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Abstract

This paper presents the comparison of second and third order algorithms for steady state 
resolution of water distribution networks (WDNs). The algorithms are obtained by using the 
direct outflow/pressure relationship and linearizing the global equations using the Newton 
Raphson method. The increase in the order of convergence from quadratic to cubic is obtained 
by refining system matrices at half Newton Raphson step. Two variants are considered for the 
third order algorithm, differing in the evaluation of the matrix expressing the derivative of the 
outflow/pressure relationship at WDN nodes: the derivative is evaluated analytically and 
numerically for the first and second versions, respectively. Specifically, the numerical 
evaluation is obtained by using outflow and head values that are available at the half Newton 
Raphson step. The results of applications to five case studies of increasing complexity point 
out that the third order algorithm converges in a smaller number of iterations than the second 
order algorithm. The third order algorithm with numerical evaluation of the derivative of the 
outflow/pressure relationship gives significant benefits in terms of convergence performance 
when the service pressure range for passing from no outflow to full outflow conditions at WDN 
nodes is small. All the algorithms developed in this work will be considered for 
implementation inside the SWANP version 4.0 software. 

Keywords
Water distribution networks (WDNs), Pressure-driven modelling, Resolution algorithm; High-order 
convergence, Matrix numerical approximation. 

1 INTRODUCTION

Simulation models are traditionally used by water utility operators to replicate the nonlinear 
behaviour of water distribution networks (WDNs), in both off-line and real-time applications. Off-
line applications concern the use of WDN models calibrated based on historical data collected 
from the field for specific managerial objectives, such as contingency planning, network 
optimization, and strategy planning [1]. Thanks to the increasing adoption of smart sensors and 
smart water metering, the real-time modelling of WDNs has recently started to catch on [2, 3], 
with the main aim to proactively simulate WDN behaviour in emergency and other situations not 
encountered during the calibration period. Between unsteady flow modelling and extended 
period simulation, i.e., WDN resolution in a sequence of steady states, the latter seems to offer 
better applicability in the context of real time modelling, considering the trade-off between 
consistency of results and computational burden, as long as it is applied with sufficiently long 
temporal steps to ensure dampening of hydraulic transients in the WDN [4]. 

The real-time modelling and management of WDNs requires use of fast, stable, and robust solvers, 
which must be used for both simulation and optimization purposes. While the convergence of 
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WDN resolution algorithms is very stable in the demand driven modelling, i.e., in the case of no 
dependence of nodal outflow on service pressure, the implementation of the pressure driven 
modelling is well known to create difficulties for convergence. To tackle this issue, four main 
approaches have been used in the scientific literature. The first approach lies in transforming the 
pressure driven resolution into an iteration of demand driven resolutions, in which nodal 
outflows at the generic iteration are calculated based on the head values obtained at the previous 
iteration [5-9]. Among these authors, Alvisi et al. [7] proposed updating nodal outflows across the 
algorithm iterations and implemented a relaxation procedure, later refined by Ciaponi and Creaco 
[9], on nodal outflows to facilitate convergence. The second approach consists of modifying the 
WDN resolution algorithms, by substituting the preferred pressure-driven equation into the mass 
conservation equations at WDN nodes. Based on this concept, Giustolisi et al. [10], Wu et al. [11], 
Siew and Tanymboh [12] and Elhay et al. [13] used different methods to improve the convergence 
behaviour of pressure driven modelling. Giustolisi et al. [10] used a heuristics-based relaxation to 
correct both pipe water discharges and nodal heads. Siew and Tanyimboh [12] proposed a 
heuristic algorithm based on backtracking and line search to correct only nodal heads. Elhay et al. 
[13] proposed a mathematically well-posed damping scheme based on Goldstein’s algorithm, to
be applied on both nodal heads and pipe water discharges. In the third approach, e.g., [14-16], the
inverse outflow-pressure relationship, namely expressing the pressure as a function of the
outflow, is used to eliminate the problem of oscillations. The fourth, and last, approach was
recently proposed by Creaco et al. [17] and consists of using high order algorithms in the direct
outflow-pressure relationship, namely expressing the outflow as a function of the pressure.
Starting from the traditional second order algorithms, the high order algorithms, such as the third
order ones, are obtained by refining the evaluation of system matrices at the generic iteration of
WDN resolution.

The present paper is the follow-up of the paper of Creaco et al. [17] and aims to present some 
additional results on the comparison of second and third order WDN resolution algorithms based 
on the direct outflow-pressure relationship, as well as to provide insights on the treatment of 
system matrices expressing the outflow/pressure relationship, to improve the algorithm 
convergence performance. 

2 ALGORITHMS FOR WDN RESOLUTION

2.1 Pressure driven modelling

For a WDN with p pipes and n nodes, including n1 nodes with unknown head (demanding nodes)
and n0 nodes with known head (source or tanks), the steady state modelling of WDNs includes the
following system of p energy balance equation and n1 mass balance equations, written in the
compact vector form: 

(𝐀𝟏𝟏 𝐀𝟏𝟐
𝐀𝟐𝟏 𝐀𝟐𝟐

) (𝐐
𝐇

) = (−𝐀𝟏𝟎𝐇𝟎
𝟎

) , (1) 

in which Q (p,1) and H (n1,1) are the unknown vectors, i.e., the vectors of water discharges at pipe
and heads at unknown head nodes, respectively. H0 (n0,1) is the vector of heads at known head
nodes. A10 (p, n0) and A12 (p, n1) are matrices obtaining by extracting the n0 and n1 columns
associated with the known and unknown head nodes, respectively, from the topological incidence 
matrix A (p, n). This matrix is constructed in such a way that the generic i-th row helps identifying
the upstream and downstream end node, according to the arbitrarily defined positive direction in 
the generic i-th pipe. In the i-th row, the element A(i.j) associated with the j-th node is equal to −1
or 1 if the j-th node is the upstream or downstream node of the i-th pipe, respectively. Otherwise,
A(i.j) = 0 if the j-th node does not belong to the i-th pipe. Finally, A21 (p, n1), A11 (p, p) and A22 (n1,
n1) are the transpose matrix of A12, a diagonal matrix expressing the resistance of the WDN pipes
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and a diagonal matrix expressing the ratio of outflow to head for the unknown head nodes, 
respectively. The various pressure driven relationships for the evaluation of user consumption 
and leakage can be easily considered for the construction of A22. As an example, for the Wagner et
al. [18] pressure driven formulation, the expression of the element A22 (i, i) associated with the
generic i-th node with unknown head is:

𝐴22(𝑖, 𝑖) =

{

0 𝐻 ≤ 𝐻𝑚𝑖𝑛

(
𝐻 − 𝐻𝑚𝑖𝑛
𝐻𝑑𝑒𝑠 − 𝐻𝑚𝑖𝑛

)
𝛼 𝑑

𝐻
𝐻𝑚𝑖𝑛 ≤ 𝐻 ≤ 𝐻𝑑𝑒𝑠

𝑑

𝐻
𝐻 ≥ 𝐻𝑑𝑒𝑠

(2) 

In which d and H are the demand and head of the generic i-th node, respectively. Hmin = z + hmin and
Hdes = z + hdes, in which hmin and hdes are the minimum head for having a positive outflow and the
desired head for full demand satisfaction, respectively. 

Figure 1. Pattern of the generic diagonal element of A22 as a function of H for Hmin=10 m, Hdes=30 m and
=0.5.

2.2 Second order Newton Raphson Method

The system of equations (1) can be solved iteratively by applying the Newton Raphson method, 
as explained by Todini and Rossman [19]. If Hk and Qk are the vectors H and Q, respectively, at the
generic k-th iteration, the vectors Hk+1 and Qk+1 at the new iteration can be obtained by solving
the two following vector equations (3) and (4), respectively: 

(𝐀𝟐𝟏𝐃𝟏𝟏−𝟏𝐀𝟏𝟐 − 𝐃𝟐𝟐)𝐇𝐤+𝟏 = {𝐀𝟐𝟏𝐃𝟏𝟏−𝟏[(𝐃𝟏𝟏 − 𝐀𝟏𝟏)𝐐𝐤 − 𝐀𝟏𝟎𝐇𝟎] + 𝐀𝟐𝟐𝐇
𝐤 − 𝐃𝟐𝟐𝐇

𝐤} (3) 

𝐃𝟏𝟏𝐐
𝐤+𝟏 = 𝐃𝟏𝟏𝐐

𝐤 − (𝐀𝟏𝟏𝐐𝐤 + 𝐀𝟏𝟐𝐇
𝐤+𝟏 + 𝐀𝟏𝟎𝐇𝟎) (4) 

in which D11 and D22 are diagonal matrices that can be calculated analytically as D11=d(A11Q)/dQ
and D22=d(A22H)/dH. As an example, for the Wagner et al. [18] pressure driven formulation, the
analytical expression of the element D22 (i, i) (Figure 2) associated with the generic i-th node with
unknown head is: 
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𝐷22(𝑖, 𝑖) = {

0 𝐻 ≤ 𝐻𝑚𝑖𝑛
𝛼

(𝐻𝑑𝑒𝑠 −𝐻𝑚𝑖𝑛)𝛼
(𝐻 − 𝐻𝑚𝑖𝑛)𝛼−1 𝑑 𝐻𝑚𝑖𝑛 ≤ 𝐻 ≤ 𝐻𝑑𝑒𝑠

0 𝐻 ≥ 𝐻𝑑𝑒𝑠

(5) 

All matrices A11, A22, D11 and D22 are evaluated based on the values of Q and H at iteration k.

Figure 2. Pattern of the generic diagonal element of D22 as a function of H for Hmin=10 m, Hdes=30 m and
=0.5.

From equation (3), the new vector Hk+1 of heads at demanding nodes can be obtained through the
solution of the linear system of n1 equations. From equation (4), the new vector Qk+1 of pipe water
discharges can be obtained through the solution of p independent linear equations.

To speed up convergence, the second order Newton Raphson method can be dampened by 
applying the following underrelaxation to the heads: 

𝐇𝐤+𝟏 = 𝐇𝐤 + 𝜆𝑘(𝐇𝐤+𝟏 −𝐇𝐤) (6) 

in which k is a number between 0 and 1, to be evaluated at each iteration as explained by Creaco 
et al. [17]. Therefore, the second order dampened Newton-Raphson method is applied by first 
solving the vector equation (3), then applying underrelaxation (6) and finally solving the vector 
equation (4). 

2.3 Third order Newton Raphson Method

As explained by Creaco et al. [17], the increase in the order of convergence is obtained by refining 
the evaluation of matrices D11 and D22 at the generic iteration at half Newton Raphson step. To
accomplish this, the second order Newton Raphson is initially applied to obtain first estimates for 
the vectors H and Q of nodal heads and pipe water discharges respectively. These first estimates
are indicated as Hk+1,ie and Qk+1,ie, respectively. Then, the nodal head and pipe water discharge
vectors at half Newton Raphson step are derived as: 
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𝐇𝐤+𝟏/𝟐 =
𝐇𝐤 +𝐇𝐤+𝟏,𝐢𝐞

𝟐

(7) 

𝐐𝐤+𝟏/𝟐 =
𝐐𝐤 + 𝐐𝐤+𝟏,𝐢𝐞

𝟐

(8) 

After evaluation of the refined matrices D11 and D22 based on the vectors Hk+1/2 and Qk+1/2 at half
Newton Raphson step, the sequence of vector equations (3), (6) and (4) is repeated to obtain the 
vectors Hk+1 and Qk+1 at the new iteration. As Creaco et al. [17] proved, the increase in the order
of convergence from quadratic to cubic yields significant benefits in terms of convergence 
performance under pressure driven modelling conditions. 

2.4 Numerical approximation of D22

The presence of derivative discontinuities in the outflow/pressure relationship, which makes 
matrix D22 discontinuous, is known to slow down the convergence of WDN resolution algorithms
under pressure driven modelling conditions. As an example, this happens in the Wagner et al. [18] 
formulation for H=Hmin and H=Hdes (see equation 5 and Figure 2). While Creaco et al. [17] proposed
the regularization of matrix D22 for the third order Newton Raphson algorithm, this work
proposes its numerical evaluation to obtain its smoothening. Remembering that D22=d(A22H)/dH,
this can be done by calculating the generic element of D22 in the second step of the third order
Newton Raphson algorithm as: 

𝐷𝟐𝟐(𝑖, 𝑖) =
𝐴22

+ 𝐻+ − 𝐴22
− 𝐻−

𝐻+ − 𝐻−

(9) 

In which H+ and H- can be set equal to Hk+1,ie and Hk, respectively. Furthermore, 𝐴22
+  and 𝐴22

− are
the elements A22 (i,i) evaluated at H+ and H-, respectively. In the first step of the third order Newton
Raphson algorithm, except for the first iteration in which equation (5) is applied, D22 is set equal
to its value in the second step of the previous iteration.  

3 APPLICATIONS

Five case studies of increasing complexity (Figure 3) were considered in this paper to show the 
comparison of the second order algorithm (SO), third order algorithm with analytically calculated 
matrix D22 (third order variant 1 TO1) and third order algorithm with numerically calculated
matrix D22 (third order variant 2 TO2). The first case study is the branched WDN of Gupta and
Bhave [20] with n0=1, n1=4 and p=4. The second case study is the 2-looped WDN of Deuerlein et
al. [14] with n0=1, n1=4 and p=6. The third case study is the 3-looped WDN of Hanoi [21] with n0=1,
n1=31 and p=34. The fourth case study is the 49 looped WDN of Modena [22] with n0=4, n1=268
and p=317. Finally, the fifth case study is the 11-looped WDN of Balerma [23] with n0=4, n1=443
and p=454. The data concerning the features of WDN nodes and pipes can be found in the
referenced works or in [16]. 

The algorithms SO, TO1 and TO2 of the present work were tested against the five case studies 
considering various values of hmin and hdes. Specifically, the values hmin = 0 m and hdes = 20 m were
considered for the first and second case studies. For the three remaining case studies, four pairs 
of hmin and hdes were analyzed, namely hmin = 10 m - hdes = 40 m, hmin = 10 m - hdes = 30 m, hmin = 10
m - hdes = 20 m, hmin = 10 m - hdes = 10.1 m, to create increasingly challenging pressure driven
conditions. In fact, the closer hmin and hdes, the smaller the service pressure variation required for
increasing the generic nodal outflow from 0 to the desired demand d.

While the three algorithms analysed always converged to the same solution, the number of 
iterations required for convergence varied a lot. In case studies 1, 2, 4 and 5, the simple algorithm 
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SO proved capable of converging in less than 10 iterations in the case of sufficiently large service 
pressure range [hmin, hdes], i.e., hdes -hmin≥10 m. Problems of convergence were always observed in
case study 3, in which large head oscillations were noticed during the iterations, and in all case 
studies when hdes -hmin=0.1 m. The use of the third order algorithm yielded benefits in terms of
convergence performance, in comparison with SO. However, TO1 still needed more than 30 
iterations to converge in case studies 4 and 5 for hdes -hmin=0.1 m. This problem was totally fixed
in TO2. Except for case studies 4 and 5 in the case of hdes -hmin=0.1 m, featuring a number of
iterations equal to 14 and 13, respectively, TO2 always converged in a number of iterations lower 
than or equal to 6. 

a) b) c)

d) e)

Figure 3. WDNs of case studies a) 1, b) 2, c) 3, d) 4 and e) 5.
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Table 1. Convergence performance of second order (SO) and third order (TO1 and TO2) Newton Raphson
algorithms for WDN resolution in the five case studies.

Network hmin hdes SO TO1 TO2 

(m) (m) Iterations Iterations Iterations 

1 0 20 4 3 3 

2 0 20 6 5 5 

3a 10 40 56 5 4 

3b 10 30 56 12 5 

3c 10 20 56 15 5 

3d 10 10.1 103 9 6 

4a 10 40 4 4 4 

4b 10 30 4 4 4 

4c 10 20 5 4 4 

4d 10 10.1 42 38 14 

5a 10 40 5 5 4 

5b 10 30 5 5 4 

5c 10 20 7 5 4 

5d 10 10.1 60 34 13 

4 CONCLUSIONS

In this work, a comparison of second and third order algorithms for steady state resolution of 
WDNs was carried out. These algorithms were obtained by using the direct outflow/pressure 
relationship and linearizing the global equations using the Newton Raphson method. The increase 
in convergence order from quadratic to cubic was obtained by refining system matrices at half 
Newton Raphson step. The numerical approximation of the matrix expressing the derivative of 
the outflow/pressure relationship was proposed as a novel aspect of the present work. Globally, 
the results of the applications to five case studies of increasing complexity pointed out that: 

• All the algorithms analysed converge to the same solution.

• The convergence of the second order algorithm is observed to slow down in case studies
where nodal heads tend to oscillate and when the service pressure range for passing from
no outflow to outflow is small.

• The third order algorithm features better convergence performance, especially when the
matrix expressing the derivative of the outflow/pressure relationship is numerically
approximated.

The algorithms developed in the present work are being considered for implementation inside 
the SWANP version 4.0 software [24], which enables tackling various kinds of modeling, design, 
and managerial problems for WDNs 
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