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ABSTRACT

This paper presents some existence and uniqueness results for a solution
of a system of equations. Our results extend and generalize the well-
known and celebrated results of Boyd and Wong [Proc. Amer. Math.
Soc. 20 (1969)], Matkowski [Dissertations Math. (Rozprawy Mat.) 127
(1975)], Proinov [Nonlinear Anal. 64 (2006)], Ri [Indag. Math. (N. S.)
27 (2016)] and many others. We also present some illustrative examples
to validate our results.
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1. INTRODUCTION AND PRELIMINARIES

Let (Wi, pi), @ = 1,2,...,n, be metric spaces and W := Wy x --- x W,.
Assume that T; : W — W;, ¢ = 1,...,n, are mappings, N the set of natural
numbers, R the set of real numbers and (w™) = (wi?,...,w™), m € N, be a
sequence in W. We denote ® = {¢ : [0,00) — [0,00) | o(¢) < ¢, limsup ¢(t) <

t—st
s for all ¢t > 0}.

In 1975, Matkowski [20] obtained an important generalization of the Banach
contraction theorem (BCT) for a system of mappings (71, ...,7T,) on the finite
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product of metric spaces and established an existence and uniqueness result to
demonstrate a solution of the following system of equations:

Ti(wiy .. wp) =w;, 1=1,2,...,n. (1.1)

Using some slightly different conditions, Czerwik [7] generalized a certain fixed
point result of Eldestein [8] and established the following existence and unique-
ness result for a system of mappings.

Theorem 1.1 ([7]). Let (W;,p;), @ = 1,2,...,n, be compact metric spaces.
Suppose that T; - W — W;, i=1,2,....,n, fulfill the following conditions:

Pi (Tiw,Ti(D) < Zaikpk(wk,&)k) m B=WxW —A,
k=1

N <1, i=1,2,....n

where A = {(w,0) € WX W :w; =, @ = 1,2,...,n}, aix > 0, i,k =
1,...,n,and N;, i=1,2,...,n are characteristic roots of the matriz (a;;), i,k =
1,...,n. Then the system of equations (1.1) has a unique solution.

These types of results are fruitful to study the existence solutions of the
system of functional equations of the following form:

& (t) =h; (tv o1 [le (t)} yees Pn [fzn (t)]) fori=1,2,..,n (12)

where fir : A > AC X # @, hy : X xR*" - R, i,k = 1,2,...,n and
¢;i :R—=R, i=1,2,...,n are the unknown functions.

In 1981, Reddy and Subrahmanyam [26] generalized Krasnoselski’s fixed
point result [18] for two systems of mappings and applied it to find convex so-
lutions of the system of functional equations (1.2). On the same line, Khantwal
and Gairola [16] generalized the result of Matkowski to provide an existence
result for bounded solutions of the system of functional equations (1.2). Due to
applicability of finding a solution of the system of functional equations (1.2),
many extensions and generalizations of Matkowski’s result [19, 20] have ap-
peared in the literature (see [1], [6], [9], [10], [11], [12], [15], [22], [27], [29], [30],
[31] and references therein).

On the other hand, Proinov [25] generalized the BCT to more general class
of mappings. He introduced a new class of mappings, which includes the con-
traction mappings of Boyd-Wong [3], Matkowski [20] and Meir-Keeler [23] type
and established the following result.

Theorem 1.2 ([25]). Let (Y,p) be a complete metric space. Assume that
g:Y =Y is an asymptotically reqular and continuous mapping. If there exists
a function ¢ : [0,00) — [0,00) such that for any € > 0 there exists § > £ such
that e <t < & implies ¢(t) < & and the following conditions hold:

(P1): p(g(u), 9(v)) < (L(u,v)) for all u,v €Y,

(P2): p(g(u),g(v)) < L(u,v), whenever L(u,v) # 0,
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where L(u,v) = p(u,v) + nlp(u, g(u)) + p(v,9(v))], n = 0, then g has a fived
point w € Y.

Moreover, for n = 1, the continuity of g can be dropped if the function ¢ is
continuous and ¢(t) <t fort > 0.

This result generalizes or extends certain results of Ciri¢ [5], Jacimiski [14],
Matkowski [21] and others. For recent developments along this direction one
can refer to [2], [17], [24] and [32].

In 2016, Ri [28] obtained a generalization of the BCT and the Boyd and
Wong’s fixed point theorem by relaxing the requirement of upper semi-continuity
of the control function ¢ used in Boyd and Wong’s result [3].

Theorem 1.3 ([28]). Let (Y, p) be a complete metric space and ¢ : [0,00) —
[0,00) be a function such that p(t) < t and limsup p(s) < t for all t > 0.

s—tt

Assume that f: Y — Y is a mapping such that

p(fu, o) < p(p(u,v)) for all u,v € Y. (1.3)
Then f has a unique fixed point.

In this paper, we introduce the notion of a coordinatewise asymptotically
regular mappings and show that the coordinatewise asymptotic regularity is not
a sufficient condition for the existence of a solution for a system of equations
(1.1). Further, motivated by the work of Matkowski [19, 20] and Czerwik [7], we
generalize certain results from [3], [25], [28] to a system of mappings. We also
show that the assumption of continuity of control function used in Theorem
1.2 for n = 1 can be weaken. Moreover, we prove an existence result for a new
class of a system of mappings without using the assumption of continuity and
present a generalization of [24, Theorem 7] to a system of mappings. We also
present some illustrative examples to justify the validity of our results.

2. MAIN RESULTS

Firstly, we define a new class of a system of mappings on the product of
metric spaces.
Definition 2.1. Let (W;,p;), i = 1,2,...,n, be metric spaces and T; : W —
Wi, i=1,2,...,n be mappings. Then, the system of mappings (71,...,T,) is
called coordinatewise asymptotically regular at some point w® = (w?,...,w0%) €
W, if the sequence of iterations (w!™) defined by

wil =T’ and wlmﬂ =Tiw™ for meN

satisfies
lim pi(w:”,w;"+1) =0 fori=1,2,...,n.
m— o0
If (Th,...,Ty,) is coordinatewise asymptotically regular at each point of W
then we call the system (T4,...,T},) is coordinatewise asymptotically regular

on W. For n = 1, the above definition coincides with the definition of the
asymptotic regular mapping due to Browder and Petryshyn [4].
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Definition 2.2. Let (Y, p) be a metric space. A mapping ¢g:Y — Y is called
asymptotically regular at some u € Y if lim p(g"u,g""'u) = 0. In other
n— oo

words, the mapping g is asymptotically regular at point u € Y if the sequence
of iterations (g"u) satisfies lim p(g"u,¢g"* 'u) = 0. The mapping g is called
n—oo
asymptotically regular on Y if it is asymptotically regular at each point of Y.
Example 2.3. Let W; = [0, 1] be equipped with the usual metric p; for i = 1, 2.
Define T7 : Wy x Wy — W; by
[ 1/(r+1), Hw =1/r, 7N,
Ti(wr,wa) = { 1/2, ifwy #1/r, r €N,
andT21W1><W2—>Wiby
 1/(s+1), fwr=1/s, s€N,
TQ(wl’WQ){ 1/2, ifwy #1/s, seN.
We consider the following three cases:
Case 1 Let w; = 1/s and wy = 1/r. Then for w® = (w1, ws), we have W =
/(m+7), wf =1/(m+s) and lim p;(w!,w™) =0, i=1,2.
m—0o0
Case 2 Let w; = 1/r and way # 1/s. Then for w® = (w1, ws), we have W =
1/(m+r), w =1/(m+1) and lim p;(w™, W) =0, i =1,2.
m—0o0
Case 3 Let wy # 1/r and way # 1/s. Then, for w® = (w1, ws) we have W =
1/(m+1), wf =1/(m+1) and lim p;(w™ W) =0, i=1,2.
m—0o0
Thus, the system (77, T3) is coordinatewise asymptotically regular even though
the system of equations
Ti(wl,wg) = Wj for i= 1,2,
has no solution in W7 x Wy. This implies that the condition of coordinate-

wise asymptotic regularity is not sufficient enough to ensure the existence of a
solution of such types of system of equations.

Now, we prove an existence result for a solution of the system of equations
(1.1) under the certain conditions.

Theorem 2.4. Let (W;,p;), i = 1,2,...,n, be complete metric spaces and
T, : W — W;, i = 1,2,...,n, be continuous mappings. Assume that the
system of mappings (T1,...,Ty) is coordinatewise asymptotically regular on
W. If there exists ¢ € ® such that for all w,w € W and i = 1,2,...,n, the
following conditions hold:

pi(Tiw, T;w) < ¢ (D;(w,@)) for all wy,w, € W; (2.1)

M| <1 fori=1,2,...,n, (2.2)
where Dij(w, @) = > ajpr(wi, wr)+n {pi(w;, Tiw) + pi(@;, T;0)}, aie >0, i,k
k=1

1,...,n, and A\, @ - 1,2,...,n are characteristics roots of matrix (a;), i,k =
1,2,...,n. Then the system of equations (1.1) has a unique solution (z1,...,z,)
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W. Further, for arbitrarily fived w} € W;, i =1,2,...,n, the sequence of suc-
cessive approrimations

Wt = Tw™ fori=1,2,...n and m € N

K3

converges such that
z; = lim w* fori=1,2,...n
n—oo
Moreover, if n =1 then the continuities of T;, i = 1,2,...,n, are not required.
Proof. For each i =1,2,...,n, pick w{ € W, and define
w;"“ =T,w™ fori=1,2,...,n and m € NU{0}.

Now, by coordinatewise asymptotic regularity of (T1,...,T},), we get

lim p;(w™ W) =0 fori=1,2,...,n. (2.3)

m—roo
Then for each ¢; > 0, i =1,2,...,n, there exists r; € N such that

pi(w m’,wlm"'"’l) <eg forr; <m; eN.

In the above inequalities, taking r = max{r; : i =1,2,...,n}, we get

pilw™ wt) <e; fori=1,2,...,nand m >r € N. (2.4)
Now, we prove that (w]™) is a Cauchy sequence for each i = 1,2,...,n. Assume
that sequence (w}™) is not a Cauchy in W;. Then for each ¢ = 1,2,...,n and

r € N, there exist ¢; > 0 and sequences of positive integers (p;(r)), (¢;(r)) with
r < pi(r) < g;(r) such that

Pz( pi () wzflz(r)) > ¢ (2.5)

We may assume that g;(r) is the smallest positive integer greater than p;(r)
such that the inequality (2.5) holds with the following inequality

pi(wP ) WE Ty <o fori=1,2,... n. (2.6)
Then by the triangle inequality and using (2.6), we have
P, W8 < (i) Ty L a1 i)y
<&+ pilw q’(r),wf"'(r)*l) fori=1,2,...,n
Making r — oo and using (2.3), we get
Tli}r{)lopi(wfi(rlwf”’(r)) =g for i=1,2,...,n. (2.7)
Next, we observe that,
£1 < pilwl') B )

?

(wpz(T) pi(r)+ )-l-pi(wfi(r)ﬂ,wfi(r)ﬂ)+pl( qi(r)+ ’wl_qz'(T))
(w (7‘)) Pr(T) )_|_ pi(Tini(r)’Tiw(h(T)) 4 pi(w_z(r)+1’w¢_h(7‘))
pi(wl p1<r)+1)+w(Di(wpm)’wqi(r)))+p( G+ i)y
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for i =1,2,...,n. Making » — oo and using (2.7), we get
&< (Di(wpi“’),w%(“))) fori=1,2,...,n.
We note that

lim Di(wpi(r),wqi(r)) = Zaikek fori=1,2,...,n

r—00
k=1
and let
n
Zaikek =h; fori=1,2,...,n.
k=1
Then limsup ¢(s) < ¢ for all t > 0 implies
s—tt
g < lim @(Di(wPM,w%(M)) < lim sup  @(s) < hy
7——+00 E/—>+O se(hu hi+5/)
fori=1,2,...,n. Hence we get
n
&< Y apwep for i=1,2,...,n. (2.8)
k=1

Then from (2.2) and Peron’s theorem [13, page 53], there exist positive numbers
(t1,...,tn) such

n
> aiti <t; for i=1,2,...,n. (2.9)
k=1
Without loss of generality, we may assume that

g <t; fort=1,2,...,n.
Then from (2.8) and (2.9), we have

n n
g < Zaikak §Zaiktk <t; fori=1,2,...,n.

k=1 k=1
. . .- . . €1 &2 En
Since these inequalities are strict, there exists h = max {t’ PREEE t} €
1 2 n
(0,1) such that
g < ht; fori=1,2,...,n.
Repeating this process m times, we get
g <h™; fori=1,2,...,n.
Making m — oo, we get
g <0 fori=1,2,...,n.
Hence (w™) is a Cauchy sequence for each i = 1,2, ..., n. Since W; is a complete
metric space, there exists z; € W; such that lim w” =z;, i =1,2,...,n and
m—o0
W™ = (W ...,w) = z = (21,...,2n). Ty, i=1,2,... n, are continuous
then T;w™ = w;"H — Tz implies Tjz = z;, i = 1,2,...,n.
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Now suppose that n = 1 then from (2.1), we have

pi(w;n—‘rlaTiz) = p,(Tzwm,le) < @(Dz(wmvz)) for ¢ = 1,2,...,n

where D;(w™, 2z) = Y apr (Wi, 2) + pi(wim,wznﬂ) + pi(zi, Ti2).
k=1
Making m — oo, we get
pi(zi, Tiz) < lm @ (D;(z,T;z)) fori=1,2,...,n.
m— 00

Also

n
lim D;(w™, z) = Zaikpk(zk,Tkz) fori=1,2,...,n.

m—o0
k=1

n
Let pf = > airpr(zr, Tkz), i =1,2,...,n. Then by limsup,_,,+ ¢(s) < t for
k=1
all t > 0, we obtain

pi(zi, Tiz) < lim ¢ (D;(w™,2)) < lim sup  @(s) < p; fori=1,2,...,n.
m—o0 p——+0 s€(ps,pi+p)

This implies

pi(zi, Tiz) < Zaikpk(zk,Tkz) for i=1,2,...,n. (2.10)
k=1

We may assume that
pi(zi, Tiz) <t; fori=1,2,...,n.

Then, taking into account of conditions (2.9), (2.10) and by Peron’s theorem
[13], we get

pi(zi, Tiz) <t; fori=1,2,...,n.

Since these inequalities are strict, there exists an ¢ = max{p;(z;, T;2)/t; : i =
1,2,...,n} € (0,1) such that

pi(zi, Tiz) < Lt; fori=1,2,... n.
Repeating the above process m times, we get
pi(zi, Tiz) <L™t; fori=1,2,...,n.
Making m — oo, we get
pi(zi,T;z) =0 or Trz=2z2; fori=1,2,...,n.

Hence the system of equations (1.1) has a solution in W.
For uniqueness of a solution of the system of equations (1.1), assume that
w = (wy,...,w,) is another solution of the system (1.1) such that

pi(zi,w;) #0 fori=1,2,...,n.
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Then from (2.1), we have

pi(zi,wi) < ¢ (Z aikpr (2, wi) +n{pi(zi, Tiz) + Pi(wiaTiw)}>
k=1

< Zaikpk(zmwk) fori=1,2,...,n. (2.11)
k=1

We may assume that
pi(zi,w;) <t; fori=1,2,... n.

Then in view of Peron’s theorem [13, page 53 | and conditions (2.9), (2.11), we
get

,oi(zi,wi) <t; fori=1,2,...,n.

As the above inequalities are strict so there exists 7 = max{p;(z;, w;)/t; : i =
1,2,...,n} € (0,1) such that

pi(zi,w;) <7ty fori=1,2,...,n.
Following this process m times, we get
pi(zi,w;) < 7™t fori=1,2,...,n.
Making m — oo, we get
pi(zi,w;)) =0 or z;=w,; fori=1,2,...,n.

This completes the proof. (I

The following example illustrates the utility of our result.

Example 2.5. Let W; = {0,1,2}, « = 1,2 and (W}, p;), ¢ = 1,2, be usual
metric spaces. Define Ty : Wy x Wy — W7 by

T1 (wl, OJQ) = 4w1 — ZW%
andTQ:W1XW2—>W2 by
Tg(wl, OJQ) = 4LU2 — 2w§

for all (wl,wg) e Wy x Wa.

Then, it is easy to see that (W, p;), i = 1,2 are complete metric spaces and
T;, i = 1,2 are continuous mappings. Also, the system (77,7%) is coordinate-
wise asymptotically regular on W7 x Ws. Now, if we take

a1] = Q12 = A21 = A = 1/2, (p(t) = t/2 and n= 4
then for all w,0 € Wy x Wy, we have

pi(Tiw, T;w) <2 < o(D;(w,w)) fori=1,2.
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Hence, all the assumptions of Theorem 2.4 are verified and the system of equa-
tions (1.1) for n = 2, has a unique solution at (0,0). However for w = (0,0)
and w = (1,1), we have

2

pi(Tiw, T;w) > Zaikpk(wk@k) fori=1,2.
k=1

Thus, we cannot apply Theorem 1.1 and result of [20, Theorem 1.4].

Remark 2.6. By definition of ¢, we know that for every € > 0 there exists § > €
such that € < ¢ < e+ § implies ¢(¢) < e. In other word, we can say ¢(t) < ¢

for all t € (e,e+ §). This implies ¢(t) < ¢t for t > 0 and lim sup ¢(s) < s.
60 s€(e,e+0)
Hence ¢ € .

If we take n = 1,T; = g,a11 = 1,W; =Y, p; = p in Theorem 2.4, we get
a generalized version of Theorem 1.2 which shows in case when 1 = 1, the
assumption of continuity on the control function is weaken.

Corollary 2.7. Let (Y, p) be a complete metric space. Assume that g 1Y —
Y is a continuous asymptotically reqular mapping on Y which satisfies the
following condition:

plgu, gv) < ¢ (D(u,v))
where D(u,v) = p(u,v) +n{p(u, gu) + p(v,gv)}, n >0 and ¢ € &. Then the
mapping g has a unique fixed point in Y. Moreover, if we take n = 1 then
continuity of g is not required.

Corollary 2.8. Let (Z,p) be a complete metric space and T : Z™ — Z be a
continuous asymptotically regular mapping on Z such that

p(T(z,....2),T(z,...,2) <p(p(z,2) + n{p(z,Tz) + p(2,T2)})

where ¢ € ®. Then the system of equation T(z,...,z) = z has a unique
solution. Moreover, if we take n =1 then continuity of T' need not be required.

Proof. The proof is obtained by taking W; = Z, T; =T, p; = p and a;x = qx

with g1 + -+ 4+ ¢, =1 for each ¢ = 1,2,...,n, in Theorem 2.4. ([
If we take D;(w,®) = > appr(wi, @) fori = 1,2,...,n, in Theorem
k=1

2.4 then assumptions of continuity and coordinatewise asymptotic regularity
remain redundant and we get an extension of [20, Theorem 1.4].

Theorem 2.9. Let (W;,p;), i = 1,2,...,n, be complete metric spaces and
T, W —=W,;, i=1,2,...,n, be mappings. If there exists ¢ € ® such that for
alw,w e W andi=1,2,...,n, the following condition hold:

pi(Tiw, Tiw) < ¢ <Z aikpk(c%,wk)> (2.12)

k=1
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where a;i, i,k = 1,2...,n are defined in Theorem 2.4. Then, the system of
equations (1.1) has a unique solution (z1,...,2,) in W. Moreover, for arbi-
trarily fived w} € Wy, i =1,2,...,n, the sequence of successive approzimations
w;”‘”'l = T;w™ converges to z; = n}gnoo w™ fori=1,2,...n and m € N.

Proof. For each i =1,2,...,n, pick w{ € W, and define

Wt =Tyw™ fori=1,2,...,n and m e NUJ{0}.

2

Then from (2.2) and Peron’s theorem [13, page 53], there exist positive numbers
(ri,...,ry) such

n
Zaikrk <r; for i=1,2,...,n. (2.13)
k=1
We may assume that
pi(wi,wd) <7 for i=1,2,...,n.

Then from (2.12) and (2.13), we have
pi(wi,wi) = pi(Tiw', Tiw?)

v (z aikpkw;,w@)

k=1
n

< (Zaikm> <r; for i=1,2,... n.
k=1

Since these inequalities are strict, there exists an h = max{p;(w?,w})/r; i =
1,2,...,n} € (0,1) such that

pi(wi wi) < hry for i=1,2,....,n.

Now using induction, we prove that the following inequalities are true for all
m>1€eN,

pi(w™ W™y < h™r; for i=1,2,...,n and m € NU {0}.

Assume that the above inequalities are true for some m € N. Then from (2.12),
we have

pi(wi W) = pi(Tw™ ™, Tiw™)
n
< (Z ampk(w;@"“M?))
k=1

< (Z aikhmrk> < hMrp for i=1,2,...,n.
k=1

Again, since the above inequalities are strict, we can find h € (0, 1) such that

pi(w T2 WMty < Bty for i =1,2,...,n.
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Making m — oo, we get
lim pi(wzmﬂ,w;") =0 for 1=1,2,...,n

Hence the system of mappings (77, ...,7,) is an asymptotically regular on .
Also, the condition (2.10) implies that the mappings T;, ¢ = 1,2,...,n are
continuous on W. Rest of the proof may be completed following the proof of
Theorem 2.4. (|

If we take W; = Z, T; =T, a;, =1, p; = p for each i,k = 1,2,...,n in
Theorem 2.9, we get the following result.

Corollary 2.10. Let (Z,p) be a complete metric space and T : Z™ — Z be a
mapping on Z such that

p(T(z,...,2),T(Z,...,2)) < ¢(p(2,2))

where ¢ € ®. Then T(z,...,z) = z has a unique solution. Moreover, if we
take n = 1 then continuity of T is not required.

Ifwetaken=1,7T; = f,a11 =1, W; =Y, and p; = p in Corollary 2.9, then
we obtain Theorem 1.3 as a direct consequence of Corollary 2.9.

Now, we establish an existence and uniqueness result for a new class of
system of mappings without using the assumption of continuity.

Theorem 2.11. Let (W;, p;), i =1,2,...,n, be complete metric spaces and T; :
W — W;, i=1,2,...,n, be mappings. If the system of mappings (T1,...,Ty)
is coordinatewise asymptotically reqular on W such that the following conditions
hold:

pilwi, Tiw) < Z ainpr(@i @) + plpilwi, Tow) + pi (T T} (2.14)

Al <1 for i=1,2,...,n (2.15)
for all w,0 € W, where a;; > 0, i,k = 1,...,n, p € [0,00), j € N and
Xi, © = 1,...,n are characteristics roots of matriz (a;x), i,k = 1,2,...,n
Then, the system of equations (1.1) has a unique solution (z1,...,2,) € W
and for arbitrarily fized w} € Wi, i = 1,2,...,n the sequence of successive

approzimations me T,w™ for i=1,2...n and m € N converges such
that z; = lim wlm for i=1,2,...n
n—r oo

Proof. For each i = 1,2,...,n, pick w{ € W; and define

wf”'l =Tw™ formeN and i=1,2,...,n
Now, by coordinatewise asymptotic regularity of (T1,...,T},), we get
lim p; (w!™ wm+1) =0 for i=1,2,...,n
m—ro0

Then, for every ¢; > 0, i =1,2,...,n there exists an r € N such that
piw™ W) < g for i=1,2,...,nand m>r eN. (2.16)
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Now, we assume that the sequence (w™) € W; is not Cauchy for each i =
1,2,...,n. Then following the proof of Theorem 2.4 we get, there exist ¢; > 0
and two sequences of positive integers (p;(r)), (¢:(r)) with r < p;(r) < ¢;(r)
such that

lim p;(w} pi(r ),w;”(r)) =¢ fori=1,2,...,nand r € N. (2.17)

r—>00

Next, we observe that,

e < pilw! w0
< ,01( pi(r) w})i(T)+1)+pz( Pz(T)+1 w{]i(T)+1)+pi(WQi(T)+1 w{]i(r))
< A OWrO) T O, T ) )
< Pi(wfi(r),wpl(r)ﬂ +Zakpk pi(r) w}im)

k=1
i {p( 107( ) Twp‘(r)) + p; (Tjwpz( ) Tij+1wpi(r))} +Pz( 117(7“)"‘17 ;Ii(r))

n

= pi(wil{?i(r) Pz(’”)-‘rl Z zkpk Pz(’“) Zi(r))Jru{pi(w:l{?i(r)’wfi(r)-&-l)}
k=

i pilwl O e )““)} + o W)

for i =1,2,...,n. Making r — oo and using (2.16), (2.17), we get

n
g <Y aper fori=1,2,...,n. (2.18)
k=1
Now, from Peron’s theorem [13, page 53] and condition (2.15) there exist pos-
itive numbers (t1,...,t,) such that

n

> aity <ti for i=1,2,...,n
k=1

We may assume that
g <t; for i=1,2,....n
Further, if we put

_ -1 .
h= lréliagxn (ti kz_l azktk> (2.19)
then h € (0,1) and
> aity <ht; for i=1,2,....n

k=1
From (2.18), we have

n n n
g0 <Y aiwck < Y airty < Y aghty <ht; for i=1,2,...,n

k=1 k=1 k=1
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Repeating this process m times, we get
g <h™t; for i=1,2,...,n.
Making m — oo, we get the following contradictions
€ <0 for i=1,2,...,n.
Hence, (w]™) is a Cauchy sequence for each i = 1,2,...,n. Since W; is a
complete metric space, there exists z; € W; such that lim w® = z; for ¢ =

m—00
1,2,...,n. Now from (2.14), we have

n
P Tiz) < 3 apn(@, zi) + pfpi (@, W) + i)™, w1
k=1

fori=1,2,...,n. Making m — oo, we get
pi(zi,Tiz) <0fori=1,2,...,n

which implies that T;z = z; for i = 1,2,...,n. Hence the system of equations
(1.1) has a solution in W. For uniqueness of the solution, assume that w =
(w1, ..., wy,) is another solution of system of equations (1.1). Then

0 < pi(zi,wi) = pi(zi, Tiw)
< ainpr (e, w) + p{pizi, Tiz) + pi(Ti2? T2 1)}
k=1

NE

< aikpr(zk, wg) fori=1,2,... n.

E
I
—

We may assume that
pi(zi,w;) <t; for i=1,2,...,n,
then
n n
pi(zi, w;) < Zaikl)i(ziawi) < Zaiktk <t; for i1 =1,2,...,n.
k=1 k=1
Taking into account of (2.19), there exists h € (0,1) such that

n
pi(zi,w;) < Zaiktk <ht; fori=1,2,...,n.
k=1

Continuing this process m times, we get
pi(zi,w;) <h™t; fori=1,2,... n.
Making m — oo, we get
pi(zi,w;) =0 for i=1,2,... n.

Hence z; = w; for i =1,2,...,n. O
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Example 2.12. Let W; = [0, 1] and p; be usual metric on W; for each i = 1, 2.
Define T; : W1 x Wy — W, for i = 1,2 by

0, when 0 <w; <1,
1/2, when w; =1,

0, whenO<ws <1,
1/2, when wy = 1.

T (w1, w2) = and

T (wr,w2) =

Then, it is easily seen that the system (T}, T5) is continuous and coordinatewise
asymptotically regular on W x Wy. Now, for w,w € [0,1) x [0,1) or w =& =
(1,1), we have

pi(wi, Ti;w) = w; < ppi(w;, Tyw) for i =1,2 and p > 2.
Ifwel0,1) and @ = (1,1) then
pi(wi, Tiw) = |w; — @] < ppi(wi, Tiw) for i = 1,2 and p > 2.

Thus the system (77, 7») satisfies the condition (2.14) for n = 2. Hence all the
assumptions of Theorem 2.9 are verified and (wq,w2) = (0,0) is a solution of
the system of equations (1.1) for n = 2.

If we take W; = Z, T; =T, a; = h, p; = p for each i,k = 1,2,...,n in
Theorem 2.11, we get the following result.

Corollary 2.13. Let (Z,p) be a complete metric space and T : Z™ — Z be a
mapping on Z such that

p((z,...,2),T(z,...,2) < hp(z,2)+p { ZE;’]](;(,Z, '. .. ’.;)Z,)%’_;“(z, ) }

where p € @, € [0,00), j € Nandh € (0,1). Then the equationT(z,...,z) =
z has a unique solution.

If wetaken=1, a1 =k, T; = f, W; =Y, p; = p, in Theorem 2.11 then
we get following result of [24, Theorem 7].

Corollary 2.14. Let (Y, p) be a complete metric space. Assume that f: W —
W is an asymptotically regular mapping satisfying the following condition :

p(u, fo) < kp(u,v) + p{p(u, fu) + p(fu, f77u)}

where j € N, k € (0,1) and pu € [0,00). Then there exists a unique fized point
p €Y for f and for any @ € Y, we have lim f"(w) = p.
n—oo
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