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Chapter 1

ELASTIC CONSTANT OF

A MEMBRANE

1.1 ABSTRACT

A circular elastic membrane is a physical system that can be modeled by in�nite
diametral elastic threads that intersect at the central point. When all the ends are
held in a horizontal plane and a force is applied on the central point, hanging a mass
for example, the system is deformed by lengthening its threads and it is said that
the threads are tensioned. The system returns to its original shape, when force is
zero. When threads are tensioned by a mass and an additional force is applied, the
tensile strength rises in the threads. If this additional force suddenly disapears, the
membrane will vibrate and the mass will move around its equilibrium position (harmonic
motion). Both in static deformation and dinamic deformation, the membrane behaves
in agreement with an intrinsic property of the material it is made of. This elastic
property of materials is the Young modulus. In this lab, the period of oscillation
in a elastic band is measured. From this direct measurement the transversal elastic
constant is indirectly obtained (k) that is related to the Young modulus. The objective
of this lab is to obtain the uncertainties of every measurement: direct and indirect
(Appendix A, page 73) which are obtained with less than 5 % (relative uncertainty).
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Chapter 1. ELASTIC CONSTANT OF A MEMBRANE

Figure 1.1: Membrane model simulation Figure 1.2: Tensile-deformation
curve on a membrane

Figure 1.3: Young modulus for some food and biological materials

2



1.2 INTRODUCTION

1.2 INTRODUCTION

As long as materials do not exceed the elastic limit (maximum value), the majority of
materials have an elastic behaviour when a force acts on them (tension and compres-
sion). A perfect elastic body deforms instantly when a force is applied, and it recovers
its shape when the force is removed. A unitary tensile force (�) is the perpendicular
force (F) applied per unit transversal area (A):

� =
F

A

The change in length gained under a tensile force is known as deformation. The unitary
deformation is the change in length (�L: deformation) per unit length (L0: original
lenth):

� =
�L

L0

A linear elastic body behaves as Hooke's law, which states that tensile force is pro-
portional to the unitary deformation, therefore, there is a linear relationship between
deformation and tensile force. The slope of this straight line is the Young modulus [
Y(N=m2 = Pa ]. This Young modulus measures the sti�ness of a material.

Y =
�

�
=

F=A

�L=L0
= kL � L0

A
(1.1)

kL (N/m) being the axial elastic constant of the elastic body. The Young modulus
can be used in biological materials as long as they are considered as homogeneous,
continuous and with uniform cross sectional area. In Figure 1.3 Young modules for
diferent biological and food materials are shown. Elasticity, as de�ned by Hooke's
law, is not ful�lled in many food materials which are visco-plastic. In such a case,
the sum of elastic and plastic deformation in the force-deformation curve is used in
order to calculate the unitary deformation with the apparent Young modulus, known
as deformability modulus.

3



Chapter 1. ELASTIC CONSTANT OF A MEMBRANE

Figure 1.4: Elastic band with a weight in the middle point

Figure 1.5: Mechanical analogy of a stretched spring at rest, in order to study the harmonic
simple motion of a mass which is hanging in the center of an elastic system

4



1.3 MATERIALS AND METHODES

OBJECTIVE

In this practice we study a very simple mechanical model, based on a single body joined
by a spring to a �xed point, which represents the system of a horizontal tense elastic
band at whose center a mass is located. We will measure the period of oscillation,
calculate the elastic constant of the system and its uncertainty.

1.3 MATERIALS AND METHODES

1.3.1 Materials

In Figure 1.4 is shown the measured system which consist of two elastic bands that
hold a metallic bar of mass m located in their center. Additionally a chronometer/timer
is needed to measure the period of harmonic movement of the metallic bar.

1.3.2 Physical model: Mass-spring mechanical model. Period of
oscillation

The harmonic oscillator is a mechanical system consisting of a spring �xed at one end
and a body with mass m attached to the other end, as shown in Figure 1.5. The spring
without a mass attached has a length of Lo. If you hang up the body of mass m, the
spring is stretched to length �L0. When the mass is at rest (v = 0) and at equilibrium
(F = 0) the spring force and weight are equal and opposite. If a mass m is hanged
up, the spring is stretched to length �L0. The force with which the spring pushes
back obeys Hooke0s law, which states that the force is proportional to the distance
that the spring stretches and to the spring constant. Since the mass is stationary,
the downwards force (weight) is exactly balanced by an upwards force provided by the
tension in the stretched spring. The sti�ness of the spring is characterized by its elastic
constant k which relates the force applied and the lengthening �L0 of its lenght L0.
The balance equation is:

m � g � k ��L0 = 0 (1.2)

k =
m � g
�L0

(1.3)

If the spring departs from its initial equilibrium position (y = 0) a distance y = y0
(initial time) then the mass ranges from y=+y0 to y=-y0 with a period (and frequency)
that depends on the elasticity of the spring and the mass of the body. The dynamic
equation is:

mg � k (y +�L0) =m � �y (1.4)

5



Chapter 1. ELASTIC CONSTANT OF A MEMBRANE

Figure 1.6: Transversal streching of a spring due to a central weight

Figure 1.7: Mechanical analogy of a stretched spring at rest, in order to study the harmonic
simple motion of a mass which is hanging in the center of an elastic system

Substituting in Equation 1.4 the value of k according to Equation 1.3, the simpli�ed
dinamic equation remains as:

6



1.3 MATERIALS AND METHODES

�y = � k

m
� y (1.5)

The movement equation that satis�es Equation 1.5 is of the following type:

y = A cos (!0t+ '0) (1.6)

Armonic Simple Motion equation (ASM) of a body. Taking into account the velocity
and acceleration de�nitions, the following equations can be deduced from Equation 1.6.

_y = �A � !0 sen (!0t+ '0) (1.7)

�y = �A � !20 cos (!0t+ '0) = �!20 � y (1.8)

Considering the initial conditions of the movement: _y(t = 0) = 0 it can be deduced
'0 = 0 and y(t = 0) = 0 it can be deduced A = y0. Equating Equation 1.5 with
Equation 1.8 it can be obtained:

!0 =

r
k

m
(1.9)

From the Equation 1.9 it can be deduced that the elastic constant is related to the
mass and the angular frequency of the SAM by:

k =m � !20 (1.10)

The period t0 is the time it takes to complete a cycle of the SAM and the phase is:
[2 � � = !0 � t0], from which it is posible to write:

t0 = 2� � !�10 = 2� �
r

m

k
(1.11)

Substituting Equation 1.11 in Equation 1.10 the equation which allows for determining
the elastic constant is obtained:

k = 4�2mt�20 (1.12)

Therefore measuring the period t0 and the mass m, the elastic constant can be cal-
culated.

7



Chapter 1. ELASTIC CONSTANT OF A MEMBRANE

Table 1.1: Period measurements

Medida 10�toi toi 1cicle toi order Intervals Repetition (toi� < to >)
2

1
2
3
4
5
6 X X
7 X X
8 X X
9 X X
10 X X
11 X X
12 X X
13 X X
14 X X
15 X X
16 X X
17 X X
18 X X
19 X X
20 X X
X SUM = X X SUM =
X <to> = X X u(t0)

Figure 1.8: Frecuency histograms

8



1.3 MATERIALS AND METHODES

1.3.3 Experimental method

Period measurement

1. The metallic bar must be moved upwards around 1 cm.

2. Let the bar go (Figure 1.6).

3. Use the chronometer to measure the time it takes to complete 10 cycles of
movement [10�t01]. You can count 10 �ashes in the LED lamp to know when
to start and stop the chronometer.

4. This procedure must be repeated 20 times for obtaining 20 values of t0, t0i
(i = 1,2,....., 20).

5. The period of each measurement is obtained from [10�t01] divided by 10.

6. Periods must be ordered from least to greatest and are grouped into 5 intervals
of equal amplitude between the minimum and maximum values of the period.

7. The number of measurements in each interval must be writen down in Table 1.1.

8. A frequency histogram with �ve equidistant intervals can be represented in Excel
spreadsheet and it must be shown in Figure 1.8.

9. An analysis of the distribution must be done (Appendix A, page 76).

10. The average value of the period can be calculated as:

ht0i = 1

20
�
20X
i=1

t0i (1.13)

11. The square di�erence between each t0i and the average value t0 will be used
when estimating the uncertainty of the period.

9



Chapter 1. ELASTIC CONSTANT OF A MEMBRANE

u (t0) =

sP20
i=1 (ht0i � t0i)

2

20 (20� 1)
(1.14)

�m =
1

100
�m+ 1 � 0; 1(gramos)

u(m) =
�mp
3

(1.15)

Table 1.2: Direct measurements and their uncertainties

X Medida �X u(X)

<t0>(s) �
m (g)
m (kg)

u (k) =
p
(ut0(k))2 + (um(k))2 (1.16)

ut0 (k) =
@k

@t0
u (t0) =

um (k) =
@k

@m
u (m) =

Table 1.3: Indirect measurement and partial uncertainties

k (kgs�2) uto(k) um(k) u(k)

Table 1.4: Elastic constant

k � u(k) (kg � s�2) u(k)=k (%)

10



1.4 RESULTS AND DISCUSSION

Mass measurement

The mass m of the metallic bar is measured by using a precision digital scale that
weighs in grams with a centesimal approximation. (Table 1.2).

Elastic constant

Using equation Equation 1.12 we can calculate the spring constant k in an indirect way
(mathematical operations and direct measurements of mass in kilograms and period
in seconds). Its units in the SI (International system) are kg � s�2.

1.4 RESULTS AND DISCUSSION

1.4.1 Uncertainties

Period

Taking into account that the uncertainty of the chronometer is much less than the
measured time interval and the error that can happen by touching the buttons of the
chronometer, it is calculated as a type A standard uncertainty (Appendix A, page 76).
This type of uncertainty is the result of many measurements in a normal distribution
(Equation 1.14).

Mass

The mass of the metallic bar is measured using a precision electronic scale whose
precision is given by the manufacturer (it measures in grams with 1% precision, two
decimals on the screen, and the reading uncertainty is one unit of the last �gure of the
reading. If there is not �uctuation in the measurement, we only take one measurement,
and the only standard uncertainty will be of type B (Equation 1.15, Appendix A, page
75).

Elastic constant

Being an indirect measurement, its uncertainty is calculated by Equation 1.16, by par-
tially deriving with respect to its variables: mass and period, (number � is considered
without uncertainty by having many decimal �gures)(Appendix A, page 77). In order
to write the uncertainty properly follow rules in Appendix A, pages 78 and 79.

11





Chapter 2

MEASUREMENT OF THE

TEMPERATURE.

WHEATSTONE BRIDGE

2.1 ABSTRACT

The Wheatstone Bridge (WB) is a resistor network that allows us to �nd an equivalent
electrical resistance from another unknown electrical resistance by circulating a very
low intensity current. This method is useful when the unknown resistance does not
admit enough current to be measured with acceptable uncertainty, while the equivalent
resistance can be measured in these conditions. In this lab the WB is applied to
measure the electrical resistance of a Temperature Dependent Resistor (TDR) whose
electrical resistance varies linearly with the temperature. WB is applied because electric
current should not pass through the TDR so it does not alter the system temperature.
We will calibrate the resistive sensor 0�C and at 100�C so that we will have a useful
thermometer for measuring temperature in the range of calibration, by measuring
electrical resistance that is easy to control.

13



Chapter 2. MEASUREMENT OF THE TEMPERATURE. WHEATSTONE BRIDGE

Figure 2.1: Mercury termometer Figure 2.2: Termometer TDR-Pt

Figure 2.3: Measurement of Rx. Long cir-
cuit

Figure 2.4: Measurement of Rx. Short cir-
cuit

14



2.2 INTRODUCTION

2.2 INTRODUCTION

Measuring the temperature of a body requires four steps:

1. A thermodynamic system has to be chosen with any measurable macroscopic
property (thermometric property) which varies linearly (linear thermometer) and
reproducibly with temperature (mercury, alcohol, (Figure 2.1); electric resistance
(Figure 2.2)).

2. The system has to be put in touch with the body, until both reach the same
temperature (thermical balance).

3. The thermometric property has to be measured with the thermometer.

4. The thermometer has to be calibrated, to do so it is necessary to measure the
themometric property of the thermometer in two systems of reference: 0 and
100oC.

If the thermometer, in the range 0-100�C, varies linearly with temperature, it will be
already available to measure.

To measure the electrical resistance R, a current generator is needed in order to cir-
culate a current I through the resistance R, the current has to be measured by an
ammeter and also the potential di�erence V has to be measured at both ends of the
resistance R. The resistance value is R=V/I. In addition to the systematic error, that
is gained by placing the ammeter and the voltmeter (2 possibilities: long circuit and
short circuit, Figure 2.3 y Figure 2.4 respectively), which has to be corrected, the
relative uncertainty of R is the square root of the sum of the squares of the relative
uncertainties of the voltmeter and ammeter. An ohmmeter measures the value of
R directly through this procedure. If we measure an R of 100 ohms, 0.45 mA are
circulating in the scale of 200 
 of our ohmmeter and the semi-interval of error is
�R = 1:1
. If we do it on the scale of 2 k
, the intensity decreases to 0.28 mA and
�R = 1:8
 is greater. The lower the intensity the greater the uncertainty. However,
when it comes to measuring the temperature, the current I that �ows through R has
to be the less as possible.

Wheatstone Bridge (WB) is an electrical method for obtaining equivalent resistance
measured with a very low current intensity, which decreases electrical power in the
measurement process and reduces the systematic error. In a separate measurement
we measure the equivalent resistance with the ohmmeter, with the intensity that is
needed and without a�ecting the unknown original resistance value.

15



Chapter 2. MEASUREMENT OF THE TEMPERATURE. WHEATSTONE BRIDGE

Figure 2.5: Wheatstone Bridge

Figure 2.6: Used materials in the measurement of the temperature
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2.3 MATERIALS AND METHODS

OBJECTIVES

In this lab we will calibrate a Temperature Dependent Resistor (TDR), commercial
sensor that consists of a piece of platinum whose electrical resistance is 100 ohms at
0 � C (Pt-100) and varies linearly in the range 0-100 � C, to measure temperatures in
this range. To measure the resistance in a TDR sensor and �nd its equivalent resis-
tance, the minimum intensity will pass through it so that it doesn?t alter the system?s
temperature, therefore a Wheatstone Bridge (WB) is used. After this, resistance will
be measured without intensity limit with an ohmmeter. The WB has an additional
advantage, and it is that the electrical resistance of the connecting cables is removed.
WB circuit and method used in this lab are commonly used in digital thermometers
(Figure 2.2).

2.3 MATERIALS AND METHODS

2.3.1 Physical model: Wheatstone Bridge

In Figure 2.5 the scheme of the electrical circuit that is known as the wheatstone bridge
is shown. The current reaches point A and it is divided into two current �ows I1 which
is on the branch and I2 by the branch AC. The resistor R2 is variable (potentiometer)
it is varied until the voltmeter V between B and C mark zero. In this situation, the
bridge is balanced. No current �ows between B and C because VBC=0. So the same
I1 passes for AB than through BD. The same is true of the current I2 passes through
AC and CD. As the resistance of the branches CD and BD are equal (100 
) and VB
= VC the two intensities are equal to I1 = I2. Thus the resistance of the branch AB
is the same as the AC branch.

The TDR has 3 connected wires, two at end A and one at end C. Each of them has
a Rh resistance which varies with temperature, whose value we have to remove by
measuring only TDR. In the circuit shown one of the three wires is connected to R1

and the current passing through it is I. The other two wires are located respectively in
the section AB and AC. So in the two branches there are resistances:

R2+Rh=RTRD+Rh, which it involves: R2=RTRD

2.3.2 Materials

The picture in Figure 2.6 shows the materials needed to obtain the temperature through
the measuring of the electric resistance in a TDR. Electrical devices: Temperature
Dependent Resistance (TDR) of three-wire, voltage generator of 1.5 Volts, a resistor
of 15 k
, 2 resistor of 100 
 , a variable resistor or potentiometer, a voltmeter and
connecting wires Thermal equipment: glass with ice and water (melting point), and
electric boiler to carry water to the boiling point.

17



Chapter 2. MEASUREMENT OF THE TEMPERATURE. WHEATSTONE BRIDGE

Table 2.1: Measurement of R2

0oC 100oC Troom(
oC)

R2 (
)

Table 2.2: Measurement of R2 in several measurement devices

Measurement of R2 0oC 100oC
1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.7: Graph T (oC) vs R2(
)
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2.3 MATERIALS AND METHODS

2.3.3 Experimental method

The experiment consists of comparing the electrical resistance of the TDR by WB,
with the equivalent resistance of the potentiometer, and then measuring it with the
ohmmeter. There will be 3 TDR measurements in water: at room temperature, at
point of fusion of ice (0 �C) and at boiling point of water (100 oC).

1. The TDR is put into a glass of water at room temperature (Tamb).

2. The WB circuit has to be assembled like Figure 2.5. The current of the source is
very small, I = 0.1 mA. The intensity is divided between the two branches of the
circuit, R3�R2 (potentiometer) andR4�RTRD. Hay que montar el circuito PW
que se representa en la . La intensidad de la fuente es muy pequeña, I=0,3 mA.
La corriente se divide entre las dos ramas del circuito, R3�R2 (potenciómetro)
y R4 �RTRD. The potential di�erence between points B and C has to be read
in the voltmeter, which changes by varying the potentiometer.

3. The potenciometer (R2) is tuned with a screwdriver until the reading in the
voltmeter is zero, in this situation the WB is balanced, the resistance of the two
branches are equal and therefore RTRD = R2.

4. The potentiometer is taken out the circuit and resistor R2 is measured with an
ohmmeter. The value of R2 is written down in Table 2.1.

5. This procedure of measuring the R2 is repeated, when the bridge is balance
in ice water conditions temperature is T0oC and in boilling water conditions
temperature is T100oC . Write the results down in Table 2.1.

Calibration

In order to obtain the equation of the straight line that relates the temperatures of
0�C and 100�C with the values of the electrical resistance of the TDR, we use the
measured R2(0) y R2(100). The equation of a straight line is: y = a + b�x

T = a+ bR2 (2.1)

Two point are not enough to do a good calibration, due to the fact that the equa-
tion that better �ts to two experimental points will always be a straight line with
determination coe�cient of R2=1. Therefore, we will take every points obtained in
the di�erent measuring devices (Table 2.2), because although they are concentrated
in two conditions of known temperature, they will provide us the most unfavorable
uncertainty for the type of TDR sensor used. Graph T (oC) vs R2 is represented in
Figure 2.7.
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Chapter 2. MEASUREMENT OF THE TEMPERATURE. WHEATSTONE BRIDGE

Table 2.3: Results of the linear �tting of the experimental data T (oC) vs R2

Parameters X X u(X) Parameters

b (oC�
�1) R2

a (oC) Troom (2.1)

�R2 =
0; 8 �R2(Tamb)

100
+ 3 � 0; 1 =

u(R2) =
�R2p

3
(2.2)

Table 2.4: Direct measurement and uncertainty

R2 (
) �R2 u(R2)

u (T ) =
p
(uR2

(T ))2 + (ua(T ))2 + (ub(T ))2 (2.3)

uR2
(T ) =

@T

@R2
u (R2) =

ua (T ) =
@T

@a
u (a) =

ub (T ) =
@T

@b
u (b) =

Table 2.5: Measurement of the room temperature

Troom � u(T ) (oC) u(T )=Troom (%)
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2.4 RESULTS AND DISCUSSION

If the Excel spreadsheet is used, the next steps must be followed to determine the
characteristic parameters of the linear �tting and their uncertainties:

1. Two columns are created for data: R2(x)-T(y).

2. Ten empty boxes of the spreadsheet have to be highlighted (two columns and
�ve rows)

3. Then it has to be written down �= estimación.lineal (y numbers: T; x numbers:
R2; verdadero; verdadero)�.

4. Finally, click simultaneously: Ctrl-Mayus-Enter.

2.4 RESULTS AND DISCUSSION

2.4.1 Calculation of the room temperature

Assuming that the electrical resistance TDR varies linearly in the range 0-100oC,
following the Equation 2.1, mesuring R2(Tamb)(value of TDR when the PW is balance
at room temperature) and taking the coe�cients of Table 2.3, room temperature can
be obtained. Compute the room temperature and write it down on Table 2.3.

2.4.2 Calculation of the uncertainties

Resistance R2

The uncertainty of R2(Tamb) is calculated, taking into account that the semi-interval
error of the ohmmeter is 0.8% of the reading plus the reading error that it is 3 digits
of the precision in the range of 200 ohms. (Table 2.3.3). Therefore, its uncertainty as
direct measurement is calculated by Equation 2.2 (Appendix A, page 75).

Temperature

In order to calculate the uncertainty of room temperature u(T), it will be considered
the only known uncertainty is due to R2 (so, the uncertainty related to PW is neglected
because it is considered much lower). It is calculated as an indirect uncertainty con-
sidering Equation 2.1, and by using the Equation A.7 in page 77.

Compute the uncertainty of the room temperature and its relative uncertainty. Com-
plete Table 2.5. Remember the writing rules for the uncertainty, Appendix A,
page 78.
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Chapter 2. MEASUREMENT OF THE TEMPERATURE. WHEATSTONE BRIDGE

Table 2.6: Room temperature measurements as a common thermal system for all lab devices

Measurement Troom(oC) (Ti� < T >)2

1
2
3
4
5
6
7
8
9
10
11
12

SUM=
< T >= XXXXXXXXXX
uA(T )= XXXXXXXXXX

Table 2.7: Measurement of the room temperature as a direct measurement

< T > � uA(T ) (oC) uA(T )= < T > (%)
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2.4 RESULTS AND DISCUSSION

Temperature as a result of N repetitions, type A

The uncertainty calculated in Table 2.5 has been evaluated considering the errors made
in the estimated parameters for the room temperature in single measurement device.
Considering all the measurement devices (same type) used in the lab, the uncertainty
can be calculated as if it is a measurement of type A. To do this we will take a
temperature measurement of the same thermal system with each of the measuring
devices of the laboratory (each group takes its own temperature). We will put in
common all the data and we will calculate the average temperature and the direct
uncertainty of type A (Table 2.6 and Table 2.7 according to Appendix A, page 76).
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Chapter 3

MEASURING THE

DENSITY OF A LIQUID

3.1 ABSTRACT

Density of a liquid is an intensive property that expresses the relationship between mass
and volume of a body. This is an important property that a�ects to the force exerted
by �uids on submerged particles and on the walls of the reservoir which contains them.
The Archimedes' Principle gives the relationship between the buoyant force and the
density of a liquid, and is one of the most commonly used to measure density. In this
lab, buoyant force of a body immersed in a liquid is measured by using a scale. This
experimental method measures the density of water with a relative standard deviation
lower than 5 %.
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Chapter 3. MEASURING THE DENSITY OF A LIQUID

Figure 3.1: Pycnometer Figure 3.2: Balance of Westphal

Figure 3.3: Hydrometer

Figure 3.4: Measuring tube
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3.2 INTRODUCTION

3.2 INTRODUCTION

Density of liquids increases when temperature decreases. However, water is an ex-
ception when it is cooled from 4oC, (maximum density) to 0 oC. Ice is less dense
than liquid water, so it �oats on the surface, it is a thermal isolator so it can keep the
temperature of liquid water above 0 oC although outside the temperature is lower.
Di�erent physical laws are used to measure the density of liquids. The Archimedes'
Principle states that: A body wholly or partially submerged in a �uid is buoyed

up by a force equal to the weight of the displaced �uid.

Some of the most important methods used to measure density are described in the
following paragraphs:

1. The pycnometer (Figure 3.1) is a simple tool which consists of having accurate
volume of liquid in a container of known weight. By weighing the �lled pyc-
nometer we can calculate the mass of liquid whose volume is known. Precision
pycnometers have two �ne graduated capillaries above the �uid reservoir. The
pycnometer is �lled so that the �uid reaches both capillaries and the volume can
be measured. The error in this method varies between 10�2 and 1 (kg/m3) de-
pending on the pycnometer. The error is mainly due to variations in the volume
of the reservoir and diameter of the capillary.

2. b) The Balance of Westphal (Figure 3.2) consists of immersing a lead weight
in a liquid. The lead is suspended with a string from the scale and it allows
us to measure the balance force (tension of the string) when the weight and
buoyant force are applied to the lead. Density of a �uid is calculated as an
indirect measurement of buoyant force and density of the lead with an error of
0.2 (kg/m3).

3. A third method called the Hydrometer (Figure 3.3) is based on the principle of
Archimedes, which states that the buoyant force of a liquid varies directly with
the submerged volume of a body. The device consists of a graduated glass stem
in which end there is a bulb �lled of lead or mercury, this device is left on a
liquid and the density value can be read on the graduated scale at its point of
buoyancy. This method is subject to surface tension which limits the accuracy
of the results, in ideal situations the results can have errors of 0.1 (kg/m3).

4. d) Finally a very accurate method that requires little quantity of liquid is the
Oscillating U-Tube (Figure 3.4) it is based on the principle that the density of a
liquid sample in a test tube is related to the di�erence of the acoustic resonance
frequencies when the cylinder is full and when it is empty.
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Chapter 3. MEASURING THE DENSITY OF A LIQUID

Figure 3.5: Measuring device Figure 3.6: Physical model

Figure 3.7: Diagram of physical model
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3.3 MATERIALS AND METHODS

OBJECTIVES

This chapter presents a method of measuring the density of a �uid using Archimedes'
principle, in which a body immersed in a liquid applies a downward buoyant force
proportional to the density of the liquid and the volume submerged. The buoyant
force upon the liquid is measured by a scale that holds the deposit and the liquid. The
measure of density of water and its uncertainty are shown in the following paragraphs.

3.3 MATERIALS AND METHODS

3.3.1 Physical model

Archimedes' principle states that the buoyant force exerted by a liquid on an immersed
body equals the weight of the liquid displaced by the body of volume V.

FE = � � g �V (3.1)

being g free fall acceleration and � the density of the liquid.

This upward buoyant force is the same as the downward buoyant force exerted by
the body on the liquid, due to the action-reaction principle. The scale measures the
weight of the liquid inside the test tube, FW which is constant, since the over�owed
liquid falls into the plastic tray that is located on the scale, and the downward buoyant
force, FB which increases with the immersed length of the cylinder. If the cylinder is
immersed a length of h, the scale will receive a force:

F = FW + FB = FW + � � g �A � h (3.2)

Being A the cylinder base and h the cylinder depth.

Measuring F, h and A density � can be obtained.

3.3.2 Materials

Figure 3.5 shows a picture where a test tube P is full to the brim with the tested
liquid, the test tube rests on the plate of the scale B, the plastic cylinder is immersed
into the test tube and a rod for supporting S where the cylinder is �xed by a threaded
nut. The threaded rod attached to the cylinder has a washer A which measures the
depth by using a millimeter scale E.
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Chapter 3. MEASURING THE DENSITY OF A LIQUID

Table 3.1: Data on weight, depth and force for calibrating with distilled water. T (oC)=

h(mm) B(g) h(m) F(N)
1st 0
2nd 10
3th 20
4th 30
5th 40
6th 50
7th 60
8th 70

Figure 3.8: Graph F(N) vs h(m) and linear �tting of experimental data
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3.3 MATERIALS AND METHODS

3.3.3 Experimental method

1. Measure the diameter of the cylinder, D.

2. Tare the scale empty. Then, put the test tube on the plate of the scale B just
under the cylinder C.

3. Fill the test tube P with liquid to the brim, and write down the initial mass.

4. Screw the threaded rod and the cylinder will go down until it touch the free
surface of the liquid. Stop screwing when the reading of the initial mass is in
the display of the digital scale again. The weight in the scale B(0) in grams
corresponds to the immersed length of the cylinder h(0)=0.

5. Adjust the washer A of the threaded rod in the zero of the millimeter scale E
without moving the cylinder. Visual-washer-millimeter scale.

6. Screw the threaded rod so as the cylinder goes down and dips into the liquid.
Be careful, the washer should not turn with respect to the threaded rod. The
liquid over�ows and falls into the plastic tray that is sticked to the test tube.

7. Complete Table 3.1: h(i) and B(i) each 10 mm 10 (mm).

Calibration

Distilled water is the liquid used in the calibration because its density is known at
di�erent temperatures. In an Excel spreadsheet two �rst columns have to be �lled
up and depth h in meters and force F in Newtons have to be calculated: F = B �
10�3 � 9; 81. Plot the line that best �ts to the set of points result of graph F vs h, the
equation of the straight line obtained is like this:

F = a+ b � h (3.3)

The characteristic parameters a and b and their uncertainties can be obtained by
following the next steps:

1. Two columns are created for data: h2(x)-F(y).

2. Ten empty boxes of the spreadsheet have to be highlighted (two columns and
�ve rows)

3. Then it has to be written down �= estimación.lineal (y numbers: T; x numbers:
R2; verdadero; verdadero)�.

4. Finally, click simultaneously: Ctrl-Mayus-Enter.
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Chapter 3. MEASURING THE DENSITY OF A LIQUID

Table 3.2: Density of distilled water depending on the temperature. T(oC)=.......... �=..........

T (oC) � (kg/m3) T (oC) � (kg/m3) T (oC) � (kg/m3)
15 999,19 20 998,29 25 997,13
16 999,03 21 998,08 26 996,86
17 998,86 22 997,86 27 996,59
18 998,68 23 997,62 28 996,31
19 998,49 24 997,38 29 996,02

Table 3.3: Calibration results

b (kg=s) u (b) R2 (-) g (m=s2) �g u (g)

Table 3.4: Data on A of di�erent devices

Measurement Ai (Ai� < A >)2

1
2
3
4
5
6
7
8
9
10
11
12
< A >= XXXXXXXXX
SUM= XXXXXXXX
u(A)= XXXXXXXXX

Table 3.5: E�ective area (A) calculated by calibration and uncertainty

A (m2) u(A)(m2)
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3.3 MATERIALS AND METHODS

Density of distilled water changes with temperature. Measure the room temperature
and read the value of density in Table Table 3.2.

After obtaining the linear �tting with R2 > 0:98, the slope b contains information
about the e�ective area A of our measuring device. Complete Table 3.3

Comparing Equation 3.2 to Equation 3.3 it is obtained:

b = � � g �A (3.4)

The e�ective area of the cylinder A used in the measuring device can be calculated by
the following equation:

A = b � g�1��1 (3.5)

The error made in the determination of the e�ective area A will be estimated by
calculating the uncertainty of type A, given the N number of data taken by di�erent
work groups (u(A)). Complete Table 3.4

Having consider the e�ective area of the measuring device and its uncertainty, a new
experience can be carried on with the purpose of measuring the density of any other
liquid, such as: milk, oil, serum.....

The e�ective area A can be compared with the area measured indirectly by the ge-
ometric area, Ageo = (�/4)D2. Being the diameter of the caliper measured with a
caliper. The geometric area, that will be calculated hereafter, has to be quite similar
to the e�ective area A. Complete Table 3.6

Table 3.6: Geometric measurements

Parameters D (mm) D (m) Ageo (m2)

caliper measurements

The relative di�erence between both areas (Ageo and A) does not exceed 2%, there-
fore the e�ective area A will be taken as the representative value of the measuring
instrument for later determinations of the densities of other liquids.
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Chapter 3. MEASURING THE DENSITY OF A LIQUID

Table 3.7: Direct measurements of weight (B) and depth (h) for a liquid. T (oC)= ..........

h(mm) B(g) h(m) F(N)
1st 0
2d 10
3th 20
4th 30
5th 40
6th 50
7th 60
8th 70

Figure 3.9: F(N) vs h(m) graph and the straight line that best �ts the set of experimental
data.
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3.4 RESULTS AND DISCUSSION

3.4 RESULTS AND DISCUSSION

3.4.1 Calculation of the density of a liquid

New readings are taken, following the experimental method describe in (page 31) for
the new liquid whose density is going to be determined.
It is appropiate to copy the Excel sheet generated for the calibration into a new sheet
called DENSITY. In this new sheet, boxes corresponding to the e�ective area and its
uncertainty will be pasted as �xed numbers for their preservation(Table 3.6). Both A
and u(A) are characteristic values of the measuring device, which have been obtained
through calibration with distilled water and they keep invariable whatever the measured
liquid.
New direct measurements will be typed in the data table, F will be recalculated and
therefore the new set of data on F and h will be depicted in Figure 3.9. Linear
estimation will be updated automatically (Equation 3.3). From which a new value
of the slope (b) and its uncertainty u(b) will allow for obtaining the density of the
measured liquid.

Density is obtained solving the Equation 3.4

� = b � g�1A�1 (3.6)

Calculated density: � =

3.4.2 Calculation of the uncertainties

1. The uncertainty of the e�ective area A has been determined with the calibration.

2. The uncertainty of the free fall acceleration (u(g)), (Appendix A, page 77):
The acceleration is a non-exact number, if it is taken as a number with two
decimal �gures: g=9,81 (m=s2).
Its semi-interval of error is: �g =0,01/2= 0,005 (m=s2).
Its uncertainty is: u(g) = �g=

p
3

3. The uncertainty of coe�cient b is given by the linear estimation.
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Table 3.8: Previous measurements and their uncertainties

X Measurement �X u(X)

A (m2) �
g (m=s2)
b (kg � s�2) �

u (�) =
q
(uA(�))2 + (ug(�))2 + (ub(�))2 (3.7)

uA (�) =
@�

@A
u (A) =

ug (�) =
@�

@g
u (g) =

ub (�) =
@�

@b
u (b) =

Table 3.9: Indirect measurements and their partial uncertainties

� (kg �m�3) uA(�) ug(�) ub(�)

Table 3.10: Measured density of a liquid and its estimated uncertainty

� � u(�) (kg �m�3) u(�)=� (%)

36



3.4 RESULTS AND DISCUSSION

Uncertainty of the density (u(�))

The uncertainty of the density is calculated by using Equation 3.7, because it is an
indirect measurement.

The uncertainty of � is the result of the made errors in the di�erent paramenters:
during the measurement of the area of the cylinder, by taking g as a number with two
decimal �gures or even in the calculation of coe�cient b.

To evaluate the contribution of each of these variables in the uncertainty � there must
sum all the uncertainties of � with respect to each variable. The uncertainty of � due
to a variable is the partial derivative of � with respect to this variable multiplied by
the corresponding uncertainty of the variable.

Expand the partial derivatives and calculate the partial uncertainties. Finally calculate
the uncertainty of the density as well as the relative uncertainty.
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Table 3.11: Measurement table of � with N=12 repetitions

Measurement �(kg �m�3) (�i� < � >)2

1
2
3
4
5
6
7
8
9
10
11
12

< � >= ����-
SUMA= ����-
u(�)= ����-

Table 3.12: Density of a liquid and its uncertainty calculated directly

� � u(�) (kg �m�3) u(�)=� (%)
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3.4 RESULTS AND DISCUSSION

Uncertainty of the density considering a direct measurement

In order to determine a characteristic value of the density of the liquid, considering
the random errors made by the di�erent measuring devices, the following table can
be completed, where we will calculate the error committed in the measurement of the
density directly ((Appendix A, page 76)). This value will be used in the next lab.
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Chapter 4

MEASUREMENT OF THE

VISCOSITY OF A LIQUID

4.1 ABSTRACT

The viscosity is an index of friction between adjacent layers of a �uid, it appears
when there is relative movement of �uids with respect to solids, �uids moving in
pipes, or solid particles moving into �uids. In this lab we will study theoretically and
experimentally the motion of water in a capillary tube (circular section of 1 mm in
diameter approximately). A cylindrical tank is �lled with water and then is drained
through a capillary tube in other reservoir located below. Based on the experimental
results we will obtain a relationship between the level of water in the lower reservoir
and the time while water �ows in the capillary. Using the Bernoulli equation for a
real �uid, in which friction is considered as energy loss in the capillary tube (Eq.
Hagen-Poiseuille) the viscosity of water is deducted with a relative uncertainty under
3%.
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Figure 4.1: Viscosimeter of Ostwald.
Source:Wikipedia

Figure 4.2: Digital rotational viscometer.
Source: civiltest-aparato.com

Figure 4.3: Ball drop viscometer. Coe�cient of friction b=6�����r
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4.2 INTRODUCTION

4.2 INTRODUCTION

The viscosity � relates the tangential force per unit area F/S over the surface S of
a �uid and the change of velocity per unit length in the z direction perpendicular to
the surface: F/S=��(dv/dz). In recent literature, we can �nd several methods for
measuring the viscosity of �uids, many of them based on the circulation of a �uid
through a capillary tube, for example: the �ow of a �uid through a capillary tube
that can be done vertically or slightly inclined (Figure 4.1). Other methods are based
on the tangential force it has to be done to get that some metal paddles rotate at a
certain velocity inside a �uid, where de�nition of viscosity by Newton's law is applied,
(rotational viscometer, Figure 4.2). Others are based on measuring the velocity at
which a ball falls within a �uid in a straight tube that is inclined and applying Stokes'
law (falling ball viscometer, Figure 4.3)

OBJECTIVES

In this lab the viscosity of liquids is measured by studying how a tank full of �uid is
drained into another tank through a capillary tube by applying the laws of Bernoulli
and Hagen-Poiseuille, and comparing theoretically and experimentally the �lling of
the lower reservoir. By means of the calibration with distilled water, a characteristic
parameter of the measuring device K is calculated. This parameter K is used in the
measurement of the unknown viscosity of other �uid.
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Figure 4.4: Measuring device Figure 4.5: Physical model

Table 4.1: Geometric parameters of the measuring device and temperature of the distilled
water

Parameters mm m Parameters mm2 m2

h S
L

D oC K
R T

Table 4.2: Temperature-viscosity for distiled water

T (oC) � (kg/(m�s)) T (oC) � (kg/(m�s)) T (oC) � (kg/(m�s))
15 0.001139 20 0.001003 25 0.000891
16 0.001109 21 0.000979 26 0.000871
17 0.001081 22 0.000955 27 0.000852
18 0.001054 23 0.000933 28 0.000833
19 0.001028 24 0.000911 29 0.000815
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4.3 MATERIALS AND METHODS

4.3 MATERIALS AND METHODS

4.3.1 Materials

Figure 4.5 depicts the experimental device. It consist of two calibrated test tubes, a sili-
con capillary tube with inside diameter of 1.5 mm, the measuring �uids, a chronometer,
a measuring tape and a caliper.

4.3.2 Experimental method

1. Height h between tube 1 and 2 is measured. Inside diameter D is measured
and its circular area S is calculated. Length L of the capillary tube is measured.
Complete Table 4.1

2. Both tubes are placed at the same height (Figure 4.4). Fill one of the tubes
with water up to the 50 mark. Put the piston into it. Push the piston in order
to drag the water inside the capillary tube and remove all the air bubbles inside
the capillary tube. Then, �ll both syringes with water up the 0 mark level.

3. Temperature of distilled water is measured. It has to be written down in Table 4.1

4. Tube 1 has to be raised a height h with respect to the tube 2 (Figure 4.5). The
chronometer will start (t=0) when the tube 1 is raised, the height z of the free
surface of water in tube 2 varies over time. The time t it takes to achieve the
di�erent marks in the measuring tape in milimeters has to be written down in
Table 4.2.

4.3.3 Physical Model

Applying Bernoulli's equation to the points 1 and 2, free surface, in a generic time
t, taking as a height of reference z=0 in the point 2 (free surface to the �uid in the
lower syringe):

P0 + �g(h� 2z) +
1

2
�v21 = P0 +

1

2
�v22 +�P12 (4.1)

Where P0 the atmospheric pressure, � density, g acceleration of gravity, h height of 1
above 2 at t=0, v the �uid velocity, and 1 and 2 are two points of the tube with the
same velocity (continuity equation). �P12 is the energy loss per unit volume (pressure
drop) in the capillary tube.
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Figure 4.6: Volume �ow rate

Question 1

Calculate the volume �ow rate in the �rst interval of time (0-t1).

Imax(m
3=s) = Volume

�t
= S�z1

t1
=

If the capillary tube is 50 cm in lenght and it takes up 1 g of water which density is
997 (kg=m3), calculate the radius of the capillary tube.

r(m) =

Check if the �uid moves along the capillary tube in laminar �ow by calculating the
Reynolds number (NRE < 2000), if viscosity of water is � = 10�3 (Pa�s), its density
is � = 103 (kg=m3) and the radius of the capillary tube is r=0.75 (mm)

NRE =
2 � � � I
� � r � � = (4.2)

Question 2

Calculate the geometrical factor K of the measuring device, by means of Equation 4.7
from the experimental model and the geometrical data measured or estimated previ-
ously.

K(m=s)2 =
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4.3 MATERIALS AND METHODS

Energy loss due to drag forces

The Hagen-Poiseuille expression allows us to calculate the energy loss per unit volume
�P12 between the extremes 1 and 2 of a straight tube of length L, circular section of
radius r, where a �uid of viscosity � circulates with volume �ow rate I in laminar regime:

�P12 =
8�L

�r4
I (4.3)

Replacing Equation 4.3inEquation 4.1results:

�g(h� 2z) =
8�L

�r4
I (4.4)

Writing I in z function (Figure 4.6) and replacing:

�g(h� 2z) =
8�L

�r4
[S
dz

dt
] (4.5)

Separating the variables dz and dt and integrating in the interval (0,z) and (0,t). Using
the following initial condition: z = 0 at time t = 0. The resulting equation is:

ln[
(h� 2z)

h
] = �K�

�
t (4.6)

K is a characteristic geometrical constant of the device:

K =
gr4

4LR2
(4.7)

being R the radius of the circular section of the sryinge (S =�R2).
So as to analyze the relationship between z and t, we will express time as a dependent
variable and z as an independent variable, since z values are marked in the syringe,
the Equation 4.6 it is obtained:

t = � �

K�
ln[

(h� 2z)

h
(4.8)

Changing variables as: y=t, x=ln[ (h�2z)
h

] the equation Equation 4.8 can be written
as the linear equation whose slope is: M=- �

K�
and the independent term N is nearly

zero.

y =Mx+N (4.9)
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Table 4.3: Measured data for calibrating with distilled water

z(mm) time in chronometer x = ln[ (h�2z)
h

] y = t (s)
0
5
10
15
20
25
30

Figure 4.7: t(s) as a function of ln[(h-2z)/h(m)]

Table 4.4: Calibration table

Temperature � (kg=m3) � (Pa�s) M (s) u(M)(s)

K = � �

M�
=
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4.3 MATERIALS AND METHODS

Calibration. Measurement of k and u(k)

Distilled water is used for calibrating the measuring system. After taking readings
about the time at certain heights, Table 4.3 has to be �lled up, and then a graph in
Figure 4.7 has to be represented. This Figure 4.7 depict the experimental data which
are �tted to a linear equation. The steps to be followed, using the Excel spreadsheet,
for �nding out the characteristic parameters of the linear equation that de�nes the
behaviour of distilled water in the measuring device and their uncertainties are:

1. Two columns are created for data: h2(x)-F(y).

2. Ten empty boxes of the spreadsheet have to be highlighted (two columns and
�ve rows)

3. Then it has to be written down �= estimación.lineal (y numbers: T; x numbers:
R2; verdadero; verdadero)�.

4. Finally, click simultaneously: Ctrl-Mayus-Enter.

In boxes F1 and G1 are M and N, and in boxes F2 and G2 their uncertainties, respec-
tively. In box F3 is the determination coe�cient R2.

It will be veri�ed that the determination coe�cient is R2 > 0; 95, and that the
independent term is very low (N=0). The slope (M) is related with density and
viscosity of the distilled water as well as with the characteristic parameter K of the
measuring system. Both density and viscosity are tabulated as a function of the
temperature. Therefore, the temperature is measured and written down along with
the corresponding density and viscosity (Table 4.4).

Comparing Equation 4.9 to the Equation 4.8, it turns out that:

M = � �

K�
(4.10)

From Equation 4.10, K the geometric parameter of the measuring device is obtained.

K = � �

M�
(4.11)

This characteristic parameter K can be used in the same measuring device regardless
the liquid is going to be measured. For this reason it will be necessary to determine
its uncertainty. It is therefore important to determine its uncertainty, for which ac-
count is taken of the uncertainty of the coe�cient M on which it depends. Actually
the uncertainty of K should be afected also by the uncertainties of the density and
the viscosity determined by a table whose input is the temperature measured in the
laboratory, however their e�ect is di�cult to assess indirectly.
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Table 4.5: Data on K of di�erent devices

Measurement Ki (Ki� < K >)2

1st
2nd
3th
4th
5th
6th
7th
8th
9th
10th
11th
12th
< K >= XXXXXXXXXXX
SUM= XXXXXXX
u(K)= XXXXXXXXXXX

Table 4.6: Measured data for the liquid of unknown viscosity

z(mm) time (chronometer) x = ln[ (h�2z)
h

] y = t (s)
0
5
10
15
20
25
30

Figure 4.8: Graph of t(s)vs ln[(h-2z)/h(m)] for the liquid of unknown viscosity

50



4.4 RESULTS AND DISCUSSION

4.4 RESULTS AND DISCUSSION

4.4.1 Direct measurement u(k)

Having considered all the calibrations done in N measuring devices in the laboratory,
N=12 data on K (Table 4.5) can be used for calculating a direct uncertainty (Ap-
pendix A, página 76):

u (K) =

sP12
i=1 (hKi �Ki)

2

12 (12� 1)
(4.12)

We take K as the corresponding to our measuring device but we use the direct uncer-
tainty that has just been calculated in the above paragraph.

4.4.2 Experimental measurements

The measuring procedure described in subsection 4.3.2 has to be followed for the
liquid of unknown viscosity. Copy the Excel spreadsheet prepared for measuring and
calibrating of distilled water is recomended, but in this case the K�u(K) determined
in the calibration has to be �xed because it is a known characteristic parameter of the
measuring system.

Following the steps of page 49 for the determination of characteristic parameters of
a linear equation, the slope (M) will be obtained for the liquid of unknown viscosity.
The knowledge of parameters such as: K (obtained from water) and density of the
liquid of unknown (measured in the previous laboratory) (�) allows for computing the
viscosity of the measured liquid.

The density of the liquid has to be known for the viscosity determination. Assuming
the same experimental temperature, and being the same liquid, the density and the
uncertainty will be taken from the previous chapter (these data have to be written
down in Table 4.7).
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Table 4.7: Previous measurements and their uncertainties

Measurement Uncertainty

K (m2 � s�2) (water)
M (-)
� (kg �m�3)

u (�) =
q
(uK(�))2 + (uM (�))2 + (u�(�))2 (4.13)

uK (�) =
@�

@K
u (K) =

uM (�) =
@�

@M
u (M) =

u� (�) =
@�

@�
u (�) =

Table 4.8: Indirect measurement with partial uncertainties

� (Pa � s) uK(�) uM (�) u�(�) u(�)

Table 4.9: Measurement of the viscosity of a liquid

� � u(�) (Pa � s) u(�)=� (%)
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Known M, K and � of the liquid is posible to calculate � from the Equation 4.10,
according to:

� = �KM� (4.14)

4.4.3 Calculation of the uncertainties

1. Uncertainty of K is calculated after the calibration, having considered every value
of K obtained by the N measuring devices of the lab.

2. The uncertainty of the slope M is given from the "estimacion.lineal" developed
in the Excel spreadsheet.

3. The uncertainty of the density is given by the direct uncertainty calculated for
the set of N=12 measurements taken in the previous lab (Table 3.11 in page
38).

Uncertainty of the viscosity (u(�))

As an indirect measure, the uncertainty of density is calculated from the Equation 4.13
(Appendix A, page 77).

The uncertainty of � is the result of the errors made when measuring parameter K
(calibration), measuring the slope M for the liquid whose viscosity is unknown and
measuring its density (page 38).

To assess the contribution of each of these variables in the uncertainty of �, the
uncertainties of � with respect to each of these variables have to be computed by the
product of the partial derivative of � with regard of each variable and the uncertainty
of the corresponding variable.

Solve the partial derivatives and calculate the partial uncertainties (Table 4.8).

Finally, calculate the uncertainty of the viscosity (Equation 4.13) and its relative un-
certainty. Complete Table 4.9 using the normalized writting rules.
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Chapter 5

ULTRASOUND WAVES

CHARACTERIZATION

5.1 ABSTRACT

Ultrasounds are sound waves of higher frequency than detectable by the human ear,
which is set to 20 kHz. Ultrasound has many applications in the biotechnology area.
On one hand low power ultrasounds are used for measuring: sonography, speed of
�uids, etc., on the other hand high power ultrasounds are used for accelerating the
dissolution of products, breaking cells, etc.. The oscilloscope is an electronic device
used to represent signals (electrical potential di�erence) as a function of time, and to
characterize its amplitude and its frequency if they are periodic, and its phase di�erence
if they have the same frequency. In this lab, generated and received ultrasonic waves
with frequency of 40 kHz will be characterized by the digital oscilloscope and the
propagation velocity of sound in the air will be measured.
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Figure 5.1: Ecography.

Figure 5.2: Cavitation of oily tissue particles.

Figure 5.3: Homogenization of an emulsion and degassing. Source: www.hielscher.com
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5.2 INTRODUCTION

Ultrasounds are sound waves of frequency between 20 kHz to 200 MHz, this frequency
is higher than that detectable by the human ear, which is set within the range
[20 Hz - 20 kHz]. Infrasound frequency sounds are less than 20 kHz, which is below
the audible limit of humans. Ultrasounds are generated and detected by piezoelectric
crystals (eg. quartz). Piezoelectrics deform when an electrical voltage is applied to
them and produce a voltage when they deform. If a sinusoidal alternating voltage is
applied in a piezoelectric (emitter), it changes its shape and regains the original shape
in a harmonic motion of the same frequency as the voltage. This crystal is a vibrating
source that produces a harmonic simple motion of air molecules and therefore leads to
variations in the density and pressure of air, these things cause the ultrasound wave.
The receiver detects this pressure wave and it produces an electrical voltage of the
same frequency.

There are two types of ultrasonic applications. Low power waves (less than 1 mW) are
used to measure properties of bodies using the laws of propagation and to make images
of the layers they pass through (sonography of a baby, Figure 5.1). For example, the
position of a body, its size, its speed (pulsations, Figure 5.1) or ultrasonic absorption
of waves, in di�erent parts of a body, can also be measured with this technique. High-
powered waves have mechanical e�ects such as cavitation in liquids, which can be
used to break cell membranes (Figure 5.2), to dissolve homogeneously (Figure 5.3),
to speed up chemical reactions, to clean up solids inside liquids, welding, etc.

The oscilloscope is an electronic device that allows you to observe and measure the
electrical potential di�erence as a function of time, with high sample rates up to the
order of gigahertz. Oscilloscopes can usually measure two signals in two di�erent
channels. The oscilloscope screen has a horizontal axis which represents time and a
vertical axis which represents the signal amplitude in volts. It can also represent a
signal on the screen on the vertical axis vs. the other signal on the horizontal axis.

OBJETIVES

The digital oscilloscope is used in the �rst part of this lab to characterize two electrical
sinusoidal signals that are delayed in time. In the second part of the lab low power
waves are generated and received. The main properties of these waves are observed
and measured. With the help of the oscilloscope, the main parameters of emitted and
re�ected waves are characterized: amplitude, frequency and phase di�erence. Finally,
the velocity of propagation of sound in air will be measured.
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Figure 5.4: Mesuring device.

Figure 5.5: Wiring diagram.

Figure 5.6: Graph of Voltage (V) as a func-
tion of time (s) in the oscilloscope.

Figure 5.7: Graph of ChI vs ChII.
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5.3 MATERIALS AND METHODS

5.3.1 Materials needed for the study of electrical signals in the
oscilloscope

In Figure 5.4 the experimental device is shown. It consist of a generator of variable
frequency signals, R-C circuit and coaxial wires and a two-channel oscilloscope. Circuit
of Figure 5.5 has to be assemble. One signal is measured in Channel I (Ch I) and the
generator signal is measured in Channel II (Ch II).

Experimental method

1. The generator has to be turned on with the following options: sinusoidal signal,
key 10k, button 0.2, 2kHz and maximum amplitude) and the oscilloscope has
to be switched on from the computer by program: PC-Lab200se/OK.

2. Press RUN and ON of Channel I (only Ch I, switch o� the Ch II). A single
signal appears, blue line in Figure 5.6. Press AUTOSCALE button so as to �x
the wave and this channel will be taken as the reference wave.

3. Choose Time/DIV as 50 �s, and display only 1-2 waves.

4. Tune by Vol/DIV the maximum scale in the vertical axis for ChI that will be 1V.

5. Since the signal has to be symmetrical with respect to the horizontal axis, its
position can be changed by using GND button and moving the cursor until the
signal is over the horizontal axis.

6. Come back to the original signal by pressing AC key (todas teclas del Ch I.

7. Move the horizontal cursor until the crest is on the graduated vertical axis and
then adjust the amplitude of the signal generator so as the peak reaches 3.8 V
in the graduated scale of the oscilloscope.

8. Move the horizontal cursor until the wave starts in t=0.(Zero trigger level)

9. Press ON of the Ch II. Two overlapped waves appeared like Figure 5.6. Ch II is
the red one. You do not press Autoset again.

10. Center ChII with GD key of ChII.

11. Chose the graduated scale Volt/Div just for seeing the highest amplitude of the
signal.

12. Captur image (FILE/Save Image), save as Figure 5.8.
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Figure 5.8: Graph of the Voltage (Volts) as a function of time for both channels

Table 5.1: Table of data

Medida Yi
(div)

Yi
(Volts)

t0
(div)

t0 (s) f0
(Hz)

!
(rad/s)

'
(rad)

Ch I
Ch II

Is Ch II delayed or advanced with respect to Ch I?

td (s) = 'd (rad)= !� td =

'adv=

'del=

'd='adv � 'del= 'II (rad)=
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5.3 MATERIALS AND METHODS

5.3.2 Physical Model

Signal characterization over time

Print and stick the image of Figure 5.8 in page 60. Fill in Table 5.1 measuring all
parameters in Figure 5.8.
The characteristic parameters are: Amplitude (YI, in Volts), angular frequency
(! in rad/s) and initial phase (' en rad). Equation 5.1 and Equation 5.2.

yI = YI � sen(!t+ 'I) (5.1)

yII = YII � sen(!t+ 'II) (5.2)

The amplitude is measured in (DIV) between the horizontal axis (time) and the peak,
then it is changed to Volts when it is multiplied by its scale Vol/DIV. You can move
the wave to the left of the screen to use subdivisions more comfortably.

The period (t0)(in seconds) is measured by counting the number divisions along the
horizontal axis between two times in which the wave appears once, and multiplied by
the value of the TIME/DIV of the selected scale. The frequency is the inverse of the
period f = t�10 . The angular frequency is calculated by multiplying frequency with
2�, so: ! = f � 2�. The initial phase ('I) of Ch I is zero, since signal at t=0 is zero.

The same calculation has to be repeated for Ch II.

The phase di�erence is the positive di�erence between the advanced phase and the
delayed phase: 'd= 'adv - 'del. The advanced phase is related to the wave which is
above when time is zero, and the delayed phase corresponds to the wave that is below.

The 'd has to be calculated by the following steps: �rst count the divisions between
two successive intersections of the two waves with the time axis (when they have
the same tendency), second calculate characteristic time (td) multiplying the counted
divisions by the TIME/DIV scale, �nally compute the 'd by multiplying the td by !.

For instance in Figure 5.6 ChI signal is above ChII signal when t=0, therefore 'adv='I=0
and 'del='II. When 'd is calculated, the value of 'II is easily obtained as �'d,
the minus sign shows the delay.
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Figure 5.9: Graph ChI (Volts) vs ChII (Volts)

Table 5.2: Table of data

yII(t = 0;yI = 0) (DIV) YII (DIV) sen'd = yII(yI=0)
YII

'd(rad)
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Lissajauss Elipse

In order to see another way of signal representation, the following steps must be
followed:

1. Press Math/XY key. In this option the oscilloscope plots el osciloscopio Ch I in
the vertical axis and Ch II in the horizontal axis. The result is an ellipse that
looks like the one there is in Figure 5.7.

2. Center the elipse using GD comands of each channel. Press GND and change
position of Ch I signal by moving the cursor until it is on the horizonal axis of
the screen, then came back to AC. Press GND and change position of Ch II by
moving the cursor until the signal is on the vertical axis of the screen, and return
to AC.

3. Use PERSIST in case you want to enlarge the width of the line.

4. Save image (FILE/Save Image) for Figure 5.9

5. Print and paste the graph: Figure 5.9 in page 62.

The XY option plot Ch I vs Ch II. If the main axis of the ellipse has positive slope, Ch
II is delayed, if not Ch II is advanced.

When t = 0 the signal of ChI is zero: yI = 0 and the signal of ChII is equal to:
yII(t = 0) = YIIsen'II , then sen'II = yII(t = 0)=YII . The denominator is the
amplitude of Ch II that is half the base of the rectangle which inserts the elipse, and
the numerator is the value of the ellipse when yI = 0 that is the point where the
ellipse intersects with the horizontal axis.

Fill in Table 5.2 and obtain the phase di�erence following this graph Figure 5.9.
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Figure 5.10: Ultrasound emitter Figure 5.11: Ultrasound receiver

Figure 5.12: Power source of 30V Figure 5.13: Signal generator

Figure 5.14: Two-channel oscilloscope Figure 5.15: Placement of transmitter and
receiver in the measurement
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5.3.3 Materials for measuring the speed of ultrasounds

The device to produce, detect and characterize the ultrasounds is made of the follow-
ing:

1. Ultrasound emitter (Figure 5.10). It has two connectors: one of them is a BNC
type to plug in the signal generator which is variable with frequency and the
other is composed by three conductor wires to plug in a power source.

2. Ultrasound receiver (Figure 5.11). It has a BNC connector to plug in ChII of the
oscilloscope and so as to measure the electrical signal that ultrasound produces,
and another of three wires to plug in the signal generator.

3. Power source supplies 30 V (Figure 5.12) so as to provide the piezoelectric with
symmetrical signal (-15 V, 0 V, +15 V) for receiving and emitting ultrasounds.

4. Signal generator with variable frequency (Figure 5.13). Sinusoidal wave has to
be selected and the frequency has to be chosen from the 100 kHz range and it
has to be turned on at a maximum frequency of 40 kHz. The amplitude is 3

4 of
the maximum. In the output, it has two BNC connectors which are connected,
one to the emitter and another to the ChI of the oscilloscope.

5. Two-channel osciloscope (Figure 5.14). Emitting signal is measured in ChI and
receiving signal is measured in ChII. The oscilloscope is an electronic instrument
used to represent electrical signals on the screen (electric potential di�erence)
in time function, as well as compositions of signals, ie: a signal in function of
another.

6. Plastic guide graduated in mm to slide the emitter-receiver set. They face
the plastic screen which re�ects the ultrasound waves (Figure 5.15). The �rst
steps are made in a �xed position emitter-receiver. To measure the velocity of
ultrasound the re�ective screen must be approached.
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Figure 5.16: Ultrasound measuring device.

Figure 5.17: Electric signals as a function of time

Figure 5.18: Graph ChI vs ChII
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Experimental method for ultrasound wave characterization

First the circuit is connected as shown in Figure 5.16. Grey wires of emitter and
receiver are plugged to the power source. The coaxial wire is connected between the
emitter and the signal generator, just where there is a T-shaped connector. The other
end of the T-shaped connector is attached to another coaxial wire that goes to the ChI
of the oscilloscope. Turn on the power source (sinusoidal signal, key 100 K, button
40,000 kHz, amplitude to 3

4 of the largest), power source (30 V) and oscilloscope
(computer/PC-Lab2000se/OK). In order to de�ne Equation 5.1 the oscilloscope signals
have to be analyzed, the steps to follow are similar to those described in page 59.

Observation of ChI

First of all adjust Ch I (using ChI commands). Press buttons: RUN and AUTOSET
while is only activated Ch I (ON). One signal is shown in blue, which is Ch I Figure 5.17.
Only one or two cycles must appear by tunning Time/DIV to 5 �s. The greatest size
of the signal has to be shown, so Vol/DIV control of Ch I has to be adjusted to 2V.
Wave of Ch I has to be symmetric with respect to the horizontal axis, therefore using
GND, the position command and the cursor the wave has be centered. Press SINGLE
just as to freeze the image.

Observation of ChII

Press the button of Ch II ON . Place the emitter-receiver set at a certain distance
from the re�ective screen, until the signal of ChII (receiver) is advanced with respect
to the signal of ChI (emitter) Figure 5.17). Both signals Figure 5.17. The signal of
Ch II is in red. Center Ch II (analogous to Ch I, with its own commands). Choose the
Vol/DIV scale so that the signal is well visible. Press SINGLE to freeze the image and
save it as Figure 5.19.

Observation of ChI vs ChII

Select Math/XY plot, the graph shown in the oscillocope represents Ch I in the vertical
axis and Ch II in the horizontal axis. It is an ellipse like that of the Figure 5.18. In
order to center the ellipse the GND of Ch I will be press, then the Position will be
adjust until the line is on the horizontal axis, then return to the ellipse by AC. Repeat
the process but now with the ChII comands of the oscillocope. Finally press SINGLE
to freeze the image and save it as Figure 5.20.
Undo the ellipse by pressing XY plot button and check that the saved image
in Figure 5.19 does not change, so that both images represent the same transmitter-
receiver position.
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Figure 5.19: Voltage (Volts) vs time(s) for ChI and ChII that are connected to the emitter
and receiver of ultrasounds

Table 5.3: Data table Figure 5.19

Medida Yi
(div)

Yi
(Volts)

t0
(div)

t0 (s) f0
(Hz)

!
(rad/s)

'
(rad)

Ch I
Ch II

Figure 5.20: Representación ChI (Volts) vs ChII (Volts)

Table 5.4: Data from Figure 5.20

yII(t = 0; yI = 0) (div) YII (div) sen'd =
yII(yI=0)

YII
'd(rad)
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5.4 RESULTS AND DISCUSSION

5.4.1 Characterization of the electrical signals being in the
piezoelectrics

Print and paste the saved images for Figure 5.19 and Figure 5.20.

Fill out Table 5.3 and Table 5.4 the same way as Table 5.1 and Table 5.2 were
completed, according to the instructions of pages 61 y 63.

5.4.2 Changes in the shape of Lissajous curve

The phase di�erence between two waves is dependent on the distance between the
emitter-receiver and the screen. If we move the emitter and receiver together towards
the screen, we will see that the shape of the ellipse changes due to the variation of
the phase di�erence.
The emitted wave travels from the emitter to the plastic screen, when the wave reaches
the screen it is re�ected traveling in the opposite direction until reaching the receiver.
Depending on the distance traveled by the wave, the received signal arrives with a
di�erent phase from the emitted signal. Sometimes the distance is such that both
signals are in phase, and the shape of the Lissajaus curve appears as a positive straight
line instead. In Figure 5.21 di�erent shapes of the Lissajouss curve can be seen as
regard of the phase di�erence between both signals.

Figure 5.21: ChI vs ChII when they are connected to the emitter and receiver at di�erent
distances (x) from the screen
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Figure 5.22: Voltage (Volts) vs distance x (m) at two di�erent times

Figure 5.23: Assembly diagram emitter (1) and receiver (2) which approach towards the
re�ecting screen from a position x0 when the signals are in phase. (3) signal generator, (4)
power source, (5) oscilloscope, (6) re�ective screen.

Table 5.5: Measuring data and results

�x (m) � (m) v (m/s)
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If the distance travelled by the ultrasound wave from the emitter to the receiver is
an integer number of wavelength, (�) the amplitude of the wave in the emitter is the
same as the amplitude found in the receivers r1 y r2, as it can be seen in Figure 5.22.
As a result the received signal is in phase with the emitted signal, in that case the
XY-plot will appear as a positive straight line. For any other intermediate distance in
which there are a receiver, the received signal will be out of phase with respect to the
emitted and the XY-plot will show an ellipse or a negative straight line.

5.4.3 Wavelength measurement

As we have seen, if we move the emitter-receiver set towards the screen, the Lissajous
curve changes. When a positive straight line is plot in the oscilloscope, the emitted
and received wave are in phase. x0=0 will be assigned just at this point, and after
that the emitter-receiver set will continue aproaching to the screen. When the positive
straight line comes back, the waves are in phase yet again. This means that the wave
covers one wavelength (�) less than before (half wavelength to go and half wavelenght
to return), so the emitter-receiver set has cover half of the wavelength.

If the total displacement is �x, after seeing 20 times the positive straight line. It can
be said that�x =20�(�/2), therefore the wavelength could be calculated by �=�x/10.

� =
�x

10
(5.3)

5.4.4 Speed of sound in air

We already know the frequency of the ultrasonic wave f0 (that is the same as the
frequency of the signal generator) and the wave length � from the last section.

The wavelength is the travelled distance by a wave in a propagation medium at the
characteristic speed of the medium, during one period of time (t0).

� = v � t0 (5.4)

Since the period is related to the frequency as: t0=f
�1
0 and substituting its value in

Equation 5.4, the speed is ease to compute by:

v = � � f0

71





Appendix A

MEASUREMENTS AND

UNCERTAINTIES

A.1 INTRODUCTION

Measurement of physical quantities and their treatment are an essential part of Physics.
Measurement is the comparison of a physical quantity to another quantity called the
basic unit. In Physics, there are basic units and others derived from the basic units.
For example, the International System uses the meter (m), kilogram (kg), second (s)
Ampere (A) and Kelvin (K) as basic units. Direct comparison between quantity and
unit can only be carried out in certain cases, for example if we measure the length of
a pencil we have measuring devices that allow us to know its length (ruler, Vernier
Caliper ...) but we do not always have measurement equipment, if we want to measure
less than one micrometer or more than one megameter we have to use physical laws
that indirectly allow us to measure these quantities.

Direct measurements can be obtained with measuring instruments. Direct measure-
ments are used in equations to obtain other measurements related to them, these
results are indirect measures.

All measurements have errors. Errors can be human if their source is the person
performing the measurement or instrumental if their cause is due to the measuring
apparatus itself. Moreover these errors can be classi�ed as systematic or accidental.
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Systematic errors are repeated in all actions and you can remove them by calibrating
the measuring system (person-instrument). Accidental errors can not be removed
because they are not predictable. Accidental errors are random and they can not be
corrected, we can only indicate the magnitude of these by a tolerance band around the
result of measurement, the width of this band de�nes the uncertainty. The standard
uncertainty (u) indicates the symmetrical range of a measure (m) so that the true
value (measurand) is in to the interval with a certain probability.

m � u(m) which it means [m-u(m), m+u(m)].

It has the same units as the measurement and is indicative of the quality of the
measure, the smaller the uncertainty the better the quality of the measurement. It
includes only random errors.

A.2 DIRECT MEASUREMENT AND UNCERTAINTY

A.2.1 Direct measurement from a single reading

MEASUREMENT BY SIMPLE COMPARATION (ruler, Vernier scale, balance with
graduated weights)

There will be a single measurement when the measurand lies between two extreme
values (X1,X2) between which the probability distribution is uniform (rectangular
distribution). For example measurements with a ruler, a vernier or a balance with
calibrated weights.

The measuring system certainly gives the interval in which the measurand is included,
the range of extremes[X1,X2]. Measure is given as the mean interval (average)
(Equation A.1)centered in the symmetric interval whose semi-interval of error is Equa-
tion A.2.

< X >=
X1 +X2

2
(A.1)

�X =
X1 �X2

2
(A.2)

If the measurement appears as X ��X, the true value of the measurement is in this
interval with 100% of likelihood. So as to turn the semi-interval error into a standard
deviation, we must bear in mind that the probability distribution of the measurand is
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A.2 DIRECT MEASUREMENT AND UNCERTAINTY

uniform throughout the interval [X1,X2](rectangular distribution). In order to get a
58% likelihood, the type B standard uncertainty is de�ned as:

uB(X) =
�Xp
3

(A.3)

If a measurement is shown as X � uB(X) we can say with a 58% of probability that the
true value of the measurement is in this interval (1/

p
3=0,58). This 58% de probabil-

idad el verdadero valor de la medida se encuentra en este intervalo. Nevertheless, this
likelihood is equivalent to 68% of probability corresponding to the interval in which
data have normal distribution.

MEASURING WITH CALIBRATED EQUIPMENT BY THE MANUFACTURER

When the measurement is performed by a complex electronic device, we can read the
measurement on the device's screen and it is contained in an interval due to accidental
errors. In this case the semi-interval error� X is determined after a calibration process,
and how to calculate it depends on the type of device:

� Pointer instruments:
�X =

C

100
� FE + g � (Dmin)

Being: C, class number; FE, maximum value of the measuring range; g, reading
factor (0, 14 ;

1
3 ;

1
2 ,1); Dmin: minimum division.

� Digital measuring instruments:

�
�X =

�1
100

�X + C � (FE)

Being: �1,accurancy; X, measurement reading; C, class number; FE, max-
imum value of the measuring range.

�
�X =

�1
100

�X +N �R

Being: �1, accurancy; X, measurement reading; N, number of digits (1,2,3..);
R, unit of the last digit.

In this case the measurement is with high probability (near to 100%) in the range of
X ��(X).

It also supports a uniform distribution of probabilities and the standard uncertainty of
type B is also: uB(X) = �Xp

3
.
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Appendix A. MEASUREMENTS AND UNCERTAINTIES

This measure is written as X � uB(X) and it determines a symmetric interval around
the measured X in which the measurand lies with a 58% likelihood.

A.2.2 Direct measurement N repetitions

N measurements will be made, when reading the device, each measurement is di�er-
ent. There will also be several measurements when the measurement process includes
human error far greater than the uncertainty of the measuring apparatus, for example,
measuring a time interval by a timer managed by one person.

In general if the measurement process includes random factors a�ecting the mea-
surement, in addition to the measurement device itself. Let's assume that the N
measurements obtained follow a normal distribution.

If the frequency distribution is a normal frequency distribution, the graph looks like a
bell, symmetric around the core of the values obtain most often, as we can see at the
�gure:

Figure A.1: Frequency distribution

The average of the measurement is calculated as:

< X >=
1

N
�
NX
i=1

Xi (A.4)

The standard uncertainty, associated with a direct measurement with N repetitions is
determined by the dispersion of values of the mean value, it is called standard uncer-
tainty of type A, and is calculated as:

uA(X) =

sPN

i=1 (hXi �Xi)
2

N (N� 1)
(A.5)
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Symmetric interval determined the measurerement and its uncertainty X � uA(X) has
a 68% chance of containing the measurand..

If you make a single measurement, uncertainty of the measurement is of type B. If
you make N repetitions of the same size and uncertainty of the measuring apparatus
is much less than the uncertainty associated with the process of measurement, uncer-
tainty is considered as type A. If the uncertainties of the measurement apparatus and
process are the same order you calculate the combined standard uncertainty:

uC =
q
u2A + u2B (A.6)

The interval determined by the measurement <X> � uC(X) and its combined uncer-
tainty will have a 68% likelihood of containing the measurand. Hereafter the standard
uncertainty accompanying the measure is of type A, B or combined. It will be written
as u(X) where X is the measurement.

A.3 INDIRECT MEASUREMENT AND UNCERTAINTY

The measure is called indirect measurement Y if it is calculated through a function
that depends on other variables measured directly Xi, and their combined standard
uncertainty are known.

Y (Xi) = (X1; X2; ::XN )

Uncertainty is calculated considering direct measures are independent and their uncer-
tainties are small, so they may be considered as di�erentials:

u (Y) =

vuut NX
i=1

(
@Y

@Xi

u (Xi))2 (A.7)

A.4 STANDARD DEVIATION FOR NON EXACT NUMBERS

The error range for a non-exact number depends on the number of decimal places that
are taken for calculation. For example, if we take number � with n=2 decimal places
the semi-interval of error will be equal to: �X = 5 � 10�(n+1)

Taking into consideration that it has a uniform probability distribution, the standard
uncertainty will be: uB(X) = �Xp

3
.
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Appendix A. MEASUREMENTS AND UNCERTAINTIES

In many situations the uncertainty of number � is not taken into account because the
use of a lot of decimals (n>10) in the calculator or worksheets has a negligible e�ect
on the uncertainty of the indirect measurement.

A.5 EXPANDED UNCERTAINTY AND RELATIVE

UNCERTAINTY

The expanded uncertainty is de�ned as the product of combined standard uncertainty
and the coverage factor k (Uk = k � uX) This is done to raise the likelihood of �nding
the measurand in the interval X � Uk(X)

� If k=1 the true value of the quantity lies in the interval X � U1(X) with 68%
likelihood.

� If k=2 the true value of the quantity lies in the interval X � U2(X) with 95%
likelihood.

� If k=3 the true value of the quantity lies in the interval X � U3(X) with 99%
likelihood.

It is useful to express expanded uncertainty as a relative uncertainty in percentage
as: (u(X)/X)�100. This value allows us to analyze the measurement quality. If the
relative uncertainty is less than 1% of the measurement it is a very good measurement.
Between 1 and 5% are considered acceptable values. This are the values commonly
found in labs.

A.6 WRITING RULES

A.6.1 Uncertainty

� If the �rst signi�cant number of the uncertainty is higher than 2, the uncer-
tainty will be written as an integer of one digit multiplied by base ten to the
corresponding power. So after calculating the uncertainty, its signi�cant num-
ber has to be rounded up, to leave the number correctly written with an integer
(from 3 to 9), multiplied by base ten to the corresponding power. Example 1:
u=0,005820 (kg) will be written as 6�10�3 (kg).

� If the �rst signi�cant number of the uncertainty is lower than 3, the uncer-
tainty will be written as an integer of two digits multiplied by base ten to the
corresponding power. As always, it has to be rounded up, to leave the num-
ber correctly written with an integer (from 10 to 29), multiplied by base ten
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to the corresponding power. Example 2: u=0,00245 (m) will be written as
25�10�4(kg).

A.6.2 Measurement

� Measurements must also be written with a scienti�c notation with the same
power as the uncertainty and they must be written as a whole number (without
decimals).

� Therefore so the last digit that appears in the units has to be rounded up.

� Following the Example 1: m=32,0289 (kg) will be

m � u(m) = [32029�6] � 10�3 (kg)

It can be written as well as: 32,029 � 0,006 (kg).

� Following the Example 2: d=0,05458 (m) will be

m � u(d) = [546�25] � 10�4 (m)

It can be written as well as: 0,0546 � 0,0025 (m).
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