not necessar-
ily Hausdorff), then follows by [14, Proposition 2.3] that X is Hausdorff and
zero-dimensional if and only if any two different points in X can be separated.
Recall that two points u and v in X can be separated if there are disjoint open
subsets U and V of X such that u ∈ U, v ∈ V, and U ∪ V = X.
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Our next goal is to show that X/∼G is profinite as long as X is profinite
and G is compact. By the previous paragraph, it is enough to verify that any
two points in X/ ∼G can be separated.

Theorem 3.1. Let η : G ∗X → X be a nice partial action of a compact group
G on a profinite space X such that G ∗X is closed, then X/ ∼G is a profinite
space.

Proof. Note that X/∼G is compact. Now we show that different points Gx · x
and Gy · y in X/ ∼G can be separated. Let C := {U ⊆ X : U is clopen, x ∈ U},
then C 6= ∅. We claim that there exists U ∈ C such that GU · U ∩Gy · y = ∅.
Otherwise, for each V ∈ C, the set F̃y(V ) = {(g, v) ∈ G ∗ V : ηg(v) = y} is

nonempty. Since F̃y(V ) = η−1(y)∩ (G ∗V ), then it is closed in G ∗V and thus

closed in G∗X. Now, if V1, V2 ∈ C then F̃y(V1∩V2) ⊆ F̃y(V1)∩ F̃y(V2). In that

sense {F̃y(V )}V ∈C is a family in G ∗ X with the finite intersection property,

thus there exists (g, v) ∈
⋂
V ∈C

F̃y(V ), this gives v = x and ηg(x) = y which leads

to a contradiction. Then there is U ∈ C such that GU ·U ∩Gy · y = ∅. Now we
check that GU ·U is clopen. Indeed, it is open thanks to Lemma 2.6; moreover,
given that G ∗ U is compact, X is Hausdorff and η(G ∗ U) = GU · U, then we
have that GU · U is closed. Finally, let A = GU · U and B = X \ A, then by
Lemma 2.4, the sets A and B are G-invariant and clopen, so π−1

G (πG(A)) = A

and π−1
G (πG(B)) = B, thus Gx · x and Gy · y are separated by the sets πG(A)

and πG(B), respectively. �

Corollary 3.2. Let η be a nice partial action of a profinite group G on a
profinite space X. If G ∗X is closed, then the enveloping space XG is profinite.

Proof. By part (a) of Remark 2.10 we have that XG = (G × X)/∼Ĝ, where
∼Ĝ is the orbit equivalence relation of the nice partial action η̂ presented in
Corollary 2.8. On the other hand, it follows by (b) in Corollary 2.8 that G ∗
(G × X) is closed in G × G × X. Thus, XG is profinite thanks to Theorem
3.1. �

Example 3.3. [8, p. 22] Partial Bernoulli action. Let G be a discrete group
and X := {0, 1}G. There is a continuous global action β = {βg}g∈G, where for
all ω ∈ X, βg(ω) = gω. The topological partial Bernoulli action η is obtained
by restricting β to the open set Ω1 = {ω ∈ X : ω(1) = 1}. Thus, by (2.4),
Dg := Ω1 ∩ βg(Ω1) = {ω ∈ X : ω(1) = 1 = ω(g)}, and ηg = βg � Dg−1 , g ∈ G.
Let us show that G∗Ω1 is clopen. Let {(ni, xi)}i∈I be a net in G∗Ω1, convergent
to (n, x). Since G is discrete then (ni)i∈I is eventually constant, so ni = n for
large i ∈ I. On the other hand, as xi −→ x, then 1 = xi(1) −→ x(1) and from
this x(1) = 1. Similarly, it is obtained that x(n−1) = 1 and from the above we
conclude (n, x) ∈ G ∗Ω1. Now, if (n, x) ∈ G ∗Ω1, then x ∈ V = (ηn−1)−1({1}),
and (n, x) ∈ {n} × V ⊆ G ∗ Ω1. This shows that G ∗ Ω1 is clopen. Thus, if G
is finite, then Theorem 3.1 implies that X/∼G is a profinite space.
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3.1. On continuous sections of the quotient map πG. In this section, we
are interested in providing conditions under which the quotient map πG defined
in (2.9), has a continuous section. For this, we start with the following lemma:

Lemma 3.4. Let µ : G × Y 3 (g, y) 7→ g · y ∈ Y be a continuous action of a
topological group G on a profinite space Y. Suppose that X is a clopen subset
of Y such that G ·X = Y. Then there exists a retraction r : Y → X, such that
the following items are true:

(i) The map

r : Y/∼G→ X/∼G, G · y 7→ Gr(y) · r(y), (3.1)

is continuous, where, for x ∈ X, the set Gx · x is the orbit of x given
by the induced partial action of µ on X (see equation (2.10)).

(ii) If i : X/∼G→ Y/∼G, Gx · x→ G · x, then r ◦ i = idX/∼G .

Proof. By assumption Y =
⋃
g∈G

g · X. Since Y is compact there are g1 =

1, g2, · · · , gn ∈ G such that Y =
n⋃
i=1

gi · X. For 1 ≤ j ≤ n, set Xj =

gj ·X \
j−1⋃
i=1

gi ·X, thus the family {Xj}nj=1 is a partition of Y such that X1 = X,

and g−1
j ·Xj ⊆ X. Further, the continuity of the action implies that the func-

tion rj : Xj 3 x 7→ g−1
j · x ∈ X, is continuous and thus r =

n⋃
j=1

rj : Y → X is a

retraction of Y in X.
(i) We first check that r is well defined. Take x, y ∈ Y such that G · x = G · y,
then there exist g ∈ G and 1 ≤ i, j ≤ n, for which x = g · y, x ∈ Xi and y ∈ Xj .

Then r(y) = g−1
j · y, and

r(x) = g−1
i · x = (g−1

i g) · y = (g−1
i ggj) · r(y),

but r(x) ∈ (g−1
i ggj · X) ∩ X, that is, g−1

j g−1gi ∈ Gr(x), where Gr(x) is given

by (2.10). Note that (g−1
j g−1gi) · r(x) = r(y), then Gr(x) · r(x) = Gr(y) · r(y)

and r is well defined. To show that r is continuous, consider the quotient map
ΠG : Y → Y/ ∼G induced by µ. Since r ◦ ΠG = πG ◦ r, we get that r is
continuous.
(ii) It is clear that ī is well-defined, moreover, the result follows from the fact
that r is a retraction. �

Definition 3.5. Let η : G∗X −→ X be a topological partial action of a group
G on a space X. We say that η is free if for each (g, x) ∈ G ∗ X such that
η(g, x) = x, we have g = 1.

Given a free partial action η, a relevant fact is that its enveloping action µ
of η is automatically free.

Theorem 3.6. Let η be a continuous and free partial action of a profinite group
G on a profinite space X such that G ∗X is clopen. Then πG : X → X/ ∼G
has a continuous section.
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Proof. Let µ be the enveloping action of η given by (2.6). Since η is free, then
so is µ, and it follows by [14, Proposition 2.9] that the corresponding quotient
map ΠG has a continuous section q : XG/∼G→ XG. Let

ι : X/∼G3 Gx · x 7→ G · ι(x) ∈ XG/∼G,

where ι is the map defined in (2.7). Note that ι ◦ πG = ΠG ◦ ι, then ι is
continuous. Moreover, G · ι(X) = XG and ι(X) is clopen in XG because ι is
open, and ι(X) is compact in the profinite (in particular Hausdorff) space XG.
It follows from Lemma 3.4 that there is a retraction r : XG → X such that the
next diagram is commutative:

X

πG

��

ι
// XG

ΠG

��

r

zz

X/ ∼G
ι
//

r◦q◦i

99

XG/ ∼G

r

ff

q,

dd

in particular, πG ◦ r = r ◦ ΠG. Further, by the same lemma, r ◦ ι = idX/∼G ,
then the following equalities are valid:

πG ◦ (r ◦ q ◦ ι) = r ◦ (ΠG ◦ q) ◦ ι = r ◦ ι = idX/∼G ,

and the map r ◦ q ◦ ι is continuous, thus πG has a continuous section. �

Remark 3.7. In general the assumption that η acts freely on X, cannot be
omitted even when η acts globally, see for instance [18, Example 5.6.8].

Example 3.8. Let G be a profinite group and µ be a free continuous action of
G on a profinite space X. Take Y a clopen subset of X, then µ induces a free
partial action η : G ∗ Y → Y. It is not difficult to show that G ∗ Y is closed in
G×Y. Moreover G∗Y is open in G×Y thanks to [10, ii) Theorem 3.13]. Then
it follows by Theorem 3.6 that the quotient map πG has a continuous section.

3.2. Relations between continuous sections of πG and ΠG. Let µ be the
globalization of η. We study relations between continuous sections of the maps
πG and ΠG, being ΠG the corresponding quotient map of the enveloping action
µ.

Proposition 3.9. Let η be a nice partial action of a topological group G on a
space X. Then the following statements hold:

(i) If πG has a continuous section, so does ΠG,
(ii) If q is a continuous section of ΠG such that im q ⊆ ι(X), then πG has

a continuous section,
(iii) If ΠG and Π̂G have continuous sections, then πG has a continuous

section, where Π̂G is the quotient map G × X → XG induced by the
partial action η̂ of Corollary 2.8.
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Proof. (i) Suppose that q : X/∼G→ X is a continuous section of πG. Consider
the following function:

s : (XG/ ∼G) 3 G · [1, x] 7→ ι(q(πG(x))) ∈ XG,

where ι is given by (2.7). We claim that s is a continuous section of ΠG. First,
note that s is well defined. In fact, let x, y ∈ X such that [1, x] ∼G [1, y], we
have πG(x) = πG(y). Set zx = q(πG(x)) and zy = q(πG(y)), then πG(zx) =
πG(x) = πG(y) = πG(zy). Thus the next equalities are valid:

s(G · [1, x]) = [1, zx] = [1, zy] = s(G · [1, y]),

and s is well-defined. Since q and ι are continuous, we get that s is continuous.
To finish the proof, we take x ∈ X and let yx ∈ X, such that q(πG(x)) =
yx. Since πG(yx) = πG(x), there is g ∈ Gx such that ηg(x) = yx. Thus,
µ(g, [1, x]) = [1, yx], and we have the following equalities:

(ΠG ◦ s)(G · [1, x]) = ΠG([1, yx]) = G · [1, yx] = G · [1, x].

This shows that s is a continuous section of ΠG.
(ii) Let r : (X/∼G) 3 Gx ·x 7→ ι−1(q(G · [1, x])) ∈ X, be a function. It is not

difficult to check that r is well-defined, moreover, that G ∗ X is open implies
that ι is open and thus r is continuous. Finally, we take x, zx ∈ X such that
q(G · [1, x]) = [1, zx], then G · [1, x] = G · [1, zx] which gives πG(x) = πG(zx),
this implies that πG(r(Gx ·x)) = πG(zx) = πG(x), and r is a continuous section
of πG.

(iii) Let q : (XG/∼G)→ XG and t : XG → G×X be continuous sections of

ΠG and Π̂G, respectively. Consider the next map:

p : X/∼G3 Gx · x 7→ proj2(t(q(G · [1, x]))) ∈ X.

We check that p is a continuous section of πG. The map p is well-defined and
continuous, since X/ ∼G3 Gx · x 7→ G · [1, x] ∈ XG/∼G is continuous. On the
other hand, we take x ∈ X. If h, k ∈ G and y, z ∈ X, such that q(G · [1, x]) =
[h, y] and t([h, y]) = (k, z), then G · [1, x] = G · [h, y] and [k, z] = [h, y]. Thus,
ηh−1g(x) = y and ηk−1h(y) = z, for some g ∈ G, thus Gx · x = Gz · z, and we
have that πG(p(Gx · x)) = Gz · z = Gx · x, as desired. �

It follows by [16, Lemma 4.2] that ΠG has a Borel section, provided that G
and X are also a Polish group and a Polish space, respectively. Thus, by ı́tem
(i) of Proposition 3.9, and the proof (iii) of the same proposition, we have the
next result:

Proposition 3.10. Let η be a nice partial action of a profinite Polish group
G on a profinite Polish space X such that G ∗X is closed, then πG has a Borel
section.
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4. Partial actions and reflective categories

Let’s remember the definition of reflective subcategory.

Definition 4.1. Let C be a category. A subcategory D of C is reflective if the
inclusion functor D → C has a left adjoint.

Remark 4.2. It is well-known that the category P of profinite spaces is a re-
flective subcategory of the category K of compact Hausdorff spaces, where the
inclusion functor P → K has as a left adjoint the functor Comp : K → P, send-
ing a compact space X to the space Comp(X) of connected components of X,
equipped with the weakest topology making the projection πX : X → Comp(X)
continuous, here the unit of the adjunction is precisely the projection πX .

Proposition 4.3. [13, Theorem 2 (i), p. 83] A subcategory D of a category C is
reflective if and only if, for any object C ∈ C there exists an object RD(C) ∈ D
and a morphism εD(C) : C → RD(C), such that for all D ∈ D and ϕ : C → D
there is a unique ψ : RD(C)→ D in D with ψ ◦ εD(C) = ϕ.

The following fact follows from [2, Theorem 1.1] and Proposition 4.3:

Proposition 4.4. Given a topological group G, the category AG is reflective in
PAG. More precisely, the enveloping functor E : PAG → AG sends an object
(η,X) in PAG to (µ,XG) (defined by (2.6)), and a morphism f : X → Y to
E(f) : XG 3 [g, x] 7→ [g, f(x)] ∈ YG; is left adjoint to the inclusion functor.

We have the next result:

Proposition 4.5. Let G be a topological group. Then the category PAG has
inverse limits.

Proof. Let (J,≤) be a directed set. Given an inverse system θ = {(θj , Xj), f
j
i } i,j∈J

i≤j

in PAG, consider X =
∏
j∈J

Xj , endowed with the product topology, then by

Lemma 2.7 the map ∆(θ) : G ∗X → X, defined in (2.3) is a continuous partial
action of G on X. Set

X̂ = {(xj)j∈J ∈ X : f ji (xj) = xi,∀i, j ∈ J, i ≤ j},
and

G ∗ X̂ = {(g, (xj)j∈J) ∈ G× X̂ : (g, xj) ∈ G ∗Xj ,∀j ∈ J},
both endowed with the subspace topology. Then G ∗ X̂ ⊆ G ∗ X and X̂ is

G-invariant over ∆(θ), thus by (iii) of Lemma 2.4 we have that θ̂ := ∆(θ)�G∗X̂
is a continuous partial action of G on X̂, and it’s not difficult to see that (θ̂, X̂),
together with the family of projections {ρj �X̂}j∈J (defined in (a) of Lemma

2.7), is the inverse limit of θ, that is, lim←−(θj , Xj) = (θ̂, X̂). �

Corollary 4.6. Let G be a profinite group, (I,≤) be a directed set and

{(ηi, Xi), f
j
i } i,j∈I

i≤j
be an inverse system in PAG such that lim←−(ηi, Xi) = (η,X)

in PAG. If E is the enveloping functor defined in Proposition 4.4 and for
all i ∈ I, the action (µi, (Xi)G) is the enveloping action of (ηi, Xi), then
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{(µi, (Xi)G), E(f ji )} i,j∈I
i≤j

is an inverse system in AG and lim←−(µi, (Xi)G) =

(µ,XG), where (µ,XG) is the enveloping action of (η,X). In particular, if ev-
ery Xi is finite and discrete, then XG is profinite provide that dom η is clopen
or each dom ηi is clopen, for all i ∈ I.

Proof. The first assertion follows from Proposition 4.4 and the fact that left
adjoint functors preserve inverse limits. For the last assertion, suppose first
that dom η is closed. Now X is profinite because lim←−Xi = X, and the result
follows from Corollary 3.2. Finally, if dom ηi is closed for any i ∈ I, we have by
Corollary 3.2 that (Xi)G is profinite for any i ∈ I, thus XG is profinite because
lim←− (Xi)G = XG is an inverse limit of profinite spaces. �

4.1. A remark on separately continuous actions on topological spaces.
For the reader’s convenience, we recall that an action β : G × X → X of a
topological group G on a topological space X is separately continuous, if for
each pair (g0, x0) ∈ G×X the maps βg0 : X 3 x 7→ β(g0, x) ∈ X and

βx0 : G 3 g 7→ β(g, x0) ∈ X, (4.1)

are continuous.
We denote by SAG the category of separately continuous actions of a topo-

logical group G on topological spaces and whose morphisms are continuous
G-maps. Also, let SAKG and SAPG be the subcategories of SAG whose ob-
jects are separately continuous actions of G on compact Hausdorff spaces and
profinite spaces, respectively. We shall prove that SAPG is reflective in SAKG.
For this, it is necessary to introduce some notations and facts from categories
related to topological spaces. To the group G we associate the category CG
having as object the unitary set {•} and as morphisms the group G; we de-
note also by Top the category of topological spaces and continuous maps. It
is well-known that the category of functors Fun(Top, CG) is equivalent to the
category AG of continuous actions of G on topological spaces, and SAG can be
indentified with the full subcategory of Fun(Top, CG) of those actions β such
that the map βx0 defined in (4.1) is continuous, for any x0 ∈ X.

Lemma 4.7. Let D be a reflective subcategory of a category C. Given a small
category I, Fun(I,D) is reflective in Fun(I, C).

We finish this work with the following fact:

Proposition 4.8. SAPG is a reflective subcategory of SAKG.

Proof. We observed in Remark 4.2 that the category P of profinite spaces is
a reflective subcategory of the category K of compact Hausdorff spaces, then
follows by Lemma 4.7 that the inclusion functor Fun(CG,P) → Fun(CG,K)
has a left adjoint, which we denote by CompG : Fun(CG,K) → Fun(CG,P).
We consider a separately continuous action β : G × X → X in Fun(CG,K),
we shall check that its reflection β̄ = CompG(β) belongs to SAPG. Indeed, if
x̄ ∈ Comp(X), we set β̄x̄ : G 3 g 7→ β̄g(x̄) ∈ Comp(X). Consider x ∈ X such
that x̄ = πX(x), where πX : X → Comp(X) is the projection map. Since βx

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 156



Partial actions of groups on profinite spaces

is continuous we have that β̄x̄ = πX ◦ βx is continuous, and thus β̄ belongs to
SAPG, therefore SAPG is reflective in SAKG. �
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