
Received 10 October 2023, accepted 16 December 2023, date of publication 28 December 2023,
date of current version 5 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3347914

Formal Analysis of Post-Quantum Hybrid Key
Exchange SSH Transport Layer Protocol
DUONG DINH TRAN 1, KAZUHIRO OGATA 1, SANTIAGO ESCOBAR2,
SEDAT AKLEYLEK 3,4, AND AYOUB OTMANI5
1Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
2VRAIN, Universitat Politècnica de València, 46022 Valencia, Spain
3Ondokuz Mayıs University, 55139 Samsun, Turkey
4University of Tartu, 50090 Tartu, Estonia
5University of Rouen Normandie, 76821 Rouen, France

Corresponding author: Duong Dinh Tran (duongtd@jaist.ac.jp)

The work of Duong Dinh Tran and Kazuhiro Ogata was supported by the JST SICORP, Japan, under Grant JPMJSC20C2.
The work of Santiago Escobar was supported in part by the MCIN/AEI/10.13039/501100011033 and ERDF—A way of making
Europe under Grant PID2021-122830OB-C42, in part by the Generalitat Valenciana under Grant CIPROM/2022/6, in part by the
MICIN/AEI/10.13039/501100011033 under Grant PCI2020-120708-2, and in part by the European Union NextGenerationEU/PRTR.
The work of Sedat Akleylek was supported in part by TUBITAK under Grant 121R006. The work of Ayoub Otmani was supported
in part by the FAVPQC Project funded by CNRS, and in part by the Agence Nationale de la Recherche (ANR) within France 2030
Program under Grant ANR-22-PETQ-0008 PQ-TLS.

ABSTRACT Facing the quantum attack threat, a quantum-resistant version of the SSH Transport Layer
protocol has been proposed and been standardized by an IETF working group. This standardization process
has been motivated by the fact that if practical quantum computers become available, classical key exchange
algorithms used today will no longer be safe because their security can be efficiently broken by Shor’s
algorithm running on a quantum computer. In this paper, we construct a symbolic model of the proposed
protocol, specify it in the specification language CafeOBJ, and conduct a formal analysis of the claimed
security properties with the employment of a formal method tool called Invariant Proof Score Generator
(IPSG). Three security properties are formally verified with respect to an unbounded number of protocol
participants and protocol executions by employing IPSG to produce their formal proofs, the so-called proof
scores in CafeOBJ. With another property, namely authentication, we find a counterexample against it,
and then we propose to slightly revise the protocol. With the improved version, we formally verify that
the authentication property is enjoyed, while the three properties remain secure. To model the presence
of malicious participants, we extend the Dolev-Yao intruder, which is the standard intruder model used in
security protocol analysis/verification, because the availability assumption of large-scale quantum computers
gives the attacker some new capabilities. Under our threat model, the intruder is given capabilities of fully
controlling the network as the Dolev-Yao intruder, and additionally breaking ECDH’s security as well as
compromising secrets.

INDEX TERMS Formal verification, post-quantum SSH, CafeOBJ, proof score, security analysis.

I. INTRODUCTION
The development of quantum computing has caused solid
danger to public-key encryption systems widely used today.
This comes from the ability of quantum-based algorithms,
such as Shor’s algorithm [1], in breaking the presumed
difficulty of some mathematical problems on which those

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Arshad .

public-key encryption systems are based. Although right now
there is no quantum computer with enough power to break the
real cryptosystems currently used, with a huge research and
development investment recently frommany tech giants, such
as Intel, IBM, and Google, large-scale quantum computers
are promisingly becoming available in the near future.
Besides, attackers can record the encrypted information
from now and later decrypt it when large-scale quantum
computers become available, which is known as the harvest

1672

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-7092-2084
https://orcid.org/0000-0002-4441-3259
https://orcid.org/0000-0001-7005-6489
https://orcid.org/0000-0003-0424-9498

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

now and decrypt later attack [2]. These are motivations for
the early construction of cryptographic algorithms that are
resistant to quantum attackers, the so-called post-quantum
cryptographic algorithms. Facing the quantum attack threat,
in 2017, the National Institute of Standards and Technology
(NIST) launched a competition to standardize post-quantum
public-key cryptographic algorithms.1

The Secure Shell protocol (SSH) [3] gives users a secure
way to access a computer over an unsecured network. The
most well-known application of SSH is to allow users,
particularly system administrators, to securely remote login
to a server and execute commands through the command
line environment. SSH consists of three sub-protocols, among
which, the SSH Transport Layer protocol [4] is in charge of
key negotiation in order to establish symmetric keys, which
are then used by the other protocols [5], [6] to securely
exchange information between two participants. Due to the
threat of quantum attacks, an Internet Engineering Task Force
(IETF) Working Group has proposed a post-quantum version
of the SSH Transport Layer protocol [7]. The proposed
protocol is being standardized and its latest version is 01 by
June 2023. The proposed protocol, which is abbreviated as
PQ SSH in this paper, bases its security on the so-called
post-quantum hybrid key exchange method that uses a
classical key exchange algorithm and a quantum-resistant
Key Encapsulation Mechanism (KEM) in parallel. In the
IETF Draft [7], the former is fixed to Elliptic Curve Diffie-
Hellman (ECDH), while CRYSTALS-Kyber [8] is chosen for
the latter.

In this paper, we present a security analysis of PQ
SSH version 01 [7] by using two formal method tools
CafeOBJ [9] and IPSG [10]. CafeOBJ [9] is an advanced
algebraic language for writing formal specifications of a wide
variety of systems, supporting order-sorted equational logic
with various equational theory attributes such as associative,
commutativity, identity, and idempotency. It is equipped with
a rich syntax and many useful features, such as module
expressions, modules instantiated parameters using views,
and the flexible mix-fix syntax so that it can be used to
formally specify even complex systems like concurrent and
distributed systems. Besides, CafeOBJ can be used as a
powerful interactive theorem proving system, where humans
can write a formal proof, the so-called proof score [11],
[12], for an invariant property under verification. That proof
score is executable, and the formal verification is done by
executing it with CafeOBJ. IPSG (Invariant Proof Score
Generator) could automate the proof score writing process to
produce the proof score for an invariant property. Precisely,
given a CafeOBJ formal specification, invariant properties
formalizing the desired properties we want to verify, and an
auxiliary lemma list, IPSG can automatically produce the
proof scores verifying those properties.

Analysis and verification of security protocols, such as
Transport Layer Security (TLS) [13], [14] and SSH [3],

1https://csrc.nist.gov/projects/post-quantum-cryptography

require the assumption of the presence of malicious partic-
ipants in addition to honest participants, which is an essential
difference from verification of other systems/protocols.
The Dolev-Yao generic intruder model [15] is used for
this purpose as a de facto standard. To tackle security
analysis of post-quantum cryptographic protocols, such as PQ
SSH [7], however, we need to extend the Dolev-Yao intruder
model because the availability assumption of large-scale
quantum computers gives the intruder some new capabilities.
Many quantum algorithms have been proposed. Among
them, Shor’s algorithm [1] and Grover’s algorithm [16] are
considered potential threats to public-key primitives and
symmetric primitives, respectively, used today. We can work
around Grover’s algorithm by doubling the symmetric key
length. Thus, Shor’s algorithm is the only one for which
we need to come up with new public-key cryptographic
primitives to make cyberspace in the quantum era secure.
To this end, NIST has been then launching the competition
to standardize new public-key primitives, such as KEMs.
We have formally specified and analyzed/verified some
KEMs [17] to comprehend KEMs better and to be able to
make an abstract version of them in order to use in the
analysis/verification of higher-level protocols, such as PQ
SSH in this paper. That study has also helped us to be able to
extend the Dolev-Yao generic intruder model so as to conduct
the formal analysis reported in this paper.

Our main contributions in this study are summarized as
follows:

• A symbolic model of the protocol that is formally
specified in CafeOBJ as a specification, faithfully
captures what is specified in the IETF Draft [7]. We
use an extended version of the Dolev-Yao intruder
model [15] to specify a threat model in which the
intruder has the capabilities of fully controlling the net-
work, breaking ECDH’s security (assumedly by using
large-scale quantum computers), and compromising
secrets.

• Formal verifications that the protocol enjoys three
desired security properties including (1) session key
secrecy, (2) forward secrecy, and (3) session identifier
uniqueness, where IPSG is used to generate the proof
scores. The verifications are achieved with respect to an
unbounded number of protocol participants and session
executions.

• We consider another property, namely authentication,
which we find a counterexample against the property.
We propose to slightly revise the protocol by adding the
identifiers of the client and the server into the exchange
hash. We revise the CafeOBJ formal specification
accordingly so that we can formally verify that the
improved protocol enjoys the authentication property as
well as (1), (2), and (3).

The webpage2 provides all materials used in this paper,
including the CafeOBJ formal specifications, the proof

2https://github.com/duongtd23/PQSSH

VOLUME 12, 2024 1673

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

scores verifying the desired properties, and the installation
guidelines for the tools used. The rest of this paper is
organized as follows. First, we mention some closely related
work and background requirements to understand the rest
of the paper in Sections II and III, respectively. Then,
Section IV introduces the PQ SSH protocol as well as dif-
ferent approaches to post-quantum cryptographic algorithm
construction. Section V presents the formal specification of
the protocol in CafeOBJ. The formal analysis of the four
properties is reported in Section VI. Finally, we summarize
our study in Section VII.

II. RELATED WORK
Symbolic analysis and computation analysis are known
as two complementary approaches to security analysis
of cryptographic protocols. The computational approach
is widely used by cryptographers as a standard way to
verify the security of cryptographic protocols, while formal
method researchers typically prefer the symbolic approach.
Many studies and supporting tools on security analysis of
cryptographic protocols in both symbolic and computational
approaches have been surveyed in [18] and [19]. In the
symbolic approach, to the best of our knowledge, [20] and
[21] are the only two studies on post-quantum cryptographic
protocol analysis. The former has symbolically analyzed
the Ephemeral DH Over COSE (EDHOC) protocol [22],
which was proposed by the Lightweight Authenticated Key
Exchange Working Group. The protocol is dedicated to
being used on IoT devices. The original protocol uses the
DH key exchange algorithm, which is not quantum-safe
because the discrete logarithm problem of DH will be
no longer hard with the presence of practical quantum
computers. The protocol was then made post-quantum secure
by replacing the DH algorithm with a quantum-resistant
KEM. This KEM-based version was also taken into account
in their analysis. An interesting point in this work is that
they used Sapic+ [23] verification framework so that the
protocol formal specification written in π-calculus [24]
can be exported into some other security analyzer tools
including ProVerif [25] and Tamarin [26]. A formal analysis
of SSH with the employment of Sapic+ was also reported
in [23], where the secrecy and authentication properties were
formally verified.

WireGuard [27] is a VPN protocol focusing on simplicity,
fast speed, and high performance. Facing the quantum
attack threat, a quantum-resistant version of WireGuard has
been proposed [21], the so-called post-quantum WireGuard
(PQ-WireGuard). The authors have symbolically verified
the desired security properties of the protocol that are
inherited fromWireGuard. The symbolic proof used Tamarin
prover [26]. They first symbolically modeled the primitives,
messages, etc. used in the protocol as function symbols
and terms. The verification then formalized the security
properties as Tamarin lemmas and introduced some auxiliary
lemmas as well. In addition to the symbolic verification,
the authors also conducted and reported a computational

verification. On the one hand, the symbolic proof exposes
the superiority to the computational proof in two points: first,
it covers more security properties, and second, it is computer-
verified. On the other hand, the computational proof gives
stronger security assurances because it took probability and
complexity into account, and fewer idealizing assumptions
were made.

Formal methods with supporting tools have been suc-
cessfully used to formally verify the security of various
cryptographic protocols. Tamarin [26], ProVerif [25], and
Maude-NPA [28] are the most well-known tools, among
others. Tamarin is a successor of the analyzer Scyther [29].
It operates based on AC-collection rewriting and its verifi-
cation algorithm is based on constraint solving. Basically,
a specification written in Tamarin is a state machine where
each state is an AC-collection of facts. Transitions between
states are defined by rules, which specify the protocol
execution, the behavior of honest parties as well as the
capabilities of the intruder. Roughly speaking, facts and rules
correspond to observers and transitions of OTSs in our proof
approach. A security property is specified as a trace property,
then Tamarin checks the satisfiability and/or the validity of
the formula formalizing the property under verification. If it
is the validity checking, Tamarin first converts the formula
to its the negated form in order to perform a satisfiability
checking instead. After that, Tamarin performs an exhaustive,
symbolic search based on constraint solving until either
a satisfying trace is found or no more rewrite rules can
be applied. However, the search is not guaranteed to be
terminated for every analysis attempt, and when it is the
case, the tool allows manual interaction from human users to
operate it with the supplementation of some extra lemmas.
Thus, on the one hand, both Tamarin and our verification
method require manual efforts on conjecturing additional
lemmas, while on the other hand, Tamarin’s verification
algorithm and the simultaneous induction proof method are
essentially different.

ProVerif [25] is another automated tool for symboli-
cally analyzing cryptographic protocols. A variant of the
π -calculus [19] is used to model the protocol under verifica-
tion, and then ProVerif translates it to a set of Horn clauses.
This Horn clause representation makes some abstractions,
which is the cost for the support of verification with respect
to an unbounded number of sessions. Given a desired security
property, the tool reduces the problem of finding an attack
against the property to the derivability of a fact on the Horn
clauses representing the protocol execution. If the fact is not
derivable from the clauses, the protocol enjoys the property.
Otherwise, if an attack derivation is found, the derivation may
correspond to a real attack. However, that attack derivation
may also not be feasible in reality because of the internal
abstractions performed by ProVerif [30]. If that is the case,
the tool just returns an ‘‘unknown’’ answer.

Maude-NPA [28] is a formal method tool for cryptographic
protocol analysis based on narrowing & rewriting logic [31].
The tool is implemented in Maude [32]. The Dolev-Yao

1674 VOLUME 12, 2024

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

intruder model [15] and the strand model [33] are used
to model the intruder’s capabilities. In this manner, the
intruder is given the capability of fully controlling the
network, for example, intercepting & modifying messages
and impersonating some protocol participants to send some
messages to other participants. For the analysis, Maude-
NPAuses a backward narrowing reachability analysismodulo
an equational theory. Narrowing [32] is a generalization of
term rewriting that allows logical variables in subject terms
and replaces pattern matching by unification. The backward
narrowing reachability analysis starts from a final insecure
state pattern specified by human users that represents
insecure states, the so-called attack pattern, to check whether
it is reachable from an initial state. Roughly speaking, the
attack pattern and the initial state (if found) in Maude-NPA
correspond to the negated formula formalizing the validity
property and the satisfying trace (if found), respectively,
in Tamarin. The exhaustive search has pros as it is fully
automated, but it poses cons because the search would take
a long time to terminate when the state space is large even
though several optimization techniques to reduce the search
state space have been developed [28], [34], [35]. In contrast,
running time is not a problem with our verification approach
presented in this paper since proof score execution normally
takes only a short time. Note, however, that our verification
approach is not fully automated because manual efforts are
spent to construct some additional lemmas.

Even though verification of designs and specifications
of cryptographic protocols has significantly contributed
to their reliability, some researchers argued that formal
verification by using some formal specification languages
to specify cryptographic protocols often lacks some aspect
of details. They then proposed to verify detailed protocol
implementations, such as verifying SSH implementations
in [36] and [37] and verifying implementations of different
versions of Transport Layer Security (TLS) protocol in [13],
[14], [38], [39], and [40]. On the one hand, this verification
technique has the benefit of not having to worry about some
potentially erroneous details of the protocol implementation
code being missed. On the other hand, the verification may
be very costly. First, the verifier may take a very long time to
terminate or even may not terminate in some circumstances,
especially with a large implementation. Second, a large
amount of memory may be consumed.

III. PRELIMINARIES
This section briefly describes some necessary preliminaries
for the rest of the paper including OTS, the simultaneous
induction proof, and the formal verification with CafeOBJ.

A. OBSERVATIONAL TRANSITION SYSTEM (OTS)
Let ϒ denote a universal state space and D, possibly with a
subscript, such as Do1 and Do, denote a data type.
Definition 1: An OTS S is a tuple ⟨O, I, T ⟩ in which:
• O: A finite set of observers. Each observer o :

ϒ Do1 . . . Dom → Do takes one state (we assume to

be always the first argument) and m (m ≥ 0) data values
and returns one data value.

• I: The set of initial states, where I ⊆ ϒ .
• T : A finite set of transitions. Each transition t :

ϒ Dt1 . . . Dtn → ϒ has the effective condition c-t :

ϒ Dt1 . . . Dtn → Bool such that if c-t(υ, x1, . . . , xn)
does not hold, t(υ, x1, . . . , xn) =S υ for x1 ∈ Dt1, . . . ,
xn ∈ Dtn.

Definition 2: Given an OTS S, the set of reachable states
RS with respect to (wrt) S are inductively defined:

• Each υ ∈ I is reachable wrt S.
• For each t ∈ T and each xk ∈ Dtk for k = 1, . . . , n,
t(υ, x1, . . . , xn) is reachable wrt S if υ ∈ ϒ is reachable
wrt S.

Predicates whose types are ϒ D1 . . . Dn → Bool are
called state predicates. A state predicate that holds in all
reachable states is called an invariants. For example, predicate
p : ϒ D1 . . . Dn → Bool, where (∀υ ∈ RS)(∀d1 ∈

D1) . . . (∀dn ∈ Dn). p(υ, d1, . . . , dn), is an invariant wrt S.

B. SIMULTANEOUS INDUCTION PROOF
This section describes the simultaneous induction method
[11], [12] for invariant proof. Suppose that we want to prove
a predicate p1 ϒ Dp1 . . . Dpl → Bool is invariant
wrt an OTS S, i.e, (∀υ ∈ RS)(∀x1 ∈ Dp1) . . . (∀xl ∈

Dpl). p1(υ, x1, . . . , xl). To shorten the formula for ease of
reading, let us use D1 to denote Dp1 . . . Dpl and x1 to denote
x1, . . . , xl . This is also applied with other notations in the
rest of this paper as well, i.e., a bold upper-case (sans serif)
letter denotes a list of data types while a bold lower-case
(sans serif) letter represents a list of variables. Consequently,
what is needed to prove is (∀υ ∈ RS)(∀x1 ∈ D1). p1(υ, x1).
We prove that by using induction on the argument of states
of p1. For the base case, we need to prove the following:

(∀υ ∈ IS)(∀x1 ∈ D1). p1(υ, x1) (1)

(1) can typically be proved by deduction (or if we use
a theorem prover, it can be straightforwardly resolved by
the prover). For each induction case t associated with the
transition t : ϒ Dt → ϒ , what we need to prove is as
follows:

(∀υ ∈ RS). ((∀x1 ∈ D1) p1(υ, x1)

⇒ (∀yt ∈ Dt)(∀x1 ∈ D1) p1(t(υ, yt), x1)) (2)

It suffices to prove p1(t(υ, y′
t), x

′

1) for an arbitrary state υ

and arbitrary values y′
t and x′

1 of Dt and D1, respectively,
under the induction hypotheses (∀x1 ∈ D1) p1(υ, x1). The
induction hypothesis instance p1(υ, x′

1) is often used for that
proof. We can also use other instances, such p1(υ, x2) and
p1(υ, x3). It is, however, typically impossible to prove (2)
standalone for non-trivial p1. Instead, we often prove the
conjunction of p1 and k − 1 other predicates, let’s say
p2, . . . , pk , where pi : ϒ Di → Bool for i = 2, . . . , k . That is,
we prove (∀ x1 ∈ D1)p1(υ, x1)∧ . . . ∧ (∀xk ∈ Dk)pk (υ, xk)
is invariant wrt S . Subsequently, with the induction case t

VOLUME 12, 2024 1675

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

associated with the transition t , (2) is now changed to:

(∀υ ∈ RS).

((∀x1 ∈ D1) p1(υ, x1) ∧ . . . ∧ (∀xk ∈ Dk) pk (υ, xk)

⇒ (∀yt ∈ Dt) ((∀x1 ∈ D1) p1(t(υ, yt), x1) ∧ . . .

∧ (∀xk ∈ Dk) pk (t(υ, yt), xk))) (3)

It suffices to prove each conjunct pi(t(υ, y′
t), x

′
i) of the

conclusion part for an arbitrary state υ and arbitrary values
y′
t and x′

i of Dt and Di, respectively, under the induction
hypotheses (∀x1 ∈ D1)p1(υ, x1)∧. . .∧(∀xk ∈ Dk)pk (υ, xk).
Typically, it suffices to use only pi(υ, x′

i) as the induction
hypothesis instance:

pi(υ, x′
i) ⇒ pi(t(υ, y′

t), x
′
i) (4)

Sometimes, it is necessary to use some more instances, for
example:

pj(υ, xj) ⇒ pi(υ, x′
i) ⇒ pi(t(υ, y′

t), x
′
i) (5)

In this case, we can say that the proof of pi uses pj as a
lemma. From what has been presented, although k predicates
depend on each other, we can prove them compositionally
by using induction for each predicate, and in the proof of
pi, pj could be used to strengthen the induction hypothesis.
Therefore, the proof method is called simultaneous induction.

C. FORMAL VERIFICATION WITH CafeOBJ AND IPSG
Based on the simultaneous induction proof method, this
section illustrates how to do formal verification with
CafeOBJ [9] and IPSG [10]. We consider a simplified
version of the classical key distribution protocol proposed
by Denning and Sacco [41], which is called SDS (Simplified
Denning-Sacco) in this paper. Fig. 1 depicts the twomessages
exchanged in the SDS protocol. The initiator message sent by
Alice is referred to as message (i), while the reply message
sent by Bob is referred to as message (ii). aenc and senc
denote asymmetric encryption and symmetric encryption,
respectively. PKA and SKA denote the public and private keys
of principal A, respectively. K denotes a secret key, which
is unguessable, and ; is the concatenation operator. The two
messages exchanged between A and B can be explained as
follows. A first selects a secret key K , and encrypts it together
with the identifier of B under the private key of A, obtaining
a ciphertext. The ciphertext is once more encrypted by the
public key of B, and then A sends the obtained result to
B. When B receives the message from A, B consecutively
decrypts the content received twice respectively with his/her
private key and the public key of A. If the two decryptions
are successful and the final obtained plaintext consists of the
receiver’s identifier and a key K , then B responds back to A
with the identifiers of A and B symmetrically encrypted by
the key K in order to prove the possession of the secret key.

1) MODELING THE PROTOCOL
To do verification with CafeOBJ, we first model the protocol
in CafeOBJ with the presence of attackers. We introduce

FIGURE 1. Two messages exchanged in the SDS protocol.

CafeOBJ sorts (types) Prin, PriKey, and PubKey to
represent protocol participants, their private and public keys,
respectively, and three CafeOBJ operators as follows:

[Prin PubKey PriKey]
op priK : Prin -> PriKey {constr} -- private key
op pubK : Prin -> PubKey {constr} -- public key
op intru : -> Prin {constr} -- the intruder

The constr indicates that, for example, priK is a
constructor of the sort PriKey. The last operator (also called
a constant), i.e., intru, represents a generic attacker. This
attacker is modeled as the Dolev-Yao intruder [15], who
can completely control the network. Note that -- denotes a
CafeOBJ comment.

We additionally introduce sort Secret representing
secret keys, and two generic sorts Data and DataL,
which are the supersorts of Prin, PubKey, PriKey, and
Secret. || is used as the concatenation operator:

[Data < DataL]
[Prin PubKey PriKey Secret < Data]
-- concatenation operator
op _||_ : DataL DataL -> DataL {assoc constr}

assoc indicates that the operator is associative, meaning that
with three pieces of data d1, d2, and d3, (d1 || d2) || d3 and
d1 || (d2 || d3) are identical.
Symmetric and asymmetric encryptions/decryptions are

modeled by the following operators:

-- key plain ciphertext
op aenc : Data DataL -> Data {constr} -- asymmetric encr
op senc : Data DataL -> Data {constr} -- symmetric encr
-- key cipher plaintext
op adec : Data Data -> DataL -- asymmetric decr
op sdec : Data Data -> DataL -- symmetric decr

These operators are defined by means of equations, for
example:

eq adec(pubK(A), aenc(priK(A),DL)) = DL .

which states that a ciphertext encrypted by the private key of
A can be decrypted by the public key of A. We turn to model
exchanged messages. The two messages are represented by
the following operators:

op msg1 : Prin Prin Prin DataL Nat -> Msg {constr}
op msg2 : Prin Prin Prin DataL Nat -> Msg {constr}

The first, second, and third arguments are the real author,
the seeming sender, and the recipient of a given message,
respectively. Nat is the sort of natural numbers. Given
three principals a, b, a′, a ciphertext c, and a number t ,
msg1(a′, a, b, c, t) denotes a message (i). With this message,
b is the recipient of the message, a is the seeming sender
whom b believes that he/she is the principal who sent

1676 VOLUME 12, 2024

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

the message, and a′ is the real creator of that message.
In particular, when a′ is the intruder, the intruder tries to
impersonate a to send the message to b. Note that the first
argument is used for modeling and verification purposes only,
but it can neither be seen by the receiver nor be controlled by
the intruder. The argument of the sort Nat is embedded in the
last of each operator to store the time when the corresponding
message is sent. That time information is represented as a
natural number. Initially, the time of the system is set to 0,
and after each action such as a message being sent, it is
incremented.

We turn to model the protocol execution. Sorts Sys
and Network are defined, representing the state space
and the network, where the network is modeled as an
associative-commutative collection (AC-collection) of mes-
sages exchanged between principals. All initial states are
represented by the constant init. Four observers nw,
usecret, knl, and time are defined, observing the
network, the set of secret keys used by all principals, the
knowledge of the intruder, and the time of the system,
respectively. Their declarations and the definition of initial
states are as follows:

op init : -> Sys {constr}
op nw : Sys -> Network
op usecret : Sys -> SecretSet
op knl : Sys -> DataL
op time : Sys -> Nat
eq nw(init) = void .
eq usecret(init) = empty .
eq time(init) = 0 .
eq knl(init) = (priK(intru) || pubK(intru)) .

where SecretSet is the sort of sets of secret keys. The
four equations say that in an initial state, the network is empty
(denoted by void), the set of secret keys used is also empty,
the time of the system is 0, and the intruder knowledge is their
own private and public keys.

We define two transitions modeling how messages (i) and
(ii) are sent by principals. The transition send1 below
models how A sends a message (i) to B:

op send1 : Sys Prin Prin Secret -> Sys {constr}
ceq nw(send1(S,A,B,K)) = msg1(A,A,B,

aenc(pubK(B), aenc(priK(A), B || K)), time(S))
, nw(S)

if c-send1(S,K) .
ceq usecret(send1(S,A,B,K)) = (K usecret(S))
if c-send1(S,K) .

ceq time(send1(S,A,B,K)) = s(time(S))
if c-send1(S,K) .

ceq knl(send1(S,A,B,K)) =
(aenc(pubK(B), aenc(priK(A), B || K)) || knl(S))
if c-send1(S,K) .

-- the state remains unchanged
ceq send1(S,A,B,K) = S if not c-send1(S,K) .
-- effective condition
eq c-send1(S,K) = not(K \in usecret(S)) .

where A, B, K, and S are CafeOBJ variables of the
corresponding sorts. \in is the membership predicate.
c-send1 is the effective condition of the transition. The first
four conditional equations say that if the secretK has not been

used, A uses it to construct a message (i), sends the message
to B, the secret is put into the set of secrets used, the time
of the system is incremented, and the ciphertext sent to B is
appended to the intruder knowledge (i.e., the intruder learned
the ciphertext). In a similar way, we define another transition
modeling how B sends a message (ii) to A.

We model the intruder with the Dolev-Yao’s capabili-
ties [15]. Precisely, the intruder can:
(1) intercept any message sent in the network and learn the

information carried in that message;
(2) randomly choose a secret value and use it for something

else;
(3) use any cryptographic primitive function with any

available information as input to learn the output; and
(4) use the available information to construct amessage, and

impersonate an honest principal to send the message to
another.

The previously described transition send1 illustrated how
the Dolev-Yao capability (1) is fulfilled, i.e., whenever an
honest principal sends a message (i) to another, the intruder
learns the ciphertext carried in that message. We show part of
another transition, illustrating how the Dolev-Yao capability
(3) is fulfilled:

op g2 : Sys Data DataL -> Sys {constr}
ceq knl(g2(S,D1,DL2)) = (aenc(D1,DL2) || senc(D1,DL2) ||

knl(S)) if c-g2(S,D1,DL2) .
eq c-g2(S,D1,DL2) = (D1 \in knl(S) and DL2 \in knl(S)) .

It states that if two pieces of information D1 and DL are
available to the intruder, the intruder can use D1 as a key to
symmetric encrypt and asymmetric encrypt DL and learn the
two obtained ciphertexts.

2) FORMAL VERIFICATION
We verify the key secrecy property, which states that a secret
key can be securely distributed to principals. We specifies the
property as the following state predicate:

op keySe : Sys Prin Prin Secret Nat -> Bool
eq keySe(S,A,B,K,N) = (not(A = intru or B = intru) and

msg1(A,A,B, aenc(pubK(B), aenc(priK(A), B || K)), N)
\in nw(S))

implies not(K \in knl(S)) .

It states that if honest principal A has sent to honest principal
B a secret key K through a message (i), that is, the message
exists in the network, then the intruder is unable to learn K,
that is, the secret key does not exist in the intruder knowledge.
We prove that keySe is invariant based on the simultaneous
induction method, by using the tool IPSG to produce the
so-called proof score. IPSG was implemented in Maude [32]
and uses CafeInMaude [42], which is the second major
implementation of CafeOBJ in the Maude environment.
We refer the readers to [10] for the tool implementation, how
to use it, and how it works. We first ask IPSG to generate the
proof score attempt of keySe. In that generated proof, there
exist some sub-cases in which we need to conjecture lemmas
to discharge the sub-cases. We then use IPSG to produce
the proof of keySe again as well as the proof attempt of

VOLUME 12, 2024 1677

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

such lemmas, which may require us to conjecture some other
lemmas. The process is repeated until no new lemma is
required. In the following, we describe part of the proof score
of keySe, when a new lemma is needed, and how we can
construct such a lemma.

Recall that keySe is proved by induction. The proof of
the base case is done through a so-called CafeOBJ open-close
fragment as follows:

open INV .
ops a b : -> Prin . op k : -> Secret . op n : -> Nat .
red keySe(init,a,b,k,n) .

close

INV is the CafeOBJ module containing the protocol
specification and the predicate keySe. a and b, which are
called fresh constants, denote two arbitrary principals; k
and n can be understood likewise. Feeding this open-close
fragment into CafeOBJ, true is returned, and then the case
is discharged. The proof score of keySe is a collection of
open-close fragments like that one.

In the proof of the induction case in which send1 is taken
into account, we try to prove the following:

keySe(s,a,b,k,n) implies keySe(send1(s,r1,r2,r3),a,b,k,n)

where r1 and r2 are fresh constants of Prin, denoting
arbitrary principals; s and r3 are fresh constants of Sys and
Secret, respectively. However, CafeOBJ returns a complex
term for that implication. In such a case, case splitting is
typically used to split the case into some sub-cases, where
each sub-case is discharged by a corresponding open-close
fragment. Let us consider another open-close fragment in the
proof attempt of keySe produced by IPSG:

open INV .
ops a b r1 r2 : -> Prin . ops k r3 : -> Secret .
op n : -> Nat . op s : -> Sys .
eq (r3 \in usecret(s)) = false .
eq a = r1 . eq b = r2 . eq k = r3 .
eq (r1 = intru) = false . eq (r2 = intru) = false .
eq time(s) = n . eq (r3 \in knl(s)) = true .
eq (msg1(r1,r1,r2,aenc(pubK(r2),aenc(priK(r1),(r2 ||

r3))),n) \in nw(s)) = false .
red keySe(s,a,b,k,n) implies

keySe(send1(s,r1,r2,r3),a,b,k,n) .
close

The equations characterize the sub-case. For instance, the
Boolean term r3 \in usecret(s) is used to split the
induction case into two sub-cases: (1) it is true and (2) it
is false. The first equation considers sub-case (2). However,
CafeOBJ returns false for the open-close fragment.
Provided that keySe is invariant as our expectation, what
can be deduced is that states denoted by the fresh constant
s must be unreachable. There should exist a contradiction
among the equations characterizing the sub-case. From our
comprehension of the protocol, we strongly believe that if a
secret key exists in the intruder knowledge, it should exist
in the set of used secrets. Consequently, it turns out that the
following two equations are contradicted:

eq (r3 \in usecret(s)) = false .
eq (r3 \in knl(s)) = true .

Based on that deduction, a lemma, namely inv2, is con-
jectured as follows:

op inv2 : Sys Secret -> Bool
eq inv2(S,K) = K \in knl(S) implies K \in usecret(S) .

It says that every secret K available to the intruder exists
in the set of used secrets. Then, in the open-close fragment
above, actually, the following reduce command is used
instead:

red inv2(s,r3) implies keySe(s,a,b,k,n) implies
keySe(send1(s,r1,r2,r3),a,b,k,n) .

true is now returned for the open-close fragment. We say
that inv2 is used as a lemma.

The remaining part of the keySe’s proof score (i.e., a col-
lection of open-close fragments) uses some other lemmas
as well. To complete the formal verification, we also need
to prove inv2 and those other lemmas. Note that, if all of
those lemmas are available, IPSG will generate the complete
proof scores for all of them including keySe. All proof
scores of keySe and the lemmas as well as the inputs for
IPSG to produce those proof scores again are available on
the webpage.3 Even though the verification process is not
completely automated, IPSG indeed helps us to save time and
effort, and more importantly to avoid human errors, which
could happen if we write proof scores by hand.

IV. POST-QUANTUM SSH TRANSPORT LAYER PROTOCOL
PQ SSH [7] relies on the hybrid key exchange method,
i.e., a classical key exchange algorithm and a quantum-
resistant Key Encapsulation Mechanism (KEM) are used in
parallel. KEMs can be regarded as a new formulation of key
exchange algorithms according to the NIST standardization
project.4 The following is the general definition of KEMs.
Definition 3: A key encapsulation mechanism (KEM) is

a tuple of algorithms (KeyGen, Encaps, Decaps) along
with a finite key space K:

• KeyGen() → (pk, sk): A probabilistic key generation
algorithm that outputs a public key pk and a secret
key sk .

• Encaps(pk) → (c, k): A probabilistic encapsulation
algorithm that takes as input a public key pk , and outputs
an encapsulation (or ciphertext) c and a shared secret
k ∈ K.

• Decaps(c, sk) → k: A (usually deterministic) decap-
sulation algorithm that takes as inputs a ciphertext c and
a secret key sk , and outputs a shared secret k ∈ K.

There are different approaches to post-quantum public-key
cryptographic algorithm construction, such as lattice-based,
hash-based, and code-based. The latticed-based approach
tends to be the most promising way to construct future post-
quantum KEMs as the number of latticed-based submissions
is the most in the NIST standardization competition. In this
approach, a post-quantum algorithm can base its security on

3https://github.com/duongtd23/PQSSH
4https://csrc.nist.gov/projects/post-quantum-cryptography

1678 VOLUME 12, 2024

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

the difficulty of learningwith errors, ring learningwith errors,
and learning with rounding, among others. For example,
a KEM based on learning with errors generally computes
the public key pk = A ∗ s + e, where A is a public matrix,
s is a vector of coefficients serving as a secret key, and e is
a small error vector of coefficients acting as a noise. This
public key is sent to Bob with the expectation that Eve is
unable to derive A ∗ s (and subsequently, s) even though A
and pk are given. A ∗ s can be interpreted as a vector in
the lattice L{a1, . . . , ak}. Because e is small, pk is close to
A∗s. Thus, recovering A∗s corresponds to finding the closest
vector problem in lattices. No efficient algorithm on either
classical computers or quantum computers is known to solve
the closest vector problemwhen the lattice dimension is large,
so it is believed hard even for quantum computers. Various
latticed-based KEMs can be named, such as CRYSTALS-
Kyber [8], [43], Saber [44], FrodoKEM [45], NTRU [46],
and NTRU Prime [47]. In the IETF Draft specifying PQ
SSH [7], the quantum-resistant KEM is fixed to CRYSTALS-
Kyber, while the classical key exchange algorithm used
is ECDH.

The messages exchanged in the PQ SSH protocol are
depicted in Fig. 2. Each server host B owns a public
host key (LKB) and a private host key (LSKB), where the
public host key is known by all clients. To initialize a
new connection between client A and server B, a pair of
VERSION_EX messages is sent by them, exchanging the
protocol versions on each side. The message can be called
the version exchange message. Then, they exchange a pair of
KEX_ALGRmessages, indicating their supported algorithms
(cryptographic primitives) sorted in order of preference. The
message can be called the key exchange algorithms message.
After that A generates: (1) an ECDH ephemeral key pair,
i.e., secret key and its associated public key (ECDHPKA),
and (2) a KEM public key (KEMPKA), i.e., the output of the
algorithm KeyGen. A then sends the two public keys to B
through aKEX_HBR_INITmessage (key exchange initiation
message). Upon receiving that KEX_HBR_INIT message, B
also generates an ECDH ephemeral key pair and performs
the algorithm Encaps to get a ciphertext (KEMCB). B then
replies back to A with a KEX_HBR_REPLY message (key
exchange reply message), consisting of the public host key
of B, the ECDH ephemeral public key, the ciphertext, and a
signature of the ‘‘exchange hash.’’ The precise computations
of the exchange hash and the signature are depicted in
Fig. 3, where hash denotes the hash function. First, the
shared secret K is computed by hashing the concatenation
of the ECDH and KEM shared secrets. Then, the exchange
hash H is computed by hashing the concatenation of the
payloads of the two VERSION_EX messages and the
two KEX_ALGR messages, the public host key of B, the
ECDH and KEM ephemeral public keys of the client,
the ECDH ephemeral public key and the KEM ciphertext
of the server, and the shared secret K. Afterward, the
signature SIGN is computed by signing H under B’s private
host key.

V. MODELING THE PROTOCOL
This section presents how to model the protocol in CafeOBJ.
We also explain the threat model used and how to specify it
in the CafeOBJ formal specification.

A. MODELING ECDH AND KEMs
We introduce CafeOBJ sorts EcSecretK, EcPublicK,
and EcShareK representing ECDH secret keys, public
keys, and shared secrets, respectively, and some operators as
follows:
[EcSecretK EcPublicK EcShareK]
-- associated ECDH public key is derived from secret key
op ecPublic : EcSecretK -> EcPublicK {constr}
-- a shared key is computed from a public & a secret keys
op ecShare : EcPublicK EcSecretK -> EcShareK
-- constructor of a shared key is a secret key pair
op _|_ : EcSecretK EcSecretK -> EcShareK {constr comm}

The first operator represents the computation of the
associated public key from a secret key. The second operator
represents the computation of the shared secret from a public
key and a secret key. Let PK and K be CafeOBJ variables
of the sorts EcPublicK and EcSecretK, respectively, the
semantic of ecShare is defined by the following equation:
eq ecShare(PK,K) = (ecSecret(PK) | K) .

where ecSecret returns the associated secret key of a
given public key (it is the projection function of ecPublic).
Given two ECDH secret keys k1 and k2, ecPublic(k1)
denotes the public key associated with k1, and (k1|k2)
denotes the shared secret obtained from that public key and
the secret key k2. The operator _|_ is commutative, namely
(k1|k2) and (k2|k1) are identical, thanks to the CafeOBJ
attribute comm.
We choose to model KEMs based on their general defi-

nition, i.e., Definition 3. The CafeOBJ formal specification
of the protocol does not take into account how CRYSTALS-
Kyber KEM is implemented, that is, we omit to specify
its implementation components in detail, such as vectors
and matrices. The three algorithms KeyGen, Encaps, and
Decaps are regarded as three black boxes taking some
inputs and returning the outputs. Using abstract versions
of cryptographic primitives to model them like this is
commonly made in the symbolic analysis of cryptographic
protocols. For example, to model hash functions, typically,
it suffices to use just a function/operator, which takes any
data as input and returns the corresponding hash. The
design and implementation aspects of the hash functions,
such as block cipher, would be omitted in the formal
specification.

To model KEMs in CafeOBJ, sorts PqSecretK,
PqPublicK, PqShareK, and PqCipher are defined,
representing secret keys, public keys, shared secrets, and
ciphertexts (or encapsulations), respectively. Let K’, K2’,
and K3’ are variables of PqSecretK, PK’ and C are
variables of PqPublicK and PqCipher, respectively. The
algorithms KeyGen, Encaps, and Decaps are modeled by
the following operators and equations:

VOLUME 12, 2024 1679

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

FIGURE 2. Messages exchanged in the PQ SSH protocol.

FIGURE 3. Exchange hash and signature calculation.

op keygen : PqSecretK -> PqPublicK {constr}
-- Encaps: returns ciphertext
op encapsC : PqPublicK PqSecretK -> PqCipher {constr}
-- Encaps: returns shared key
op encapsK : PqPublicK PqSecretK -> PqShareK
op decaps : PqCipher PqSecretK -> PqShareK
-- constructor of a shared key is a secret key pair
op _&_ : PqSecretK PqSecretK -> PqShareK {constr}
eq encapsK(PK’, K’) = (pqSecret(PK’) & K’) .
ceq decaps(C, K’) = (K’ & pqSecret(C))

if (pqPublic(C) = keygen(K’)) .
ceq (decaps(C, K’) = (K’ & K2’)) = false

if not(K2’ = pqSecret(C)) .
ceq (decaps(C, K’) = (K2’ & K3’)) = false

if not(K’ = K2’) .

Note that KeyGen and Encaps are probabilistic algo-
rithms. Thus, to specify them as deterministic procedures
in CafeOBJ, an argument of the sort PqSecretK is added
as the input argument. Note also that with Encaps, two
separate operators encapsC and encapsK are defined,
respectively returning the ciphertext and the shared secret.
pqPublic and pqSecret are the projection functions
of encapsC, returning its first and second arguments,
respectively (pqSecret is also the projection function of
keygen). Given an encapsulation C and a secret key K’,
the second equation states that Decaps(C,K’) properly
outputs the shared secret only if C encapsulates some secret to
the associated public key ofK’ (in other words, the public key
of C is the associated public key of K’). The third equation
states that Decaps(C,K) cannot be (K’ & K2’) if C
does not encapsulate K2’.

B. MODELING CRYPTOGRAPHIC PRIMITIVES AND
MESSAGES EXCHANGED
We introduced sorts Prin, PubKey, PriKey, Version,
and Suites representing principals, public host keys,
private host keys, protocol versions, and lists of supported
algorithms, respectively. Similar to the specification of the
SDS protocol in Section III-C, sorts Data and DataL are
introduced as the supersorts of all sorts mentioned before,
such as EcPublicK and PqPublicK, and || is defined
as the concatenation operator. To model the hash function,
the Sign and Verify signature algorithms, we declare the
following operators:

-- hash function
op h : DataL -> Data {constr}
-- key plaintext signature
op sign : DataL DataL -> Data {constr}
-- key plaintext signature
op verify : DataL DataL DataL -> Bool

There are several equations defining those operators, for
example:

eq verify(pubK(A), D, SIGN) = (SIGN = sign(priK(A),D)) .

which states that given a public host key of principal A,
a message D, and a signature, the Verify algorithm outputs
true when the signature is obtained by signing D under the
private host key of A.

We turn to model messages exchanged in the protocol.
The VERSION_EX, KEX_ALGR, KEX_HBR_INIT, and
KEX_HBR_REPLY messages depicted in Fig. 2 are respec-
tively represented by the following operators:

op verM : Prin Prin Prin Version -> Msg {constr}
op kexAlgM : Prin Prin Prin Suites -> Msg {constr}
op hbrIniM : Prin Prin Prin DataL Nat -> Msg {constr}
op hbrRepM : Prin Prin Prin DataL Nat -> Msg {constr}

Recall that Nat is the sort of natural numbers and the first,
second, and third arguments of each operator denote the
actual sender, the seeming sender, and the recipient of a given
message, respectively. For example, with a VERSION_EX
message in the form of verM(A2,A,B,V), the second
argument, A, is what the receiver B can see about the sender.
The actual sender isA2, whomB is unable to observe.A2may
not be A, and if that is the case, A2 (a dishonest principal) is
trying to claim to be A to communicate with B. We embed
the first argument into each message in order to specify and
verify the authentication property, which will be reported in
Section VI-D.

1680 VOLUME 12, 2024

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

With the two operators representing KEX_HBR_INIT and
KEX_HBR_REPLY messages, we additionally embed an
argument of the sort Nat in the last of each one to store
the time when the corresponding message is sent. The time
information is necessary to specify and verify the forward
secrecy property later on, for instance, to check whether
the key concerned is established before the compromise of
the server’s private host key who established that key in
a session with another client. With the first two operators,
we could also embed an argument of the sortNat in the last of
each one, but saving time information of VERSION_EX and
KEX_ALGR messages is not strictly necessary to complete
the verification.

C. MODELING THE PROTOCOL EXECUTION
Sorts Sys and Network are defined, representing the state
space and the network, where the network is modeled as
an AC-collection of messages exchanged between principals.
All initial states are represented by the constant init. Five
observers nw, usecret, time, leakscr, and knl are
defined, observing the network, the set of ECDH & KEM
secret keys used by all principals, the system time, the
compromised secrets, and the knowledge of the intruder,
respectively. usecret is used to guarantee the uniqueness
of ephemeral secret keys. The compromised secrets can be
ephemeral secret keys, private host keys, and shared secrets
between two participants, which will be described in the next
sections. The declarations of init and the five observers and
the definition of initial states are as follows:

op init : -> Sys {constr}
op nw : Sys -> Network
op usecret : Sys -> SecretKS
op time : Sys -> Nat
op leakscr : Sys -> SecretKS
op knl : Sys -> DataL
eq nw(init) = void .
eq usecret(init) = empty .
eq time(init) = 0 .
eq leakscr(init) = empty .
eq knl(init) = (priK(intru) || pubK(intru)) .

where SecretKS is the sort of sets of secret data types
(e.g., private host keys, ECDH&KEM secret keys). From the
five equations, it follows that in an initial state, the network
is empty (denoted by void), the set of secrets used is also
empty, time of the system is 0, no secret is revealed, and
the intruder knowledge is their own private and public host
keys.

For each of the six messages depicted in Fig. 2, we define
a transition modeling how that message is sent. For instance,
we model sending a KEX_HBR_INIT message through the
following transition:

op cHbrInit : Sys Prin Prin Prin EcSecretK PqSecretK
Version Version Suites Suites -> Sys {constr}

ceq nw(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =
(hbrIniM(A,A,B, ecPublic(K) || keygen(K’),

time(S)) , nw(S))
if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .

ceq usecret(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =
(K K’ usecret(S))
if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .
ceq time(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =

s(time(S))
if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .
ceq knl(cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2)) =

(ecPublic(K) || keygen(K’) || knl(S))
if c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) .
eq c-cHbrInit(S,B2,A,B,K,K’,V,V2,CSs,CSs2) =
(kexAlgM(A,A,B,CSs) \in nw(S) and
kexAlgM(B2,B,A,CSs2) \in nw(S) and
not(K \in usecret(S) or K’ \in usecret(S))) .

where A, B, V, etc., are CafeOBJ variables of the correspond-
ing sorts. \in is the membership predicate. c-cHbrInit
is the effective condition of the transition, which states
that the transition cannot proceed unless two key exchange
algorithmsmessages have been exchanged, and the two secret
keys (ECDH and KEM) K and K’ have not been used before.
The first four conditional equations say that if the effective
condition is satisfied, from the two secret keys K and K’,
client A sends the two associated public keys to B under a
key exchange initiationmessage (by putting that message into
the network), the two secret keys are put into the set of secret
keys used, the time is incremented, and the two public keys
are added to the intruder knowledge (i.e., the intruder learned
the two public keys).

D. THREAT MODEL AND MODELING THE INTRUDER
The threat model used in this verification case study is an
extended version of the Dolev-Yao intruder model [15]. As a
Dolev-Yao intruder, the intruder can completely control the
network, concretely:
(1) The intruder can intercept any message sent in the

network and glean information carried in that message.
This capability has been partially illustrated through
the definition of the transition cHbrInit presented
in Section V-C. That is, whenever an honest principal
sends two public keys to another one through a
KEX_HBR_INIT message, the intruder will learn the
two public keys.

(2) The intruder also knows all publicity information such
as protocol versions, names of cryptographic primitives,
and public host keys even without gleaning them from
the network.

(3) The intruder can select an ephemeral secret key
(either ECDH one or KEM one), and generate the
corresponding public key or the shared secret pro-
vided that the secret key has not been used before
(uniqueness).

(4) If a piece of information is available to the intruder, they
can use any cryptographic primitive function taking the
information as input and learning the output.

(5) The intruder can use the information available to them to
build a message and impersonate some honest principal
to send the message to another.

In addition to the Dolev-Yao capabilities above, our threat
model also considers the following:

VOLUME 12, 2024 1681

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

(6) The security of ECDH is broken. If two ECDH public
keys are given to the intruder, the intruder can derive
the corresponding shared secret, which is assumed by
utilizing the power of large quantum computers.

(7) Secrets may be compromised and the intruder gleans
them. All of ECDH & KEM ephemeral secret keys,
private host keys, and shared secrets established between
two principals are possibly revealed.

The following is part of a transition illustrating how the
Dolev-Yao capability (5) is fulfilled:

op fkHbrInit : Sys Prin Prin EcPublicK PqPublicK -> Sys
{constr}

ceq nw(fkHbrInit(S,A,B,PK,PK’)) =
(hbrIniM(intru,A,B, PK || PK’, time(S)) , nw(S))

if c-fkHbrInit(S,A,B,PK,PK’) .
ceq time(fkHbrInit(S,A,B,PK,PK’)) = s(time(S))
if c-fkHbrInit(S,A,B,PK,PK’) .
eq c-fkHbrInit(S,A,B,PK,PK’) =

(PK \in knl(S) and PK’ \in knl(S)) .

It specifies how the intruder can forge a key exchange
initiation message. The equations straightforwardly state that
if the two ECDH and KEM public keys PK and PK’ are in the
intruder knowledge, the intruder can impersonate principal A,
sending the two public keys through a key exchange initiation
message to principal B. As mentioned before, the first
parameter inside hbrIniM is intru but not A, which is
impossible to be seen by the receiver.

With the capability (7), we show below part of the
transition lPqSecretK1, which partially models the com-
promise of a KEM ephemeral secret key:

op lPqSecretK1 : Sys Prin Prin EcSecretK PqSecretK Nat ->
Sys {constr}

ceq time(lPqSecretK1(S,A,B,K,K’,N)) = s(time(S))
if c-lPqSecretK1(S,A,B,K,K’,N) .

ceq leakscr(lPqSecretK1(S,A,B,K,K’,N)) = (K’ leakscr(S))
if c-lPqSecretK1(S,A,B,K,K’,N) .

ceq knl(lPqSecretK1(S,A,B,K,K’,N)) = (K’ || knl(S))
if c-lPqSecretK1(S,A,B,K,K’,N) .

eq c-lPqSecretK1(S,A,B,K,K’,N) =
hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S) .

It states that if a key exchange initiation message is in the
network, the KEM secret key associated with the public key
sent in that message can be compromised. If that is the
case, the secret key is added to the intruder knowledge as
well as the set of compromised secrets, and the time of the
system is incremented. There is another transition modeling
the compromise of a KEM secret key through a key exchange
reply message.

In summary, the complete formal specification of the
PQ SSH protocol consists of 974 lines of CafeOBJ code,
where 727 lines are dedicated to specifying the protocol
execution and 247 lines are dedicated to defining invariants
(and lemmas), which are used for the formal verification.
Note that the formal specification limits neither the number of
honest principals participating in the protocol nor the number
of sessions that the protocol can execute. Generally speaking,
it allows any principal (a variable of sort Prin) to initialize
a session with any other principal regardless of how many

times and without any restriction by executing the transition
formalizing the sending of a VERSION_EX message.

VI. FORMAL ANALYSIS
Security considerations of the SSH Transport Layer protocol
are claimed in [4] as follows:

This protocol provides a secure encrypted channel
over an insecure network. It performs server
host authentication, key exchange, encryption, and
integrity protection. It also derives a unique session
ID that may be used by higher-level protocols.

Such security requirements should be kept fulfilled in
the PQ SSH protocol. This section presents the formal
analysis of four properties including (1) session key secrecy,
(2) forward secrecy, (3) session identifier uniqueness, and
(4) authentication. (1) makes sure that nobody can learn a
shared secret negotiated between a client and a server except
those two principals (see Section VI-A). (2) guarantees that
even if a private host key of a server is compromised, shared
secrets established before the compromise remain secure (see
Section VI-B). (3) ensures that the exchange hash, acting as
the session identifier, is unique (see Section VI-C). (4) states
that upon completion of a protocol execution, if client A
has communicated apparently with server B, then the server
is indeed B (see Section VI-D). We successfully complete
the verifications of (1), (2), and (3), in which 17 additional
lemmas are introduced. Whereas, we find a counterexample
of (4). In the following, we report in detail the analysis results.
Checking the Specification:We first check that the formal

specification allows two principals successfully complete a
protocol execution and obtain the shared secret. This must
be fulfilled, otherwise, anything we do after is entirely
meaningless. We have confirmed that by showing a reachable
state satisfying that requirement through a sequence of
transitions, which can be found on the webpage mentioned
before.
Checking Intruder Capability of Learning ECDH Shared

Secret: We also confirmed that the intruder is able to learn
the ECDH shared secret established between two honest
principals as what has been modeled for the intruder’s
capabilities. Similarly, we have verified that by pointing out
a reachable state in which the intruder can learn such a secret.

A. SESSION KEY SECRECY PROPERTY
The negotiation of a shared secret between two principals
must be secure against any third party. This is called the
session key secrecy property, which is specified by the
following predicate:
op keySe : Sys Prin Prin Prin Version Version Suites Suites

EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat ->
Bool

eq keySe(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2) =
(not(A = intru or B = intru) and
hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S)
and
hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2)
\in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||

1682 VOLUME 12, 2024

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||
h(ecShare(PK2,K) || decaps(C,K’))),
SIGN) and
not(decaps(C,K’) \in leakscr(S)) and
not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)) and
not(priK(B) \in’ leakscr(S)))
implies not(h(ecShare(PK2,K) || decaps(C,K’)) \in knl(S)).

The predicate states that when honest client A has sent to
honest server B a KEX_HBR_INITmessage and has received
back a KEX_HBR_REPLY message apparently sent from
B with a valid signature of the exchange hash, neither the
KEM shared secret, the two corresponding ephemeral secret
keys, nor the private host key of the server is revealed, then
the intruder cannot learn the shared secret (i.e., the hash
of the ECDH shared secret and the KEM shared secret). From
the client A’s observation, the KEX_HBR_REPLY message
is sent from B, that is the only thing A can see. A cannot
determine whether or not there exists another principal B2,
the actual sender, trying to claim to be B to send to him/her
the message. That is true in reality: when Alice receives a
message seemingly sent from Bob, nothing guarantees that
Bob is the actual sender, the message is possibly originated
by Eve. keySe is formally verified with some additional
lemmas and the employment of IPSG. The complete proof
is available on the webpage.5

All sub-constraints in the premise of the predicate are
necessary, namely, if any of them is eliminated, the predicate
will be no longer valid. Indeed, if the following constraint:

(1) the signature of the exchange hash in the
KEX_HBR_REPLY message is valid

is eliminated, the reply message received may be actually
forged by the intruder (B2 is intru), who is trying to
impersonate B. In this case, the signature will be failingly
verified if A does a check, however, it is not performed
actually because (1) is removed. If the following constraint:

(2) the KEM shared secret is not revealed
is removed, the intruder can derive the shared secret because
the intruder can break ECDH’s security to learn the ECDH
shared secret. It also explains why we only bind the
non-reveal of the KEM shared secret in the premise of
keySe. If the following constraint:

(3) the two corresponding KEM ephemeral secret
keys are not revealed

is removed, the intruder can easily derive the KEM shared
secret, and then they can derive the shared secret as explained
above. If the following constraint:

(4) the private host key of the server is not revealed
is eliminated, the intruder can use the revealed key to
sign the exchange hash to make a valid signature. Subse-
quently, the intruder can completely impersonate server B to
do the key exchange with A. As a result, the shared secret
is obviously available to the intruder. Readers can find on the
above-mentionedwebpage the counterexamples showing that
the predicate will be no longer valid if any of (1), (2), (3), and
(4) is eliminated.

5https://github.com/duongtd23/PQSSH

B. FORWARD SECRECY PROPERTY
Forward secrecy property in general is defined as that the
compromise of a long-term private key does not break
the secrecy of a session key if the session is completed
before the compromise. This property is specified almost
similar to the invariant keySe. The only difference is
that in the premise, instead of not(priK(B) \in’
leakscr(S)), the following constraint is used:

priK(B) \in’ leakscr(S) and
N2 < timeLeak(priK(B), leakscr(S))

It means that the premise allows the private host key of
the server is compromised but the compromise must happen
after the KEX_HBR_REPLY message is sent. Precisely,
the predicate formalizing the forward secrecy property
states that if honest client A has sent to honest server
B a KEX_HBR_INIT message and has received back a
KEX_HBR_REPLY message apparently sent from B with a
valid signature of the exchange hash, neither the KEM shared
secret nor the two corresponding ephemeral secret keys are
revealed, the private host key of the server is compromised
but the compromise happens after the KEX_HBR_REPLY
message is sent, then the intruder cannot learn the shared
secret. It guarantees that even if the server’s private host
key is compromised, shared secrets negotiated before the
compromise remain secure. The property is also formally
verified with the employment of IPSG.

Similar to keySe, we cannot eliminate any constraint in
the premise of the predicate because of the same reasons
explained previously. The three above-mentioned constraints
(1), (2), and (3) are compulsory assumptions to guarantee
the secrecy of a shared secret, that is, the signature of
the exchange hash in the reply message received must be
correctly verified and the KEM shared secret & the two KEM
ephemeral secret keys must be not compromised. While with
the server’s private host key, we need to require that either the
key is uncompromised or the compromise happens after the
sending of the reply message.

C. SESSION IDENTIFIER UNIQUENESS PROPERTY
During the key negotiation between two principals, the server
authenticates himself/herself by signing the exchange hash
with his/her private host key and sending the signature to
the client. Besides that purpose, the exchange hash is also
used as the session identifier for this connection. This session
identifier must be unique in order to be used by some
higher-level protocols as claimed in [4]. We also formally
verified this property.

D. AUTHENTICATION PROPERTY
The IETF Draft [7] states that the protocol provides server
authentication. This property is stated (from a client’s point
of view) as follows: if client A performs a key negotiation
apparently with server B, then the server that A communicates
with is really B. We attempt to specify this property in
CafeOBJ by the following predicate:

VOLUME 12, 2024 1683

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

op auth : Sys Prin Prin Prin Version Version Suites Suites
EcSecretK PqSecretK EcPublicK PqCipher Data Nat Nat Nat

-> Bool
eq auth(S,B2,A,B,V,V2,CSs,CSs2,K,K’,PK2,C,SIGN,N,N2,?M) =
(not(A = intru or B = intru) and
not(decaps(C,K’) \in leakscr(S)) and
not(K’ \in leakscr(S) or pqSecret(C) \in leakscr(S)) and
not(priK(B) \in’ leakscr(S)) and
hbrIniM(A,A,B, ecPublic(K) || keygen(K’), N) \in nw(S)
and
hbrRepM(B2,B,A, pubK(B) || PK2 || C || SIGN, N2)
\in nw(S) and

verify(pubK(B), h(V || V2 || CSs || CSs2 ||
pubK(B) || ecPublic(K) || keygen(K’) || PK2 || C ||
h(ecShare(PK2,K) || decaps(C,K’))),
SIGN))

implies
hbrRepM(B,B,A, pubK(B) || PK2 || C || SIGN, ?M)
\in nw(S) .

where ?M indicates that this variable is existentially
quantified. This ?-symbol prefix is not mandatory from a
syntactic point of view, but it helps to distinguish variables
that are existentially quantified and universally quantified.
The predicate states that if honest client A has sent to honest
server B a KEX_HBR_INIT message and has received back
a KEX_HBR_REPLY message apparently sent from B with
a valid signature of the exchange hash, neither the KEM
shared secret, the two corresponding ephemeral secret keys,
nor the private host key of the server is revealed, then B has
indeed sent the KEX_HBR_REPLY message to A at some
time denoted by ?M. Recall that hbrRepM(B2,B,A,...)
states that from A’s point of view, B is the sender of the
KEX_HBR_REPLY message received; the actual sender is
B2, which may or may not be B and cannot be observed
by A. Note that it is incorrect to affirm B2 = B in the
conclusion of auth, which is because the capabilities of the
intruder allow them to replay any message in the network.
It is possible that there exist two different messages in the
network, an original one is sent by B and the other one is
made by the intruder by replaying that original message (in
this case, B2 is the intruder). ?M must be used because the
time when the original message was sent by the honest server
B is unknown, in particular, it cannot be derived from the
time when the replaying message was sent by the intruder
(i.e., N2).

FIGURE 4. Counterexample of auth.

However, a counterexample of auth is found, namely, the
property stated by auth does not hold. The counterexample
can be found on the webpage mentioned before. Fig. 4 briefly
explains why the counterexample can happen. According to

the figure, there are mainly six steps, where the first name
at each step denotes the principal who performs the given
action. In the first and second steps, A sends two ephemeral
public keys to B under a KEX_HBR_INIT message, and then
the intruder gleans them. Using the two public keys gleaned,
the intruder tries to impersonate another client A2 to send
them to B (Step-3). In the next two steps, B replies back
to A2 a KEX_HBR_REPLY message with the public host
key, an ECDH ephemeral public key, a KEM ciphertext, and
a signature over the exchange hash, and then the intruder
gleans all of those pieces of information. In the final step,
by using the information just learned, the intruder tries to
impersonate B to send a KEX_HBR_REPLY message to
A. After this step, there exists a valid KEX_HBR_REPLY
message whose creator is the intruder, the seeming sender
is B, and the receiver is A in the network (that message is
hbrRepM(intru,B,A,...)), but there does not exist a
KEX_HBR_REPLY message with the same content really
sent by B to A in the network. B sent such a message to
A2 instead.
Revising the Exchange Hash: The found counterexample

can be regarded as a weakness of the protocol. To address the
weakness and to make the protocol enjoy the authentication
property, we proposed to revise the protocol by including the
identifiers of the client and the server in the exchange hash.
Precisely, the exchange hash is computed as follows:

H = hash(VersionA || VersionB || SuitesA || SuitesB || LKB ||

ECDHPKA || KEMPKA || ECDHPKB || KEMCB || K || A || B)

The exchanged messages in the improved version of the
protocol are kept as depicted in Fig. 2. The computations of
the secrets except for the exchange hash are kept as depicted
in Fig. 3. With this improved protocol, when the intruder tries
to impersonate B to send the KEX_HBR_REPLY message to
A (Step-6 in Fig. 4), A will not accept that message because
the signature SIGN will not be successfully verified. Upon
reception of that message, A expects that the identifiers of
A are included in the signature, but actually, SIGN is signed
over A2 rather than A. Therefore, the counterexample will be
prevented.

That is the informal argument, to prove that revising the
protocol in that way does indeed make it enjoy the authen-
tication property, formal verification must be conducted.
We revise the CafeOBJ formal specification accordingly and
verify the authentication property again. With the improved
version, we successfully prove authwith the employment of
IPSG. Besides, the three other properties remain secure with
respect to the improved protocol. Note that we need to slightly
revise the four predicates specifying the four properties to
make the client and the server identifiers included in the
exchange hash. Again, the proof scores with respect to the
improved protocol are available on the webpage.6

The 17 auxiliary lemmas can be reused to formally verify
again the session key secrecy, forward secrecy, and session

6https://github.com/duongtd23/PQSSH

1684 VOLUME 12, 2024

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

identifier uniqueness properties with respect to the improved
protocol. To this end, we need to slightly revise 5 among those
lemmas by simply adding the identifiers of the client and the
server concerned into the exchange hash. No new lemma is
needed. The remaining job is just to ask IPSG to produce
the proofs again for the three properties and the lemmas.
The experimental results, which are available on the above-
mentioned webpage, indicate that IPSG took around 1 second
up to around 8 seconds to produce each invariant proof score,
which is reasonably small. Therefore, the verification process
helps us to save a lot of time and effort. Once a property
has been successfully proved, when the protocol and/or the
property are slightly changed, the verification by proof scores
allows us to reuse most of the auxiliary lemmas, while the
others are only needed to be slightly revised. Regenerating
the proofs is trivial because it is automated by the tool taking
only a bit of time. This is an advantage of the verification
approach compared to model checking-based and its variant
approaches. When conducting model checking, each time the
protocol or the properties under verification are changed even
a little bit, verification should be redone from the beginning,
meaning that it is time-consuming because the model checker
takes time to terminate for each verification experiment.
Assessment of the Weakness: The counterexample we have

found for the authentication property does not affect the
confidentiality of session keys shared by honest participants,
and so it is unreasonable to regard the counterexample as an
attack. Indeed, I cannot learn the shared secret derived from
the keys generated by A and B depicted in Fig. 4. The intruder
could only learn the public information sent in the messages
intercepted and forward/replay them to someone, but could
not derive the associated secret information, such as the KEM
secret key and shared key.

Although the weakness has nothing to do with the leakage
of any confidential pieces of information, it would be
preferable to fix it. Every cryptographic protocol should
be designed such that a protocol execution is completed
if and only if designed actions for each entity involved
occurred and designed information security objectives, such
as authentication, are fulfilled. Otherwise, there is something
wrongwith respect to the protocol. Anything that is beneficial
to the information security objectives should not be lost even
if it does not cause a compromise of confidential information.
Otherwise, trust in the protocol may be discarded or such
a weakness of the protocol may be utilized to lead to
a more sensitive security flaw in the future. Therefore,
we have proposed to fix PQ SSH as presented and formally
verified that the improved version of PQ SSH enjoys the
authentication property as well as the other properties by
generating proof scores with IPSG and running them with
CafeOBJ.

VII. CONCLUSION
We have formally specified the post-quantum hybrid key
exchange SSH Transport Layer protocol [7] in CafeOBJ and
conducted the formal analysis with four security properties

including (1) session key secrecy, (2) forward secrecy,
(3) session identifier uniqueness, and (4) authentication.
The analysis has formally verified that the protocol enjoys
(2), (3), and (4), while it does not enjoy (4). The protocol
was then proposed to be slightly improved by adding the
identifiers of the client & server into the exchange hash. The
formal verification has confirmed that the improved protocol
enjoys (4). The properties have been proved with respect to
an unbounded number of protocol participants and session
executions, by using the tool IPSG to produce the proof
scores in CafeOBJ. Even though the verification process is
not completely automated, the use of IPSG allows us to focus
on only one task, namely to conjecture lemmas. The reuse
of most auxiliary lemmas has helped us to save a lot of
time and effort when conducting verifications again for the
three properties (1), (2), and (3) with respect to the improved
protocol.

Comprehending the protocol is the task that takes the most
time to conduct the formal analysis. The most difficult task
would be to comprehend the post-quantum cryptographic
primitives used in the protocol, such as CRYSTALS-Kyber
KEM. That is a challenge in the verification/analysis of
post-quantum cryptographic protocols compared to classical
ones. After understanding such primitives, another challenge
is to find a way to model them for formal verification, such
as by abstracting KEMs as we did. To come up with a
reasonable and strong threat model is also a creative task.
Attackers must have quantum-based power, such as breaking
classical key exchange algorithms, and must have powerful
capabilities, such as fully controlling the network. To find out
how to specify in CafeOBJ the attacker’s capability of fully
controlling the network is also a challenging task.

In spite of the non-trivial contributions, there still exists
a limitation in our work. Regarding the threat model in the
quantum era that we have used in this work, essentially, the
novelty of the intruder capabilities is only the assumption of
breaking classical key exchange algorithms such as ECDH.
The other considerations are seen as non-novel things from
the perspective of standard cryptographic protocol analysis.
There exist some more proposals by some other IETF
working groups to standardize new post-quantum crypto-
graphic protocols, among them including a quantum-resistant
version of the Internet Key Exchange Protocol Version 2
(IKEv2) [48] and the post-quantum OpenPGP [49]. As a
piece of our future work, we are interested in conducting
formal verification/analysis of these protocols, in which
we expect that some more non-trivial capabilities for the
quantum attacker will be included.

REFERENCES
[1] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms

and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124–134.

[2] D. Ott and C. Peikert, ‘‘Identifying research challenges in post quantum
cryptography migration and cryptographic agility,’’ Tech. Rep., 2019.

[3] C. M. Lonvick and T. Ylonen, The Secure Shell (SSH) Protocol
Architecture, document RFC 4251, Jan. 2006.

VOLUME 12, 2024 1685

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

[4] C. M. Lonvick and T. Ylonen, The Secure Shell (SSH) Transport Layer
Protocol, document RFC 4253, Jan. 2006.

[5] C. M. Lonvick and T. Ylonen, The Secure Shell (SSH) Authentication
Protocol, document RFC 4252, Jan. 2006.

[6] C. M. Lonvick and T. Ylonen, The Secure Shell (SSH) Connection
Protocol, document RFC 4254, Jan. 2006.

[7] P. Kampanakis, D. Stebila, and T. Hansen, Post-Quantum Hybrid Key
Exchange in SSH, document Internet-Draft Draft-Kampanakis-Curdle-
SSH-PQ-KE-01, Internet Engineering Task Force, Work in Progress,
Apr. 2023.

[8] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, ‘‘CRYSTALS–kyber: A CCA-secure
module-lattice-based KEM,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), London, U.K., Apr. 2018, pp. 353–367.

[9] R. Diaconescu and K. Futatsugi, CafeOBJ Report—The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification (AMAST Series in Computing), vol. 6. Singapore: World
Scientific, 1998.

[10] D. D. Tran and K. Ogata, ‘‘Formal verification of TLS 1.2 by automat-
ically generating proof scores,’’ Comput. Secur., vol. 123, Dec. 2022,
Art. no. 102909.

[11] K. Ogata and K. Futatsugi, ‘‘Proof scores in the OTS/CafeOBJ method,’’
in Proc. 6th IFIP WG 6.1 Int. Conf. Formal Methods Open Object-
Based Distrib. Syst. (FMOODS), in Lecture Notes in Computer Science,
vol. 2884, E. Najm, U. Nestmann, and P. Stevens, Eds., Paris, France:
Springer, Nov. 2003, pp. 170–184.

[12] K. Ogata and K. Futatsugi, ‘‘Compositionally writing proof scores of
invariants in the OTS/CafeOBJ method,’’ J. Universal Comput. Sci.,
vol. 19, pp. 771–804, Jun. 2013.

[13] E. Rescorla and T. Dierks, The Transport Layer Security (TLS) Protocol
Version 1.2, document RFC 5246, Aug. 2008.

[14] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
document RFC 8446, Aug. 2018.

[15] D. Dolev and A. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–207, Mar. 1983.

[16] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database
search,’’ in Proc. 28th Annu. ACM Symp. Theory Comput. (STOC), 1996,
pp. 212–219.

[17] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, and A. Otmani, ‘‘Formal
specification and model checking of saber lattice-based key encapsulation
mechanism in Maude,’’ in Proc. 34th Int. Conf. Softw. Eng. Knowl. Eng.,
Madrid, Spain, Jul. 2022, pp. 16–31.

[18] B. Blanchet, ‘‘Security protocol verification: Symbolic and computational
models,’’ in Proc. POST, vol. 7215. Cham, Switzerland: Springer, 2012,
pp. 3–29.

[19] B. Blanchet, ‘‘Modeling and verifying security protocols with the applied
pi calculus and ProVerif,’’ Found. Trends Privacy Secur., vol. 1, nos. 1–2,
pp. 1–135, 2016.

[20] C. Jacomme, E. Klein, S. Kremer, and M. Racouchot, ‘‘A comprehensive,
formal and automated analysis of the EDHOC protocol,’’ in Proc. 32nd
USENIX Secur., Aug. 2023, pp. 5881–5898.

[21] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann,
‘‘Post-quantum WireGuard,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2021, pp. 304–321.

[22] G. Selander, J. P. Mattsson, and F. Palombini, Ephemeral Diffie-
HellmanOver COSE (EDHOC), document Internet-Draft draft-IETF-lake-
EDHOC-17, Internet Engineering Task Force, Oct. 2022.

[23] V. Cheval, C. Jacomme, S. Kremer, and R. Künnemann, ‘‘SAPIC+:
Protocol verifiers of the world, unite!’’ in Proc. 31st USENIX Secur.,
Aug. 2022, pp. 3935–3952.

[24] B. Blanchet, ‘‘An efficient cryptographic protocol verifier based on prolog
rules,’’ in Proc. 14th IEEE Comput. Secur. Found. Workshop, Jun. 2001,
pp. 82–96.

[25] B. Blanchet, V. Cheval, and V. Cortier, ‘‘ProVerif with lemmas, induction,
fast subsumption, and much more,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2022, pp. 69–86.

[26] D. Basin, C. Cremers, J. Dreier, and R. Sasse, ‘‘Symbolically analyzing
security protocols using tamarin,’’ ACM SIGLOG News, vol. 4, no. 4,
pp. 19–30, Nov. 2017.

[27] J. A. Donenfeld, ‘‘WireGuard: Next generation kernel network tunnel,’’ in
Proc. Netw. Distrib. Syst. Secur. Symp., 2017, pp. 1–12.

[28] S. Escobar, C. Meadows, and J. Meseguer, Maude-NPA: Cryptographic
Protocol Analysis Modulo Equational Properties. Berlin, Germany:
Springer, 2009, pp. 1–50.

[29] C. J. F. Cremers, ‘‘The Scyther tool: Verification, falsification, and analysis
of security protocols,’’ in Proc. Int. Conf. Comput. Aided Verification,
vol. 5123, A. Gupta and S. Malik, Eds., Princeton, NJ, USA, Cham,
Switzerland: Springer, Jul. 2008, pp. 414–418.

[30] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, ProVerif 2.05:
Automatic Cryptographic Protocol Verifier, User Manual and Tutorial,
2023.

[31] S. Escobar, J. Meseguer, and P. Thati, ‘‘Narrowing and rewriting logic:
From foundations to applications,’’ in Proc. 15th Workshop Funct.
(Constraint) Log. Program. (WFLP), vol. 177, F. J. López-Fraguas,
Eds. Madrid, Spain. Amsterdam, The Netherlands: Elsevier, Nov. 2006,
pp. 5–33.

[32] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
C. L. Talcott, Eds., All About Maude (Lecture Notes in Computer Science),
vol. 4350. Cham, Switzerland: Springer, 2007.

[33] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman, ‘‘Strand spaces: Why is a
security protocol correct?’’ in Proc. IEEE Symp. Secur. Privacy, Oakland,
CA, USA, May 1998, pp. 160–171.

[34] S. Escobar, C. A. Meadows, and J. Meseguer, ‘‘State space reduction in the
Maude-NRL protocol analyzer,’’ in Proc. Eur. Symp. Res. Comput. Secur.,
vol. 5283, Málaga, Spain, Oct. 2008, pp. 548–562.

[35] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago, ‘‘State space
reduction in the maude-NRL protocol analyzer,’’ Inf. Comput., vol. 238,
pp. 157–186, Nov. 2014.

[36] E. Poll and A. Schubert, ‘‘Verifying an implementation of SSH,’’ in Proc.
7th Int. Workshop Issues Theory Secur. (WITS’) Co-Located With ETAPS,
Braga, Portugal Mar. 2007, pp. 164–177.

[37] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager, and
P. Verleg, ‘‘Model learning and model checking of SSH implementations,’’
in Proc. 24th ACM SIGSOFT Int. SPIN Symp. Model Checking Softw.,
Santa Barbara, CA, USA, Jul. 2017, pp. 142–151.

[38] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, ‘‘Cryptographically
verified implementations for TLS,’’ in Proc. 15th ACM Conf. Comput.
Commun. Secur., Oct. 2008, pp. 459–468.

[39] K. Bhargavan, C. Fournet, R. Corin, and E. Zălinescu, ‘‘Verified
cryptographic implementations for TLS,’’ ACM Trans. Inf. Syst. Secur.,
vol. 15, no. 1, pp. 1–32, Mar. 2012.

[40] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko,
A. Rastogi, N. Swamy, S. Zanella-Beguelin, K. Bhargavan, J. Pan,
and J. K. Zinzindohoue, ‘‘Implementing and proving the TLS 1.3 record
layer,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 463–482.

[41] D. E. Denning and G. M. Sacco, ‘‘Timestamps in key distribution
protocols,’’ Commun. ACM, vol. 24, no. 8, pp. 533–536, Aug. 1981.

[42] A. Riesco, K. Ogata, and K. Futatsugi, ‘‘A Maude environment for
CafeOBJ,’’ Formal Aspects Comput., vol. 29, no. 2, pp. 309–334,
Mar. 2017.

[43] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, ‘‘CRYSTALS-Kyber:
Algorithm specifications and supporting documentation (version 3.02),’’
Tech. Rep., 2021.

[44] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, ‘‘Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,’’ in Advances in Cryptology (Lecture Notes in Computer
Science), vol. 10831, A. Joux, A. Nitaj, and T. Rachidi, Eds. Marrakesh,
Morocco: Springer, May 2018, pp. 282–305, doi: 10.1007/978-3-319-
89339-6_16.

[45] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig,
V. Nikolaenko, C. Peikert, and A. Raghunathan, ‘‘FrodoKEM: Learning
with errors key encapsulation,’’ Tech. Rep., 2021.

[46] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe, ‘‘High-speed
key encapsulation from NTRU,’’ in Proc. Int. Conf. Cryptograph. Hardw.
Embedded Syst., vol. 10529, W. Fischer and N. Homma, Eds., Taiwan.
Cham, Switzerland: Springer, Sep. 2017, pp. 232–252.

[47] D. J. Bernstein, B. B. Brumley, M.-S. Chen, C. Chuengsatiansup, T. Lange,
A. Marotzke, B.-Y. Peng, N. Tuveri, C. van Vredendaal, and B.-Y. Yang,
‘‘NTRU Prime: NIST round 3 submission,’’ Tech. Rep., 2020.

[48] S. Fluhrer, P. Kampanakis, D. McGrew, and V. Smyslov,Mixing Preshared
Keys in the Internet Key Exchange Protocol Version 2 (IKEv2) for Post-
quantum Security, document RFC 8784, Jun. 2020.

[49] S. Kousidis, F. Strenzke, and A. Wussler, Post-Quantum Cryptography in
OpenPGP, document Internet-Draft draft-WUSSLER-OPENPGP-PQC-
01, Internet Engineering Task Force, Work in Progress, Mar. 2023.

1686 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-319-89339-6_16
http://dx.doi.org/10.1007/978-3-319-89339-6_16

D. D. Tran et al.: Formal Analysis of Post-Quantum Hybrid Key Exchange SSH Transport Layer Protocol

DUONG DINH TRAN received the B.S. degree in
information technology from the VNU University
of Engineering and Technology, in 2014, and the
M.S. and Ph.D. degrees in information science
from the Japan Advanced Institute of Science
and Technology (JAIST), Japan, in 2020 and
2023, respectively. He is currently a Postdoctoral
Researcher with JAIST. He has been working
on applications of formal verification to different
systems/protocols, such as concurrent/distributed

systems and particularly, post-quantum cryptographic protocols.

KAZUHIRO OGATA received the B.S., M.S., and
Ph.D. degrees in engineering from Keio Univer-
sity, in 1990, 1992, and 1995, respectively. He
is currently a Professor with the Japan Advanced
Institute of Science and Technology (JAIST).
His research interest includes the applications of
formal methods to systems, such as distributed
systems and security protocols.

SANTIAGO ESCOBAR received the B.S., M.S.,
and Ph.D. degrees from Universitat Politècnica de
València. He is currently a Full Professor with Uni-
versitat Politècnica de València. He is also a part
of the development team of both the Maude high-
performance modeling and programming lan-
guage and the Maude-NPA cryptographic protocol
analyzer. His research interests include formal
methods, security, verification, model checking,
rewriting, narrowing, and evaluation strategies.

SEDAT AKLEYLEK received the B.Sc. degree in
mathematics major in computer science from Ege
University, Izmir, Turkey, in 2004, and the M.Sc.
and Ph.D. degrees in cryptography from Middle
East Technical University, Ankara, Turkey, in
2008 and 2010, respectively. From 2014 to 2015,
he was a Postdoctoral Researcher with the
Cryptography and Computer Algebra Group, TU
Darmstadt, Germany. From 2016 to 2022, he was
an Associate Professor with the Department of

Computer Engineering, Ondokuz Mayıs University, Samsun, Turkey. Since
2022, he has been a Professor with the Department of Computer Engineering,
Ondokuz Mayıs University. Since 2022, he has also been with the Chair
of Security and Theoretical Computer Science, University of Tartu, Tartu,
Estonia. His research interests include the post-quantum cryptography,
algorithms, and complexity, architectures for computations in finite fields,
applied cryptography for cyber security, malware analysis, the IoT security,
and avionics cyber security. He is an Editorial Board Member of IEEE
ACCESS, Turkish Journal of Electrical Engineering and Computer Sciences,
PeerJ Computer Science, and International Journal of Information Security
Science.

AYOUB OTMANI was a Research Scientist with
Inria, Paris, France, from 2009 to 2011. He was
an Associate Professor with the ENSICAEN and
the University of Caen, France, from 2004 to 2012.
He is currently a Professor with the University of
Rouen Normandie, France. His research interests
include coding theory, information theory, code-
based cryptology (cryptography and cryptanaly-
sis), algorithmic, and complexity issues in coding
theory and cryptography.

VOLUME 12, 2024 1687

