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Application of probabilistic modeling to predict road pavement deterioration

Resumen

Un problema importante en el campo de la Ingenieria Civil se refiere al
mantenimiento de los pavimentos en la red de transporte. El deterioro de los
pavimentos puede medirse de diferentes formas, siendo una de ellas el denominado
indice de Rugosidad Internacional (IRI). Con el fin de planificar de forma 6ptima las
estrategias de mantenimiento de pavimentos, la prediccién de la evolucion del IRl a lo
largo del tiempo seria altamente beneficiosa. En este proyecto proponemos utilizar
modelos probabilisticos, concretamente Redes Neuronales Bayesianas, para
aproximarnos a este objetivo. Para ello, utilizaremos una base de datos de registros de
IRI de la red de carreteras de los Paises Bajos que registra la evolucion del IRl a lo
largo de los anos. Esta base de datos, una vez tratada, combinada con datos de trafico
y climatolégicos, sera la base para los modelos de ML que se entrenaran.

Palabras clave: IRI, Red Neuronal Bayesiana, red de carreteras de los Paises Bajos.

Abstract

An important problem in the Civil Engineering field concerns the maintenance of
pavement in the transportation network. Pavement deterioration can be measured in
diverse ways, being one of them the so-called International Roughness Index (IRI). In
order to optimally plan pavement maintenance strategies, the prediction of IRI evolution
over time would be highly beneficial. In this project we propose to use probabilistic
models, specifically Bayesian Neural Networks, to approach this goal. To do so, we will
use a database of IRI records from the Netherlands road network that register the
evolution of IRI over the years. This database when treated, combined with traffic and
climatological data will be the basis for the ML models that will be trained.

Keywords: IRI, Bayesian Neural Network, Netherlands road network.
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1.Introduction

As an essential component of transportation engineering, pavement
performance assessment has a direct impact on road network upkeep, safety, and
serviceability. Long-term pavement life, effective resource allocation, and increased
user happiness are all guaranteed by efficient pavement management. Understanding
and forecasting pavement roughness, which has an immediate influence on ride
quality, fuel economy, and vehicle wear and tear, is essential to this assessment. The
International Roughness Index (IRI), one of the several indices used to quantify
pavement roughness, is the most extensively used worldwide [1].

Developed in the 1980s by the World Bank, the International Roughness Index
(IRIl) quantifies pavement surface irregularities by measuring the vertical displacement
of a vehicle's suspension system over a standardized distance [1]. Expressed in meters
per kilometer (m/km), the IRI provides a numerical value representing the roughness of
the pavement, which is essential for [1]:

1. Performance Monitoring: Continuously assessing the deterioration of
pavement over time to plan timely maintenance.

2. Maintenance and Rehabilitation Planning: Identifying critical sections of road
networks that require intervention.

3. Budget Allocation: Prioritizing funding based on the condition of the
pavement, ensuring efficient use of resources.

4. Quality Control: Evaluating the effectiveness of construction practices by
comparing post-construction IRI values against predefined standards.

The IRl is measured in meters per kilometer (m/km) or inches per mile (in/mi),
and the values typically fall within certain ranges that correlate with the condition of the
pavement. The following table shows a classification per range values:

Pavement condition Very Poor Poor Fair Good Very Good
|_International Roughness Index (IR1) | B+ | 67 | 4-5 13 J 0-2

Figure 1: IRI condition rating scale for sealed roads.

Source: National Association of Australian State Road Authorities.

In order to help maintaining the quality of the road transportation system, this
project has been created to investigate whether is possible to improve the forecasting
of the IRI using ML techniques, specifically with probabilistic methods. To do so, a
Bayesian Neural Network (BNN), along a linear regression for explainability purposes,
has been trained using an IRI database of the Netherlands roads.

1.1. Motivation

My math teacher Samuel Morillas, along with his colleague Joao Oliveira, a
professor and civil engineer at the University of Twente in Enschede, served as the
inspiration for my project. After completing my Erasmus program at the University
of Twente, | thought this would be a great chance to get in touch with Professor
Oliveira and work together.
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Beyond these coincidences, the project's focus is on machine learning
applications, a topic that has interested me throughout my studies at the UPV. The
research specifically deals with BNNs, which is a subject | am excited to learn more
about because it is a variant of the traditional Neural Network, which we had not
studied at this degree. This research presents a good opportunity for me to learn
more about probabilistic models and advance my machine learning skills.

1.2. Objectives

This project is centered around three primary objectives, each designed to
systematically address the problem of predicting the International Roughness Index
(IRI) using machine learning techniques:

The first objective is to create a comprehensive dataset by integrating our
data with public datasets, including IRI, KNMI, and INWEVA data. This integrated
dataset will serve as the foundation for training machine learning models and will
enable the exploration of the relationships between various features and IRI
Increase.

The second objective is to develop a probabilistic machine learning model,
specifically a Bayesian Neural Network (BNN). The BNN will be trained on the
complete dataset to generate predictions of IRI Increase. The performance of the
BNN will be rigorously evaluated to determine its effectiveness in capturing the
complex, non-linear relationships present in the data.

The third objective is to compare the predictive power of the BNN with that
of a simpler Linear Regression (LR) model. Additionally, the LR model will be
employed to help explain the behavior of the BNN by revealing underlying linear
relationships within the data. While the LR model may not capture non-linear
relationships as effectively, it will provide valuable insights into the general data
patterns and contribute to a deeper understanding of the factors influencing IRI
Increase.

1.3. Methodology

This project follows a systematic approach grounded in the scientific method
to address the problem of predicting the International Roughness Index (IRI) for
specific road segments. The methodology is organized around the formulation of
several hypotheses, the implementation of models to test these hypotheses, and
the evaluation of the outcomes against the initial objectives.

The first step in our methodology involved formulating a clear hypothesis:
The IRI of a road segment can be predicted accurately by integrating public
datasets with features such as weather conditions and pavement quality. This
hypothesis guided the development of our machine learning models, including the
Bayesian Neural Network (BNN) and linear regression models.

Additional hypotheses were formulated to explore different aspects of the
problem:
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e Hypothesis 1: The integration of multiple datasets (e.g., IRI, KNMI,
and INWEVA) can create a comprehensive dataset that effectively
represents the factors influencing IRI.

e Hypothesis 2: A probabilistic model like the BNN can provide more
reliable predictions of IRl Increase compared to a traditional linear
regression model.

To test our hypotheses, various public datasets were integrated with the IRI
dataset. This included weather conditions from KNMI, and additional environmental
data from INWEVA. Python was used extensively for data preprocessing, cleaning,
and merging to ensure a complete and usable dataset.

With the dataset prepared, the next step was the model development phase:

e Bayesian Neural Network (BNN): The BNN was developed as our
primary model for predicting IRI Increase. The model was trained on
the integrated dataset, allowing it to capture complex, non-linear
relationships between the features and the IRI.

e Linear Regression Model: A simpler linear regression model was
also developed to serve as a baseline for comparison and to help
explain the behavior of the BNN. This model aimed to highlight any
linear relationships within the dataset.

Both models were trained and tested using a train-test split method, with the
BNN's performance being the primary focus. The linear regression model provided
insights into the factors that had the most significant impact on the BNN's
predictions.

Once the models were trained, the hypotheses were tested by evaluating
the performance of both the BNN and the linear regression model:

e Hypothesis 1 Evaluation: The success of data integration was
measured by the completeness and usability of the dataset, as well
as the performance of the models trained on this data.

e Hypothesis 2 Evaluation: The BNN'’s predictive performance was
assessed using various metrics (e.g., correlation, mean squared
error) to determine its effectiveness in predicting IRI Increase.

The results obtained from these evaluations provided insights into the
validity of our hypotheses and the effectiveness of the models developed.

1.4. Structure

The structure of this project will be the following: firstly, the data treatment
and the final dataset will be explained, where the reader will understand how the
data has been gathered and joined, as well as the meaning of each variable. Then,
a detailed explanation of what is a BNN will take place, along with the algorithms it
uses to make its predictions. Finally, the results obtained with the models will be
shown. These results will gather the explanatory graphics created by the LR and
the predictions achieved using the BNN.
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2.State of the Art

The prediction and modeling of IRl are vital for proactive pavement
management so several approaches have been developed, evolving from empirical
methods to advanced machine learning techniques. Initially, empirical models relied
heavily on historical data and straightforward statistical methods. Over the years, these
models have become more complex, incorporating a broader range of variables and
advanced statistical techniques to improve accuracy and reliability [2].

Empirical methods rely on historical data to establish relationships between IRI
and various influencing factors such as traffic load, pavement age, and environmental
conditions. These are classified into three main categories [2]:

e Surface Characteristics-Based Models: These models focus on surface
distress indicators like roughness, rut depth, and cracking. For example, the
Indiana Department of Transportation (INDOT) developed prediction models
using roughness data to plan rehabilitation needs.

e Environmental Factor-Based Models: These models assess the impact of
environmental conditions on pavement performance. They incorporate
variables such as temperature, moisture, and freeze-thaw cycles to predict
pavement deterioration.

e Pavement Performance Rating Models: These models use composite
indices like the Present Serviceability Index (PSI) and the Pavement
Condition Index (PCIl) to rate pavement performance based on various
characteristics.

Recent advancements have seen the integration of machine learning (ML)
techniques in pavement condition evaluation, significantly enhancing the predictive
capabilities and efficiency of pavement management systems (PMS). ML models can
analyze vast amounts of data from various sources, including digital photography,
GPR, laser scanning, optic fiber sensors, vibration analysis, acoustic emission, and
deflection testing to collect comprehensive data on pavement conditions [3].

Convolutional Neural Networks (CNN) are particularly effective for analyzing
images of pavement surfaces, detecting and classifying surface distresses with high
accuracy. Reinforcement Learning (RL) is used to develop optimal maintenance
strategies by simulating various scenarios and learning the most effective actions to
preserve pavement health. When combined, these models increase predicted
accuracy, allowing for proactive maintenance and more efficient use of resources,
which eventually reduces costs and improves road safety [3].

Other ML algorithms that are commonly used include Support Vector Machines
(SVM) or Random Forests, which classify pavement conditions based on features like
surface roughness and cracking, and which can handle the joining of this features with
large datasets considering factors like traffic load and environmental conditions. Naive
Bayes classifiers quickly assess pavement health by categorizing conditions using
historical data.

Neural Networks (NN) [4] model complex relationships between variables such
as traffic and weather to predict future performance [3]. They are described as powerful
function approximators. Its performance relies on the extreme flexibility associated with
having many model parameters (weights and biases), whose values can be learned
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from data through gradient-based optimization [5]. They are good at approximating
functions (input-output relationships) with massive amounts of data. Therefore, neural
networks are well-suited to artificial intelligence tasks like speech recognition and
image classification. For our use case, NN are also an important approach to consider;
as they are widely used for classification task, they can be adapted to perform
regressions. Nevertheless, the extreme flexibility of NNs has a downside: they are
particularly vulnerable to overfitting. Overfitting [6] happens when the learning algorithm
does such a good job of tuning the model parameters for performance on the training
set—by optimizing its objective function—that the performance on new examples
suffers.

Deep Neural Networks (DNNs) [7] suffer especially from overfitting and face a
challenge known as the vanishing gradient problem [8] that is pronounced due to their
architecture, which involves millions of parameters. In the training process, these
parameters are adjusted iteratively using optimization algorithms such as gradient
descent [5] and backpropagation [9]. The vanishing gradient problem refers to the
decreasing impact of gradient updates on certain parameters during training. As the
algorithm passes through the layers of the deep neural network, the gradient can
become very small and approach zero. As a result, there are few updates of the
corresponding parameters, which prevents effective learning of these specific features
and patterns. A fundamental part of the backpropagation is the chain rule [10], which
multiplies gradients as it moves backward through the network layers. If the gradients
are small, the multiplication results in extremely small values. As a result, the model
struggles to capture long-range dependencies and correlations between input features,
leading to suboptimal performance.

Bayesian Neural Networks (BNNs) could potentially mitigate some of the issues
associated with traditional neural networks, particularly the overfitting. The probabilistic
framework, used by BNNSs, treats the model parameters, such as weights and biases,
as distributions as opposed to fixed values. By taking into account a range of
reasonable values for the parameters rather than a single point estimate, this method
enables the network to quantify uncertainty in the model parameters, which can help
prevent overfitting [11]. It also allows the incorporation of prior knowledge about the
weights and biases into the model, while updating the parameters as data is observed.
The formula that expresses the training phase of a BNN would be:

0~N(LX) 6, ~ N(0, 1)

u*, T = argarg : z): i L(Fe(xi),yi) + KL[p(G),p(BO)]
xi'yi € tr

The expression indicates the objective is to find the values of y and 2 that will
minimize the total objective function, which is the sum of the data likelihood term
L(Fe(xi), yi) and the KL divergence KL[p(e), p(e 0)] which acts as a regularization term,

providing stochasticity or variation in a neural network. KL divergence finds the
distribute distance between two distributions, and in this equation, it is preventing the
distribution of 6 becoming too different from the normal distribution. Moreover, knowing
the posterior distribution of the parameters allows to do probabilistic predictions by

expressing a distribution over predicted output§as a function of the new input x. A
mathematical representation of the inference equation would be [12]:

p(x, D) = [ p(x,0)p(D) db

11
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The predictive distribution p(x, D) returns a distribution that represents the
prediction's uncertainty rather than a single expected number. It can be obtained
calculating the integral of the test likelihood p(x, 0) (it represents which is the probability
of the observed output y, given the input x and a set of parameters 6) under the
posterior distribution p(D) (it represents the updated distribution of the parameters 6
after observing the data D). Essentially, the integral combines these two distributions
averaging predictions over all possible values of 6 weighted by their posterior
probability. This, integral can be computationally intensive due to the high
dimensionality the problems where BNNs are applied have. Therefore, various
sampling methods such as Monte Carlo integration, variational inference, or Markov
Chain Monte Carlo (MCMC) are used to estimate the integral. For example, the
distribution could be approximated using a finite number of Monte Carlo samples from
the posterior probability [12].

Despite these advantages, the complexity of Bayesian inference and the
computational intensity required for training BNNs may have limited their application in
pavement performance projects. Consequently, there is significant potential for future
research to explore and integrate BNNs into this field, potentially leading to more
reliable and insightful pavement condition assessments.

In the future, the incorporation of real-time data from Internet of Things devices
is expected to transform pavement performance assessment by facilitating ongoing
observation and more accurate forecasting. Furthermore, improvements in sensor
technology, including 3D imaging and laser scanners, should yield even more precise
and in-depth information about the state of the pavement, improving the predictive
power of pavement management systems [13].

2.1. Proposal

In this project, probabilistic models will be covered, with a focus on the
machine learning technique known as Bayesian Neural Networks (BNNs), using the
Markov Chain Monte Carlo (MCMC) sampling method for the training phase. As
mentioned earlier, some approaches are taken using Naive Bayes, while others use
NN, which are admittedly powerful, but in this occasion, a model that combined
both approaches was selected.

This project will train the BNN utilizing empirical data generated from
surface characteristics, environmental parameters, and traffic density (all of which
have a substantial impact on road conditions) as opposed to some other efforts that
use image-based training. This approach leverages the strengths of both empirical
data and advanced machine learning techniques to provide more accurate and
reliable predictions of pavement conditions.
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3.Problem Analysis

Governments and civil engineers face a significant challenge in preventing road
deterioration and maintaining the quality of road networks. This challenge is
compounded by several factors, including the ftraffic loads on the roads, the
environmental conditions, the aging infrastructures, the budget constraints and the
difficult data gathering.

Given these factors, millions of dollars are being invested annually to mitigate
road deterioration and maintain road quality. However, the current methods employed
often fall short in addressing these challenges comprehensively and efficiently.

Pavement management systems (PMS) innovation and business prospects
must be systematically analyzed in order to properly solve these difficulties. A SWOT
analysis will be used in this situation [14]:

e Strengths: Advanced modeling techniques like Bayesian Neural
Networks (BNNs) and machine learning can provide accurate
predictions of pavement conditions, enabling a quicker maintenance.

e Weaknesses: High initial setup costs and the need for extensive data
collection and processing can be barriers to adoption.

e Opportunities: Pavement management could promote a transformation
with the integration of loT devices and real-time data collection.
Collaborations with IT companies and sensor producers can improve the
predictive and accurate qualities of data.

e Threats: Rapid technological changes and budget constraints can
impact long-term project sustainability and scalability.

To complete the analysis, a review of the legal and ethical framework is
mandatory. Several aspects will be discussed below:

e Data Protection Analysis: All the data obtained and used is publicly
available on the internet, as it is generated from official organizations.
Therefore, no especial treatment must be committed to ensuring that the
data is protected.

e Intellectual Property: The models created for these duties can be
coded using open-source software like python, thus no specific licenses
must be bought, nor sensitive software should be hidden.

3.1. ldentification and analysis of possible solutions

There are many open strategies that try to solve this problem. The following
are possible solutions that are related to the field of study lectured in the degree of
Data Science:

e Predictive Maintenance Systems: Development of advanced
predictive maintenance systems using machine learning techniques
to forecast pavement deterioration and plan periodic interventions.

e |oT Integration: Incorporating IoT devices for real-time monitoring of
road conditions. Sensors embedded in the pavement and
vehicle-based data collection systems can provide continuous
updates on pavement health.
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e Automated Data Collection and Analysis: Utilizing UAVs, 3D
imaging, and laser scanning technologies for detailed and automated
data collection, reducing the need for manual inspections and
improving data accuracy [3].

Although more approaches could be taken into consideration, these three
key points summarize well where are the efforts being put forward.

3.2. Proposed solution

Regarding the previous solutions commented, the focus of this project will aim
to develop a predictive maintenance system. As commented earlier, they rely on
machine learning techniques, which are well suited to forecast the IRI, thus providing
civil engineers with insights into how road deterioration may progress. The choice of a
Bayesian Neural Network (BNN) is particularly appropriate because it accounts for
intrinsic variability such as weather conditions, material properties, and traffic patterns.
In essence, BNNs are well-equipped to handle the inherent uncertainties in pavement

performance, offering a more robust and reliable approach to predicting road
maintenance needs.
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4.Data Preparation and Analysis

This project has relied mainly on three different data sources, each of which has
been treated and prepared independently so that they can be joined together to work
on a complete database. The datasets are:

1. The IRI dataset, that has been provided by my cotutor Joao. It contains
information about the IRI over the road network of the Netherlands.

2. The Traffic Density per Road Segment (INWEVA in Dutch, I'll use it for
abbreviation) dataset of the Netherlands, that | have obtained from the
Rijkswaterstaat Data Registry.

3. The Environmental Conditions dataset, that | have obtained from the
Koninklijke Nederlands Meteorologisch Instituut (KNMI). 1t contains
information about several climatological conditions per region of the
Netherlands.

To fully comprehend the datasets, a detailed explanation of each dataset and
the transformations it has undergone is essential, being Python the programming code
used to process all requirements. The same methodology will be applied to all three
datasets: initially, a brief description of some key features within the dataset will be
provided; secondly, the data wrangling performed will be outlined, converting it to a
usable version; and finally, the features remaining after the previous process will be
explained in detail.

4.1. IR| Dataset

As previously commented, this dataset contains the IRI per road segment
over the Netherlands’ Road System. Each row of the dataset represents a road
segment which is identified by a key that is called BPS3.

Here is an example of the key: WNN_10 1HRL 2R-L 21.0 _21.1. Its break
down would be:

e WNN: the region where the road segment is located.

e 10: the ID of the road set by Rijkswaterstaat.

e 1HRL: the last letter is the representative; R means right side of the
road, and L means left side.

e 2R-L: the number indicates the lane, in case of several lanes per
side.

e 21.0: indicates the kilometer where the road begins.

e 21.1: indicates the kilometer where the road finishes.

Having commented on the several values of the key, most of the relevant
columns of the IRI dataset have been mentioned. Ultimately, these features are:

e Region: String, the region where the road segment is located.
One-hot encoding is applied.

e |D: Integer, the ID of the road segment.

e Side: String, the side of the road (left or right). One-hot encoding is
applied.

e Lane: String, the lane inside the side of the road. One-hot encoding
is applied.
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e From: Float, the starting km of the road segment.
e To: Float, the ending km of the road segment.

The columns which form the complete dataset are the previously remarked,
that form the key, plus a few more:

e Surface Layer Type: String, the type of the road’s surface. One-hot
encoding is applied.

e |RI: Float, the IRI of the road segment.

Measurement Date: Date, the date when the IRl was measured.

e Construction Date: Date, the date when the road segment was
constructed or repaired.

e Age: Float, the years that passed since the construction date until
the measurement date.

Now that the features have been explained, it would be helpful to
recapitulate the modifications made to the dataset. Initially, the dataset was not
suitable for integration with the other two datasets or for input into a machine
learning model. First, minor modifications were performed: the removal of negative
values from the Age column and the addition of the construction date to the key.
Negative Age values were essentially noise due to data wrangling errors and
should not be passed to the model. Additionally, the inclusion of the construction
date was necessary as it indicated whether a road segment had been repaired. A
repaired segment was considered a newly constructed segment, with its IRI
progression effectively restarting. For modeling coherence, such segments should
be treated as new. The best way to do this was to include the construction date in
the key, thereby creating a new road segment each time it had been repaired. The
new key would look like this: WNN_10_1HRL_2R-L_21.0_21.1_2015.

Following this, it was mandatory to remove the duplicated rows in the
dataset. Although each row had a key to be uniquely identified, there was still one
more column in the dataset that was causing problems: the Original Version
Number. During previous modifications to this dataset, multiple versions of the
same segment were being stored, each time with an increasing value of the
Original Version Number column, thus accumulating duplicated rows. To solve this
problem, it was necessary to create a loop that checked every row. The
methodology was:

1. lteration over different tuples of (Age, BPS3). The duplicates were
on the age level, i.e. there were several identical road segments
with the same age. The column Age was selected for commaodity,
but the Construction Date could also had been used (Construction
Date, BPS3).

2. Selection of the row that had the highest Original Version Number
value for each subset of rows with the previous tuple, that was the
valid segment. If there were several rows with the same value,
simply the last row was selected.

3. Storage of the selected row and removal of the rest.

Once the cleaning was done, it was time to prepare the dataset for the
modeling. Initially, the dataset represents a static problem: the IRI is the dependent
variable, and predictions are based on features fixed within a specific time range.
This means that it is not being considered how the IRl changes over time, but
rather trying to understand or predict the IRI based on current conditions. However,
the aim of this project is to solve a dynamic problem: how the variables change
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over time. If the average IRI Increase (i.e., the average change in IRI over the years
for a segment) is used as the dependent variable, the focus is on the temporal
evolution of the road roughness. This approach acknowledges that road conditions
are not static and can deteriorate or improve over time due to various factors.

This implementation significantly simplifies the process for users to predict
the IRI for a specific road segment. To use the model, users first need to gather
data from within a year of the measurement date, which will serve as input. The
model will then provide the average IRI increase for that segment. To estimate the
IRl over a desired number of years, the user simply multiplies the predicted IRI
increase by the number of years and adds this to the initial measurement value.

To reconvert the dataset, another loop was created, but this time its purpose
was to create the two new columns needed to satisfy the dynamic problem
structure. The new columns are:

1. Years Until Next Measurement. The information about the
segments in the dataset is not complete over all the years.
Therefore, is not possible to simply subtract the IRI of a year from its
previous year. Calculating the years that pass from a measurement
until de next measurement, from a given segment, is a solution.

2. IRI Increase: After subtracting the IRl of a measurement from its
previous one, its needed to divide it by the obtained number of years
that passed, thus returning an average per year.

To obtain these new columns, an iteration over all the unique BPS3 keys of
the dataset is done while computing the following operations:

1. Ordering of the measurements by age (please note that a given key
usually has several measurements).

2. The years that have passed from one measurement to another are
calculated. For greater accuracy, the month is used, returning a
decimal value.

3. The IRI value of the consecutive measurements is subtracted and
divided by the elapsed years.

4. The last measurement of each segment is eliminated.

It is worth noting that some of the road segments end with a negative IRI
Increase, what means that the latest IRI measurement is lower than its previous
one. This situation is considered as noise, as the IRI of a road segment could be
the same over the years but it could not get smaller. Therefore, this type of road
segments with negative IRI Increase are removed.

After all the processing, the dataset is finally ready to work with. Next, there
are shown a sample of the features for a random road segment:

BPS3 ID Date Years Until Next Measurement IRI Increase IRI
measurem
ent
MN_12_1HRL_2R-L_57.3_57.4_201 12 2019-04-19 0.96 0.208333333 | 0.9
8 00:00:00
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MN_12_THRL_2R-L_57.3_57.4_201 12 2020-04-02 1.06 0.188679245

8

00:00:00

1.1

4.2. INWEVA Dataset

This dataset contains the traffic density per road segment over the
Netherlands network. When the data is obtained from the Rijkswaterstaat Data
Registry web page, it comes segregated by year. Therefore, a union process of the
several datasets was done to make it possible to join it with the IRI dataset. Finally,
a few more adjustments were needed:

The name changing of some columns that came in Dutch.

The format changing of wrongly formatted data types.

The removal of columns not needed to the model.

The creation of helpful ones like the Year, obtained from the
measurement date.

pPwb -~

Overall, the data wrangling applied to this dataset has not been demanding.
Once completed, the columns that remain are:

ID: the ID of the road set by Rijkswaterstaat.

Year: the year when the measurement was taken.

Side: the side of the road.

From: the starting km of the road segment.

To: the ending km of the road segment.

etmaal_AL: Daily INWEVA intensity of all vehicles on a working day

(in motions).

e etmaal_L1: Daily INWEVA intensity of passenger cars on a working
day (in motions).

e etmaal_L2: Daily INWEVA intensity of medium truck traffic on a
working day (in movements).

e etmaal_L3: Daily INWEVA heavy truck traffic intensity on a working

day (in motions).

These remaining columns provide a comprehensive view of traffic density,
segmented by vehicle type and road attributes. By integrating this traffic data with
the IRI dataset, we can gain valuable insights into the relationship between traffic
patterns and pavement deterioration.

4.3. KNMI| Dataset

This dataset includes various climatological factors that can impact road
conditions over time. The KNMI collects the climatological data using weather
stations that are distributed across the Netherlands. Therefore, the information
comes segmented into different datasets, each one referred to a weather station.
As it has been explained before, in the IRI dataset only the region is stored, which
is an aggrupation of different provinces.

The differences in data segregation required extensive data processing to
enable the merging of the datasets. To achieve this, folders were created
corresponding to each region in the IRI dataset. Within each folder, the datasets
from weather stations located in those regions were stored. After that, a Python
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script was used to combine all the datasets, creating a new column named Region
based on the folder names. Moreover, a column named Year was subsequently
created from the date.
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Initially there were many features present in the dataset, so the most
meaningful ones were selected:

FG: Wind speed.

TG: Temperature.

TN: Min temperature.

TX: Max temperature.

RH: Precipitation Amount.

SQ: Sunshine duration.

SP: Sunshine percentage.

UG: Humidity.

Year: Year of the measurement.

Region: Region where weather station is located.

Although the data comes from its source formatted in daily measurements, it
was decided to use yearly averages. This approach aligns with the use case of the
problem and ensures consistency with the other datasets. All the daily
measurements were grouped by Year and Region, -the two newly created features-
to ensure the data matched the required format.

It was considered that more meaningful features could be obtained from
these ones, so an extra step was taken to create the next variables:

e FRZ (Freeze Index): Summation of difference between 0°C and daily
average air temperature, when daily average air temperature is less
than 0°C.

o FRZT (Freeze-thaw): Number of days in the year when the
maximum air temperature is greater than 0°C (32°F) and minimum
air temperature is less than 0°C (32°F) on the same day.

e HOT (Days above 32°C): Number of days in the year when the
maximum air temperature is greater than 32.2°C.

e COLD (Day below 0°C) = Number of days in the year when the
minimum air temperature is smaller than 0°C.

¢ RHA: Annual accumulated precipitation.

These derived features, such as FRZ and FRZT, are crucial for
understanding the impact of extreme weather conditions on pavement
performance. By integrating these climatological variables with the IRI dataset, we
can develop more robust predictive models that account for environmental factors.

4.4. Complete Dataset

The full dataset is formed by the combination of the three previous datasets.
First, the IRI dataset was joined with the INWEVA dataset and then, the
intermediate combination with the KNMI dataset.

However, the joining process could not be performed with simple operations,
such as a join by the Year column. As explained, the purpose of each row of the
dataset is to store the information that explains the increase in IRl which the road
segment would experience within one year. Therefore, it was necessary to join
each row of the dataset with the weather and traffic density information found in the
one-year period from the date of the measurement day. To achieve this purpose,
the joining was divided into several steps.
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The first was to join the IRI dataset with the INWEVA dataset without any
column that indicated the date, using just the road identifiers: the ID, the Side and
the From and To columns. In this way, each road segment was matched with every
INWEVA record of itself, without taking the measurement year into account. This
merged dataset acted as an auxiliary for later steps and looks like this:

BPS3 ID IRI Date INWEVA Year Etmaal_AL
measurement
g/IN_12_1HRL_2R-L_57.3_57.4_201 12 2019-04-19 00:00:00 2015 19456
g/IN_12_1HRL_2R-L_57.3_57.4_201 12 2019-04-19 00:00:00 2019 21233
g/IN_12_1HRL_2R-L_57.3_57.4_201 12 2019-04-19 00:00:00 2020 22456

The purpose of this intermediate dataset was to apply a formula that served
to compute the weighted average of the INWEVA yearly averages to each of the IRl
road segments, thus solving the problem that was being faced. The formula is:

1 —-—a*row(N)+ a *row(N + 1),a = dayoftheyear/365, N = measurementyear,row = [N

To achieve this, a Python script traversed all the unique BPS3 keys,
selecting a subset of records for each key in each iteration. The correct records
were identified using the date columns. For each subset, another loop applied the
specified formula, and the calculated values were stored in a new dataset.

To exemplify the formula: imagine the aimed row to join was measured on
July 1, 2020, which is approximately halfway through the year, a=0.5, (for the real
task, using a developed Python program the exact day is obtained and divided by
365). Then the interpolated value would be calculated:
(1 = 0.5)- row(2020) + 0.5 - row(2021). The result is the average of the traffic
densities of 2020 and 2021, weighted equally.

Once the IRl and INWEVA datasets were prepared, the same process was
applied to integrate the KNMI dataset, but without any initial joins. Given the
simplicity of the KNMI dataset, the program could accurately match the road
segments using the Year and Region columns. With this final addition, the dataset
was complete, allowing the model training and evaluation to start. The appearance
of the complete dataset would be something similar to this table:
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BPS3 ID Date IRI Increase INWEVA KNMI
measurement Features Features

g"NJZJHR'-72R-L757-3757-47201 12 2019-04-19 0.208333333 Weighted Weighted
00:00:00 average average

values values

g"NJZJHR'-_ZR-L_57-3_57-4_201 12 2020-04-02 0.188679245 Weighted Weighted
00:00:00 average average

values values

For simplicity and space reason several columns of the initial IRl dataset
have been omitted. Also, the columns of INWEVA and KNMI datasets have been

grouped in representative columns.
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5.Gained Knowledge and Model Evaluation

This section presents the outcomes of the Bayesian Neural Network (BNN)
applied to the problem at hand, including a detailed analysis of its performance.
Through the application of the BNN, the aim is not only to make accurate predictions
but also to understand the underlying uncertainties and patterns within the data. The
evaluation process includes visual representations of the results, such as graphs and
charts, which help to illustrate the model's predictions, uncertainty quantifications, and
overall effectiveness.

Before presenting the results, the training process will be explained. An
intensive grid search was performed during the training phase. It was mandatory due to
the complexity of the data preprocessing choices and the broad range of
hyperparameters. To put in context, these variable components were:

e The IRI Increase threshold, ranging from 0 to 0.8 in increments of 0.2.
The data above upper thresholds are scarce.

e The number of PCA components, ranging from 3-13. The numbers are
based on the scree plot of the PCA.

e The number of layers in the network, ranging from 2 to 5.

e The number of neurons per layer, ranging from 5 to 25 in increments of
5.

One of the parameters is noticeable, the IRI threshold. It was introduced due to
the distribution of the IRI Increase variable, which contains mainly values closer to the
increase of 0. Its purpose is to complete the study and determine whether the model
would work better for higher values of IRl Increase. This plot shows the distribution of
it:

Distribution of IRl Increase in Train and Test Datasets
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Figure 2: IRI Increase distribution

The objective of the training was to find a combination of parameters that
retrieved a model which did not overfit the data. Therefore, the selected combination
consisted of the parameters that originated a similar Pearson Correlation between the
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mean of the posterior sample y and y. Furthermore, it was crucial to ensure that the
model's complexity—defined by the total number of parameters—was appropriately
scaled to the size of the dataset. To this end, the selected combination of parameters
adhered to the widely accepted guideline of maintaining a ratio of at least 10 samples

per

model parameter. This ratio serves as a safeguard, reducing the risk of overfitting

by ensuring that the model has sufficient data to learn meaningful patterns, rather than
simply memorizing the training data.
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5.1. Results

The following graphs provide a detailed overview of the model's
performance, as they show the scatter plots of the best configurations obtained by
the grid search. The posterior distributions of the BNN weights and biases will not
be included so as to not overload the section. Predictions for the train and test set
are displayed:
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Figure 4: BNN threshold 0.2
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Figure 5: BBN threshold 0.4
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Threshold: 0.6, PCA: 3, Hid Dim: 2, Layers: 2
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Figure 6: BNN threshold 0.6
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Figure 7: BNN threshold 0.8
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Train Correlation

Test Correlation

Threshold 0 0.737155542763503 0.6489600820399735
Threshold 0.2 0.5236611622736915 0.41833971246750734
Threshold 0.4 0.5905217477712591 0.45671483291587894
Threshold 0.6 0.43948932819111075 0.3310962074469568
Threshold 0.8 0.22606797130957104 0.421327996595717




It is noticeable how the performance of the BNN decreases as the threshold
increases, effect which could be caused by the inferior number of samples present
in datasets with greater thresholds (as shown in the distribution). Nevertheless,
thanks to the constraint of parameters commented earlier, it is ensured that the
ratio of samples per parameter is respected. Therefore, the higher results with
lower thresholds could be occasioned by the more complex BNNs that can be
trained thanks to the wider range of data available. Ultimately, the best model is
obtained without threshold restrictions in the data, with a correlation of 0.74 in the
train dataset and a correlation of 0.65 for the test dataset. This metric represents
just represents how accurate the model has been in predicting each point, however,
the usage of the model would be enhanced by its advantages, like the uncertainty
distribution that is being generated for each prediction.

This best model arises from a network created with 2 layers of 25 neurons
each. With two hidden layers, the network can model non-linear relationships
between input features and the target variable, capturing more complex patterns
than a simple linear model. What is more, the number of parameters (weights and
biases) in this network is substantial but manageable. This network has enough
parameters to capture complex relationships but is not overly large, which helps
maintain generalization and prevent overfitting.

On the other hand, there is the number of PCA components involved. To
understand why nine, the following graph will be used:

Carrelation vs Number of Components for umbral 0
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Figure 8: Correlation per number of principal components

To generate this graph, the number of layers and neurons per layer were set
according to the optimal values determined earlier. As shown in the graph, there is
a point around ten principal components, beyond which the correlation in the
training dataset no longer improves, meaning this could be considered the point
with the best balance between complexity and performance. This indicates that,
increasing the number of principal components beyond this point does not yield
additional predictive power and might lead to overfitting (especially evident from the
gap between train and test correlations).
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Cumulative Explained Variance vs Number of Components
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Figure 9: Scree plot

As it is seen in the scree plot, ten principal components only explain about
sixty percent of the explained variance of the data; around this point the curve
starts to flatten a little bit, which aligns with the point where the BNN's correlation
stops improving significantly. This suggests that the first ten PCs capture the most
critical information in the dataset, which is sufficient for the BNN's performance.

To continue, the graphs obtained with the LR models will be displayed. As

the LR is a basic model, these results
performance.

will serve as a reference for the BNN
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Threshold: 0.2, PCA: 9
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Figure 11: LR threshold 0.2
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Figure 12: LR threshold 0.4
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Threshold: 0.6, PCA: 3
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Figure 13: LR threshold 0.6
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Figure 14: LR threshold 0.8
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Although the overall correlation scores are lower than before, the difference
between the test correlation scores of the Linear Regression (LR) and the Bayesian
Neural Network (BNN) is not significant. The first three models, particularly those
with 0.2 and 0.4 thresholds, achieve test correlations comparable to the BNN.
However, the last two models perform poorly, resulting in a test correlation of zero,
which indicates severe overfitting during training. The best performance is again
observed in the model without threshold restrictions, achieving a test correlation of
0.59—remarkably close to the 0.65 achieved by the BNN.

5.2. Supporting Explanation

The understanding of the decision process in a complex model such as
Bayesian Neural Networks can be challenging as it is essentially a NN, which also
is a black box model. However, the combination with complementary analytical
tools, such as PCA loadings and LR coefficients will bring important insights. A
PCA loading plot shows the amount to which each original variable contributes to
each principal component., which could indicate the most influential characteristics
in the data. This could help to understand which are the key drivers of variance in
the data that might be leveraged by the BNN. On the other hand, the coefficients
plot from the LR model that shows us a direct view of the linear relationship
between features and the target. The coefficients that are shown are the ones
which remained after applying ANOVA. By comparing these two plots, we can gain
a better understanding of how the BNN might be making decisions, identifying
which features it prioritizes and how they influence its predictions.

First, the loading plots per threshold of the two main principal components
will be displayed:
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Figure 16: Loading Plot threshold 0.2

Loading Plot Threshold 0.4

Loadings Plot for PC2

Loadings Plot for PC1

n
-
i
|
—
—
i
|
1
-
-
1
—
|
-
—
]
—
i
-
-
]
-
—
i
—
—
-
u
—-—
—
-
'
u
-
-
n
|
@Q © <+ o ]
=] = =] =1 3

20d uo sBuipeo

03
02
1
0.0
1

0
-02
-03

10d uo sBuipeo

HREF aning®
8yQZ soeung

L5-55ehns

s

e
5 aoepns

8h
S1JEels

[ jeewie

L
&

Variables

Variables

Figure 17: Loading Plot threshold 0.4

e Y



Loading Plot Threshold 0.6
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Figure 18: Loading Plot threshold 0.6
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Figure 19: Loading Plot threshold 0.8

Despite the reduction in data per threshold increasing, the loading plots
reveal a consistent pattern for the PC1 (unless for the 0.8 threshold): mainly the
KNMI features maintain high loadings (in absolute terms), while other features
become relevant depending on the threshold. This behavior suggests that the KNMI
features are the most influential in explaining the variance within the dataset, even
as data becomes scarcer. These features likely represent key factors that drive the
underlying patterns in the data, regardless of the threshold applied. Conversely, the
remaining features do not show significant contributions nor the PC2 does show a
significant pattern.

What the graph suggests that the features FG, TG, SQ and SP with the
highest loading values, have a meaningful positive relationship with the IR/
Increase, i.e. as these increase, the component's score augments. Alternatively, the
features UG, FRZ, FRZT and COLD with low negative loadings can be interpreted
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as having an inverse relationship with the IRI Increase. This means that as these
features increase, they tend to contribute to a decrease in the component’s score.
The variations occasioned in the component’'s score by these features would
influence indirectly the IRl Increase prediction of the BNN, as these changes are
reflected in the input to the BNN, thereby affecting the model's interpretation of the
underlying patterns and, consequently, its prediction of IR/ Increase.

The other features with minimal loadings likely have little to no impact on the

principal component's ability to capture the variance in the data, which means they

are less relevant for understanding the primary trends in the dataset as the
threshold increases.

The next analysis is based on the coefficients obtained from the LR model
after applying ANOVA:
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Figure 21: ANOVA threshold 0.2
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Figure 24: ANOVA threshold 0.8

The LR model indicate the direct relationship between each feature and the IR/
Increase. The lack of a consistent pattern in the LR coefficients suggests that the
influence of features on the target variable may not be stable or consistent across
different thresholds, probably due to complex interactions or non-linear
relationships that the LR model, which is linear, cannot capture. Moreover, as the
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thresholds increase and the data becomes sparser, the LR model may struggle to
identify stable relationships, leading to fluctuating coefficients.

This contrasts with PCA, where the method focuses on capturing the maximum
variance in the data, which might remain relatively stable despite the reduced data;
even the loading plots change its pattern when this reduction in data exacerbates,
like it has been shown in the 0.8 threshold loading plot.

When looking at the coefficients from the ANOVA obtained from the LR with
threshold 0 (corresponding to the best BNN model and the dataset with the most
available data), the KNMI are again the most meaningful features. Based on the
graph, higher values of TG, SP and COLD will decrease the IR/ Increase prediction,
while higher values of TN, TX, SQ, UG and FRZT will increase its value. In the rest
of the graphs, some of the KNMI features also gain importance.
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6.Conclusion

This project set out to achieve three main objectives: the creation of a
comprehensive dataset by integrating our data with public datasets, the development of
a probabilistic machine learning model, specifically a Bayesian Neural Network (BNN),
to generate and evaluate predictions from this dataset, and the implementation of a
linear regression model to complement the BNN and provide a deeper understanding
of the data.

The objectives were successfully achieved, though the process highlighted
several key challenges. By integrating the IRI, KNMI, and INWEVA datasets using
Python, a comprehensive dataset was created, serving as the foundation for training
the Bayesian Neural Network. The probabilistic model developed—the BNN—was able
to generate predictions, confirming that the IRI Increase is influenced by the dataset
features. However, it became evident that accurately predicting the IRI increment with
the available dataset is challenging, whether using linear models or Bayesian networks.
This suggests that the current dataset may not sufficiently capture the complexities
required for precise predictions. The linear regression model, although simpler,
returned similar outcomes in some thresholds and effectively complemented the BNN
by elucidating the linear relationships within the data, providing further insights into the
model's behavior. This suggests that the linear relationships present in the data are
strong enough to be effectively captured by a basic linear model, indicating that the
complexity of the BNN may not be fully utilized given the current dataset.

Additionally, the project revealed significant issues with data overfitting,
particularly in cases where the models performed well on the training data but failed to
generalize to unseen data (as seen with the LR). The most important takeaway from
this work is the recognition of the dataset's limitations and the need for improvement.
To improve IRI increment predictions, the dataset could be enhanced by incorporating
more diverse features, increasing sample size, and reducing data noise. These
improvements could help create a more robust and predictive model.

Throughout the project, several challenges were encountered, particularly in
managing and integrating large datasets and in fine-tuning the BNN to balance
accuracy with interpretability. These challenges were addressed through a combination
of data preprocessing techniques, careful model selection, and iterative tuning of
hyperparameters. The use of state-of-the-art technologies, such as advanced machine
learning frameworks and data analysis tools, was crucial in overcoming these
obstacles.

This project has also served as an opportunity to deepen my understanding of
Bayesian methods and their application in neural networks, as well as to learn about
the integration of linear regression techniques with machine learning models; all while
using Python. The experience of tackling these challenges and learning new concepts
has been invaluable, particularly in understanding the importance of combining different
technologies and methods to solve complex problems.

6.1. Legacy

a
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To follow the work done in Python enter the following link:
https://github.com/Sviallo/TFG_GCD_UPV

.
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7 .Future Works

Future efforts could focus on refining the BNN model to improve its performance
on unseen data, exploring alternative methods of model interpretation, or expanding
the dataset to include additional features that could enhance prediction accuracy.
Additionally, other models could be investigated, like Recurrent Neural Networks, which
are specifically designed to handle temporal dependencies. They can capture the
evolution of features over time, which could improve the predictive accuracy for tasks
like forecasting IR/ Increase based on past conditions.

B
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ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE

Grado de relacidn del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenibles Alto Medio Bajo No
Procede
ODS 1. Fin de la pobreza. X
ODS 2. Hambre cero.
X
ODS 3. Saludy bienestar. X
0ODS 4. Educacidn de calidad. X
ODS 5. lgualdad de género. X
ODS 6. Agua limpia y saneamiento. X
ODS 7. Energia asequible y no X
contaminante.
ODS 8. Trabajo decentey X
crecimiento econdémico.
ODS 9. Industria, innovacion e X
infraestructuras.
ODS 10. Reduccidn de las X
desigualdades.
ODS 11. Ciudades y comunidades X
sostenibles.
ODS 12. Produccidn y consumo X
responsables.
ODS 13. Accioén por el clima. X
ODS 14. Vida submarina. X
ODS 15. Vida de ecosistemas X
terrestres.
ODS 16. Paz, justicia e instituciones X
sélidas.
ODS 17. Alianzas para lograr X
objetivos.
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- Reflexiéon sobre la relacion del TFG/TFM con los ODS y con el/los ODS mas
relacionados.

The present thesis, "Application of probabilistic modeling to predict road pavement
deterioration", has a close relationship with three key Sustainable Development Goals:
SDG 8 (Decent Work and Economic Growth), SDG 9 (Industry, Innovation and
Infrastructure), and SDG 11 (Sustainable Cities and Communities).

Firstly, this project contributes to SDG 8 by promoting sustained, inclusive, and
sustainable economic growth. Well-maintained road infrastructures are fundamental
for economic growth, as they enable efficient transportation of goods and facilitate
workforce mobility. By using machine learning techniques to optimize road
maintenance strategies, this thesis helps ensure a reliable and resilient transportation
network, which is a pillar of economic growth. Moreover, efficient and data-driven road
maintenance can generate significant savings for public administrations, freeing up
resources that can be allocated to other development priorities.

Furthermore, this work strongly aligns with SDG 9, which seeks to build resilient
infrastructure and promote innovation. Applying Bayesian Neural Network models to
predict pavement deterioration over time is a highly innovative solution. It leverages
the latest advancements in artificial intelligence and machine learning to address the
challenge of road maintenance. This application of cutting-edge technologies
exemplifies the kind of innovation advocated by SDG 9. Additionally, having accurate
predictive models enables proactive maintenance planning, resulting in more resilient
and durable road infrastructures.

Lastly, this research makes a valuable contribution to SDG 11, which focuses on making
cities and human settlements inclusive, safe, resilient, and sustainable. Optimal
pavement maintenance is crucial for urban sustainability. Well-maintained roads
improve road safety, reduce accidents, and make cities more livable. Furthermore,
well-maintained pavements reduce vehicle fuel consumption and associated emissions,
contributing to improved urban air quality. By facilitating efficient road maintenance
planning, this project promotes more sustainable and resilient urban infrastructures.

In conclusion, this thesis, which applies machine learning techniques to predict
pavement deterioration, clearly aligns with SDGs 8, 9, and 11. It contributes to
sustainable economic growth by ensuring reliable transportation infrastructure,
promotes innovation by applying cutting-edge technologies to road maintenance, and
fosters more sustainable cities by optimizing pavement management. This project
illustrates how technological innovation can be a powerful driver for advancing the
Sustainable Development Goals.
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